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Abstract
We present a loosely-stabilizing phase clock for population protocols. In the population model we
are given a system of n identical agents which interact in a sequence of randomly chosen pairs.
Our phase clock is leaderless and it requires O(log n) states. It runs forever and is, at any point of
time, in a synchronous state w.h.p. When started in an arbitrary configuration, it recovers rapidly
and enters a synchronous configuration within O(n log n) interactions w.h.p. Once the clock is
synchronized, it stays in a synchronous configuration for at least poly(n) parallel time w.h.p.

We use our clock to design a loosely-stabilizing protocol that solves the adaptive variant of the
majority problem. We assume that the agents have either opinion A or B or they are undecided and
agents can change their opinion at a rate of 1/n. The goal is to keep track which of the two opinions
is (momentarily) the majority. We show that if the majority has a support of at least Ω(log n)
agents and a sufficiently large bias is present, then the protocol converges to a correct output within
O(n log n) interactions and stays in a correct configuration for poly(n) interactions, w.h.p.
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1 Introduction

In this paper we introduce a loosely-stabilizing leaderless phase clock for the population model
and demonstrate its usability by applying the clock to the comparison problem introduced in
[3]. Population protocols have been introduced by Angluin et al. [5]. A population consists
of n anonymous agents. A random scheduler selects in discrete time steps pairs of agents
to interact. The interacting agents execute a state transition, as specified by the algorithm
of the population protocol. Angluin et al. [5] gave a variety of motivating examples for the
population model, including averaging in sensor networks, or modeling a disease monitoring
system for a flock of birds. In [24] the authors introduce the notion of loose-stabilization. A
population protocol is loosely-stabilizing if, from an arbitrary state, it reaches a state with
correct output fast and remains in such a state for a polynomial number of interactions.
In contrast, self-stabilizing protocols are required to converge to the correct output state
from any possible initial configuration and stay in a correct configuration indefinitely. Many
population protocols heavily rely on so-called phase clocks which divide the interactions into
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blocks of O(n log n) interactions each. The phase clocks are used to synchronize population
protocols. For example, in [22, 16] they are used to efficiently solve leader election and in [15]
they are used to solve the majority problem.

In the first part of this paper we present a loosely-stabilizing and leaderless phase clock
with O(log n) many states per agent. We show that this clock can run forever and that, at
any point of time, it is synchronized w.h.p.1 In contrast to related work [1, 7, 15, 22], our
clock protocol recovers rapidly in case of an error: from an arbitrary configuration it always
enters a synchronous configuration within O(n log n) interactions w.h.p. Once synchronized
it stays in a synchronous configuration for at least poly (n) interactions, w.h.p. Our phase
clock can be used to synchronize population protocols into phases of O(n log n) interactions,
guaranteeing that there is a big overlap between the phases of any pair of agents. Our clock
protocol is simple, robust and easy to use.

In the second part of this paper we demonstrate how to apply our phase clock by solving
an adaptive majority problem motivated by the work of [3, 4]. Our problem is defined as
follows. Each agent has either opinion A, B, or U for being undecided. We say that agents
change their input with rate r if in every time step an arbitrary agent can change its opinion
with probability r. The goal is to output, at any time, the actual majority opinion. The idea
of our approach is as follows. Our protocol simply starts, at the beginning of each phase, a
static majority protocol as a black box. This protocol takes as an input the set of opinions at
that time and calculates the majority opinion over these inputs. The outcome of the protocol
is then used during the whole next phase as majority opinion. In order to highlight the
simplicity of our phase clock, we first use the very natural protocol based solely on canceling
opposing opinions introduced in [7]. Then we present a variant based on the undecided state
dynamics from [8] which works as follows. The agents have one of two opinions A or B, or
they are undecided. Whenever two agents with the same opinion interact, nothing happens.
When two agents with an opposite opinion interact they will become undecided. Undecided
agents interacting with an agent with either opinion A or opinion B adopt that opinion.

Without loss of generality we assume that A is the majority opinion in the following.
When at least Ω(log n) agents have opinion A, there is a constant factor bias between A and
B, and the opinions change at most at rate 1/n per interaction, the system outputs A w.h.p.
Our protocol requires only O(log n) many states. For the setting where all agents have either
opinion A or B (none of the agent is in the undecided state U) and we have an additive bias
of n3/4+ε for some constant ε > 0 is present, the system again converges to A w.h.p. In the
latter setting we can tolerate a rate of order r = Ω(n−1/4+ε).

Related Work. Population protocols have been introduced by Angluin et al. [5]. Many
of the early results focus on characterizing the class of problems which are solvable in the
population model. For example, population protocols with a constant number of states can
exactly compute predicates which are definable in Presburger arithmetic [5, 6, 9]. There are
many results for majority and leader election, see [20] and [16] for the latest results. In [24]
the authors introduce the notion of loose-stabilization to mitigate the fact that self-stabilizing
protocols usually require some global knowledge on the population size (or a large amount of
states). See [17] for an overview of self-stabilizing population protocols.

In [7] the authors present and analyze a phase clock which divides time into phases of
O(n log n) interactions assuming that a unique leader exists. They also present a general-
ization using a junta of size nε (for constant ε) instead of a unique leader and analyze the

1 The expression with high probability (w.h.p.) refers to a probability of 1 − n− Ω(1).
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process empirically. In [22] the authors show that a junta can be elected using O(log log n)
many states and use the resulting clock to solve leader election. The protocol can easily be
modified such that it requires only a constant number of states after the junta election [15].
In [1] the authors present a leaderless phase clock with O(log n) states. In contrast to our
leaderless phase clock, the clock from [1] was not proven to be self-stabilizing. The analysis
is based on the potential function analysis introduced in [25] for the greedy balls-into-bins
strategy where each ball has to be allocated into one out of two randomly chosen bins. This
analysis assumes an initially balanced configuration and it cannot be adopted to an arbitrary
unbalanced state, which would be required to deal with unsynchronized clock configurations.
In [10] the authors consider a variant of the population model, so-called clocked population
protocols, where agents have an additional flag for clock ticks. The clock signal indicates
when the agents have waited sufficiently long for a protocol to have converged. They show
that a clocked population protocol running in less than ωk time for fixed k ≥ 2 is equivalent
in power to nondeterministic Turing machines with logarithmic space.

Another line of related work considers the problem of exact majority, where one seeks to
achieve (guaranteed) majority consensus, even if the additive bias is as small as one [21, 1, 14,
12]. The currently best protocol [20] solves exact majority with O(log n) states and O(log n)
stabilization time, both in expectation and w.h.p. The authors of [8] solve the approximate
majority problem. They introduce the undecided state dynamics in the population model for
two opinions. They show that their 3-state protocol reaches consensus w.h.p. in O(n log n)
interactions. If the bias is of order ω(

√
n · log n) the undecided state dynamics converges

towards the initial majority w.h.p. In [18] the required bias is reduced to Ω(
√

n log n). For
completeness [11] provides a survey about further protocols in the gossip model.

In [2] the authors define the catalytic input model (CI model). In this model the
agents are divided into the two groups catalytic agents and non-catalytic agents. Non-
catalytic agents perform pairwise interactions and change their state. Catalytic agents
never change their state. Additionally to the normal state changes non-catalytic agents can
perform spurious state changes; the so-called leak rate specifies the frequency of the spurious
reactions. The goal of the non-catalytic agents is to compute a function over the states of
the catalytic agents. The authors develop an algorithm for their model to detect whether
there is a catalytic agent in a given state D or not. Note that, due to the leaky transactions
non-catalysts can compute false-positives. In [4] the authors use the catalytic input model
with n catalysts and m non-catalysts which they call worker agents (N = n + m). They
solve the approximate majority problem for two opinions w.h.p. in O(N log N) interactions
when the initial bias among the catalysts is Ω

(√
N log N

)
and m = Θ(n). They show that

the size of the initial bias is tight up to a O
(√

log N
)

factor. Additionally, they consider the
approximate majority problem in the CI model and in the population model with leaks. Their
protocols tolerate a leak rate of at most β = O

(√
N log N/N

)
in the CI model and a leak

rate of at most β = O
(√

n log n/n
)

in the population model. They also show a separation
between the computational power of the CI model and the population model.

In [3] the authors consider the CI model and introduce the robust comparison problem.
The catalytic agents are either in state A or B and the goal of the worker agents is to decide
which of the two states A and B has the larger support. In they dynamic version the number
of agents in state A or B can change during the execution as long as the counts for A and B

remain stable for a sufficiently long period allowing the algorithm to stabilize on an output.
If at time t at least Ω(log n) catalytic agents are in either A or B and the ratio between the
numbers of agents supporting agents A and B is at least a constant, then most non-catalytic
agents (up to O(n/logn) agents) outputs w.h.p. the correct majority. The protocol needs
with O(log n · log log n) states per agent, assuming that the number of catalytic agents in A

and B does not change in the meantime. They also mention that with standard population
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splitting O(log n + log log n) states are sufficient under the constraint that only a constant
fraction of the agents store the output. Additionally the authors show that their protocol is
robust to leaky transitions at a rate of O(1/n). If the initial support of A and B states is
Ω

(
log2 n

)
the authors can strengthen their results such that a ratio between the two base

states of 1 + o(1) is sufficient.

2 Population Model and Problem Definitions

In the population model we are given a set V of n anonymous agents. At each time step
two agents are chosen independently and uniformly at random randomly to interact. We
assume that interactions between two agents (u, v) are ordered and call u the initiator and v

the responder. The interacting agents update their states according to a common transition
function of their previous states. Formally, a population protocol is defined as a tuple of a
finite set of states Q, a transition function δ : Q×Q→ Q×Q, a finite set of output symbols
Σ, and an output function ω : Q→ Σ which maps every state to an output. A configuration
is a mapping C : V → Q which specifies the state of each agent. An execution of a protocol
is an infinite sequence C0, C1, . . . such that for all Ci there exist two agents v1, v2 and a
transition (q1, q2)→ (q′

1, q′
2) such that Ci(v1) = q1, Ci(v2) = q2, Ci+1(v1) = q′

1, Ci+1(v2) = q′
2

and Ci(w) = Ci+1(w) for all w ̸= v1, v2. The main quality criteria of a population protocol
are the required number of states and the running time measured in interactions.

The goal of this paper is to develop protocols that are loosely-stabilizing according to the
definitions of [24]. Let C denote an arbitrary subset of all possible configurations. Consider
an infinite sequence of configurations C0, C1, . . .. For an arbitrary configuration Ci ̸∈ C the
convergence time is defined as the smallest t such that Ci+t1 ∈ C. Intuitively, the convergence
time bounds the time it takes to reach a configuration in C when starting from a configuration
not in C. For an arbitrary configuration Ci ∈ C the holding time t2 is defined as the largest t

such that Ci+t2 ∈ C. Intuitively, the holding time bounds the time during which the protocol
remains in a configuration in C when starting from a configuration in C.

▶ Definition 1. A protocol is loosely-stabilizing wrt. to a subset of configurations C if the
maximum convergence time over all possible configurations is w.h.p. less than t1 and the
minimum holding time over all configurations in C is w.h.p. at least t2.

Phase Clocks. Phase clocks are used to synchronize population protocols. We assume
a phase clock is implemented by simple counters clock[u1], . . . , clock[un] modulo |Q| (see,
e.g., [1, 7, 15, 19, 22]). Whenever clock[u] crosses zero, agent u receives a so-called signal.
These signals will divide the time into phases of Θ(n log n) interactions each. We say a
(τ, w)-phase clock is synchronous in the time interval [t1, t2] if every agent gets a signal every
Θ(n log n) interactions. More formally:

Every agent receives a signal in the first 2 · (w + 1) · τ · n steps of the interval.
Assume an agent u receives a signal at time t ∈ [t1, t2].

For all v ∈ V , agent v receives a signal at time tv with |t− tv| ≤ τ · n.
Agent u receives the next signal at time t′ with (w +1) ·τ ·n ≤ |t− t′| ≤ 2 · (w +1) ·τ ·n.

The above definition divides the time interval [t1, t2] into a sequence of subintervals that
alternates between so-called burst-intervals and overlap-intervals.

A burst-interval has length at most τ · n and every agent gets exactly one signal.
An overlap-interval consists of those time steps between two burst-intervals where none
of the agents gets a signal. It has length at least w · τ · n.

A burst-interval together with the subsequent overlap-interval forms a phase.
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To define loosely-stabilizing phase clocks, we need to define the set of synchronous
configurations C. Intuitively, we call a state Ct of a (τ, w)-phase clock at time t synchronous
if the counters of all pairs of agents do not deviate much. More precisely, clock[u](t) −
clock[v](t) <|Q| f(w, τ) for all pairs of agents (u, v) (Here, “≤|Q|” denotes smaller w.r.t. the
circular order modulo |Q|.) We define f and give the formal definition of a synchronous
configuration in the next section.

3 Clock Algorithm

0
1

2

work

3

launch

14 + w + 4 ·
√
10 + w hours

gather

6 + 2 ·
√
10 + w hours

Figure 1 Schematic representation of the clock states.

In this section we introduce our phase clock protocol. For ease of notation, we as-
sume in this section that the state space of an agent is Q Our (τ, w)-phase clock has a
state space Q = { 0, . . . ,

(
21 + w + 6 ·

√
10 + w

)
· τ − 1 }. The clock states are divided into(

21 + w + 6 ·
√

10 + w
)

hours, and each hour consists of τ = τ(c) = 36 · (c + 4) · ln n minutes.
The parameter c ≥ 6 determines the error probability in each phase and thus the holding
time (see Theorem 2). The parameter w ≥ 0 can be chosen as needed by the application.
As we will see, τ is a multiple of the running time of the one-way epidemic (see Lemma 4)
and w · τ · n is the number of interactions in which our agents are synchronized. We divide
the hours into three consecutive intervals (see Figure 1): the launching interval Ilaunch (first
hour), the working interval Iwork (14 + w + 4 ·

√
10 + w hours) and the gathering interval

Igather (last 6 + 2 ·
√

10 + w hours). We say that agent u is in one of the intervals whenever
its clock counter clock[u] is in that interval. If the agents are either all in Igather, all in Iwork,
or all in Ilaunch, we say the configuration is homogeneous. For two agents u and v we define
a distance d(u, v) = min{|clock[u]− clock[v]|, |Q| − |clock[u]− clock[v]|} that takes the cyclic
nature of the clock into account. This allows us to define synchronous configurations as
follows.

▶ Definition (Synchronous Configuration). A configuration C is called synchronous if and
only if for all pairs of agents (u, v) we have d(u, v) < |Ilaunch|+ |Igather| = (7+2 ·

√
10 + w) · τ .

Our clock works as follows. Assume agents (u, v) interact. With two exceptions, agent u

increments its counter clock[u] by one minute modulo |Q| (Rules 1 and 2). If, however, u is
in Igather and v is in Ilaunch then agent u adopts clock[v] (Rule 3): we say the agent hops. If
u is in Igather and v is in Iwork then agent u returns to the beginning of Igather (Rule 4): we
say that the agent resets. We define that agent u receives a signal whenever its clock crosses
the wrap-around from Igather to Ilaunch. Formally, our clock uses the following transitions.

SAND 2022



7:6 Loosely-Stabilizing Phase Clocks and The Adaptive Majority Problem

(q1, q2) ∈ (Q \ Igather)×Q : (q1, q2)→ (q1 + 1, q2) (step forward) (1)
(q1, q2) ∈ Igather × Igather : (q1, q2)→ (q1 + 1 mod |Q|, q2) (step forward) (2)
(q1, q2) ∈ Igather × Ilaunch : (q1, q2)→ (q2, q2) (hopping) (3)
(q1, q2) ∈ Igather × Iwork : (q1, q2)→ (|Ilaunch|+ |Iwork|, q2) (reset) (4)

Note that |Iwork| = 2(|Ilaunch|+ |Igather|) + w · τ to have w · τ · n homogeneous working
configurations between two signals. On the other hand, |Igather|/τ = Θ

(√
|Iwork|/τ

)
which

is necessary to apply Chernoff bounds. We chose |Ilaunch| = τ for simplicity. On an intuitive
level, the clock works as follows. Assume the clock is synchronized and all agents are in
Ilaunch. Now consider the next k = Θ

(
n · |Q|

)
interactions. All agents step forward according

to Rule 1 until they reach Igather. The maximum distance between any agents grows during
the k interactions but can still bounded by O

(√
k/n

)
= O

(√
|w| · log n

)
, w.h.p. via Chernoff

bounds. Hence, due to the choice of w there is no agent left behind in Ilaunch when the first
agent reaches Igather. Additionally, due to the size of Igather when the last agent enters Igather
all of the other agents are still in |Igather|. As soon as the first agent reaches Ilaunch, Rule 3
(agents hop onto agents in Ilaunch) ensures that all agents start the next phase without a
large gap. Hence, there is an interaction after which all agents are in |Ilaunch| which brings
us back to our initial configuration (all agents in Ilaunch).

Now we consider an asynchronous configuration Ct where the agents can be arbitrarily
distributed over the |Q| states of the clock. The main idea for the recovery of our clock is as
follows. We show that after O(n log n) interactions there is a time t where Ilaunch is empty.
After O(n log n) additional steps most of the agents are in Igather: agents cannot hop since
Ilaunch is empty, and they reset as soon as they interact with an agent in Iwork. They enter
Ilaunch as soon as the first agent crosses 0 by increasing its clock counter.

We will show that the following two properties hold for our clock.

▶ Theorem 2. Let τ = 36 · (c + 4) · ln n and let w be a sufficiently large constant. Let t1, t2
with t1 ≤ t2 be two points in time and assume that the configuration Ct1 at time t1 is a
homogeneous launching configuration and t2 − t1 ≤ nc. Then the clock counters of the agents
implement a synchronous (τ, w)-phase clock in the time interval [t1, t2] w.h.p.

▶ Theorem 3. The clock counters of the agents implement a
(
O

(
n · log n

)
, Ω

(
poly n

))
-

loosely-stabilizing
(
Θ

(
log n

)
, w

)
-phase clock.

Note that our simulations suggest that the algorithm also works if τ is smaller by a constant
fraction. We prove Theorem 2 in Section 4 and Theorem 3 in Section 5.

Auxiliary Results. The one-way-epidemic is a population protocol with state space { 0, 1 }
and transitions (q1, q2) → (max(q1, q2), q2). An agent in state 0 is called susceptible and
an agent in state 1 is called infected. We say agent v infects agent u if v is infected and
u initiates an interaction with v. The following result is folklore, see, e.g., [7]. Additional
details can be found in the full version of this paper.

▶ Lemma 4 (One-way-epidemic). Assume an agent starts the one-way epidemic in step 1.
All agents are infected after t = τ/4 · n many steps with probability at least 1− n−(7+2c).

The following lemma bounds the number of interactions initiated by some fixed agent
u among a sequence of t interactions. It is used throughout Sections 4 and 5 and follows
immediately from Chernoff bounds (see [23]).
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▶ Lemma 5. Consider an arbitrary sequence of t interactions and let Xu be the number of
interactions initiated by agent u within this sequence. Then

Pr[Xu < (1 + δ) · t/n] ≥ 1−n− 12·(c+4)t·δ2
n·τ and Pr[Xu > (1− δ) · t/n] ≥ 1−n− 18·(c+4)t·δ2

n·τ .

4 Maintenance: Proof of Theorem 2

In this section we first show the following main result. At the end of the section we show
how Theorem 2 follows from this proposition.

▶ Proposition 6 (Maintenance). Consider our (τ, w)-phase clock for n agents with τ =
36 · (c+4) · ln n for any c ≥ 6 and sufficiently large w. Let configuration Ct1 be a homogeneous
launching configuration. Then, with probability at least 1 − n−(c+1), there exists a t2 =
Θ

(
n · w · log n

)
such that the following holds:

1. Ct1+t2 is a homogeneous launching configuration,
2. ∀t ∈ [t1, t1 + t2]: Ct is synchronous,
3. in the time interval [t1, t1 + t2] there exists a contiguous sequence of homogeneous working

configurations of length w · τ · n.
We split the proof of Proposition 6 into two parts, Lemmas 7 and 8. The formal proof follows.

Proof. Assume the configuration Ct1 at time t1 is a homogeneous launching configuration.
Statements 1 and 2 of Proposition 6 follow immediately from Lemmas 7 and 8:

It follows from Lemma 7 that the agents transition via a sequence of synchronous configu-
rations into a homogeneous gathering configuration within Θ

(
n · w · log n

)
time w.h.p.

It follow from Lemma 8 that the agents transition via a sequence of synchronous configu-
rations back into a homogeneous launching configuration within Θ

(
n · w · log n

)
further

time w.h.p.
It remains to show Statement 3. Recall that in a synchronous configuration all pairs of agents
have distance (w.r.t. the circular order modulo |Q|) at most ∆ = (7 + 2 ·

√
10 + w) · τ . Since

|Iwork| = w · τ + 2∆ it immediately follows that there must be w · τ · n interactions where all
agents are in Iwork. This concludes the proof. ◀

The following lemma establishes that w.h.p. all agents transition from a homogeneous
launching configuration into a homogeneous gathering configuration via a sequence of
synchronous configurations.

▶ Lemma 7. Let Ct be a homogeneous launching configuration. Let t′ = n · |Ilaunch|+|Iwork|
1−

(
2·
√

|Iwork|/τ
)−1 .

Then the following holds with probability at least 1− n−(c+1)/2:
1. Ct+t′ is a homogeneous gathering configuration and
2. ∀t′′ ∈ [t, t + t′] : Ct′′ is synchronous.

Proof. In the following we assume w.l.o.g. t = 0. We prove the two statements separately.

Statement 1. Our goal is to show that after t′ interactions all agents are in Igather when we
start from a homogeneous launching configuration C0 at time t = 0. We first show that there
is no agent left in Ilaunch when the first agent enters Igather. Let ta be the first interaction in
which an agent enters Igather. Note that before ta all agents are either in Ilaunch or in Iwork
and thus the agents increase their counter by one whenever they initiate an interaction.

First we show that w.h.p. ta ≥ 2 · τ · n. Let Xu(2 · τ · n) denote the number of
interactions agent u initiates before time 2 · τ · n. From Lemma 5 it follows with δ = 1 that
Xu(2 · τ · n) < 4 · τ with probability at least 1− n−24·(c+4). Since 4 · τ < |Iwork|, it holds that

SAND 2022



7:8 Loosely-Stabilizing Phase Clocks and The Adaptive Majority Problem

clock[u](2 · τ · n) < |Ilaunch|+ |Iwork| in this case. Hence, agent u has not yet reached Igather
with probability at least 1 − n−24·(c+4) at time ta. It follows from a union bound over all
agents that no agent has reached Igather with probability at least 1− n−24·(c+4)+1 at time ta.

Next we show that w.h.p. at time 2 · τ · n all agents have left Ilaunch. As before, let
Xu(2 · τ · n) denote the number of interactions agent u initiates before time 2 · τ · n. From
Lemma 5 it follows with δ = 1 that Xu(2 · τ · n) > τ with probability at least 1− n−36·(c+4).
Since τ = |Ilaunch|, it holds that clock[u](t + 2 · τ · n) ≥ |Ilaunch| in this case. Hence, agent
u has left Ilaunch with probability at least 1− n−36·(c+4) at time ta. Again, it follows from
a union bound over all agents that all agents have left Ilaunch with probability at least
1− n−36·(c+4)+1 at time ta.

Let now tb be the first interaction in which an agent enters the last minute of Igather and
observe that tb > ta. Then, w.h.p. no agent is in Ilaunch during the time interval [t+ ta, t+ tb].
Therefore, agents cannot hop. Thus, by definition of tb, no agent can leave Igather before
time tb. All initiators must therefore either increase their counter by one or reset.

First we show that w.h.p. tb > t′. From Lemma 5 it follows with δ =
(

2 ·
√
|Iwork|/τ

)−1

that Xu(t′) < |Iwork| + |Igather| with probability at least 1 − n−3(c+4). (Note that we use
(1 + δ)/(1− δ) < 1/(1− 2 · δ) for δ < 0.5 and (|Ilaunch + |Iwork|)/(1− 2 · δ) = |Iwork|+ (w +
5 ·
√

10 + w + 16)/(
√

10 + w + 1)) · τ < |Iwork|+ |Igather|.) Thus, clock[u](t′) ≤ clock[u](0) +
Xu(t′) < |Ilaunch| − 1 + |Iwork|+ |Igather| (which is the last state of Igather) with probability
at least 1− n−3(c+4). By a union bound, this holds for all agents with probability at least
1− n−(3c+11).

Next we show that w.h.p. at time t′ all agents have reached Igather. From Lemma 5
it follows for our choice of δ that Xu(t′) > |Ilaunch| + |Iwork| with probability at least
1 − n−9·(c+4)/2. Thus, clock[u](t′) ≥ clock[u](0) + Xu(t′) > 0 + |Ilaunch| + |Iwork|, with
probability at least 1 − n−9·(c+4)/2. By a union bound, this holds for all agents with
probability at least 1− n−(17+9/2·c).

Together it follows that at time t′ no agent has left Igather but all agents have entered it
with probability at least 1−n−(c+3). Therefore, Ct′ is a homogeneous gathering configuration.

Statement 2. Recall that a synchronous configuration C is defined as a configuration
where max(u,v) { d(u, v) } < |Ilaunch|+ |Igather|. As before, let Xu(i) denote the number of
interactions agent u initiates before time i. Now fix a time t ≤ t′ and a pair of agents (u, v)
with Xu(t) < Xv(t). We use Lemma 5 to bound the deviation of Xu(t) and Xv(t) at time t

as follows: Pr[Xu(t) > t/n− |Igather|/2] ≥ 1− n−6(c+4) and Pr[Xv(t) < t/n + |Igather|/2] ≥
1− n−4(c+4). Therefore, |Xv(t)−Xu(t)| < |Igather| with probability at least 1− n−4(c+4) −
n−6(c+4).

Note that Lemma 5 allows us to bound the deviation in the numbers of interactions
initiated by agents u and v. However, this does not immediately give a bound on the
difference of the clock counters |clock[v](t)− clock[u](t)|. To bound the deviation of clock
counters (by |Ilaunch|+ |Igather|), we therefore distinguish three cases.

First, assume that neither u nor v have reached Igather at time t. Then clock[u](t) =
clock[u](0)+Xu(t) and clock[v](t) = clock[v](t)+Xv(t). Observe that by the assumption of the
lemma, both u and v are in Ilaunch at time t = 0 and thus |clock[v](0)−clock[u](0)| < |Ilaunch|.
Together with the above bound on |Xv(t) − Xu(t)| we get |clock[v](t) − clock[u](t)| <

|Ilaunch|+ |Igather|.
Secondly, assume that u has not reached Igather but v has reached Igather at time t. Then

clock[u](t) = clock[u](0) + Xu(t). For clock[v](t), however, it might have occurred that v has
reset in some interactions before time t. Nevertheless, the clock counter of v is bounded by
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the number of initiated interactions such that clock[v](t) ≤ clock[v](t) + Xv(t). (Note that v

can only increment its clock[v] counter or reset its value; hopping is not possible since we
have shown in the proof of the first statement that Ilaunch is empty when the first agent
enters Igather.) Therefore, we get again |clock[v](t)− clock[u](t)| < |Ilaunch|+ |Igather|.

Finally, assume that both u and v are in Igather at time t. Then |clock[v](t)−clock[u](t)| ≤
|Igather| < |Ilaunch|+ |Igather| is trivially true.

There are no further cases: in the proof of the first statement we have shown that all
agents transition from a homogeneous launching configuration to a homogeneous gathering
configuration during the time interval [0, t′]. The result now follows from a union bound over
all o(n2) points in time t ≤ t′ and all n · (n− 1) pairs of agents. ◀

The following lemma is the main technical contribution of this section. It establishes that
w.h.p. all agents transition from a homogeneous gathering configuration into a homogeneous
launching configuration via a sequence of synchronous configurations. Consider a homo-
geneous gathering configuration and recall that whenever an agent hops from Igather into
Ilaunch it adopts the state of the responder. The main difficulty is to show that all agents
hop into Ilaunch before the first agent leaves Ilaunch.

▶ Lemma 8. Let Ct be a homogeneous gathering configuration. Then with probability at
least 1− n−(c+1)/2 the following holds:
1. there exists a t0 = O

(
n ·
√

w · log n
)

such that the first agent enters Ilaunch at time t + t0,
2. there exists a t′ ≤ τ/4 · n such that Ct+t0+t′ is a homogeneous launching configuration,
3. ∀t′′ ∈ [t, t + t′] : Ct′′ is synchronous.

Proof. We prove first show Statement 1, Statement 2 and Statement 3 are shown together.

Statement 1. Let t0 be defined such that the first agent u leaves Igather at time t + t0.
Since Ct is a homogeneous gathering configuration, Ilaunch is empty at time t and hence
agent u can only leave Igather by increasing its counter. In every interaction before time
t + t0 some agent has to increase its state by one. Thus t0 ≤ n · |Igather| = O

(
n ·
√

w · log n
)
.

Statement 2+3. We continue our analysis at time t0 and again assume w.l.o.g. for the
sake of brevity of notation that t0 = 0. Note that at that time exactly one agent is in state
0 and all remaining agents are still in Igather. We show the following: there exists a time
t̃ = τ/4 ·n such that at time t̃ all agents are in Ilaunch (Recall that |Ilaunch| = τ ·n). To do so
we first define a simplified process with the same state space Q, however, we refer to the last
state of Ilaunch as stop. Agents in stop never change their state (which renders the states of
Iwork unreachable). The formal definition of the simplified process is as follows. Rule 2 and
3 are identical to the original process and Rule 1 and 4 are modified as follows.

(q1, q2) ∈ (Ilaunch \ { stop })×Q : (q1, q2)→ (q1 + 1, q2) (step forward) (1)
(q1, q2) ∈ { stop } ×Q : (q1, q2)→ (q1, q2) (stopping) (4)

For this simplified process we show a lower bound: after t̃ = Θ
(
n · log n

)
interactions all

agents are in Ilaunch. Then we show (for the simplified process) an upper bound: in Ct̃

none of the agents are in state stop. A simple coupling of the simplified process and the
original process shows that under these circumstances none of the agents entered Iwork for
our original process. This finishes the proof with t′ = t̃.

Lower Bound. In the simplified process agents can enter Ilaunch either via hopping or by
making enough steps forward on their own. From Lemma 4 it follows that all agents enter
Ilaunch after at most t̃ = τ/4 · n interactions with probability at least 1 − n−(5+c). (For
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the upper bound, one can simply discard setting the clock counter to zero when an agent
enters Ilaunch by increasing its counter.) Showing that none of the agents are in state
stop is much harder. Due to the hopping the clock counters of agents in Ilaunch are highly
correlated. Nevertheless, we can show that the clock counters of each agent can be majorized
by independent binomially distributed random variables as follows.

Upper Bound. Let ui be the i’th agent that enters Ilaunch and let ti be the time when ui enters
Ilaunch. Let furthermore Xi(t) be a random variable for the clock counter of agent ui in Ilaunch
in the time interval [0, t]. Formally, we define for a time step t that Xi(t) = 0 if ui is in Igather
and Xi(t) = clock[ui](t) if ui is in Ilaunch. We show by induction on i that Xi(t) is majorized by
a random variable Zi(t) with binomial distribution Zi(t) ∼ Bin

(
t, 1/n · (1 + 1/(n− 1))i−1)

,
i.e., Pr[Xi(t) > x] ≤ Pr[Zi(t) > x] for all x ≥ 0. Ultimately, our goal is to apply Chernoff
bounds to Zi(t̃) which shows that agent ui does not reach stop w.h.p. The statement for the
simplified process then follows from a union bound over all agents w.h.p.

Base Case. For the base case we consider all agents that enter Ilaunch on their own by
incrementing their counters to 0 (modulo |Q|) in Igather. Fix such an agent ui. It holds that
Xi(t) for t ≥ ti has binomial distribution Xi(t) ∼ Bin(t− ti, 1/n). Therefore, Xi(t) ≺ Zi(t)
as claimed.2 (Intuitively, this means that the clock counter of any other agent ui with i > 1
that enters Ilaunch at time ti > 0 is majorized by the clock counter of an agent which enters
Ilaunch at time t1 = 0 and increments its counter with probability 1/n.)

Induction Step. For the induction step we now consider all agents that enter Ilaunch by
hopping onto some other agent in Ilaunch. Fix such an agent ui. Let Si be the event that agent
ui is the i’th agent that enters Ilaunch. Let furthermore ti be the time when ui enters Ilaunch.
We condition on Si and observe that agent ui enters Ilaunch by hopping onto some other
agent uj ∈ {u1, . . . , ui−1 }. Intuitively, we would now like to exploit the fact that the counter
of agent ui is copied at time ti from agent uj such that Xi(ti) = Xj(ti). Unfortunately,
we must be extremely careful here: conditioning on Si alters the probability space! (For
example, under Si the agent ui with i ≥ 3 cannot initiate an interaction with agent u1 before
agent u2 does, since Si rules out that ui enters Ilaunch before agent u2.) We account for the
modified probability space as follows.

Let ΩSi(t) be the probability space of possible interactions conditioned on Si at time
t ≤ t̃. Without the conditioning on Si, the probability space Ω(t) at time t contains all
(ordered) pairs of agents with |Ω(t)| = n · (n−1). When conditioning on Si, the event Si rules
out that agent ui interacts with any other agent uj ∈ Ilaunch before time ti. In particular,
agent ui cannot interact with another agent uj with j < i during the time interval [tj , ti].
In order to give a lower bound on |ΩSi(t)|, we exclude all (n − 1) interactions (ui, uj) for
j ∈ [n] from Ω(t). Hence |ΩSi

(t)| ≥ n · (n− 1)− (n− 1) = (n− 1)2 for any time t ≤ ti. (The
probability space after time ti is not affected by conditioning on Si, but the majorization
holds nonetheless.) We now consider the event Et̂ for t̂ ≤ ti that the interaction at time t̂

increments Xj(t) by 1 (recall that uj is the agent onto which ui hopped). It then holds for
the reduced probability space ΩSi

that Pr[Et̂ | Si] ≤ Pr[Et̂] · |Ω(t)|/|ΩSi
(t)|. (Note that ΩSi

is still a uniform probability space.) We calculate

|Ω(t)|
|ΩSi

(t)| = n · (n− 1)
(n− 1)2 = 1 + 1

n− 1

2 The expression X ≺ Y means that the random variable X is majorized by the random variable Y .
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and get Pr[Et̂ | Si] ≤ Pr[Et̂] · (1 + 1/(n− 1)) for t̂ ≤ ti. Therefore, we use the in-
duction hypothesis (that describes Xj(ti)) and get Xi(ti) ≺ Zi(ti), where Zi(ti) ∼
Bin

(
ti, 1/n · (1 + 1/(n− 1))i−1

)
. Similarly, we define Et̂ for t̂ ≥ ti to be the event that

ui increments its counter in Ilaunch. Observe that Pr[Et̂] ≤ 1/n for t̂ > ti. It follows that
Xi(t) ≺ Zi(t) with distribution Zi(t) ∼ Bin(t̃, 1/n · (1 + 1/(n− 1))i−1) for t ≤ t̃ as claimed.
This concludes the induction.

Conclusions. From the induction it follows that for each agent ui the clock counter
clock[ui](t̃) at time t̃ is majorized by a random variable Z(t̃) with binomial distribution
Z(t̃) ∼ Bin(t̃, e/n). (Note that we used the inequality (1 + 1/(n − 1))(n−1) < e.) From
Chernoff bounds (see [23]) it follows that Pr

[
Z(t̃) ≥ τ − 1

]
≤ n−(c+4). Finally, the proof for

the simplified process follows from a union bound over all agents.

It is now straightforward to couple the actual phase clock process with the simplified
process. Assume that we start both processes at time 0 when exactly one agent is in state 0.
In the simplified process no agent reaches state τ in τ/4 · n interactions with probability at
least 1− n−(c+3). In this case, however, the simplified process and the actual phase clock
process do not deviate and, in particular, no agent reaches the beginning of Iwork in τ/4 · n
many interactions. Thus, the configuration Ct′ is a homogeneous launching configuration
with probability at least 1− n−(c+3).

Since all agents started in Igather and no agent reaches the beginning of Iwork, the agents
are in a synchronous configuration by definition during the whole time interval [0, t′]. ◀

We are now ready to put everything together and prove our first theorem.

Proof of Theorem 2. The proof of Theorem 2 follows readily from the main result of this
section, Proposition 6.

Assume the configuration at time t1 is a homogeneous launching configuration. Then from
Proposition 6 it follows w.h.p. that after t2 = Θ

(
n · w · log n

)
interactions the configuration

Ct2 is again a homogeneous launching configuration, and all configurations in [t1, t2] are
synchronous. From Statement 3 it follows that no agent receives a signal in a contiguous
subinterval [t′

1, t′
2] ⊂ [t1, t2] of length t′

2 − t′
1 = w · τ · n. This shows that we have w.h.p. the

required overlap according to the definition of synchronous (τ, w)-phase clocks.
From Lemma 8 it follows w.h.p. that all agents transition from a homogeneous gathering

configuration into a homogeneous launching configuration within τ/4 · n interactions. Recall
that whenever an agent crosses zero, it receives a signal. Therefore, when all agents transition
from a homogeneous gathering configuration into a homogeneous launching configuration via
a sequence of synchronous configurations, all agents receive exactly one signal, and the time
between two signals of two agents (u, v) is w.h.p. at most τ/4 · n. This shows that we have
w.h.p. the required bursts according to the definition of synchronous (τ, w)-phase clocks.

Together, the counters of our clock implement a synchronous (τ, w)-phase clock in [t1, t2]
with probability n−c. It follows from an inductive argument that the clock counters implement
a synchronous (τ, w)-phase clock during the nc interactions that follow time t1 w.h.p. ◀

5 Recovery: Proof of Theorem 3

In this section we first show the following main result. At the end of the section we show
how Theorem 3 follows from this proposition.
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▶ Proposition 9 (Recovery). Consider our (τ, w)-phase clock with n agents and sufficiently
large c and w. Let Ct1 be an arbitrary configuration. Then with probability at least 1− 1/n,
there exists a t2 = O

(
n ·w · log n

)
such that Ct1+t2 is a homogeneous launching configuration.

We say a configuration is an almost homogeneous gathering configuration if no agent is
in Ilaunch and at least 0.9 · n many agents are in Igather. We start our analysis by showing
that within t = O

(
n · w · log n

)
interactions, we reach an almost homogeneous gathering

configuration Ct1+t.

▶ Lemma 10. Let Ct be an arbitrary configuration. Then with probability at least 1− 1/(3n),
there exists a t′ = O

(
n · w · log n

)
such that Ct+t′ is an almost homogeneous gathering

configuration.

Proof Sketch. The main idea of the proof is as follows. If there are not too many agents in
Igather, the reset rule prevents agents from reaching the end of Igather. Agents may still enter
Ilaunch by hopping, but if no agent enters state 0, eventually there is no agent left in state 0 to
hop on. Then the same argument applies to state 1, and so on. Eventually, there are no agents
left in Ilaunch to hop onto. This means the agents are trapped in Igather until a sufficiently
large number of agents enters Igather which renders resetting quite unlikely again. The
resulting configuration is what we call an almost homogeneous gathering configuration. ◀

Next, we show that from an almost homogeneous gathering configuration we reach a
homogeneous gathering configuration in O

(
n · w · log n

)
interactions. From Lemma 8 in

Section 4 it then follows that we reach a homogeneous launching configuration in an additional
number of O(n · log n) interactions.

▶ Lemma 11. Let Ct be an almost homogeneous gathering configuration. Then with probability
at least 1−1/(3n), there exists a t′ = Θ

(
n·w ·ln n

)
such that Ct+t′ is a homogeneous gathering

configuration.

Proof Sketch. If Ct is an almost homogeneous gathering configuration, then there are no
agents in Ilaunch and at least 0.9 · n many agents in Igather. Thus, agents cannot hop until an
agent enters Ilaunch on its own. Now there are two cases. If no agent enters Ilaunch on its
own before the last agent enters Igather, we are done: this is by definition of a homogeneous
gathering configuration. Otherwise, we will show that a large fraction of agents leave Igather
together. This large fraction behaves similar as in the proof of the maintenance. The
remaining agents have a small head start but then they are again trapped in Igather until the
bulk of agents arrives. Once the bulk of agents enters Igather we have reached a homogeneous
gathering configuration and all agents start to run through the clock synchronously. ◀

Proof of Theorem 3. The proof of Theorem 3 follows readily from the main result of this
section, Proposition 9. Observe that τ = Θ(log n). According to Proposition 9, our clock
recovers to a homogeneous launching configuration in O(n · log n) interactions. By Theorem 2,
this marks the beginning of a time interval in which the agents implement a synchronous
(τ, w)-phase clock. It follows immediately from Theorem 2 that this interval has length
nc. Together, this implies that our (τ, w)-phase clock is a (O(n · logn), Ω(poly(n)))-loosely-
stabilizing (Θ(log n), w)-phase clock. ◀

6 Adaptive Majority Problem

In this section we consider the adaptive majority problem. At any time, every agent has as
input either an opinion (A or B) or it has no input, in which case we say it is undecided
(U). During the execution of the protocol, the opinions of the agents can change. In the
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adaptive majority problem, the goal is that all agents output (at all times) the opinion
which is dominant among all inputs. In this setting we present a loosely-stabilizing protocol
that solves the adaptive majority problem. We define a loosely-stabilizing adaptive majority
protocol according to Definition 1 by defining C as all configurations where all agents output
the correct majority opinion. Recall that the performance of a loosely-stabilizing protocol
is measured in terms of the convergence time and the holding time. Note that the loose-
stabilization comes from an application of our phase clock. The phase clocks guarantee
synchronized phases for polynomial time. During this time we say a configuration C is
correct w.r.t. the adaptive majority problem if the following conditions hold. Suppose there
is a sufficiently large bias towards one opinion. Then every agent in a correct configuration
outputs the majority opinion. Otherwise, if there is no sufficiently large bias, we consider
any output of the agents as correct. In this setting, we show the following result: We show
that a (O

(
log n

)
, poly(n))-loosely-stabilizing algorithm exists that solves adaptive majority,

using O
(
log n

)
states per agent.

6.1 Our Protocol
Our protocol is based on the (τ, w)-phase clock defined in Section 3 with w = 566. In addition
to the states required by the clock, every agent v has three variables input[v], opinion[v],
and output output[v]. The variable input[v] always reflects the current input to the agent,
opinion[v] holds the current opinion of agent v, and output[v] defines the current output value
of agent v. All three variables take values in {A, B, U }. A and B stand for the corresponding
opinions and U stands for undecided. The state space of the protocol is Qc × {A, B, U }3

where Qc is the state space of our clock for τ = 36 · (c + 4) ln n and w = 566.
We use the (τ, w)-phase clock to synchronize the agents. Then it follows from Proposition 6

that all configurations are synchronous w.h.p. Observe that in a synchronous configuration for
our choice of parameters the clock counters of agents do not deviate by more than ∆ = 55 · τ .
This allows us to define three subphases of Iwork, where agents execute three different
protocols, as follows. We split the working interval Iwork into six contiguous subintervals of
equal length. The clock counters clock[u] allows us to define a simple interface to the phase
clock for each agent u as follows. The variable subphase[u] for each agent u is then defined as
follows. We set subphase[u] = 1 if clock[u] is in the first subinterval of Iwork, subphase[u] = 2
if clock[u] is in the third subinterval of Iwork, and subphase[u] = 3 if clock[u] is in the fifth
subinterval of Iwork. Otherwise, subphase[u] = ⊥. The clock now assures a clean separation
into these subphases such that no two agents perform a different protocol at any time w.h.p.
Additionally, we will show the overlap within each subphase is long enough such that the
subprotocols for the corresponding subphases succeed w.h.p.

On an intuitive level, our protocol works as follows. At the beginning of the phase, the
input is copied to the opinion variable. In the first protocol, the support of opinions A and
B is amplified until no undecided agents are left. We call this the Pólya Subphase. In the
second protocol, agents with opposite opinions cancel each other out, becoming undecided.
We call this the Cancellation Subphase. Finally, in the third protocol the single remaining
opinion is amplified again. We call this the Broadcasting Subphase. The resulting opinion
is copied to the output variable after the working interval Iwork. Formally, our protocol is
specified in Algorithm 1.

In the remainder of this section, we let At and Bt denote the number of agents u with
opinion[u] = A and opinion[u] = B, respectively, at time t. Analogously, we let Ain

t and Bin
t

denote the number of agents u with input[u] = A and input[u] = B, respectively, at time t.
We now state our main result for this section.
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Algorithm 1 Interaction of agents (u, v) in the adaptive majority protocol.

1 update clock[u] according to Rules 1–4 with w = 566
2 if Agent u receives a signal then opinion[u]← input[u]
3 if subphase[u] = 1 ∧ opinion[u] = U then opinion[u]← opinion[v]
4 if subphase[u] = 2 ∧ opinion[u] ̸= opinion[v] ∧ opinion[u], opinion[v] ̸= U then
5 opinion[u], opinion[v]← U

6 if subphase[u] = 3 ∧ opinion[u] = U then opinion[u]← opinion[v]
7 if clock[u] ≥ |Ilaunch|+ |Iwork| then output[u]← opinion[u]

▶ Theorem 12. Algorithm 1 is a (O
(
n log n

)
, Ω(poly (n)))-loosely stabilizing adaptive ma-

jority protocol.

Note that we match the results of [3] for r = 1/n, a multiplicative bias of 1+β = 1+1/ log n

and Ω
(
log2 n

)
many agents (α ≥ log n). In contrast to their protocol, every agent outputs at

any point of time the correct majority opinion, w.h.p. But, again in contrast to their work,
we do not consider leaky transitions.

6.2 Analysis
In the following analysis, we consider an arbitrary but fixed phase. We condition on the
event that the clock is synchronized according to Proposition 6. We show the following main
result, and later in this section we describe how Theorem 12 follows from it this proposition.
The proofs for the statements in this section can be found in the full version of this paper.

▶ Proposition 13. Assume that at time t1 the agents are in a homogeneous launching
configuration and we have At1 ≥ α · log n and At1 ≥ (1 + β) · Bt1 . If α and β are large
enough constants, then there exists a t2 = Θ(n · w · log n) such that all agents output A in
configuration Ct1+t2 with probability 1− n−c.

The analysis is split into three parts, one for the Pólya Subphase, one for the Cancellation
Subphase, and one for the Broadcasting Subphase. First, we assume that no changes in
the input occur. Then we generalize our results: we adopt the undecided state dynamics
introduced in [8], and show how we can tolerate input changes at various rates.

Observe that we get a separation between the subphases from the guarantees of the phase
clock in Theorem 2: no two agents are more than 1/6 of Iwork apart. We also know that
every agent has copied its input at the beginning of the phase before the first agent enters
the first subphase. The total time for the three subphases (including the separation time) is
sufficiently large such that every agent has finished its work before the next phase starts.

When we refer to a distribution before a subphase, we mean the distribution at the time
just before the first agent performs an interaction in that subphase. Analogously, when we
refer to a distribution after a subphase, we mean the distribution at the time when the last
agent has performed an interaction in that subphase. Recall that in the following analysis,
we let At and Bt denote the number of agents u with opinion[u] = A and opinion[u] = B,
respectively, at time t. Furthermore, we let si and ei (for start and end) be the first and the
last time, respectively, when an agent performs an interaction in the i’th subphase.

Subphases. We first consider the Pólya Subphase, where we model the process by means
of so-called Pólya urns. Pólya urns are defined as follows. Initially, the urn contains a red
balls and b blue balls. In each step, a ball is drawn uniformly at random from the urn. The
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ball’s color is observed, and it is returned into the urn along with an additional ball of the
same color. The Pólya-Eggenberger distribution PE(a, b, m) describes the total number of
red balls after m steps of this urn process.

This observation allows us to apply concentration bounds to the opinion distribution after
the Pólya Subphase. Recall that s1 and e1 are the first and the last time steps, respectively,
when an agent performs an interaction in the Pólya Subphase. We get the following lemma.

▶ Lemma 14. Let a = As1−1 and b = Bs1−1. For any constant β > 0 there exists a constant
α such that if a > α · log n and a > (1 + β) · b then Ae1 −Be1 = Ω(n) with probability at least
1− n−(c+2).

Next we consider the Cancellation Subphase. The goal is to remove any occurrence of
the minority opinion. Whenever an agent with opinion A interacts with another agent with
opinion B, both agents become undecided. Formally, we show the following lemma.

▶ Lemma 15. If As2−1 − Bs2−1 = Ω(n) then Ae2 = Ω(n) and Be2 = 0 with probability at
least 1− n−(c+2).

Finally we consider the Broadcasting Subphase. The goal is to spread the (unique)
remaining opinion to all other agents. Whenever an undecided agent u interacts with
another agent v that has an opinion, agent u adopts the opinion of agent v. This leads to
a configuration where every agent has the majority opinion w.h.p. Formally, we show the
following lemma.

▶ Lemma 16. If Ae2 = Ω(n) and Be2 = 0, then Ae3 = n and Be3 = 0 with probability at
least 1− n−(c+2).

We have now everything we need to prove Proposition 13 and in turn Theorem 12.

Proof of Proposition 13. We assume the configuration at time t1 is a homogeneous launching
configuration. From Proposition 6 it follows that all configurations in the time interval
[t1, t1 + t2] for some t2 = Θ(n ·w · log n) are synchronous with probability at least 1−n−(c+1).
This means that the three subphases are strictly separated as explained above. It therefore
follows (each with probability at least 1 − n−(c+2)),from Lemma 14 that after the Pólya
Subphase no agent is undecided, from Lemma 15 that after the Cancellation Subphase
no agent has opinion B, and from Lemma 16 that after the Broadcasting Subphase all
agents have opinion A. Once all agents have opinion A, this becomes the output when the
agents enter Igather. Together, this shows that all agents output the majority opinion after
Θ(n · w · log n) interactions with probability at least 1− n−c. ◀

Proof of Theorem 12. Here we show the result without input changes. Fix a time t1 and
assume the agents are in an arbitrary configuration at time t1. From Theorem 3 it follows
the agents enter a synchronous configuration within O(n log n) interactions and stay in
synchronous configurations for poly(n) time w.h.p.

Now we consider a fixed synchronized phase i < poly(n) of our phase clock. It follows
from Proposition 13 that all agents enter a correct configuration at the end of phase i

with probability at least 1− n−c. (Recall that in a correct configuration all agents have to
output the majority opinion if there is a sufficiently large bias. Without a bias, any output
constitutes a correct configuration.) From the guarantees of the phase clock it follows that
the first synchronized phase starts within O(n log n) time after time t1 w.h.p. This shows
a convergence time of O(n log n). From a union bound over at most nc−1 phases it follows
that the protocol is in a correct configuration for poly(n) interactions w.h.p. This shows a
holding time of poly(n).
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The proof with input changes can be found in the full version. The main idea is that
we bound the number of input changes in Θ(n log n) interactions by a simple application of
Chernoff bounds. ◀

Improving the Bound. In order to show-case the simplicity of the application of our phase
clock, we have presented a simplistic protocol, where we assumed a constant factor bias
towards the majority opinion. If we replace the Cancellation Subphase and the Broadcasting
Subphase (lines 6 to 9 in Algorithm 1) with the undecided state dynamics introduced in [8]
we can show a tighter result.

Formally, we show the following statement, the proof can be found in the full version of
this paper.

▶ Observation 17. If we use the undecided state dynamics, Proposition 13 also holds for
α = Ω

(
β−2)

provided that β = Ω
(
n−1/4+ε

)
.

This means that we can solve the adaptive majority problem with a multiplicative bias of
1 + β = 1 + 1/ log n = 1 + o

(
1
)

and asymptotically at least Ω
(
log2 n

)
many agents with

opinion A or B (assuming sufficiently large constants). Hence we achieve similar results as
in [3] for a model without leaky transitions.
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