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Abstract
A property of a graph G is robust if it remains unchanged in all connected spanning subgraphs
of G. This form of robustness is motivated by networking contexts where some links eventually fail
permanently, and the network keeps being used so long as it is connected. It is then natural to ask
how certain properties of the network may be impacted as the network deteriorates. In this paper,
we focus on two particular properties, which are the diameter, and pairwise distances among nodes.
Surprisingly, the complexities of deciding whether these properties are robust are quite different:
deciding the robustness of the diameter is coNP-complete, whereas deciding the robustness of the
distance between two given nodes has a linear time complexity. This is counterintuitive, because the
diameter consists of the maximum distance over all pairs of nodes, thus one may expect that the
robustness of the diameter reduces to testing the robustness of pairwise distances. On the technical
side, the difficulty of the diameter is established through a reduction from hamiltonian paths. The
linear time algorithm for deciding robustness of the distance relies on a new characterization of
two-terminal series-parallel graphs (TTSPs) in terms of excluded rooted minor, which may be of
independent interest.
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1 Introduction

The diameter of a network is the maximum distance between any pair of nodes. This concept
plays an important role in various fields of network science. For example, in communication
networks and distributed algorithms, the diameter is a key parameter involved in the
complexity of basic tasks such as leader election, spanning tree construction, and broadcast.
Indeed, both the execution time and number of messages may depend on this parameter.
Similarly, distances between nodes play a role in nearly all networking phenomena.

In a physical network, the links may deteriorate and eventually become subject to
permanent failure. In this case, either the network is maintained (repaired), or it is used
despite the failures so long as communication remains possible, i.e., so long as it remains
connected. A natural question, is then to what extent the properties of the network could
change as the network deteriorates. In graph theoretical terms, the connectivity assumption
imposes that the communication graph always remains a connected spanning subgraph of the
original graph, although one does not know in advance which such subgraph will occur. A
notion of robustness accounting for the preservation of a property in all these subgraphs
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9:2 Robustness of Distances and Diameter in a Fragile Network

was investigated in [3] in the context of covering problems. Although it can be formulated
in classical graph theoretical terms, the notion of robustness was initially motivated by a
temporal context. Namely, if the lifetime is infinite, then some edges may be recurrent (i.e.,
always reappear), and some may eventually disappear forever. If the network is guaranteed to
have a recurrent temporal connectivity (class T CR), then a certain connected spanning subset
of the edges must be recurrent, although one does not know in advance which subset. (In
technical terms, the eventual footprint is any connected spanning subgraph of the footprint.)

In this paper, we investigate the robustness of distances and diameter in the classical
(i.e. non-temporal) setting, where deletions are definitive. Relations between edge deletions
and distances in a graph have been studied over decades in some fields, such as that of
graph spanners. A spanner of a graph is a subgraph that preserves, to some extent, the
properties of the input graph – typically, the distances – while retaining as few edges as
possible. For example, we know since [1] that a tradeoff exists between the size of the spanner
and the deterioration of distances, in proportional terms (called stretch factor). Namely,
there always exists a spanner of size O(n1+1/k) whose stretch factor is at most 2k− 1, where
n is the number of nodes in the graph. The reader is referred to [6] for background in graph
spanners. A significant difference between this topic and questions about robustness is that,
in the case of spanners, the deletions of edges are chosen by the algorithm, whereas in the
case of robustness, they are imposed by the environment. Thus, it makes sense to think of
robustness in terms of adversarial edge deletions. The question is then whether and how
the distances are preserved under all possible choices of deletions by an adversary, up to
preserving connectivity.

As a warm-up, observe that, for any path P connecting two nodes u and v in a graph G,
the adversary can always delete enough edges that this path becomes the only path between
u and v (for example, by choosing a spanning tree G′ ⊆ G that contains this path). Thus,
deciding whether the distance between u and v is robust comes to decide if there exists a path
between u and v that is longer than their original distance d(u, v) in G. A similar question
was considered recently in the case of induced paths [2] and was shown to be solvable in
polynomial time, albeit with a time complexity of O(|G|18) (as of the current analysis, which
the authors of [2] do not consider tight). The non-induced case is arguably simpler. In fact,
the question for non-induced paths reduces (without being equivalent) to a question known
as the next-to-shortest path, which consists of finding a path between u and v that is the
shortest among all paths of cost strictly greater than d(u, v). Clearly, d(u, v) is robust if
and only if no such path exist. A number of algorithms were introduced for this problem,
both in directed [11] and undirected [10, 12, 9] graphs. The best known algorithm, in the
undirected case, is that of [9], with a time complexity of O(n2). It is not known whether this
algorithm is optimal for general graphs (in particular, sparse graphs), the quadratic term
being independent from the number of edges.

1.1 Contributions
The first set of contributions of this paper is a structural investigation of robustness, which
results in a linear time algorithm for deciding whether the distance between two vertices u

and v is robust. To do so, we identify and exploit a connection between robust distances and
two-terminal series-parallel graphs (TTSPs), whose recognition is known to be solvable in
linear time [16]. Precisely, we introduce a new class of TTSP graphs, referred to as TTSPs
of fixed length. Then, we show that the distance between u and v is robust in a graph G if
and only if the subgraph of G induced by the union of all paths from u and v is a TTSP of
fixed length. The main contribution is the characterization itself. First, we show that general
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TTSPs correspond to the graphs that exclude a certain rooted minor, namely, a diamond
rooted at u and v. This point of view clarifies earlier characterizations of TTSPs that
essentially arrived at the same conclusion without relying explicitly on a forbidden pattern.
(In the case of series-parallel graphs which are not two-terminal, such a characterization
was already known in terms of forbidden K4 [4, 5].) Then, we establish the correspondence
between these forbidden rooted diamonds and the robustness of the distance between u

and v. The natural consequence of our characterization is that robustness can be tested in
linear time by adapting the recognition algorithm from Valdes, Tarjan, and Lawler [16] to
the special case of fixed length TTSPs, with the same running time of O(n + m) operations
(where m is the number of edges).

The second set of contributions is the computational complexity of deciding whether the
diameter of a graph is robust. Clearly, the concept of diameter is strongly related to the one
of distance. However, and quite surprisingly, computing the robustness of the diameter turns
out to be a much different (and much more difficult) problem than computing the robustness
of pairwise distances. Precisely, we show that Robust-Diameter is coNP-complete (in other
words, proving that the diameter of certain networks are robust is difficult). This is done
through a reduction from Hamiltonian-Path, where one must decide if a path of length
n− 1 exists in a graph.

1.2 Organization of the document
The document is organized as follows. Section 2 provides the main definitions and some
basic observations. Then, we establish in Section 3 that deciding whether the diameter is
robust is a difficult (coNP-complete) problem. In Section 4, we investigate several aspects of
the robustness of distances, in relation to two-terminal series-parallel graphs (TTSPs). The
main results of this section are a new characterization of TTSPs (Section 4.2) and a linear
time decision algorithm for robustness of distances (Section 4.4). Finally, we conclude with
some remarks and open questions in Section 5.

2 Definitions and preliminary observations

2.1 Basic definitions
An undirected graph G is a pair (V (G), E(G)) where V (G) and E(G) are two disjoint sets,
the set of vertices (or nodes) and the set of edges respectively. Each edge is associated with
two vertices called its endpoints. A loop is an edge whose endpoints are the same vertex. If
there are several edges with the same endpoints, these edges are called a multi-edge. An
undirected graph is simple if it does not have loops nor multiple edges. A graph that can
have multi-edges is called a multigraph. A graph without loops is called loopless. Unless
otherwise mentioned, all the graphs in this paper are simple. The order of a graph G is
|V (G)| and its size is |E(G)|. Two vertices u and v are adjacent if there exist an edge uv

in E(G). In a loopless graph, the degree of a vertex u in G is the number of edges incident
with u. In a simple graph, this corresponds to the number of vertices with which u shares an
edge, called its neighbors. A complete graph is a simple graph such that every pair of vertices
are neighbors, we denote the complete graph of order n by Kn.

Let H and G be two graphs. We say that H is a subgraph of G if and only if V (H) ⊆ V (G)
and E(H) ⊆ E(G). If V (H) = V (G) and E(H) ⊆ E(G) then H is a spanning subgraph
of G. Let X ⊆ V (G), the induced subgraph G[X] is the subgraph of G on vertex set X and
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9:4 Robustness of Distances and Diameter in a Fragile Network

where, for every two vertices u and v of X, uv ∈ E(G[X]) if and only if uv ∈ E(G). Finally,
we use G−X as a shorthand for G[V −X] if X is a set of vertices, and for (V, E −X) if X

is a set of edges.
A path P from v0 to vk is a sequence of edges (e1, e2, . . . ek) of length k for which there

is a sequence of vertices (v0, v1, . . . , vk) such that the endpoints of ei are vi−1 and vi for
i = 1, . . . , k. All vertices in a path must be distinct, except possibly for the first and last, in
which case the path is a cycle. In a simple graph, the sequence of vertices identifies uniquely
the corresponding path. The length of a path is the number of edges in it. The distance
between two vertices u and v in a graph G, denoted by dG(u, v) (or simply d(u, v) when the
context of G is clear), is the minimum length of a path from u to v. The diameter of a graph
G, denoted by diam(G), is the maximum distance between any pair of vertices. A graph
is connected if for every pair of vertices u and v, there exists a path from u to v, and it is
biconnected if for any v ∈ V , the graph G− {v} is connected. A tree is a connected graph
without cycle.

A connected component is a maximal connected subgraph. A block or biconnected
component is a maximal biconnected subgraph. A separator of a connected graph G is a
set of vertices whose removal renders G disconnected. An articulation point of a connected
graph G is a separator of size 1 (a single vertex). The structure of blocks and separators of
a connected graph can be described by a tree called the block-cut tree [7]. This tree has a
vertex for each block and for each articulation point of the given graph. There is an edge
in the block-cut tree for each block and for each articulation point that belongs to that
block. For a graph G and two vertices u and v, we say that G is a block-cut (u, v)-path if the
block-cut tree of G is a path from s to t, such that u (resp. v) is only contained in the block
associated to s (resp. t). Observe that by definition, u and v are not articulation points.

Let us now define the notion of robustness that we consider in this work.

▶ Definition 1 (Robustness). A property P of a connected graph G is called robust [3] if
P is satisfied in every connected spanning subgraph of G (including G itself). By extension,
if P denotes a quantity rather than a predicate (such as, here, a distance), then it is called
robust if its value is the same in all connected spanning subgraphs of G.

We are now ready to state the main two problems that we address in this paper, namely
Robust-Diameter and Robust-Distance.

▶ Definition 2 (Robust-Diameter).
Input: A graph G.
Output: Whether the diameter of G is robust.

▶ Definition 3 (Robust-Distance).
Input: A graph G, two vertices u and v of G.
Output: Whether the distance between u and v is robust in G.

2.2 Preliminary observations
In this section, we establish a number of basic facts, most of which are used in the rest of
the paper.

▶ Lemma 4. Let G be a connected graph and P ⊆ G a path between distinct vertices u and
v, then there exist a spanning tree S ⊆ G such that P ⊆ S.

Proof. Observe that P is a (possibly non-spanning) tree. As long as it is not spanning, one
can extend it by adding a node that is not in it, but that has a neighbor in it. Such a node
always exists because G is connected. ◀
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▶ Lemma 5. Let G be a connected graph and u, v two vertices of G. The distance between u

and v is robust if and only if there is no path between u and v longer than dG(u, v).

Proof. Suppose there is a longer path in G between u and v. By Lemma 4, it is thus possible
for the adversary to reduce G to a spanning tree S ⊆ G such that dS(u, v) > dG(u, v). ◀

▶ Lemma 6. Let G be a biconnected graph and u, v and w three vertices of G. There is a
path from u to w passing through v.

Proof. Consider a graph G′ obtained from G by adding an extra vertex z adjacent to
both u and w. G′ is also biconnected since no articulation point was added. By Menger’s
theorem [13], there exist two vertex-disjoint paths from z to v. Since z has only two neighbors
v and w, there are two subpaths: one from u to v and another from v to w. By composing
these subpaths, one can thus obtain a path from u to w passing through v. ◀

The following lemma allows us to subsequently restrict our attention to a limited part of
the graph, when investigating the robustness of distance between two given vertices.

▶ Lemma 7. Let G be a connected graph, u, v two distincts vertices of G and H the graph
induced by the paths from u to v. The distance from u to v is robust in G if and only if it is
robust in H.

Proof. =⇒ If the distance is robust in G, since H is a subgraph of G, the distance must be
robust in H.
⇐= By definition of H, all paths from u to v in G are also in H, thus, if all those paths

have length d(u, v) (equivalent to the robustness of the distance), then all the paths in G

from u to v have the same length and the distance is robust as well in G. ◀

Figure 1 shows a graph where the distance between u and v is not robust, this can be
verified by only considering the graph induced by all paths from u to v thanks to Lemma 7.
Observe that H, the graph induced by the paths from u to v, is always a block-cut (u, v)-path.

u v

Figure 1 A graph and its subgraph induced by the paths from u to v (in dashed red). This
subgraph is a block-cut (u, v)-path.

▶ Lemma 8. Let G be a graph and u, v two vertices of G. Then, the graph H induced by the
paths from u to v is a block-cut (u, v)-path.

Proof. By definition of H, all vertices in V (H) are part of a path between u and v and H is
connected. Let T be the block-cut tree of H, by definition, T has a vertex for each block and
each articulation point of H. The leaves of T (vertices of degree 1) are blocks, the neighbors
of blocks are articulation points, and the neighbors of articulation points are blocks. Suppose
that H is not a block-cut (u, v)-path, it means one of the following cases:

SAND 2022



9:6 Robustness of Distances and Diameter in a Fragile Network

u or v are not part of the leaves in T . Consider a path in T (x0, . . . , xk) that contains
both u and v (or their blocks), u ∈ xi and v ∈ xj such that i > 0 or j < k. If i > 0 (the
same could be done with v if j < k), then there is a path (x0, . . . , xi) crossing at least
one articulation point of H (v1). It can be deduced that any vertex in v0 cannot be part
of a path between u and v which leads to a contradiction in H.
T is a tree with at least one vertex of degree 3 or more. Since u and v must be in the
leaves of T , then there is a path between u and v that crosses a vertex x of degree at
least 3. Consider a neighbor y of x not part of such path. Either y is a block, and x is an
articulation point and all paths from u to v in H cannot reach a vertex in y, or y is an
articulation point, and there must be another block z that cannot be crossed by paths
between u and v (which we assume is not the case). ◀

The following two lemmas are not used in this paper. However, they establish some
connections between the robustness of distances and that of the diameter, which is of general
interest in the present study.

▶ Lemma 9. All the distances are robust in G if and only if G is a tree.

Proof. If G is a tree, then the adversary cannot remove any edge, so all the distances are
trivially robust. If it is not a tree, then at least one edge uv can be removed, and the distance
between u and v thus increases from one to something strictly larger. ◀

▶ Lemma 10. Let G be a connected graph, if diam(G) is robust, then for every pair of
vertices u, v in G such that d(u, v) = diam(G), their distance is robust.

Proof. By contradiction, if their distance is not robust, then there must exist a path of length
greater than dG(u, v). By Lemma 4, the adversary can obtain a spanning tree containing
this path, whose diameter is thus also greater than dG(u, v) = diam(G). ◀

3 Robustness of the diameter is hard

In this section, we prove that the problem of deciding whether the diameter of a graph G is
robust is coNP-complete. We start with two basic facts that will be used only in this section.

▶ Lemma 11. If H is a connected spanning subgraph of G, then diam(H) ≥ diam(G).

Proof. Let H be a connected spanning subgraph of G. If diam(H) < diam(G), then there
must exist two vertices u, v such that dG(u, v) = diam(G) and dH(u, v) < diam(G). Let P

be a path of length dH(u, v) in H. Since H ⊆ G, P must also exist in G, which contradicts
the fact that dG(u, v) > dH(u, v). ◀

▶ Lemma 12. The diameter of a connected graph G is robust if and only if it is equal to the
length of the longest path of G.

Proof. ⇐= Let G be a graph of diameter d that is also the longest path in G. Any
connected spanning subgraph H of G has, by Lemma 11, diam(H) ≥ d. If diam(H) > d,
then there is a path in H (and in G) that is longer than d, which is impossible, thus
diam(H) = diam(G) = d for any of these graphs and the diameter of G is robust.

=⇒ By contradiction, let G be a graph whose diameter d is robust even though a
longest path of length l > diam(G) exists between some vertices u and v. By Lemma 4, the
adversary can obtain a spanning tree T of G containing this path, whose diameter must be
strictly larger than that of G. ◀
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▶ Theorem 13. Robust-Diameter is coNP-complete.

Proof. To prove this statement, we will show that the problem is in coNP and that the
Hamiltonian-Path problem reduces to it in polynomial time. (Hamiltonian-Path consists
of deciding whether a given graph G admits a path of length n− 1.) The fact that Robust-
Diameter is in coNP is direct, using any path of length longer than the diameter as (negative)
certificate.

Now, let G be an input graph for Hamiltonian-Path. Without loss of generality, we
suppose that G is connected and that it is not itself a path, as otherwise the answer is
trivially positive. From G, we can construct a graph Hu as follows: Let P be a graph that
consists of a single path of length 2n− 2 on vertices {vi}, i ∈ [1, 2n− 1]. The graph Hu is
built by picking a vertex u in V (G) and adding an edge between u and vn, the middle vertex
of P2n−1. See Figure 2 for an illustration.

G
u

vn

v2n−1

v1

1
n− 1

n− 1

Figure 2 The graph Hu.

We will now prove that G admits a path of length n− 1 if and only if the diameter of Hu

is not robust, for some choice of u. Since G is not itself a path, the diameter of Hu must be
2n− 2. If the diameter of Hu is not robust for some u, then there must exist a path of length
at least 2n− 1 in some connected spanning subgraph of Hu. The only way this can happen
is that n− 1 vertices on this path are in G, which implies that G admits a hamiltonian path
(starting at u). Conversely, if G admits such a path, then there exists a choice of u such that
this path will cause the diameter of Hu to be non-robust. Clearly, the above construction
can be made in polynomial time, and guessing u will only contribute an additional factor of
n to the complexity. ◀

4 Robustness of pairwise distances

In this section, we investigate the problem of deciding whether the distance between two
vertices u and v is robust in a given graph G (Robust-Distance problem). It turns out
that the positive instances to this problem can be characterized in terms of two-terminal
series-parallel graphs of a certain type. Thus, we start by defining, in Section 4.1, some
basic concepts related to two-terminal series-parallel graphs (TTSPs). Our main technical
contribution, described in Section 4.2, is an original characterization of TTSPs in terms of
excluded rooted diamonds whose “roots” (endpoints) are u and v. This characterization may
be of independent interest. In the context of Robust-Distance, it allows us to formulate a
necessary condition for the positive instances of the problem, in terms of excluding (u, v)-
rooted diamonds (Section 4.3). This condition is however not sufficient, as some TTSPs
with respect to u and v may admit paths of different length. We show that existing TTSP
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9:8 Robustness of Distances and Diameter in a Fragile Network

recognition algorithms can be adapted at essentially no cost in order to test for the special
case of fixed length TTSPs, which capture exactly the properties that should be tested
(Section 4.4).

4.1 Two-terminal series-parallel graphs (TTSPs)
The concept of a two-terminal series-parallel graph seems to have been introduced by Riordan
and Shannon in [14] (1942). It is now classically defined as follows.

▶ Definition 14 (Two-terminal series–parallel graph). Let G be a connected multigraph, s

and t two distincts vertices of G called source and sink respectively. G is two-terminal
series–parallel (TTSP) if it can be turned into K2 by a sequence of the following operations:

S: Delete a vertex of degree 2 (other than s or t) and connect its neighbors with an edge.
P : Replace a pair of parallel edges with a single edge connecting the same endpoints.

Symmetrically, TTSPs can be seen as the graphs which can be obtained from K2 through the
reverse operations of P and S.

These operations S and P are illustrated in Figure 3 and an example of TTSP graph is
given in Figure 4. In this example, the distance between s and t is not robust. Note that the
fact that s and t are fixed is an important aspect of TTSP graph. For example, if s and t

were chosen differently in the graph of Figure 4, the graph would not be a TTSP. The class
of graphs that admit a valid pair (s, t) resulting in a TTSP is called SP (for series-parallel).
We do not use it in this paper.

u v P−→
u v

S−→
vwu u v

Figure 3 The operations P and S to define TTSP.

s
t

Figure 4 A TTSP between s and t.

When a graph (together with a pair (s, t)) is not a TTSP, then the repeated application
of rules S and P eventually fails and one is left with an irreducible graph.

▶ Definition 15 (TTSP-irreducible). Let G be a graph and u, v two vertices, then G is
TTSP(u, v)-irreducible if G has at least three vertices and the operations S and P cannot be
applied relative to u and v.

The following lemma makes a connection between a TTSP(s, t) and a block-cut (s, t)-path.

▶ Lemma 16 (Lemma 8 in [5]). Let G be a TTSP graph with respect to (s, t), then G is a
block-cut (s, t)-path.
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However, the converse is not true, and some graphs that are block-cut (s, t)-paths are
not a TTSP(s, t). These graphs have special properties characterized through the following
lemma (which will be used later).

▶ Lemma 17. Let G be a multigraph that is a block-cut (u, v) path, G is TTSP(u, v)-irreducible
if and only if G is simple, with at least 4 vertices, and such that for all w ∈ V (G)− {u, v},
deg(w) ≥ 3.

Proof. Let G be such a graph.
P cannot be applied, unless G has multiple edges, so a TTSP(u, v)-irreducible multigraph
must be simple.
S cannot be applied to G, unless there exists a vertex of degree two (other than u and v).
Thus, no vertex in an irreducible graph can have degree 2, and since G is a block-cut
(u, v)-path, every vertex except u and v must have degree at least 3.
If G is TTSP(u, v)-irreducible, then it has at least 3 vertices. But since one of them has
degree 3 and G is simple, then G actually has at least 4 vertices.

Conversely, if G is simple, with degree at least 3, and has at least four vertices, then
(respectively), P cannot be applied, S cannot be applied, and G has at least three vertices. ◀

4.2 Characterization of TTSPs in terms of excluded rooted minor
In this section, we characterize graphs that are TTSP via an excluded rooted minor that
corresponds to a complete graph of order four minus one edge called diamond. A similar
characterization was mentioned in [16] in which it is stated that a directed graph is not TTSP
if only if it has as a subgraph a subdivision of a directed diamond. This result was given as
an easy deduction from the classical result of [4] that states that graph is not series-parallel
if and only if it has as a subgraph a subdivision of K4. This characterization of TTSP graphs
is not sufficient to directly show that the distance between the two terminal is not robust if
the graph between u and v is not a TTSP for which one needs to root the terminal vertices
in the minor. Moreover, the setting was different since it considers directed graph. For all
these reasons, it seems worth characterizing TTSPs in terms of a clear excluded pattern,
which is the purpose of this section. Let us start with basic definitions.

▶ Definition 18 (Minor). Let G and H be two graphs, G has a minor H if there is a graph
isomorphic to H from G after a succession of the following operations:

deleting a vertex v;
deleting an edge e;
contracting an edge xy into the vertex x: removing y and adding a new edge xz for every
z such that yz ∈ E(G).

The notion of minor is not precise enough to guarantee the non-robustness of the distance
between two vertices u and v, because the position of u and v within the minor matters.
Therefore, we use the finer concept of rooted minors, where some vertices can be distinguished
in the minor. The difference to “normal” minors is that we want to keep a set X ⊆ V (G)
of root vertices alive in the minors. An X-legal minor operation is either the deletion of a
vertex y /∈ X, the deletion of any edge, or the contraction of an edge xy into x with y /∈ X.

▶ Definition 19 (Rooted minor). Let G and H be two graphs, X ⊆ V (G) with |X| ≤ |V (H)|,
π : X → V (H) an injection. The pair (G, X) is said to have a π-rooted-minor if G has a
minor H such that each vertex x ∈ X corresponds to the vertex π(x) in H obtained with
X-legal minor operations.

SAND 2022



9:10 Robustness of Distances and Diameter in a Fragile Network

We are now ready to show the main technical part of this section. Observe that our
definition of rooted minors differs from the definition found in [15] and [17], since all the
vertices of the minor are not necessarily rooted. Let Hd be the complete graph of order four
minus one edge between x and y (K4 \ {x, y}). For a TTSP(u, v)-irreducible graph G, we
define the bijection πd : {u, v} → {x, y} by πd(u) = x and πd(v) = y.

▶ Lemma 20. If G is a TTSP(u, v)-irreducible graph and a block-cut (u, v)-path for some
u, v ∈ V (G), then G has a πd-rooted-minor Hd.

Proof. We will show the property by induction on the order and the size of the graph.
Consider a block-cut (u, v)-path G, such graph is connected. If the order of G is less or equal
to 3, then by Lemma 17, G is not a TTSP(u, v)-irreducible graph and the property is satisfied.
For n = 4, by Lemma 17, G must have two vertices distinct from u and v with degree 3 in
order to be TTSP(u, v)-irreducible, thus G has a diamond subgraph and a πd-rooted-minor
Hd. For n > 4, consider that G is a TTSP(u, v)-irreducible graph and a block-cut (u, v)-path
of order n and size m. Assume by induction that the property is verified for all graphs of
order less or equal to n− 1 or graphs of order n with a size less or equal to m− 1.

If G is not biconnected, then let c1, c2, . . . ck be the articulation points from u to v. Since
G is a block-cut (u, v)-path, any path from u to v crosses these articulation points in order.
Let u = c0 and v = ck+1. Observe that, for any 0 ≤ i ≤ k, the block B between ci and ci+1
must be a TTSP(ci, ci+1)-irreducible graph since otherwise G would not be a TTSP(u, v)-
irreducible graph. B is a TTSP(ci, ci+1)-irreducible graph and a block-cut (ci, ci+1)-path of
order less than n. By induction, B has a π′

d-rooted-minor Hd with π′
d : {ci, ci+1} → {x, y}.

One can find two disjoint paths: one from u to ci and another one from ci+1 to v that do not
contain edges of B. It follows that G has a πd-rooted-minor Hd. Hence, for the remainder of
the proof, one can assume that G is a biconnected graph.

We now consider several cases depending on the neighborhood of u and v. Observe that
the degrees of u and v must be at least two since otherwise G would not be biconnected.

Case 1: u and v are adjacent.
In this case, we consider the graph G′ which is G minus the edge uv. First, we show
that G′ is a block-cut (u, v)-path. By Lemma 6, for any vertex w ∈ V (G) there is a
path from u to v passing through w since G is biconnected. This path also exists in
G′ since it does not use the edge uv in G. It follows that there is no articulation point
separating w from both u and v and so G′ is a block-cut (u, v)-path. Assume, by way
of contradiction, that G′ is a TTSP(u, v) graph. It means that there is a sequence of
operations P and S such that G′ can be turned into K2 while preserving u and v. Using
the same sequence of operations, G can be turned into a multigraph of two vertices u and
v with two edges linking u and v. By applying an operation P , we obtain a K2 and thus
there is a contradiction with the fact that G is a TTSP(u, v)-irreducible graph. Hence,
G′ is a TTSP(u, v)-irreducible graph and a block-cut (u, v)-path. By induction, since G′

is of order n and size m− 1, G′ has a πd-rooted-minor Hd and so has G.
Case 2: u is adjacent to w ̸= v such that w is not adjacent to other neighbors of u.
In this case, one can contract edge uw into u. Observe that if {u, w} is a separator of G

then u is the only articulation point in the connected new graph. One only keeps the
block containing v to obtain the graph G′. G′ is a biconnected simple graph and all of its
vertices are of degree at least 3 except u and v which have degree at least 2 since G′ is
biconnected. By Lemma 17, G′ is a TTSP(u, v)-irreducible graph. Since its order is less
than n, it has a πd-rooted-minor Hd and so has G.
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Case 3: u is adjacent to two vertices w ̸= v and z ̸= v that are adjacent.
We remove u from G obtaining graph G′. Since G is biconnected, G′ is connected. Hence,
there is a path Pwv from w to v in G′ and a path Pzv from z to v. Consider a path Pwv

without z and a path Pzv without w if such paths exist. If Pwv does not contain z and
Pzv does not contain w then u, w, z, v define a πd-rooted-minor Hd. If Pwv contains z

then its subpath from z to v is a path not containing w. Since the same can be said
for Pzv and w, it follows that either Pwv does not contain z or Pzv does not contain w.
Assume, without loss of generality, that all paths between w and v contain z. It means
that z is an articulation point of G′ separating w and v and {u, z} is a separator of G.
Consider the subgraph G′′ obtained by removing from G all vertices that are cut from v

by removing {u, z} (including w). Observe that, since G′′ is biconnected, u has degree at
least 2 in G′′. If z has degree 2, one contracts edge uz into u. Each other vertex of G′′

has the same degree in G′′ and G. It follows that all vertices of G′′ have degree at least 3
except u and v that have degree at least 2. By Lemma 17, G′′ is a TTSP(u, v)-irreducible
graph. Since its order is less than n, it has a πd-rooted-minor Hd and so has G. ◀

▶ Proposition 21. TTSP(u, v) graphs correspond exactly to the block-cut (u, v)-paths which
have no πd-rooted-minor Hd.

Proof. We show the equivalent proposition that states that G is not a TTSP(u, v) graph if
and only if G is not a block-cut (u, v)-path or admits a πd-rooted-minor Hd.
⇐= By Lemma 16, if G is not a block-cut (u, v)-path then it is not a TTSP(u, v) graph.

Hence, one can assume that G is a block-cut (u, v)-path and admits a πd-rooted-minor
Hd. Consider H, the graph obtained after a succession of operations S and P on G such
that no more of these operations can be applied, H is either K2, or, by Lemma 17, a
TTSP(u, v)-irreducible graph. However, S and P are {u, v}-legal minor operation (P being
an edge deletion and S being an edge contraction preserving u and v). Since Hd could not
be reduced with S or P , it means that H must have a πd-rooted-minor Hd. Therefore, H

cannot be K2 and G is not TTSP between u and v.
=⇒ Suppose G is not TTSP between u and v. One can assume that G is a block-cut

(u, v)-path since otherwise the property is satisfied. By Lemma 17, G can be reduced to a
TTSP(u, v)-irreducible graph H. By Lemma 20, H admits a πd-rooted-minor Hd. Since S

and P are particular minor operations, G also admits a πd-rooted-minor Hd. ◀

4.3 Robust distance in terms of rooted diamonds
With Proposition 21, we have established that any block-cut (u, v)-path that is not a TTSP
must have a rooted diamond. With that characterization, it is easier to characterize the
graphs in which d(u, v) is not robust.

▶ Lemma 22. Let G be a connected graph and u, v two vertices of G. If G has a πd-rooted
diamond minor in u, v, then the distance between u and v is not robust.

Proof. Suppose G admits a πd-rooted diamond minor in u, v, where x and y are the other
two vertices (of degree 3 in the minor). It means there are four paths from u to v in G:

c1 that crosses x but not y;
c2 that crosses y but not x;
c3 that is the same path as c1 until x, then crosses y from x before crosses the same
vertices from y to v as c2;
c4 that crosses y then x and finally v by crossing the same vertices as c2 (until y) then c3
(until x) then c1 (until v).
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Consider the subpaths ux, xv, xy, uy and yv crossed by the previous paths, these subpaths
are all disjoints. If the distance between u and v was robust, then it would mean that
l(c1) = l(c2) = l(c3) = l(c4). Hence, we have l(c3) + l(c4) = l(c1) + l(c2) which implies that
2l(xy) = 0. Since x and y are distincts, a path between the two vertices must have a length
of at least 1. Therefore the distance between u and v cannot be robust. ◀

▶ Lemma 23. Let G be a block-cut (u, v) path. If G is not TTSP between u and v, then the
distance between u and v is not robust.

Proof. By Proposition 21, a block-cut (u, v) path which is not a TTSP(u, v) must have a
rooted diamond minor in u, v. By Lemma 22, such a graph cannot have a robust distance
between u and v. ◀

4.4 An efficient recognition algorithm for distance-preserving TTSPs
We are now ready to exploit the above characterizations in order to test efficiently (indeed,
in linear time) whether the distance between two given vertices is robust in a given graph.

▶ Definition 24. A graph G is a TTSP of fixed length (TTSPf) between s and t if, starting
with weights of 1, it is turned into K2 by a sequence of the following operations (see Figure 5):

Pf : Replace a pair of parallel edges of weight i with a single edge of weight i connecting
their common endpoints.
Sf : Replace a pair of edges of weight i and j, incident to a vertex of degree 2 other than
s or t with a single edge of weight i + j.

u v Pf−→
u v

Sf−→
vwu u v

i

i i

i j i + j

Figure 5 The operations Pf and Sf associated with TTSP of fixed length.

Note that a TTSP of fixed length remains de facto a TTSP, because the new operations are
only more restricted. In the following, we say that the length of a weighted path corresponds
to the sum of weights of its edges.

▶ Lemma 25. Let G be a connected edge-weighted multigraph and let s and t be two distinct
vertices in G. Consider the edge-weighted multigraph H that results from applying Pf and
Sf exhaustively on G. For any length d, there is a path c from s to t of length d in G if and
only if there is a path c′ from s to t of length d in H.

Proof. Consider two cases on H:
If H is the result of the operation Pf on two parallel edges e1, e2 of weight i into an edge
e′ of weight i, then:

If c does not cross e1 or e2, then c is the same in H;
If e1 or e2 is crossed by c (but not both), then there is a path c′ in H that is the same
as c but crossing e′ instead, c′ has the same length as c. On the contrary, considering
c′ in H crossing e′, it means that there is a path c in G which crosses e1 or e2 of the
same length.

If H is the result of the operation Sf on a pair of edges e1, e2 of weight i and j incident
to a vertex v of degree 2, into an edge e′ of weight i + j, then:
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If v /∈ c, then the path c is the same in H;
If v ∈ c, then c crosses e1 and e2 (since v has degree 2 and is neither s nor t). In this
case, there is a path c′ in H that is the same as c but that crosses e′ instead of e1
and e2. The length of this path is d − l(e1) − l(e2) + l(e′) = d − i − j + (i + j) = d.
Conversely, a path c′ that crosses e′ in H implies the existence of a path c in G which
crosses the contracted vertex v. These paths have the same length. ◀

Lemma 25 guarantees that the length of the paths from s to t are preserved no matter
how many times the operations Pf and Sf are applied. Therefore, if there is a longer path
in G, it will be possible to find a path of the same length in H after applying a succession of
Pf and Sf operations.

▶ Lemma 26. Let G be a TTSP graph between s and t, the distance between s and t is
robust if and only if G is a TTSP of fixed length.

Proof. ⇐= Lemma 25 shows that if G is turned into K2 with a succession of operations
Pf and Sf , then all paths from s to t in G have length d(s, t), meaning the distance between
s and t is robust.

=⇒ Let G be a TTSP graph between s and t such that the distance between s and t is
robust. Suppose that G can not be reduced to K2 with a succession of operations Pf and
Sf , that is, there is a graph H obtained from G by these operations that cannot be reduced
any further and is not K2:

If Sf cannot be applied to H, then H does not have any vertex of degree 2 (except s and
t), else it would be possible to sum the weight of the edges with the application of Sf ;
If Pf cannot be applied to H, then one of the following must hold:

H does not have any multiple edges and with Sf impossible, that would means that G

is not TTSP;
H has a pair of parallel edges e, f of distinct weights, thus there are in H two paths
of different length between u and v, and same in G (by Lemma 25). By Lemma 5, it
would mean that the distance is not robust. ◀

Finally the following theorem can be proved:

▶ Theorem 27. Let G be a connected graph, u, v two vertices of G and H the graph induced
by the paths from u to v. The distance between u and v is robust if and only if H is a TTSP
of fixed length between u and v.

Proof. The proof combines several previous results:
by Lemma 7, the distance is robust in G ⇐⇒ it is robust in H;
by Lemma 23, the distance is robust in H =⇒ H is TTSP;
by Lemma 26, if H is TTSP, then the distance is robust ⇐⇒ H is TTSP of fixed length.

It can be deduced that if the distance between u and v is robust in G, then H is a TTSP
of fixed length between u and v. Reciprocally, if H is a TTSP of fixed length between u and
v, then the distance between the two vertices is robust in G. ◀

This theorem means that determining the robustness of the distance between two vertices
s, t in a graph G can be done efficiently by performing Algorithm 1 (see below). Our algorithm
is heavily based on the recognition of TTSP by applying the operations S and P from [16].
Here, instead, we apply the operations Pf and Sf designed for TTSPf from Definition 24.
The original algorithm that uses the TTSP operations runs in O(n + m) time. In order to
prove that our algorithm runs in linear time, we will describe the main differences from the
TTSP-recognition algorithm. Our algorithm performs the following steps:
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1. Extract the graph H from G induced by all paths from s to t (by Lemma 7, the robustness
of the distance in H is equivalent to the property in G). Extracting H is similar to
finding every biconnected component crossed by a path from s to t. Finding the block
decomposition is in O(n + m) time [8]. Finding any path from s to t can be done in
O(n + m) time as well in an unweighted graph by doing a Breadth-First-Search. The
time complexity of this step is O(n + m);

2. If H is unweighted, we initiate a weight of 1 on each edge of H, this is done in O(m);
3. Check if H is a TTSPf by applying the algorithm from [16]. The only operations added

are when applying Pf and Sf instead of P and S. Considering that P and S are applied
once per edge (as it is done in the TTSP-recognition algorithm), we only need to verify
that we add a constant number of operations for each use of Pf and Sf . First of all,
with Sf , applied in Lines 22-33, in the original algorithm, the vertex v of degree 2 is
removed with its two edges e1, e2 and a new edge e is added to connect its neighbors
v1, v2, creating a potential multiple edge. Here, the newly created edge e has a weight
equal to the sum of the deleted edges e1, e2 as shown in Line 26, adding two integers is a
constant operation performed once per Sf operations. With the Pf operation, instead of
checking every edge of the adjacency list, the original algorithm checks the first edge in
the adjacency list of v. After removing the invalid edges in Line 12 that were virtually
removed in Lines 17 and 28, the algorithm then checks if a pair of edges that share the
same endpoints, in which case it applies P . Here, we first make sure that both edges have
the same weight as shown in Line 15, if their weight is different, then the graph is not a
TTSPf since Pf would not be applicable. The same kind of verification is done near the
end of the algorithm between the remaining edges between s and t in Line 40. Since this
verification is only a comparison of integers, it can be done in constant time, as stated
before, Pf and Sf being done once per edge, this step of our algorithm adds a complexity
of O(m) to the complexity of the original algorithm, therefore this step runs in O(n + m).

5 Concluding remarks and open questions

In this paper, we have shown that the concept of a robust diameter is quite different from
the one of robust pairwise distances, so much so that the corresponding decision problems
have very different complexities. In the case of the distance, we have identified and exploited
a strong connection between TTSP graphs and robust distances, which allowed us to design
a linear time algorithm for testing if a given distance is robust. It would be interesting
to consider more relaxed versions of the robustness, where one does not ask only whether
the distance (or diameter) remains exactly the same, but also whether the deterioration
may preserve some comparative quality (this information would have a more practical use).
For example, how difficult is it to decide if the distance between u and v may deteriorate
up to d(u, v) + k for a fixed k? Similarly, can the robustness of diameter be approximated
in the sense of deciding whether the diameter may deteriorate beyond a certain factor of
its original value? Beyond the particular case of robust distances and diameter, the study
of robust properties in general is in its infancy, and it would be interesting to see if some
meta-theorems can be obtained for robust properties in general.
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Algorithm 1 Determination of the robustness of the distance.

Data: G = (V, E), s, t ∈ V (G)
Result: True iff dist(s, t) is robust

1 H ← inducedPathsGraph(G, s, t);
2 (order, size)← (|V (H)|, |E(H)|);
3 for e ∈ E(H) do
4 e.weight← 1;
5 e.valid← True ; /* Presence of edges in H */
6 X ← V (H) \ {s, t};
7 while X ̸= ∅ do
8 v ← X.removefirst();
9 while v.degree() > 2 do

10 (e1, e2, e3)← (v.edges()[0], v.edges()[1], v.edges()[2]);
11 if ∃e ∈ {e1, e2, e3}, e.valid = False then
12 v.edges().delete(e);
13 else if ∃(e, f) ∈ {e1, e2, e3}, e, f have the same endpoints then
14 if e.weight ̸= f.weight then
15 return False ; /* Pf cannot be applied */
16 else
17 f.valid← False;
18 size← size− 1;
19 v.edges().delete(f);
20 else
21 exit while;
22 if v.degree() = 2 then
23 (e1, e2)← v.edges() ; /* Application of Sf */
24 (v1, v2)← v.neighbors();
25 e← NewEdge(v1, v2);
26 e.weight← e1.weight + e2.weight;
27 H.addEdge(e);
28 (e1.valid, e2.valid)← (False, False);
29 (order, size)← (order − 1, size− 1);
30 if v1 ̸= s and v1 ̸= t then
31 X.add(v1);
32 if v2 ̸= s and v2 ̸= t then
33 X.add(v2);
34 if order > 2 then
35 return False;
36 if size > 1 then
37 w ← E(H)[0].weight ; /* Final application of Pf on st edges */
38 for e ∈ E(H) do
39 if e.weight ̸= w then
40 return False;
41 return True;
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