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—— Abstract

We consider the algorithmic complexity of recognizing bipartite temporal graphs. Rather than
defining these graphs solely by their underlying graph or individual layers, we define a bipartite
temporal graph as one in which every layer can be 2-colored in a way that results in few changes
between any two consecutive layers. This approach follows the framework of multistage problems
that has received a growing amount of attention in recent years. We investigate the complexity of
recognizing these graphs. We show that this problem is NP-hard even if there are only two layers or
if only one change is allowed between consecutive layers. We consider the parameterized complexity
of the problem with respect to several structural graph parameters, which we transfer from the
static to the temporal setting in three different ways. Finally, we consider a version of the problem
in which we only restrict the total number of changes throughout the lifetime of the graph. We show
that this variant is fixed-parameter tractable with respect to the number of changes.
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1 Introduction

Bipartite graphs form a well-studied class of static graphs. A graph G = (V, E) is bipartite
if it admits a proper 2-coloring. A function f: V — {1,2} is a proper 2-coloring of G if for
all edges {v,w} € E it holds that f(v) # f(w). In this work, we study the question of what
a bipartite temporal graph is and how fast we can determine whether a temporal graph is
bipartite. We approach this question through the prism of the novel program of multistage
problems. Thus, we consider the following decision problem:

» Problem 1. MULTISTAGE 2-COLORING (MS2C)

Input: A temporal graph G = (V, (E;)7_;) and an integer d € Ny.
Question: Are there fi1,..., fr: V — {1,2} such that f; is a proper 2-coloring for (V, E;)
for every t € {1,...,7} and |[{v € V' | fi(v) # fiy1(v)}| < d for every t € {1,...,7 —1}?

In other words, (G,d) is a yes-instance if G admits a proper 2-coloring of each layer where
only d vertices change colors between any two consecutive layers.
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There have been various approaches to transferring graph classes from static to temporal
graphs. If C is a class of static graphs, then the two most obvious ways of defining a
temporal analog to C are (i) including all temporal graphs whose underlying graph is in C or
(ii) including all temporal graphs that have all of their layers in C (see, for instance, [15]). Most
applied research that has employed a notion of bipartiteness in temporal graphs [1, 24, 34] has
defined it using the underlying graph, seeking to model relationships between two different
types of entities. This is certainly appropriate as long as the type of an entity is not itself
time-varying. Situations where entities can change their types require more sophisticated
notions of bipartiteness. With MS2C, we model situations where we expect few entities
to change their type between any two consecutive time steps. Later, in Section 5, we will
consider a model for settings where we expect few changes overall.

The issue with both of the aforementioned classical approaches to defining temporal graph
classes is that they do not take the time component into account when deciding membership
in a class. For example, if the order of the layers is permuted arbitrarily, then this has
no effect on membership in C in either approach. Defining bipartiteness in the manner we
propose does take the temporal order of the layers into consideration. It also leads to a
hierarchy of temporal graph classes that are inclusion-wise between the two classes defined
in the two aforementioned more traditional approaches: It is easy to see that (G,0) is a
yes-instance for MS2C if and only if the underlying graph of G is bipartite. Conversely, if
any layer of G is not bipartite, then (G, d) is a no-instance no matter the value of d. The two
main drawbacks to defining temporal bipartiteness in this way are that (i) there is not one
class of bipartite temporal graphs, but an infinite hierarchy depending on the value of d and
(ii) as we will show, testing for bipartiteness in this sense is computationally much harder,
but we will attempt to partially remedy this by analyzing the problem’s parameterized
complexity for a variety of parameters.

Related work. The multistage framework is still young, but several problems have been
investigated in it, mostly in the last couple of years, including MATCHING [3, 7, 18], KNAP-
SACK [4], s-t PATH [17], VERTEX COVER [16], COMMITTEE ELECTION [5], and others [2].
The framework has also been extended to goals other than minimizing the number of changes
in the solution between layers [19, 22]. Since these types of problems are NP-hard even in
fairly restricted settings, most research has focused on their parameterized complexity and
approximability. MS2C is most closely related to MULTISTAGE 2-SAT [13] (see Section 2).

Our contributions. We prove that MS2C remains NP-hard even if d =1 or if 7 = 2. We
then analyze three ways of transferring structural graph parameters to the multistage setting:
the maximum over the layers, the sum over all layers’ values, and its value on the underlying
graph plus 7. We provide several (fixed-parameter) intractability and tractability results
regarding these three notions of structural parameterizations (see Figure 1). Finally, we
show that a slightly modified version of the problem in which there is no restriction on the
number of changes between any two consecutive layers, but on the total number of changes
throughout the lifetime of the graph, is fixed-parameter tractable with respect to the number
of allowed changes. The proofs of statements marked with v are deferred to the full version.

Discussion and outlook. While we proved that MS2C is NP-hard even if r =2 orif d =1,
we leave open whether it is fixed-parameter tractable for the combined parameter 7 + d. We
introduce a framework for analyzing the parameterized complexity of multistage problems
regarding structural graph parameters. We resolve the parameterized complexity of MS2C
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Figure 1 Overview of selected structural parameters and our results (green: in FPT; orange: XP

and W([1]-hard red: para-NP-hard; blue: XP and open whether FPT or W([1]-hard; gray: open).

[A: maximum degree; bw: bandwidth; cdi: diameter of connected component; clw: clique-width;
dbi: distance to bipartite; dcc: distance to co-cluster; dcl: distance to clique; dco: distance to
cograph; dgn: degeneracy; dom: domination number; fes: feedback edge number; fvs: feedback
vertex number; is: independence number; ncc: number of connected components; tw: treewidth; ve:
vertex cover number; for definitions of these parameters, see Section 2 or [32].] T (Proposition 25)
¥ (no polynomial kernel unless NP C coNP / poly).

with respect to most of the parameters, but two cases are left open (cf. Figure 1). For
instance, we proved that MS2C is in XP when parameterized by bw ., but we do not know
whether it is in FPT or WJ[l]-hard. Another interesting example is MS2C parameterized
by dccy 4, for which we do not know whether it is contained in XP or para-NP-hard. Note
that we proved fixed-parameter tractability regarding dccy. Finally, we suspect that it may
also be worthwhile to investigate other multistage graph problem in our framework.

2 Preliminaries

We denote by N (Np) the natural number excluding (including) zero. We use standard
terminology from graph theory [9] and parameterized algorithmics [8].

Static and temporal graphs. We will frequently refer to graphs as static graphs in order to
avoid confusion with temporal graphs. A static graph G = (V, E) is 2-colorable if it admits a
proper 2-coloring. It is well-known that a static graph is 2-colorable if and only if contains
no odd cycle. This can be checked in O(|V| + |E|) time by a simple search algorithm.

Let G = (V,E) be a static graph. The independence number (is(G)) is the size of a
largest set X C V such that G[X] is edgeless. The domination number (dom(G)) is the size
of a smallest set X C V such that every vertex in V' \ X has a neighbor in X. The maximum
degree (A(G)) is the maximum number of edges incident to a single vertex. A set of X CV
is a connected component if there is a path between any two vertices in X and no edge
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between X and V' \ X. We denote the number of connected components in G by nec(G). The
feedback edge number (fes(G)) is |E| — |V| + nce(G) or equivalently the size of a minimum
X C FE such that G — X is acyclic. If S,, denotes the set of all permutations of {1,...,n} and
V ={v1,...,v,}, then the bandwidth (bw(G)) is minges, maxy,, o, }ep|m(i) — 7(j)]. A tree
decomposition of G is a pair (T,{Xs | « € V(T)}) where T is a tree with node set V(7) and
Xo CV for every o € V(T) such that (i) U,ey (7 Xa =V, (ii) for every {u,v} € E there is
an « € V(T) such that u,v € X,, and (iii) for every v € V the node set {a € V/(T) | v € X}
induces a subtree of 7. The width of (T, X) is max,cv(7)|Xa| — 1. The trecwidth (tw(G))
is the minimum width of a tree decomposition of G. If C is a class of static graphs, then
X CVisa C-modulator in G if G — X € C. The (i) distance to cograph, (ii) vertex cover
number, (iii) distance to bipartite, and (iv) distance to co-cluster are the size of a minimum
C-modulator where C is the set of all (i) cographs, (ii) edgeless graphs, (iii) bipartite graphs,
and (iv) co-clusters, respectively.

A temporal graph G = (V,(F:)]_,) consists of a finite vertex set V and 7 edge sets
Ey,...,E. C (‘2/) The underlying graph of G is the static graph Gy = (V,U]_, Ev).
For t € {1,...,7}, the t-th layer of G is also a static graph, namely G; = (V, E;). The
lifetime of G is 7, the number of layers.

If f1, fa: X — Y are two functions that share a domain and a codomain, then 6(f1, f2) =
Hz € X | fi(x) # f2(x)}] is the number of elements of X whose value under f; differs from
the value under fs.

Preliminary results. There is a connection between MS2C and the MULTISTAGE 2-SAT
problem [13], which allows to transfer positive algorithmic results from the latter to the former.

» Observation 1. There is a polynomial time algorithm that, taking an instance of MUL-
TISTAGE 2-COLORING, constructs an equivalent instance of MULTISTAGE 2-SAT with n
variables, 2m clauses, and d' = d.

Proof. For each vertex v, construct a variable x,. For each edge {v,w} in a layer, construct
the clauses (z, V zy), (Ty V Tw)- <

Results on MULTISTAGE 2-SAT [13] hence imply the following.

» Corollary 2. MULTISTAGE 2-COLORING is (i) polynomial-time solvable if d € {0,n}, (i) in
XP regarding n — d and T + d, (iii) FPT regarding m +n — d and n, and (iv) admits a
polynomial kernel regarding m + 7 and n + 7.

We briefly note the following:

» Observation 3. Given two 2-colorable graphs G = (V,E) and G' = (V,E'), and two
2-colorings f of G and ' of G', we can determine 6(f, ') in linear time.

We can strengthen the first statement in Corollary 2 with the following proposition:
» Proposition 4 (%). MULTISTAGE 2-COLORING is polynomial-time solvable if d > %n
Testing all sequences of functions f1,..., fr: V — {1,2} gives us the following:

» Observation 5. MULTISTAGE 2-COLORING can be decided in time O(27™ - m) where T is
the lifetime, n the number of vertices, and m the number of time edges in a temporal graph.
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Figure 2 Illustration of Construction 1: The input graph G on the left hand-side (thick/red
edges indicate a solution) and the output temporal graph G on the right-hand side (thick/red edges
in the second layer indicate where a recoloring was made; gray/dotted lines help to match with
original edges from G).

3 NP-hard cases

We start by proving some complexity lower bounds for MULTISTAGE 2-COLORING. We will
show that the problem is NP-hard in two fairly restricted cases.

3.1 Few changes allowed

» Theorem 6 (%). MULTISTAGE 2-COLORING is NP-hard even for d =1 and restricted to
temporal graphs where each layer contains just three edges and has mazrimum degree one.

The proof is deferred to the full version.

3.2 Few stages

» Theorem 7 (% ). MULTISTAGE 2-COLORING is NP-hard on temporal graphs with at least
two layers each of which is a forest.

To prove Theorem 7, we give a polynomial-time many-one reduction from the NP-complete [35]
EDGE BIPARTIZATION problem defined by:

» Problem 2. EDGE BIPARTIZATION

Input: An undirected graph G = (V, E) and k € No.
Question: Is there a set of edges F’ C F with |E’| < k such that G — E’ is bipartite?

» Construction 1. Let G = (V, E) be a graph and let k& € Ny. We assume that V =
{v1,...,v,}. We construct an instance (G, d) of MS2C with G := (V' E1, Es) and d ==k as
follows (see Figure 2 for an illustrative example).

The underlying graph of G is obtained by subdividing each edge in G twice. Let u
and u§ be the two vertices obtained by subdividing e = {v;,v;} where uf is adjacent
to v; and u§ to v;. Then, V' :== V U {uf,u§ | e = {v;,v;} € E}. The first layer of G
has edge set By = {{v,,u{} | i € {1,...,n},e € E,v; € e}. The second layer has edge
set Eo = {{uf,uf} [ e ={vi,v;} € E}. a

(2

» Lemma 8 (). Instance (G, k) is a yes-instance for EDGE BIPARTIZATION if and only if
instance (G, d) output by Construction 1 is a yes-instance for MULTISTAGE 2-COLORING.

The reduction also implies the following:
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» Proposition 9. Unless the ETH fails, MULTISTAGE 2-COLORING admits no O(2°("+™))-
time algorithm, where n is the number of vertices and m is the number of time edges in a
temporal graph, even for T = 2.

Proof. Unless the ETH fails, EDGE BIPARTIZATION cannot be solved in time O(2°(™), where
n is the number of vertices. This follows from the corresponding lower bound for MAXIMUM
CuT [27]. The instance output by Construction 1 contains n + 2m vertices. The claim follows
by Lemma 8. |

4 Parameterized complexity

In the previous section we showed that MULTISTAGE 2-COLORING is NP-hard, even for
constant values of 7 and d. In this section, we study the parameterized complexity of MUL-
TISTAGE 2-COLORING. To begin with, we will now show that MULTISTAGE 2-COLORING is
fixed-parameter tractable with respect to n — d. This is in contrast to MULTISTAGE 2-SAT,
which is W[1]-hard with respect to this parameter [13, Theorem 3.6].

» Proposition 10. MULTISTAGE 2-COLORING is fized-parameter tractable regarding n — d.

Proof. If d > %, the problem can be solved in polynomial time (see Proposition 4). If d < %,
then it follows that n < 2(n — d). Hence, the fixed-parameter tractability of MS2C with
respect to n (see Corollary 2) implies fixed-parameter tractability with respect to n —d. <«

Additionally, we note the following kernelization lower bound.

» Proposition 11 (% ). Unless NP C coNP /poly, MULTISTAGE 2-COLORING admits no
problem kernel of size polynomial in the number n of vertices.

In the following, we will consider the parameterized complexity of MULTISTAGE 2-
COLORING with respect to structural graph parameters. Research on the parameterized
complexity of multistage problems has thus far mostly focused on the parameters that are
given as part of the input such as d or 7. Although Fluschnik et al. [17] considered the
vertex cover number and maximum degree of the underlying graph, there has been no
systematic study of multistage problems concerned with structural parameters of the input
temporal graph. We seek to initiate this line of research in the following. It follows the
call by Fellows et al. [10, 12] to investigate problems’ “parameter ecology” in order to fully
understand what makes them computationally hard. We will begin with a short discussion of
how graph parameters can be applied to multistage problems. This question is closely related
to issues that arise when applying such parameters to temporal graph problems (see [14]
and [26, Sect. 2.4]).

A (temporal) graph parameter p is a function that maps any (temporal) graph G to a
nonnegative integer p(G). We will consider three ways of transferring graph parameters to
temporal graphs. If p is a graph parameter, G = (V, (E})7_;) is a temporal graph, G; := (V, E})
its ¢-th layer, and Gy == (V,J;_, E¢) its underlying graph, then we define:

Poo(G) = {nax }p(gt)7 (maximum parameterization)
te{l,...,7
T
ps(G) = Z max{1,p(G¢)}, and (sum parameterization)
t=1

pu+-(G) =p(Gu) + 7. (underlying graph parameterization)
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We will briefly explain our choice to define these parameters in this manner and describe
the relationship between the parameters. For any two (temporal) graph parameters p;
and po, the first parameter py is larger than po, written p; > ps or ps = pip, if there is
a function f: Ny — Ny such that f(p1(G)) > p2(G) for all (temporal) graphs G. Such
relationships between parameters are useful because, if p; = po, then any problem that is
fixed-parameter tractable with respect to ps is also fixed-parameter tractable with respect
to p1. The =-relation between static graph parameters is well-understood [21, 30, 31, 32, 33].
We will use these relationships implicitly and explicitly throughout this article. Many of
the results claimed in Figure 1 will not be explicitly proved, because they are immediate
consequences of other results and the >-relation. The relationships under > between selected
graph parameters are pictured in that figure.

When it comes to transferring graph parameters from the static to the multistage setting,
the parameters po, and py, simply apply the graph parameter to the individual layers
and to the underlying graph, respectively, and were used in a similar manner by Fluschnik
et al. [14] and Molter [26]. The reasoning behind the definition of the sum parameterization
may not be quite as obvious. It seems natural to consider the sum of the parameters over
all layers. The issue with this is that it may not preserve the =-relation. For example, it
is well-known that feedback vertex number is a larger parameter (in the sense of ») than
treewidth. However, consider a temporal graph where each layer is a forest. Then, the sum
of the feedback vertex numbers of the layers is 0, but the sum of the layers’ treewidths is 7.
Hence, treewidth is no longer bounded from above by the feedback vertex number. Our
definition gets around this problem. In fact, all three aforementioned ways of transferring
parameters from the static to the multistage setting preserve the >=-relation:

» Proposition 12. Let p and q be graph parameters with p = q. Then, po = qo for
any o € {00, 3, U + 7}.

Proof. Let f: Ny — Ny be a function such that f(p(G)) > ¢(G) for all static graphs G.
Without loss of generality, we may assume that (i) f is monotonically increasing, that
is, f(a) > f(b) if a > b, and (ii) f(a) > a for every a € Ny (consider f'(a) = a +
maxpe(1,...qa) f(b), a € No, for instance).
Let G be an arbitrary temporal graph. Then:
te{l,...,7} e{1,...,7} te{l,...,7}

f(poo(g))Zf( max p(gt)>g max _ f(p(G;)) =2 max  q(Gr) = ¢ (9)

For n € N, let Part(n) denote the set of all partitions of n, that is all possible ways of
writing nasn=n; +ns+...+n, forr > 1 and n; € N. Let g: Ny = Ny with:

g(0) =0, g(n):=max {Zf(nl) ‘ (n1,...,ny) € Part(n)} if n > 0.
i=1

The maximum is well-defined, because Part(n) is finite. Then, any temporal graph G satisfies:

9(ps(9) —g<zmax{1pgt >>meax{1pgt Zmax{f (v(G))}

B Zmax{l W)} = a(9).

(Note that the first inequality relies on the fact that every term in the sum is at least 1, since
a partition can only be composed of positive summands. Therefore, this argument would not
apply, if we defined the sum parameterization as simply the sum over the parameters of the
individual layers.)
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Lastly, for any temporal graph G, we have:

9004r(0)) = 9(p(G) +7) > Fp(G) + F(7) > a(Gu) + 7 = qu4-(G). «

Finally, we will briefly consider the relationship between p.,, py, and py4,. We will say
that a graph parameter p is monotonically increasing if for any two static graphs G = (V, E)
and G’ = (V, E’) with the same vertex set, it is the case that £ C E’ implies p(G) < p(G’).
Conversely, it is monotonically decreasing if E C E’ implies p(G) > p(G").

» Proposition 13. Let p be a graph parameter. Then:
(') P = s,
(il) ps =X pusr, if p is monotonically increasing, and
(iii) px = pusr, if p is monotonically decreasing.

Proof.
(i) Obvious.
(ii) Let G be a temporal graph. Note that since G; C Gy, it follows that p(G;) < p(Gy) for
allt € {1,...,7}. Hence:

pe(G) = max{L,p(G)} <7+ p(G) <T+7 p(Gu)

< (7 +p(Gv))* = pu+-(G)*.

(iii) Let G be a temporal graph. Note that since G; C Gy, it follows that p(G;) > p(Gy) for
allt e {1,...,7}. f 7 =1 or p(Gy) < 1, the claim is obvious. Otherwise, we have that:

ps(9) =Y max{1,p(Gi)} > Y max{L,p(Gu)} > > p(Gv)
t=1 t=1 t=1

=7-p(Gu) = pu++(9). <

We will now investigate the problem’s parameterized complexity with respect to the three
types of parameterizations. Figure 1 gives an overview of our results and of the abbreviations
we use for the parameters. Our choice of parameters is partly motivated by Sorge and
Weller’s compendium [32] on graph parameters, but we limit our attention to those that are
most interesting in the context of MS2C. For full definitions of the parameters, we refer the
reader to Sorge and Weller’s manuscript [32] or Section 2.

4.1 Underlying graph parameterization

» Lemma 14. If G = (V,(E})7_,) is a temporal graph and every layer G: = (V, E;) of G is
bipartite for t € {1,...,7}, then isy4,(G) > 277|V|.

Proof. (By induction on 7.) If 7 = 1, then Gy is bipartite and the larger color class in
any 2-coloring of Gy forms an independent set containing at least %|V| vertices. Suppose
the claim holds for 7 — 1. Then, the underlying graph of G’ = (V, (E;)7_}') contains an
independent set X C V of size at least 2-("~V|V|. The graph (X, (3) N E,) is bipartite
since it is a subgraph of (V| E;). Hence, it contains an independent set Y of size at least
£|X| > 277|V|. Then, Y is also an independent set in Gy . <

» Proposition 15. MULTISTAGE 2-COLORING is fized-parameter tractable regarding iSy 4.
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Proof. If any layer of G is not bipartite, then the input can be immediately rejected.
Otherwise, let Gy be the underlying graph of G. By Observation 5, MS2C can be solved in
time O*(271VI) < O*(27isv+-(9)-27), <

» Proposition 16 (). MULTISTAGE 2-COLORING is NP-hard even if T = 4, dom(Gy) < 2,
and dco(Gy) = 0. Hence, the problem is para-NP-hard with respect to domy 4, and dcoy ..

» Proposition 17 (%). MULTISTAGE 2-COLORING can be solved in O*(27¥u+(9) . (d41)27)
time. Hence, the problem is in XP when parameterized by twy 4.

The proof of this proposition utilizes a standard dynamic programming approach for problems
parameterized by treewidth, extending it to the multistage context. Note that the running
time of this algorithm also implies that MULTISTAGE 2-COLORING is fixed-parameter tractable
with respect to 7 +d + twy 4.

» Proposition 18 (%). MULTISTAGE 2-COLORING is NP-hard even if T = 3 and A(G) = 3.
Hence, the problem is para-NP-hard with respect to Ayyr.

» Proposition 19 (). MULTISTAGE 2-COLORING is NP-hard even if 7 = 3 and dbiy, = 2.

Next, we will prove that MULTISTAGE 2-COLORING is W/[1]-hard with respect to fesy .
In fact, we will prove the following slightly stronger statement:

» Proposition 20 (% ). MULTISTAGE 2-COLORING s W(1]|-hard when parameterized by T,
even if the feedback edge number fes(Gy) of the underlying graph is one.

We already showed that MS2C is XP regarding twy -, so Proposition 20 implies that it
is XP and W[1]-hard when parameterized by twy 4, fvsy 4, and fesy -, since tw < fvs < fes.
The proof of Proposition 20 is a little more involved than most of the previous hardness
proofs. Our reduction is from the following:

» Problem 3. MuLTICOLORED CLIQUE (MC)
Input: A k-colored static graph G = (V, E) with V=V, 0... 0 V.
Question: Does G contain a clique X C V such that [ X NV;| =1forallie {1,...,k}?

MULTICOLORED CLIQUE is W[1]-hard when parameterized by k [11, 28].

» Construction 2. Let (G = (V,E),k) with V =V, W... WV} be an instance of MULTI-

COLORED CLIQUE. We may assume that |Vi]| = ... = |Vi| = n (if color classes do not have
the same size, we can add isolated vertices), that all V; are independent, and that |E| > (’;)
(otherwise, this is clearly a no-instance). Let V; = {vd,...,vf_}.

We will now describe an instance (G = (V', (E})7_;),d) of MULTISTAGE 2-COLORING
with fes(Gy) = 2 (see Figure 3 for an illustration). We let 7 :=2k(k — 1) + 3 and d = |E|.

The general idea behind the reduction is as follows. We consider the steps between
consecutive layers and the number of changes to the coloring in those steps. The value of
implies that there are 2k(k — 1) + 2 steps in total. There are 2k — 2 such steps for each color
class in G, while the final two steps do not correspond to any color class. Of the 2k — 2 steps
that correspond to ¢ € {1,...,k}, two will be used to verify adjacency to each of the k — 1
other color classes. In order to be able to refer to these steps easily, we will use the following
notation for any ¢, ¢’ € {1,...,k}, ¢ # ¢

T(c—d)= 20c—1)(k—1)+¢, if ¢ > ¢,
2e—-1)(k—-1)+ -1, ife<d,
Tle=d)=Tc—d)+k—-1

and
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Figure 3 Illustration of Construction 2. Shown are the first layer (left), the two layers when
transitioning from the phase regarding V> to the phase regarding V3 (middle), the last two layers
(right). In the gray area, the waste-budget gadget is depicted. In this example, the edge {v}, vf,} is
chosen into the clique. Note that many vertices (those from paths and stars) are not depicted.

We will use several gadgets. The first gadget maintains its coloring throughout most of
the lifetime of the instance. We use it to enforce a particular, predictable coloring on vertices
in other gadgets at certain points. The second type of gadget represents the selection of a
X3
multistage 2-coloring to make j changes in thej first k£ — 1 steps corresponding to the color
class ¢ and n — j — 1 changes in the following k& — 1 steps corresponding to this class. There
is a third type of gadget. Its purpose is to verify that the vertices selected by the first gadget
type are pairwise adjacent. There are numerous additional vertices whose sole purpose is to
ensure that the coloring of vertices cannot change in unexpected ways. More specifically,
when we say that a vertex v is blocked in time step t, we mean that we add d vertices that
are adjacent to v in the (¢ — 1)-st and ¢-th layers and isolated in all other layers. There are
also further vertices designed to use up extraneous budget for changes during certain time

vertex in a certain color class. If the vertex v’ is to be added to the clique, it forces any

steps.

We start by describing the first gadget, whose purpose is to maintain a predictable
coloring so it can be used to enforce a certain coloring on other parts of the instance at
particular points in time. This gadget contains the vertices x1,z2,z3. The edge {x1,z2} is
present in every layer of G. The edge {x2, 23} exists only in the first layer, while {z1, x5} is
present in all layers but the first. The vertices 1 and x5 are blocked in every step.

Next, we define the second type of gadget, which models the selection of a vertex in
a color class. The gadget representing a certain color class V¢, ¢ € {1,...,k}, consists of
(n—1)(k—1) vertices wg ; fori € {1,...,n—1}, j € {1,...,k—1}. The vertex wy ; is blocked
in all time steps except for the step T'(¢c — j) and the step T(c = j). There is an edge
between wf ; and wf ;. in the layers from T'(c — j + 1) to T'(c = 1) and from T'(c = j) to
T(c+1 — 1). Additionally, in the very first and in the final layer of G, all edges {wy ;,wf ;1 }
are present and there is an edge from z3 to wf, for all c € {1,...,k} and i € {1,...,n —1}.
Moreover, for every ¢ € {1,...,k}, there is an edge from x3 to wg, for alli € {1,...,n — 1}
in all layers of index larger than T'(c = ¢’), with ¢ = max{1,...,k} \ {c}. This gadget is
illustrated in the top part of Figure 4.

Next, we will describe the gadget that verifies that vertices selected in the previous
gadget are pairwise adjacent. There is one such gadget for every edge e = {’UJC-,’UJC»:} e E,
1<e<d <k, j,j€{0,...,n—1}. The gadget consists of a root vertex u§ and four paths.

The root is blocked in every step except for the final two. There is an edge between u§ and



T. Fluschnik and P. Kunz

Figure 4 Illustrative example of the recolorings in Construction 2. Here, n = 5, k = 4,
eig = {v1,v3}, e}::f = {v1,v}}, and etg := {v],v3}. The recolorings here represents the case that
vertex vi is chosen into the clique, together with its incident edges to v3, v, and v3.

x3 in the first and the (7 — 2)nd layer. The first vertex of each of the four paths is adjacent
to u§ in the first and in the final layer. The edges of the paths are present in every layer.
These paths consist of n — 1 — 3, j, n — 1 — 5/, and 5’ vertices, respectively. The vertices on
the path of size n — 1 — j are blocked in every time step except for step T'(¢c — ¢’). Those on
the path of size j are blocked except for step T'(¢ = ¢’). The vertices on the path of size
n — 1 — j' are blocked except for step T (¢’ — ¢). Finally, those on the path of size j' are
blocked except for step T'(¢' = ¢).

Finally, there is a gadget whose purpose is to waste extraneous budget for changes. It
consists of 7 — 2 paths. There are 7 — 4 paths Ps, ..., Pr_5 containing d — (n — 1) vertices
each, one path P, that consists of d —n vertices, and one path P, that consists of (g) vertices.
For each i € {2,...,7} \ {7 — 1}, the first vertex in P; is adjacent to x3 exactly in the first
and ith layer, where in all but the ith layer, all vertices from P; are blocked. 1

The proof of the correctness of this reduction is deferred to the full version. We will briefly
sketch a high-level description of this proof. All vertices in the gadget for a color class ¢
must be re-colored at some point. Some number i(k — 1) is re-colored in the first £ — 1 steps
corresponding to the color class and the remaining (n—4— 1)(k — 1) are re-colored during the
subsequent k — 1 steps (see Figure 4 for an illustration). That is, vertex v§ from color class ¢
is added to the clique. In the final step, only |E| — (g) vertices u§ can be re-colored. The
other (g) vertices correspond to edges that have both endpoints in the clique. The adjacency
verification gadget ensures that, if u§ is not re-colored in the final step, then its endpoints
must be selected to be part of the clique. This works because the four paths in this gadget
must be re-colored in steps that belong to the color classes of the edge’s endpoints.

» Lemma 21 (). The input instance to Construction 2 is a yes-instance for MULTI-
COLORED CLIQUE if and only if the output instance is a yes-instance for MULTISTAGE
2-COLORING.

Finally, fixed-parameter tractability with respect to vcy 4, can be proved using Theorem 27
(see Section 4.3) and the interplay between the different parameters (cf. Propositions 12
and 13).

» Proposition 22 (%). MULTISTAGE 2-COLORING is fized-parameter tractable regard-

ng vey 4r-
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4.2 Maximum parameterization

We turn our attention to the parameterized complexity of MULTISTAGE 2-COLORING with
respect to several structural parameters under the maximum parameterization. We begin
with nccss, the maximum number of connected components over all layers. Observe that
under any proper 2-coloring the color of a single vertex determines the coloring of its entire
connected component.

» Observation 23. FEvery 2-colorable static graph with N connected components admits
exactly 2N different proper 2-colorings.

This implies that MS2C is fixed-parameter tractable with respect to nccy.
» Proposition 24. MULTISTAGE 2-COLORING admits an O(4"~(9)1)-time algorithm.

Proof. Let N := ncco.(G). We create an auxiliary static directed graph in the following
manner. For each layer of G, we include a node for every one of the at most 2 many
2-colorings of this layer. There is a directed edge from a node representing a coloring of G;
to a node representing a coloring of G, if the recoloring cost between the two is at most
d. Finally, add two nodes s,t and connect s to every node corresponding to a coloring of
the first layer and connect every node that corresponds to a coloring of the final layer to t.
Then, (G, d) is a yes-instance if and only if the auxiliary graph contains a path from s to .
Moreover, the auxiliary graph contains at most (’)(4““00(9)7) edges. |

This result is essentially a stronger version of the statement in Corollary 2 that MULTI-
STAGE 2-COLORING is fixed-parameter tractable with respect to n, the number of vertices.
However, ncc and larger parameters are the only structural parameters that yield fixed-
parameter tractability with respect to the maximum parameterization.

» Proposition 25 (% ). MULTISTAGE 2-COLORING is NP-hard even for constant values
of VCoo, feSso, and bwy,.

We note that Proposition 11 implies that MS2C does not admit a polynomial kernel for
any parameter p listed in Figure 1 under the maximum parameterization, since n = p, for
all of these parameters.

4.3 Sum parameterization

We start with the parameterized complexity of MULTISTAGE 2-COLORING with respect to
several structural parameters under the sum parameterization. For nccy, fixed-parameter
tractability follows from that for ncce,.

We start by proving that MS2C is fixed-parameter tractable with respect to the distance
to co-cluster under the sum parameterization. This stands in contrast to the maximum
parameterization (see Proposition 25). A graph is a co-cluster if and only if it does not
contain Ko+ K7 as an induced subgraph. By a general result obtained by Cai [6], this implies
that the problem of determining whether decc(G) < k for a static graph G is fixed-parameter
tractable with respect to k. We will make use of the following fact:

» Observation 26. If G is a co-cluster, then G is edgeless or connected.

» Theorem 27. MULTISTAGE 2-COLORING is fized-parameter tractable regarding dccy.
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If G = (V, E) is a graph, then a function f: V — {1,2, L} is a proper partial 2-coloring if the
restriction of f to V' := {v € V | f(v) # L} is a proper 2-coloring of G[V']. If f is a proper
partial and f is a proper 2-coloring of G, then f is an extension of f, if f(v) € {L, f(v)} for
every v € V. We will use the following as an intermediate problem.

» Problem 4. MULTISTAGE 2-COLORING EXTENSION (MS2CE)

Input: A temporal graph G = (V| (E}:)7_,), proper partial 2-colorings fiyi frr Vo
{1,2, 1}, and an integer d € Ny.

Question: Are there f1,..., fr: V — {1,2} such that f; is an extension of f: and a proper

2-coloring of (V, Ey) for every t € {1,...,7} and 6(fs, fry1) < d forevery t € {1,...,t —1}7?

We have the following immediate reduction rule for MS2CE.
» Reduction Rule 1. If an edge e has two colored endpoints, then delete e.

» Lemma 28. MULTISTAGE 2-COLORING EXTENSION is polynomial-time solvable if the
input does not contain any edges.

Proof. We reduce MULTISTAGE 2-COLORING EXTENSION with no edges to the following job
scheduling problem:

» Problem 5. (1|7;,p; =1 | Lymax) SCHEDULING

Input: A list of jobs ji,...,jn, where each job j; = (r;,d;) has a release date r; € Ny and a
due date d; € Np, and a maximum lateness L € Nj.

Question: Is there a schedule s: {ji,...,jn} — No such that (i) s(j;) # s(jir) if i # 7/,

(ii) s(j;) > r; for all i € {1,...,n}, and (iii) s(j;) —d; < L foralli e {1,...,n}?

Horn [20, Sect. 2] showed that this scheduling problem can be solved by a polynomial-time
greedy algorithm that always schedules the available job with the earliest due date. Let
(G = (V,(®)I_)), f1,..., fr,d) be an instance for MS2CE. We will say that vertex v € V
between t1,to € {1,...,7} is forced to be re-colored i € {1,2} if: (i) t; < t2 and there is no

t3 with t; < t3 < ty such that f,, (v) # L, (ii) fi,(v) =i € {1,2}, and (iii) f;, (v) = 3 —i.
Let R C V x{l,...,7 — 1} x {2,...,7} x {1,2} be the set of all forced re-colorings.

Specifically, (v,t1,t2,7) € R if and only if v is forced to be re-colored i between ¢; and ¢s.

In the machine scheduling model, only one job can be performed per time step, but,
in a solution for an MS2C instance, up to d vertices can be re-colored. Hence, we fill
each transition between two layers with d time slots. For ¢t € {1,...,7 — 1}, the time slots
d(t —1)+1,...,dt correspond to changes in the coloring between the layers ¢ and ¢ 4+ 1. For
any forced re-coloring (v, t1,t2,¢) € R, we create a job j; with release date r; = d(t; — 1) +1
and due date d; = dts. We will show that the given instance of MS2CE admits a solution if
and only if this set of jobs admits a schedule with maximum lateness 0.

(=) Suppose that fi,..., f, is a solution to the instance that extends fi,..., f,. It is
easy to see that, if (v,t1,t2,1) € R, then fi, (v) # fi,(v). Hence, there must be a t with
fr(v) # fig1(v) and t € {t1,...,t2 — 1}. Then, a machine schedule for the instance described
above can be constructed by scheduling the job corresponding to (v, t1,t2,) in one of the
slots d(t — 1) +1,...,dt. Since §(fi, fi+1) < d, there are enough slots.

(<) Suppose that we are given a machine schedule with maximum lateness 0 for the
aforementioned instance. We construct an initial coloring f; by assigning each vertex v
the color 4, if there is a ¢t € {1,...,7} such that f;(v) =i € {1,2} and fi(v) = L for all
t' <t If f(v) = L forallt € {1,...,7}, then we assign f,(v) arbitrarily. We iteratively
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Algorithm 1 FPT-algorithm regarding dces, on input G = (V, (Et){=1),d € No.

17T, T~ < 0;

2 foreach t € {1,...,7} do

3 X; + a minimum set such that G; — X, is a co-cluster;

4 | if Gy — Xy is connected then T+ < TT U {t} else T~ + T~ U {t};

5 foreach g;: X; — {1,2},...,¢9-: X; — {1,2} do // <29 many

6 foreach t € {1,...,7} do

7 if ¢ € T~ then while 3 {u,v} € E; s.t. g:(u) = ¢ and ¢¢(v) is undefined, let
g:(v) + 3 —1;

8 if t € TT then F; < {g}, g?} with the two possible proper 2-colorings g}, g2
of Gy — Xy;

9 foreachN(g,’£17 e ,gg‘Tﬂ) € Xtej— F; do // <27 many

10 Let fi < g ift €T~ and f; < g Ug, ift € T™;

11 if f1,..., fr are proper partial colorings then

12 if (G, f1,..., fr.d) is a yes-instance for MS2CE then

13 L L return yes // decidable in polynomial time (Lemma 28)

14 return no

construct fa,..., fr as follows. We let fiy1(v) = 3 — fi(v) if the given schedule assigns
a job j; corresponding to a forced re-coloring (v,t1,%2,3 — fi(v)) € R to a slot between
d(t — 1) + 1 and dt. Otherwise, we let fiy1(v) = fe(v). <

The idea in the proof of Theorem 27 is as follows. After computing a distance-to-co-cluster
set for each layer, we check for all possible colorings of these sets, and then propagate the
colorings. We finally arrive at an instance of MS2CE with no edges, which is decidable in
polynomial time.

Proof of Theorem 27. Let Z = (G, d) be an instance of MULTISTAGE 2-COLORING. Let
G = (V,(Ey)j-,) and G, == (V,E;) be the t-th layer of G. Let k := >, _; dcc(G;). The
following algorithm is summarized in pseudocode in Algorithm 1.

For each t € {1,...,7}, using Cai’s algorithm [6], we can compute in 2% . |G,|OM)
time a minimum set X; C V such that Gy — X, is a co-cluster. Let (T, T7) be a partition
of {1,...,7} such that ¢ € T if and only if G; — X is connected (see Observation 26).
Fort e T, let V; :== V(Gy — X¢), and for t € T, let V; := {v € V(G; — X;) | degg, (v) > 0}
be the vertices in Gy — X incident to at least one edge in G¢. We then iterate over all the at
most 2* possible partial 2-colorings of (X1, ..., X,). For every t € TT there are only two
possible proper 2-colorings of Gy — X;. We iterate over all the at most 27 possible 2-colorings
of these layers. For every t € T, if there is an uncolored vertex v with a neighbor w
colored i € {1,2}, then color v with color 3 —i. Note that this colors all vertices in V;.
Let fi,...,fr be the resulting partial coloring. The important thing to note is that for
every t € {1,...,7} and every edge in F; both its endpoints are colored by fi. If one of
fi,..., f- is not proper, we reject the coloring, otherwise we proceed as follows.

Construct the instance Z = (G, (f;)7_;,d) of MULTISTAGE 2-COLORING EXTENSION.
Since every edge has two colored endpoints, applying Reduction Rule 1 exhaustively results in
an instance 7' = (G, (fi)7_,,d) of MULTISTAGE 2-COLORING EXTENSION where G’ contains
no edge. Hence, due to Lemma 28, we can solve Z’ in polynomial-time. Thus, the overall
running time is in >_;_, 29%) |G, |90 4 2k+7|G|OM),
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Clearly, if 7' is a yes-instance in one choice, then 7 is a yes-instance of MS2C. That the
opposite direction is correct too is also not hard not see. Note that every solution fi,..., f,
induces a proper partial coloring f1, ..., f-, where ft is induced on V; U X; for every t €
{1,...,7}, that we will eventually check. Moreover, the resulting input to MS2CE is clearly
a yes-instance: fi,..., fr is a solution to (G, (f;)I_;, d). <

» Proposition 29 (). MULTISTAGE 2-COLORING is NP-hard even for constant values of
(i) deoyx,, (ii) fesy, and (iii) As.

Our final result on structural parameters concerns bwy, that is, bandwidth with the sum
parameterization. We first briefly note the following;:

» Observation 30. Let G be an undirected graph. If every connected component in G contains
at most k vertices, then bw(G) < k — 1.

We can use this observation to show that MULTISTAGE 2-COLORING is para-NP-hard when
parameterized by bwy.

» Proposition 31 (% ). MULTISTAGE 2-COLORING is NP-hard even if bwy, is constant.

5 Global budget

The problem we have considered so far is the multistage version of 2-COLORING with a local
budget. Heeger et al. [19] started the parameterized research of multistage graph problems
on a global budget where there is no restriction on the number of changes between any two
consecutive layers, but instead a restriction on the total number of changes made throughout
the lifetime of the instance. All graph problems studied by Heeger et al. are NP-hard even
for constant values of the global budget parameter. By contrast, we will show that a global
budget version of MULTISTAGE 2-COLORING is fixed-parameter tractable with respect to the
budget. Formally, the global budget version of MULTISTAGE 2-COLORING is:

» Problem 6. MULTISTAGE 2-COLORING ON A GLOBAL BUDGET (MS2CGB)

Input: A temporal graph G = (V, (E})7_;) and an integer D € Ny.

Question: Are there fi,..., fr: V — {1,2} such that f; is a proper 2-coloring of (V, E}) for
every t € {1,...,7} and 37 6(fs, fir1) < D?

We start by pointing out that MS2CGB is NP-hard. This follows from Theorem 7, since
there is no distinction between a local and a global budget if 7 = 2.

» Observation 32. MULTISTAGE 2-COLORING ON A GLOBAL BUDGET is NP-hard.

In order to show that MULTISTAGE 2-COLORING ON A GLOBAL BUDGET is fixed-parameter
tractable, we will prove the existence of a parameter-preserving transformation to the ALMOST
2-SAT problem, which is defined by:

» Problem 7. ALMosT 2-SAT (A2SAT)
Input: A Boolean formula ¢ in 2-CNF and an integer k.
Question: Can ¢ be made satisfiable by removing at most k clauses?

Razgon and O’Sullivan [29] prove that A2SAT is fixed-parameter tractable when param-
eterized by k, but the fastest presently known algorithm runs in O*(2.3146%) and is due
to Lokshtanov et al. [25]. Kratsch and Wahlstrém [23] show that this problem admits a
randomized polynomial kernel.
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» Proposition 33 (% ). MULTISTAGE 2-COLORING ON A GLOBAL BUDGET parameterized
by D admits a parameter-preserving transformation to ALMOST 2-SAT parameterized by k.

The proof is deferred to the full version. The basic idea behind the reduction is that we
use D + 1 copies of the same two clauses to express that no edge should be monochromatic.
At least one of these clause pairs must survive the deletion. Moreover, we add clauses stating
that vertices are not re-colored. At most D of these clauses can be deleted. This directly
implies the following:

» Corollary 34. MULTISTAGE 2-COLORING ON A GLOBAL BUDGET parameterized by D is
fizxed-parameter tractable and admits a randomized polynomial kernel.

We note that the approach described here for MS2C can be used to reduce a global budget
version of the more general MULTISTAGE 2-SAT to ALMOST 2-SAT, proving the following:

» Observation 35. MULTISTAGE 2-SAT ON A GLOBAL BUDGET parameterized by the
number of changes is fized-parameter tractable and admits a randomized polynomial kernel.

—— References

1  Shorouq Al-Eidi, Yuanzhu Chen, Omar Darwishand, and Ali M. S. Alfosool. Time-ordered
bipartite graph for spatio-temporal social network analysis. In Proceedings of the 2020

International Conference on Computing, Networking and Communications (ICNC), pages
833-838, 2020. doi:10.1109/ICNCA7757.2020.9049668.

2 FEvripidis Bampis, Bruno Escoffier, and Alexander V. Kononov. LP-based algorithms for multi-
stage minimization problems. In Proceedings of the 18th International Workshop on Approxima-
tion and Online Algorithms (WAOA), pages 1-15, 2020. doi:10.1007/978-3-030-80879-2_1.

3  Evripidis Bampis, Bruno Escoffier, Michael Lampis, and Vangelis Th. Paschos. Multistage
matchings. In Proceedings of the 16th Scandinavian Symposium and Workshops on Algorithm
Theory (SWAT), pages 7:1-7:13, 2018. doi:10.4230/LIPIcs.SWAT.2018.7.

4  FEvripidis Bampis, Bruno Escoffier, and Alexandre Teiller. Multistage knapsack. In Proceedings
of the 44th International Symposium on Mathematical Foundations of Computer Science
(MFCS), pages 22:1-22:14, 2019. doi:10.4230/LIPIcs.MFCS.2019.22.

5  Robert Bredereck, Till Fluschnik, and Andrzej Kaczmarczyk. Multistage committee election.
arXiv, 2020. arXiv:2005.02300.

6  Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58(4):171-176, 1996. doi:10.1016/0020-0190(96)
00050-6.

7  Markus Chimani, Niklas Troost, and Tilo Wiedera. Approximating multistage matching
problems. In Proceedings of the 32nd International Workshop on Combinatorial Algorithms
(IWOCA), pages 558-570, 2021. doi:10.1007/978-3-030-79987-8_39.

8 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

9  Reinhard Diestel. Graph Theory. Springer, 5th edition, 2017. doi:10.1007/
978-3-662-53622-3.

10  Michael Fellows, Daniel Lokshtanov, Neeldhara Misra, Matthias Mnich, Frances Rosa-
mond, and Saket Saurabh. The complexity ecology of parameters: An illustration us-
ing bounded max leaf number. Theory of Computing Systems, 45(4):822-848, 20009.
doi:10.1007/s00224-009-9167-9.


https://doi.org/10.1109/ICNC47757.2020.9049668
https://doi.org/10.1007/978-3-030-80879-2_1
https://doi.org/10.4230/LIPIcs.SWAT.2018.7
https://doi.org/10.4230/LIPIcs.MFCS.2019.22
http://arxiv.org/abs/2005.02300
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1007/978-3-030-79987-8_39
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/s00224-009-9167-9

T. Fluschnik and P. Kunz

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On the
parameterized complexity of multiple-interval graph problems. Theoretical Computer Science,
410(1):53-61, 2009. doi:10.1016/j.tcs.2008.09.065.

Michael R. Fellows, Bart M.P. Jansen, and Frances Rosamond. Towards fully multivariate
algorithmics: Parameter ecology and the deconstruction of computational complexity. Furopean
Journal of Combinatorics, 34(3):541-566, 2013. doi:10.1016/j.ejc.2012.04.008.

Till Fluschnik. A multistage view on 2-satisfiability. In Proceedings of the 12th International
Conference on Algorithms and Complezity (CIAC), pages 231-244, 2021. doi:10.1007/
978-3-030-75242-2_16.

Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche. As
time goes by: Reflections on treewidth for temporal graphs. In Fedor V. Fomin, Stefan Kratsch,
and Erik Jan van Leeuwen, editors, Treewidth, Kernels, and Algorithms: Essays Dedicated to
Hans L. Bodlaender on the Occasion of His 60th Birthday, pages 49-77. Springer International
Publishing, Cham, 2020. doi:10.1007/978-3-030-42071-0_6.

Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche.
Temporal graph classes: A view through temporal separators. Theoretical Computer Science,
806:197-218, 2020. doi:10.1016/j.tcs.2019.03.031.

Till Fluschnik, Rolf Niedermeier, Valentin Rohm, and Philipp Zschoche. Multistage vertex
cover. In Proceedings of the 14th International Symposium on Parameterized and Ezact
Computation (IPEC), pages 14:1-14:14, 2019. doi:10.4230/LIPIcs.IPEC.2019.14.

Till Fluschnik, Rolf Niedermeier, Carsten Schubert, and Philipp Zschoche. Multistage s-t
path: Confronting similarity with dissimilarity in temporal graphs. In Proceedings of the 31st
International Symposium on Algorithms and Computation (ISAAC), pages 43:1-43:16, 2020.
d0i:10.4230/LIPIcs.ISAAC.2020.43.

Anupam Gupta, Kunal Talwar, and Udi Wieder. Changing bases: Multistage optimization for
matroids and matchings. In Proceedings of the 4 1st International Colloquium on Automata, Lan-
guages, and Programming (ICALP), pages 563-575, 2014. doi:10.1007/978-3-662-43948-7_
47.

Klaus Heeger, Anne-Sophie Himmel, Frank Kammer, Rolf Niedermeier, Malte Renken, and
Andrej Sajenko. Multistage graph problems on a global budget. Theoretical Computer Science,
868:46-64, 2021. doi:10.1016/j.tcs.2021.04.002.

W. A. Horn. Some simple scheduling algorithms. Naval Research Logistics Quarterly, 21(1):177—
185, 1974. doi:10.1002/nav.3800210113.

Bart M. P. Jansen. The Power of Data Reduction: Kernels for Fundamental Graph Problems.
PhD thesis, Utrecht University, 2013. URL: http://dspace.library.uu.nl/handle/1874/
276438.

Leon Kellerhals, Malte Renken, and Philipp Zschoche. Parameterized algorithms for diverse
multistage problems. In Proceedings of the 29th Annual European Symposium on Algorithms
(ESA), pages 55:1-55:17, 2021. doi:10.4230/LIPIcs.ESA.2021.55.

Stefan Kratsch and Magnus Wahlstrom. Representative sets and irrelevant vertices: New tools
for kernelization. Journal of the ACM, 67(3), June 2020. doi:10.1145/3390887.

Matthieu Latapy, Clémence Magnien, and Tiphaine Viard. Weighted, bipartite, or directed
stream graphs for the modeling of temporal networks. In Petter Holme and Jari Saramaki,
editors, Temporal Network Theory, pages 49—64. Springer International Publishing, Cham,
2019. doi:10.1007/978-3-030-23495-9_3.

Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Transactions on
Algorithms, 11(2):1-31, 2014. doi:10.1145/2566616.

16:17

SAND 2022


https://doi.org/10.1016/j.tcs.2008.09.065
https://doi.org/10.1016/j.ejc.2012.04.008
https://doi.org/10.1007/978-3-030-75242-2_16
https://doi.org/10.1007/978-3-030-75242-2_16
https://doi.org/10.1007/978-3-030-42071-0_6
https://doi.org/10.1016/j.tcs.2019.03.031
https://doi.org/10.4230/LIPIcs.IPEC.2019.14
https://doi.org/10.4230/LIPIcs.ISAAC.2020.43
https://doi.org/10.1007/978-3-662-43948-7_47
https://doi.org/10.1007/978-3-662-43948-7_47
https://doi.org/10.1016/j.tcs.2021.04.002
https://doi.org/10.1002/nav.3800210113
http://dspace.library.uu.nl/handle/1874/276438
http://dspace.library.uu.nl/handle/1874/276438
https://doi.org/10.4230/LIPIcs.ESA.2021.55
https://doi.org/10.1145/3390887
https://doi.org/10.1007/978-3-030-23495-9_3
https://doi.org/10.1145/2566616

16:18

Multistage 2-Coloring

26

27

28

29

30

31

32

33

34

35

Hendrik Molter. Classic Graph Problems Made Temporal: A Parameterized Complexity
Analysis. PhD thesis, Technische Universitit Berlin, 2020. doi:10.14279/depositonce-10551.

Karolina Okrasa and Pawel Rzazewski. Subexponential algorithms for variants of the homo-
morphism problem in string graphs. Journal of Computer and System Sciences, 109:126—144,
2020. doi:10.1016/j.jcss.2019.12.004.

Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest common
supersequence and longest common subsequence problems. Journal of Computer and System
Sciences, 67(4):757-771, 2003. doi:10.1016/S0022-0000(03)00078-3.

Igor Razgon and Barry O’Sullivan. Almost 2-SAT is fixed-parameter tractable. Journal of
Computer and System Sciences, 75(8):435-450, 2009. doi:10.1016/j.jcss.2009.04.002.

Robert Sasdk. Comparing 17 graph parameters. Master’s thesis, University of Bergen, 2010.
URL: https://bora.uib.no/bora-xmlui/handle/1956/4329.

Johannes Schréder. Comparing graph parameters. Bachelor’s thesis, Technische Universitét
Berlin, 2019. URL: http://fpt.akt.tu-berlin.de/publications/theses/BA-Schréder.
pdf.

Manuel Sorge and Mathias Weller. The graph parameter hierarchy. Unpublished manuscript,
2019. URL: https://manyu.pro/assets/parameter-hierarchy.pdf.

Martin Vatshelle. New Width Parameters of Graphs. PhD thesis, University of Bergen, 2012.
URL: https://www.ii.uib.no/~martinv/Papers/MartinThesis.pdf.

Tsunghan Wu, Sheau-Harn Yu, Wanjiun Liao, and Cheng-Shang Chang. Temporal bipartite
projection and link prediction for online social networks. In Proceedings of the 2014 IEEE
International Conference on Big Data (Big Data), pages 52-59, 2014. doi:10.1109/BigData.
2014.7004444.

Mihalis Yannakakis. Node- and edge-deletion NP-complete problems. In Proceedings of
the 10th Annual ACM Symposium on Theory of Computing (STOC), pages 253—264, 1978.
doi:10.1145/800133.804355.


https://doi.org/10.14279/depositonce-10551
https://doi.org/10.1016/j.jcss.2019.12.004
https://doi.org/10.1016/S0022-0000(03)00078-3
https://doi.org/10.1016/j.jcss.2009.04.002
https://bora.uib.no/bora-xmlui/handle/1956/4329
http://fpt.akt.tu-berlin.de/publications/theses/BA- Schr�der.pdf
http://fpt.akt.tu-berlin.de/publications/theses/BA- Schr�der.pdf
https://manyu.pro/assets/parameter-hierarchy.pdf
https://www.ii.uib.no/~martinv/Papers/MartinThesis.pdf
https://doi.org/10.1109/BigData.2014.7004444
https://doi.org/10.1109/BigData.2014.7004444
https://doi.org/10.1145/800133.804355

	1 Introduction
	2 Preliminaries
	3 NP-hard cases
	3.1 Few changes allowed
	3.2 Few stages

	4 Parameterized complexity
	4.1 Underlying graph parameterization
	4.2 Maximum parameterization
	4.3 Sum parameterization

	5 Global budget

