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Abstract
WebAssembly (Wasm) is a new binary instruction format that allows targeted compiled code written
in high-level languages to be executed by the browser’s JavaScript engine with near-native speed.
Despite its clear performance advantages, Wasm opens up the opportunity for bugs or security
vulnerabilities to be introduced into Web programs, as pre-existing issues in programs written in
unsafe languages can be transferred down to cross-compiled binaries. The source code of such
binaries is frequently unavailable for static analysis, creating the demand for tools that can directly
tackle Wasm code. Despite this potentially security-critical situation, there is still a noticeable lack of
tool support for analysing Wasm binaries. We present WASP, a symbolic execution engine for testing
Wasm modules, which works directly on Wasm code and was built on top of a standard-compliant
Wasm reference implementation. WASP was thoroughly evaluated: it was used to symbolically test
a generic data-structure library for C and the Amazon Encryption SDK for C, demonstrating that
it can find bugs and generate high-coverage testing inputs for real-world C applications; and was
further tested against the Test-Comp benchmark, obtaining results comparable to well-established
symbolic execution and testing tools for C.
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1 Introduction

WebAssembly (Wasm) [30] is a binary instruction format designed to be the new standard
compilation target for the Web and is now supported by all major browser vendors, enabling
Web applications to run with near-native speed. As a result, Web applications are increasingly
being ported into Wasm to reap its performance benefits. In particular, Wasm has been
adopted in server-side runtimes [13, 1, 20], IoT platforms [31], and in edge computing [34].
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11:2 Concolic Execution for WebAssembly

The compilation of unsafe languages to Wasm opens up the opportunity for the introduc-
tion of new classes of bugs and security vulnerabilities into the setting of Web programs, as
such issues in the original programs can be transposed to Wasm binaries via compilation [23].
This is the case, for example, of buffer overflows [50], format string bugs [9], and use-after-free
errors [29]. By exploiting such flaws [25], cyber attackers have access to a widened surface for
launching their attacks on the Web. These include cross-site scripting attacks by exploiting
client-side code [50], or code injection attacks by targeting vulnerabilities in server-side code
(e.g., powered by Node.js). In addition, Wasm itself can be used for writing malware, e.g.,
web keyloggers [49], or crypto-miners [59]. Importantly, Wasm binaries are often integrated
directly into Web applications, with developers not having access to the corresponding source
code. In this scenario, developers must analyse stand-alone Wasm code to test it against
potential security vulnerabilities and other types of execution errors.

Symbolic execution [15, 5] is a program analysis technique that allows for the exploration
of multiple program paths by running the given program using symbolic values instead
of concrete ones. It has successfully been applied to finding a wide range of security
vulnerabilities and other types of bugs in many high-level and intermediate languages,
including C [14, 28], Java [54], and JavaScript [61, 60, 26]. Nonetheless, to the best of our
knowledge, there are only two tools for symbolically executing Wasm code: WANA [73]
and Manticore [51]. Both these tools are, however, mainly targeted at the analysis of smart
contracts and have important limitations that constraint their application to stand-alone
Wasm modules. WANA [73] is in preliminary development stages and can only be applied
to EOSIO and Ethereum smart contracts, since it does not include a symbolic execution
engine for Wasm that can be run on its own. Manticore [51] has recently gained support for
Wasm [33], but has not yet been systematically evaluated on Wasm code. Furthermore, its
application to Wasm modules requires the manual setup of a complex Python script for each
possible input memory, making it cumbersome and difficult to automate.

We present the WebAssembly Symbolic Processor, WASP, a novel concolic execution
engine for testing Wasm (version 1.0) modules. WASP follows the so-called concolic dis-
cipline [28, 64], combining concrete execution with symbolic execution and exploring one
execution path at a time. However, unlike most concolic execution engines [65, 79, 64, 63],
which are implemented via program instrumentation, we implement WASP by instrumenting
the Wasm reference interpreter developed by Haas et al. [30]. To this end, we lift the authors’
reference interpreter from concrete values to pairs of concrete and symbolic values. By moving
the instrumentation to the interpreter level, we open up the possibility for a range of optim-
isations in the context of concolic execution. In this paper, we explore two such optimisations:
(1) application of algebraic simplifications to byte-level symbolic expressions generated by
memory interactions (§3.3); and (2) shortcut restarts for failed assumption statements (§3.4).
Finally, we formalise our concolic analysis as a small-step concolic semantics, which we use
to both guide the implementation of WASP and describe its mathematical underpinnings.
This semantics is an additional contribution of the paper as we are not aware of any such
formalisation of concolic execution for a low-level language.

While our first goal is for WASP to be able to analyse stand-alone Wasm modules, we
also aim for it to be used as a common platform for building symbolic analyses for high-level
programming languages that compile to Wasm. In a nutshell, if one wants to use WASP to
enable a symbolic execution engine for a given language, one has to accomplish the following
two tasks. First, the symbolic primitives of WASP, such as the declaration of assertions,
assumptions, and the creation of symbolic variables, must be exposed at the source-language
level and properly connected to the corresponding WASP primitives via compilation. Second,
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one must guarantee that either the code of the required runtime libraries is available for
symbolic execution or that WASP includes symbolic summaries that model the behaviour
of those libraries. In order to demonstrate the viability of this approach, we use it to build
WASP-C, a new symbolic execution framework for testing C programs. WASP-C shows that,
with a relatively small effort (≈ 800 LOC), we were able to build a new concolic engine for C
that is able to analyse industry-grade code and obtain results comparable to well-established
symbolic execution and testing tools for C, such as KLEE [14] and VeriFuzz [7].

We evaluate WASP in the five following ways: (1) We compare the performance of WASP
with that of Manticore [51] in the analysis of a stand-alone Wasm B-tree data structure [22].
We demonstrate that WASP outperforms Manticore, its only competitor tool. (2) We use
WASP-C to symbolically test Collections-C [52], a widely-used generic data structure library
for C previously tested using the Gillian-C tool [26]. WASP-C found three bugs during the
testing process, including a previously unknown bug that Gillian-C did not detect. Also,
WASP-C is more efficient than Gillian-C, completing the symbolic analysis of the library
14% faster. (3) We run WASP-C against the Test-Comp [10] benchmark, obtaining results
comparable to well-established symbolic execution and testing tools for C, such as KLEE [14]
and VeriFuzz [7]. If we compare the results we obtained for WASP-C against those obtained
for the tools submitted for the 2021 Competition on Software Testing (TestComp 2021 [11]),
we conclude that WASP-C is the third-best tool in the cover-error category and the sixth-best
tool in the cover-branches category out of a total of twelve tools (with WASP included).
(4) We measure the impact of the proposed optimisation techniques on the performance of
WASP by comparing the execution times obtained for WASP with the optimisations enabled
against those obtained with them disabled. Results indicate the proposed optimisations are
essential for WASP’s performance. (5) We use WASP-C to symbolically test the Amazon
Encryption SDK [67], generating a high-coverage test suite for that library and demonstrating
that WASP-C scales to industry-grade code.

Our evaluation is mostly focused on WASP-C due to the fact that there is no symbolic
benchmark for stand-alone Wasm modules. However, according to a recent study [35], most
Wasm code on the Web (≈ 65%) comes from C/C++ applications. In this light, we believe
it is appropriate to center the analysis of the performance of WASP on compiled C code.

Contributions. In summary, the contributions of this work are three-fold: (1) WASP, a
concolic execution engine for Wasm (§3); (2) WASP-C, a symbolic execution framework for
testing C programs built on top of WASP (§3.5); and (3) three symbolic datasets for evaluating
symbolic execution tools for Wasm, covering different types of symbolic reasoning (§4).

2 Background

In this section we give an overview of Wasm, focusing on its syntax and semantics, together
with a high-level introduction to symbolic execution with a particular emphasis on the
concolic approach followed in this paper.

2.1 WebAssembly
WebAssembly [30, 57] is a low-level bytecode format that offers compact representation,
efficient validation and compilation, and ensures safe execution with minimal overhead. Wasm
is not tied up to any specific hardware, being language-, hardware- and platform-independent.
Like other assembly languages, it is mainly used as a compilation target for high-level
languages, such as C/C++ or Rust, allowing for code written in a range of languages to be
run on web browsers with significant speed improvements compared to JavaScript [78].

ECOOP 2022



11:4 Concolic Execution for WebAssembly

Value Types Function Types
t ::= i32 | i64 | f32 | f64 tf ::= t∗ → t∗

Instructions
e ::= unreachable | nop | drop | select | t.const | t.unopt | t.binopt | t.testopt | t.relopt |

t.cvtop t_sx? | {get|set|tee}_local i | {get|set}_global i | t.load (tp_sx?) a o |
t.store tp? a o | current_memory | grow_memory | block tf e∗ end |
loop tf e∗ end | if tf e∗ else e∗ end | br i | br_if i | br_table i+ | return |
call i | call_indirect tf

Imports Exports Functions
im ::= import “name” “name” ex ::= export “name” f ::= ex∗ func tf local t∗ e∗ |

ex∗ func tf im

Figure 1 Simplified Wasm abstract syntax, as presented in [30].

Syntax. A WebAssembly binary takes the form of a module. A Wasm module includes a
collection of Wasm functions, together with the declaration of their shared global variables
and the specification of the linear memory where the functions and global variables are
loaded. Computation is based on a stack machine; Wasm instructions interact with the
stack by pushing values onto the stack or popping values out of the stack. A Wasm module
is executed by an embedder, e.g., the host JavaScript engine that defines how modules are
loaded, resolves imports and exports between modules, and handles I/Os, timers, and traps.

The syntax of Wasm programs is given in Figure 1 and includes: functions f , instructions
e, values c, value types t, and function types tf . Wasm has four primitive types, all readily
available on common hardware: machine-integers and IEEE 754 floating-point numbers [36],
each with a 32- and 64-bit variant. Wasm makes no distinction between signed and unsigned
integers; instead, instructions have a sign extension to indicate how to interpret the generated
integer values. Wasm variables can be either local, belonging to the execution context of a
function, or global, belonging to the entire module. Wasm does not have “named” variables;
instead, both local and global variables are indexed by integer values. The primary storage
of a Wasm module is a large array of bytes, commonly referred to as linear memory. The
initial memory size is fixed. However, memories can be programmatically grown. In contrast
to most stack machines, Wasm has structured control flow constructs, ensuring that humans
can easily interpret Wasm code and that no irreducible loops [32] are encountered. Wasm
instructions can be divided into the following categories:

Stack instructions: the instruction drop for popping the value at the top of the stack;
the instruction const for pushing a value onto the stack; the unary and binary operator
instructions for applying the corresponding operators to the value(s) at the top of the
stack, replacing that(those) value(s) with the obtained result. Operator instructions
include the standard relational, arithmetic, and boolean operators.
Variable instructions: the instructions set_local and set_global for updating the
values of local and global variables; the instructions get_local and get_global for
retrieving the values of local and global variables, placing them at the top of the stack;
and the instruction tee_local for setting the value of a local variable to the value at the
top of the stack without removing that value from the stack.
Memory instructions: the instructions load and store for loading and storing primitive
values from and to memory; the instruction grow_memory for increasing the size of the
current memory one page at a time – page size is fixed at 64 KiB; and the instruction
current_memory for obtaining the size of the current memory.
Control flow instructions: the standard control-flow instructions: loop, if and block,
br, return, call; and the Wasm-specific control-flow instructions call_indirect, used
to implement dynamic dispatch at the Wasm level, and br_tbl, used to implement the
standard switch statement.

The reader is referred to [30] for a thorough account of the syntax of Wasm.
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2.2 Symbolic Execution
Symbolic execution is a program analysis technique used to explore all feasible paths of a
program up to a bound [41]. Instead of running a program using concrete values, symbolic
execution engines run the given program with symbolic inputs. Every time the symbolic
execution engine hits a conditional expression with a symbolic guard, the engine forks the
current execution to be able to explore both branches. For each execution path, the symbolic
execution engine builds a first order formula, called path condition, which accumulates the
constraints on the symbolic inputs that direct the execution along that path. In particular,
every time a conditional instruction is symbolically executed, the current path condition is
extended with its guard in the “then” branch and with the negation of its guard in the “else”
branch. Symbolic execution engines rely on an underlying SMT solver to check the feasibility
of execution paths and the validity of the assertions supplied by the developer. An execution
path is said to be feasible if it can be realised by at least one concrete path and an assertion
holds at a given program point if it is implied by the path condition at that point.

Concolic Execution. Concolic execution is a special variation of symbolic execution in
which one pairs up a concrete execution with a symbolic execution to avoid interactions with
the underlying SMT solver by exploring one execution path at a time [28, 64]. Concolic
execution engines assign concrete values to symbolic inputs and execute the given program
both concretely and symbolically at the same time, following only the concrete path but
constructing the path condition corresponding to that path as in pure symbolic execution.
The constructed path condition is instrumental to concolic execution as it captures the
conditions that must hold for the execution to take the explored path. More specifically,
it can be used to generate new concrete inputs for symbolic variables that will force the
exploration of a different path. To this end, one needs to negate the obtained path condition
and query the underlying SMT solver for a model of the obtained formula. By keeping track
of all the path conditions generated via concolic execution, the engine can enumerate all
program execution paths up to a bound, with the advantage of only having to interact with
the underlying constraint solver one time per explored path. Note that in purely symbolic
execution, the engine must query the constraint solver every time it hits a branching point
in order to determine whether or not its then- and else- branches are feasible.

Concolic Execution: Example. Let us now take a look at how concolic execution works in
practice. Consider the C program given in Figure 2a. This program is annotated with a final
assert statement, which is supposed to hold independently of the values of variables x and y.
Hence, in order to determine whether or not the assertion always holds, one has to explore
all feasible execution paths of the program, which we illustrate in Figure 2b in the form of
an execution tree. In the tree, we depict in green the leaf nodes corresponding to execution
paths for which the assertion holds and in red those corresponding to paths for which it does
not. The final assertion does not hold for the left-most path. To see this, consider the inputs
x = 1 and y = 4. These inputs cause variables a and b to be both assigned to 6, violating
the final assertion. Below, we explain how these inputs can be discovered.

As there are three possible execution paths, there will be three concolic executions, each
corresponding to a different execution path. In the following, we will refer to these executions
as concolic iterations. During the first concolic iteration, the concrete values associated with
the symbolic variables of the program are picked non-deterministically from the set of all
concrete values of their corresponding types. For this example, we will assume that x and y

are respectively set to 0 and 2. These inputs cause the concolic execution engine to explore
the rightmost path of the execution tree, generating the final path condition: x ≤ 0.

ECOOP 2022



11:6 Concolic Execution for WebAssembly

1 int main() {
2 int a = 4, b = 2;
3 int x = symb(), y = symb();
4 if (x > 0) {
5 b = a + 2;
6 if (x < y)
7 a = (x * 2) + y;
8 }
9 assert(a != b);

10 }

(a) Symbolic C program. (b) Execution tree for program in Listing 2a.

Figure 2 Concolic execution example.

Before the second concolic iteration, the concolic execution engine queries the underlying
constraint solver for a model for the symbolic inputs that satisfies the formula x > 0,
corresponding to the negation of the first path condition. Let us assume that the solver
returns the model x = 1 and y = 0. These inputs cause the concolic execution engine to
explore the middle path, generating the path condition: (x > 0) ∧ (x ≥ y).

Before the third concolic iteration, the engine queries the solver for a model for the
symbolic inputs that satisfies the negation of both path conditions found so far:

(x > 0) ∧ ((x ≤ 0) ∨ (x < y)) ≡ (x > 0) ∧ (x < y)

Assume that the solver outputs the model x = 1 and y = 2. These inputs cause the concolic
execution engine to explore the leftmost path of the execution tree. Observe that this model
does not immediately trigger the assertion violation, since the final values of a and b do not
coincide (a = 4 and b = 6). In order to understand how the concolic execution engine finds
the model that violates the assertion, one has to consider the concolic state at the point
where the assert statement is encountered, which is given below:

x 7→ (1, x) y 7→ (2, y) a 7→ (4, 2× x + y) b 7→ (6, 6) PC ≡ (x > 0) ∧ (x < y)

Given this concolic state, the expression a ̸= b evaluates to the concrete value true and the
symbolic value (2× x + y) ̸= 6. In order to establish that the assertion holds, the concolic
execution engine must prove that the symbolic expression being asserted is implied by the
current path condition; put formally:

(x > 0) ∧ (x < y)⇒ (2× x + y) ̸= 6

In order to check the validity of this implication, the concolic execution engine queries the
underlying constraint solver for the satisfiability of its negation:

(x > 0) ∧ (x < y) ∧ (2× x + y) = 6

which is satisfied by the model x = 1 and y = 4, disproving the implication and witnessing
the assertion failure.

3 WASP

This section presents our concolic execution engine for Wasm named WASP. We begin by
describing the architecture of WASP (§3.1). Next, we explain the concolic semantics (§3.2)
and memory model (§3.3) at the core of WASP. Then, we introduce an optimised version of
the proposed concolic semantics (§3.4) and conclude with a brief overview of WASP-C (§3.5).
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Figure 3 High-level architecture of WASP.

3.1 Overview

The goal of WASP is to explore multiple execution paths of the program to be analysed in
order to uncover potential execution errors. To this end, the Wasm programs given to WASP
must be annotated with first order assertions to be validated by WASP. WASP explores
all the execution paths of the given program up to a pre-established depth. If no assertion
failure is found, WASP provides a bounded verification guarantee. Otherwise, it outputs a
concrete counter-model that triggers that failure.

WASP was developed on top of the Wasm reference interpreter [56], which we extended
with symbolic facilities according to the high-level architecture described in Figure 3. In
particular, we extended the original code-base of the reference interpreter with: (1) parsing
facilities for the symbolic instructions required for declaring and reasoning over symbolic
inputs; (2) a new concolic interpreter module, implementing the main concolic loop and the
concolic execution of Wasm instructions; (3) a new concolic state module, implementing
the main data structures we use to represent Wasm’s concolic values, stacks, and memories;
and (4) a dedicated first order solver used to encode the logic of WASP into the logic of its
underlying SMT solver, Z3 [24].

Let us now take a look at how WASP concolically executes the Wasm program given
as input. Firstly, the given program is parsed by our Extended Parser, generating an
abstract syntax tree that is then passed to the Concolic Interpreter. The Concolic Interpreter
implements the main concolic execution loop exploring one execution path at a time and
generating for each path its corresponding path condition. The interpreter executes the given
program by concolically evaluating one instruction at a time following the small-step concolic
semantics presented in §3.2. Concolic execution requires the interpreter to keep track of both
the program’s concrete and symbolic states. To this end, we combine the concrete domains
of the original reference interpreter with new symbolic domains modelling Wasm’s symbolic
values, stacks and memories. At the end of each concolic iteration, the Concolic Interpreter
must interact with Z3 to determine the concrete values of the symbolic inputs for the next
concolic iteration. This requires converting the logical formulas constructed by WASP into
the logic of Z3. This is done by a dedicated First Order Solver that essentially translates
WASP formulas into Z3 formulas using the Z3 OCaml bindings.

ECOOP 2022



11:8 Concolic Execution for WebAssembly

3.2 Concolic Execution Semantics
We define a concolic semantics of Wasm, which we use to guide the implementation of the
concolic interpreter at the core of WASP. Our semantics operates on concolic states, which
can be viewed as pairs of concrete and symbolic states. Concolic states are therefore inhabited
by both concrete and symbolic values. Formally, symbolic values are given by the grammar:

ŝ := c | x̂ | ⊖ (ŝ) | ⊕ (ŝ, ŝ) | ⊗ (ŝ, ŝ, ŝ)

Symbolic values include: Wasm concrete values c, symbolic variables x̂, and various Wasm
unary and binary operators, respectively ranged by ⊖ and ⊕. Additionally, there is a ternary
operator ⊗ reserved for symbolic byte expressions. As discussed above, we extended the
syntax of Wasm with various instructions for creating and reasoning over symbolic values.
In the formalism, we model the following three instructions:

e ::= · · · | sym_assume | sym_assert | t.symbolic

Where: t.symbolic is used to create a symbolic value of type t; sym_assume is used to add
the constraint on top of the stack to the current path condition; and sym_assert is used to
check whether the constraint on top of the stack is implied by the current path condition.

Before proceeding to the description of the concolic semantics, we must first define
concolic states. A concolic state is composed of: (1) a concolic memory µ, mapping integer
addresses to pairs of concrete bytes and symbolic bytes; (2) a concolic local store ρ, mapping
local variable indexes to pairs of concrete and symbolic values (e.g., ρ = [0 7→ (2, ŷ)]); (3)
a concolic global store δ mapping global variable indexes to pairs of concrete and symbolic
values (e.g., δ = [0 7→ (2, ŷ)]); (4) a concolic stack st, consisting of a sequence of pairs
of concrete and symbolic values (e.g., st = (2, ŷ) :: (0, x̂)); (5) a symbolic environment ε

mapping symbolic variables to concrete values (e.g., ε = [x̂ 7→ 0, ŷ 7→ 2]); and (6) a path
condition π keeping track of all the constraints on which the current execution has branched
so far. All concolic domains are obtained by lifting the respective concrete domains, as
defined in [30], from concrete values to pairs of concrete and symbolic values. For instance,
while a concrete local store maps local variable indexes to concrete values, a concolic local
store maps local variable indexes to pairs of concrete and symbolic values. In contrast to the
concolic domains, symbolic environments do not have a counterpart in concrete execution.
The concolic interpreter uses the symbolic environment to link the program’s symbolic
variables to their concrete values, essentially storing the bindings of the symbolic variables
computed at the beginning of each concolic iteration.

The concolic semantics makes use of computation outcomes [26] to capture the flow of
execution. We consider five types of outcomes: (1) the non-empty continuation outcome
Cont(e), signifying that the execution of the current instruction generated a new instruction
to be executed next; (2) the empty continuation outcome Cont, signifying that the execution
may proceed to the next instruction; (3) the trap outcome Trap, signifying that the execution
of the current instruction generated a Wasm trap; (4) the failed assertion outcome AsrtFail,
signifying that the execution of the current instruction resulted in an assertion failure; and
(5) the failed assumption outcome AsmFail, signifying that the execution of the current
instruction resulted in an assumption failure. The concolic domains are summarised below.

Concolic Semantic Domains
Local Store ρ : i32 → c × ŝ
Stack st : (c × ŝ) list
Logical Env ε : x̂ → c
Path Cond π
Global Store δ : i32 → c × ŝ
Memory µ : i32 → c × ŝ

Outcome o ::= Cont(e) | Cont | Trap |
AsrtFail | AsmFail

Symbolic Expr ŝ ::= c | x̂ | ⊖ (ŝ) | ⊕ (ŝ, ŝ) |
⊗(ŝ, ŝ, ŝ)
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Load
n = size(t) (c, ŝ′) = load_bytes(µ, k + o, n)

t.load o, (k, ŝ) :: st, µ ⇒cs (c, ŝ′) :: st, µ, Cont

Store
µ′ = store_bytes(µ, k + o, (c, ŝ))

t.store o, (k, ŝk) :: (c, ŝ) :: st, µ ⇒cs st, µ′, Cont

GetLocal
get_local i, ρ, st ⇒cs ρ, ρ(i) :: st, Cont

SetLocal
ρ′ = ρ[i 7→ (c, ŝ)]

set_local i, ρ, (c, ŝ) :: st ⇒cs ρ′, st, Cont

SymAssert-CFail
c = 0

sym_assert, ρ, (c, ŝ) :: st, ε, π ⇒cs AsrtFail

SymAssert-SFail
c ̸= 0 (π ∧ (ŝ = 0)) SAT

sym_assert, (c, ŝ) :: st, π ⇒cs st, π, AsrtFail

SymAssert-Pass
c ̸= 0 (π ∧ (ŝ = 0)) UNSAT

sym_assert, (c, ŝ) :: st, π ⇒cs st, π, Cont

SymAssume-Fail
st = (c, ŝ) :: st′ c = 0 π′ = π ∧ (ŝ = 0)

sym_assume, st, π ⇒cs st′, π′, AsmFail

SymAssume-Pass
st = (c, ŝ) :: st′ c ̸= 0 π′ = π ∧ (ŝ ̸= 0)

sym_assume, st, π ⇒cs st′, π′, Cont

Symbolic-Fresh
x̂ /∈ dom(ε) i ∈ t ε′ = ε[x̂ 7→ i]

t.symbolic x̂, st, ε ⇒cs (i, x̂) :: st, ε′, Cont

Symbolic
x̂ ∈ dom(ε)

t.symbolic x̂, st, ε ⇒cs (ε(x̂), x̂) :: st, ε, Cont

Figure 4 Fragment of WebAssembly concolic semantics: non-control-flow instructions.

We formalise the concolic semantics of Wasm instructions using a semantic judgement of
the form: e, ρ, st, ε, π, δ, µ ⇒cs ρ′, st′, ε′, π′, δ′, µ′, o meaning that the concolic evaluation of
the instruction e in the local store ρ, stack st, symbolic environment ε, path condition π,
global store δ, and memory µ results in a new local store ρ′, stack st′, logical environment ε′,
path condition π′, global store δ′, memory µ′, and outcome o. Figures 4 and 5 present a
selection of the semantic rules. In the presentation of the rules, we omit the elements of
the configuration that are neither updated nor inspected by the current rule, writing, for
instance, e, ρ, st ⇒cs ρ′, st′, o to mean e, ρ, st, ε, π, δ, µ ⇒cs ρ′, st′, ε, π, δ, µ, o. The selected
concolic rules are explained below.

Load. This rule first computes the concrete address whose value is to be loaded from memory
by adding the given offset parameter o to the concrete memory address k at the top of
the stack. Then, the concolic pair stored at the real memory address k + o is loaded from
memory using the auxiliary function load_bytes and placed at the top of the stack. The
function load_bytes, explained in §3.3, receives as parameter not only the memory µ

and the concrete address k + o but also the size n of the memory chunk to be loaded,
which is determined using the auxiliary function size.

Store. This rule pops the first two concolic pairs out of the stack, with the second one
denoting the value to be stored and the first one the memory address where to store
it. Then, the rule computes the real memory address k + o by adding the given offset
parameter o to the concrete address k. Next, it uses the function store_bytes, explained
in §3.3, for storing the concolic pair (c, ŝ) at k + o. In contrast to load_bytes, the
function store_btyes does not require the size of the value to be stored which can be
determined from the value c.

SymAssert. The SymAssert rules look at the value c on top of the stack (c, ŝ) :: st. If c = 0
(CFail), it immediately raises AsrtFail and the interpreter stops. Otherwise, it checks if
that the current path condition implies that the the value on top of the stack is different
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If-True
st = (c, ŝ) :: st′ c ̸= 0 π′ = π ∧ (ŝ ̸= 0)

o = Cont (block tf e∗
1)

if tf e∗
1 else e∗

2, st, π ⇒cs st′, π′, o

If-False
st = (c, ŝ) :: st′ c = 0 π′ = π ∧ (ŝ = 0)

o = Cont (block tf e∗
2)

if tf e∗
1 else e∗

2, st, π ⇒cs st′, π′, o

Tbl-Brk-In
st = (k, ŝ) :: st′ π′ = π ∧ (ŝ = k)

br_table jk
1 j j∗

2 , st, π ⇒cs st′, π′, Cont (br j)

Tbl-Brk-Out
st = (c, ŝ) :: st′ c ≥ k π′ = π ∧ (ŝ ≥ k)
br_table jk

1 j, st, π ⇒cs st′, π′, Cont (br j)

Call Indirect - Found
st = (j, ŝ) :: st′ π′ = π ∧ (ŝ = j)
funcs(j) =

(
func tf local t∗ e∗)

call_indirect tf , st, π ⇒cs st′, π′, Cont (call j)

Call Indirect - Not-Found
st = (j, ŝ) :: st′ j /∈ domtf (funcs)

π′ = π ∧ (ŝ ̸∈ domtf (funcs))
call_indirect tf, st, π ⇒cs st′, π′, Trap

Figure 5 Fragment of WebAssembly concolic semantics: control-flow instructions.

from 0; formally: π ⇒ (ŝ ̸= 0). Checking the validity of π ⇒ (ŝ ̸= 0) is equivalent to
checking the satisfiability of ¬(π ⇒ (ŝ ̸= 0)); formally: π ⇒ (ŝ ̸= 0) is valid if and only if,
¬(π ⇒ (ŝ ≠ 0)) is not satisfiable. Simplifying ¬(π ⇒ (ŝ ̸= 0)), we obtain the formula
π ∧ (ŝ = 0). Hence, the rule checks if the formula π ∧ (ŝ = 0) is satisfiable, in which case
(SFail) the assertion fails and the outcome AsrtFail produced; otherwise (Pass), the
assertion holds and the program may continue, as given by the outcome Cont.

SymAssume. The SymAssume rules check the value c on top of the stack, which is expected
to be different from 0. Hence, if c = 0 (Fail), the current concolic iteration can be
discarded as it is not relevant to the programmer. To achieve this, the semantics leaves
the current concolic state unchanged, generating the outcome AsmFail and extending the
current path condition with the formula ŝ = 0. If c ̸= 0 (Pass), the concolic execution
may proceed, simply conjuncting the formula ŝ ̸= 0 with the current path condition.

Symbolic. The Symbolic-Fresh and Symbolic rules are used for the creation of a symbolic
variable of the type t, named x̂. If the variable x̂ is already present in the mappings of
the symbolic environment, x̂ ∈ dom(ε), then this variable already exists and its mapped
value is inserted on top of the stack (ε(x̂), x̂) :: st. If x̂ does not exist in the symbolic
environment a new entry is created, where x̂ is mapped to a random value i of type t,
resulting in the new symbolic environment ε′ = ε[x̂→ i], and (i, x̂) being put on top of
the stack.

If. The If rule analyses the concrete value c on top of the stack (c, ŝ) :: st. If c ̸= 0, then the
path condition is conjoined with the symbolic expression associated with the value on top
of the stack π ∧ (ŝ ̸= 0). The resulting outcome is a block with the set of instructions
e∗

1, corresponding to the “then” branch. If c = 0, the opposite happens, the resulting
path condition is π ∧ (ŝ = 0), and the outcome is a block with the set of instructions e∗

2,
corresponding to the “else” branch.

Table-Break. The Tbl-Brk rules first check the integer value k at the top of the stack and
then inspect the list, j1, . . . , jn, of argument indices. If k ≤ n (Table-Break-In), the
semantics simply obtains the (k+1)-th index, jk+1, and returns the outcome Cont (br jk+1)
to transfer the control to the jk+1 enclosing block. If k > n (Table-Break-Out), the
semantics proceeds as in the previous case but with the index jn. For instance, the
execution of (br_table 4, 3, 2, 1) with the integer 2 on top of the stack generates the
outcome Cont (br 2), while its execution with 7 on top of the stack generates Cont (br 1).
At the symbolic level, both rules extend the path condition with information about index
taken. The concolic semantics of br follows directly from its concrete semantics given
in [30] as this rule does not interact with the symbolic elements of the concolic state.
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Algorithm 1 Concolic interpreter main loop.

1 function ConcolicExecute(e, ρ, st, δ, µ)
2 Π, π ← true, true

3 while Π is SAT ∧ belowLimit() do
4 εi ← Model(π)
5 e, ρ, st, εi, π, δ, µ⇒∗

cs ρ′, st′, ε′, π′, δ′, µ′, o

6 if o = Error then
7 return false
8 Π← Π ∧ ¬π′

9 return true

Call-Indirect. The Call Indirect rules first check the integer index j at the top of the
stack and inspect the function table to obtain the corresponding function. The Found
rule models the case in which the j-th function exists and its type coincides with the
one provided to the call instruction. In this case, the semantics simply generates the
outcome Cont (call j), indicating that the j-th function is to be executed next with
no extra check. The Not-Found rule models the case in which either the j-th function
does not exist or its type does not coincide with the given argument. In this case, the
semantics generates the Trap outcome. At the symbolic level, both rules extend the
current path condition. The Found rule is straightforward, simply recording the index
of the executed function. The Not-Found rule is slightly more convoluted. Instead
of simply recording the failing index (ŝ = j), it records all possible failing indexes
(ŝ ̸∈ domtf(funcs)), preventing the concolic loop from generating concrete inputs that
lead to new illegal calls at that execution point. Analogously to the br instruction, the
concolic semantics of call also follows directly from its concrete semantics given in [30].

3.2.1 Concolic Loop
Concolic execution engines execute a given program multiple times in order to explore all
possible execution paths. Algorithm 1 presents WASP’s main concolic loop. To generate
new concrete inputs at the end of each concolic iteration, the concolic interpreter maintains
a global path condition Π representing all the execution paths that remain to be explored.
At the beginning of each concolic iteration, the satisfiability of the global path condition is
checked with the help of Z3. If Π is satisfiable, Z3 returns a model, which the engine uses
to construct a new symbolic environment, mapping the symbolic variables of the program
being analysed to new concrete values. If Π is not satisfiable, the execution stops, given that
all possible execution paths have already been explored. Initially, Π is set to true, meaning
that all paths still have to be explored. At the end of each iteration, the engine updates
the global path condition to Π ∧ ¬π′, where π′ is the final path condition of the iteration at
hand. By adding ¬π′ to the global path condition, we prevent that future concolic iterations
go down the same execution path as the current iteration.

3.2.2 Concolic Execution Example
To illustrate how the proposed concolic semantics works in practice, let us consider the

Wasm program given in Figure 6a. This program results from the compilation of the C
program given in Figure 2a. For clarity, we represent the given program in Wasm Textual
Format (WAT), in which program variables are associated with string identifiers instead of
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1 (func $main
2 ;; init x=symb(), y=symb(),
3 ;; a=4, b=2...
4 (i32.const 0)
5 (i32.gt_s)
6 (if
7 (then
8 (i32.const 6)
9 (local.set $b)

10 (local.get $x)
11 (local.get $y)
12 (i32.lt_s)
13 (if
14 (then
15 (local.get $x)
16 (i32.const 2)
17 (i32.mul)
18 (local.get $y)
19 (i32.add)
20 (local.set $a)))))
21 (local.get $a)
22 (local.get $b)
23 (i32.ne)
24 (sym_assert))

(a) Wasm program for Listing 2a.

conf. 1

conf. 2

conf. 4

conf. 5

conf. 6

conf. 7

conf. 3

(b) Concolic execution flow diagram for the program
in Listing 6a, executing the sequence of instructions
indicated in lines: 4-6, and 21-24.

Figure 6 Concolic execution example in WASP.

integer indices. Figure 6b illustrates the concolic iteration corresponding to the right-most
path of the execution tree in Figure 2b, with each node in the flow diagram representing a
configuration of the concolic semantics. We represent the path condition π, local store ρ,
execution stack st, and the current instruction to be executed. The symbolic environment,
linear memory, and global store are not represented as they are not manipulated by the
program. Specifically, the execution depicted in Figure 6b represents a concolic iteration
of the program where the symbolic variables x and y are concretely assigned to 0 and 2,
respectively. In this case, the first if-statement of the corresponding C program (i.e., x > 0)
is false, causing the program to jump to the final assert instruction which holds (i.e., a ̸= b).
In the compiled Wasm program listed in Figure 2a, this if-statement corresponds to the
Wasm instructions shown in lines 4-6. The concolic execution of these instructions leads to
the first three configurations depicted in the flow diagram (confs. 1-3). The final assertion is
translated to the lines 21-24 of the Wasm program, whose execution corresponds to the last
four configurations in the flow diagram (confs. 4-7). At the end of the concolic iteration,
WASP negates the obtained path condition, π = x̂ ≤ 0, in order to generate the inputs for
the next concolic iteration as explained in the previous sub-section.

3.3 Symbolic Memory

To concolically execute Wasm code, WASP requires the ability to reason at the byte-level
granularity. This requirement is important because Wasm code often needs to operate
over the in-memory representation of data at the finer-grained level of bytes or bits. One
such example is given in Listing 7b, which shows a real-world function for converting the
endianness of a 32-bit unsigned integer. To help explain the example, let us first consider
the corresponding C function given in Listing 7a. This example receives an unsigned integer
parameter x and returns the unsigned integer obtained by swapping the order of the bytes
of x. Before proceeding to the description of the example, recall that: (1) the union data



F. Marques, J. Fragoso Santos, N. Santos, and P. Adão 11:13

1 unsigned int swap(unsigned int x) {
2 union {
3 unsigned int i; char c[4];
4 } src, dst;
5 src.i = x;
6 dst.c[3] = src.c[0];
7 dst.c[2] = src.c[1];
8 dst.c[1] = src.c[2];
9 dst.c[0] = src.c[3];

10 return dst.i;
11 }

(a) Endianness swap function, taken from [46].

1 (func $swap (param $x i32) (result i32)
2 (local $src i32) (local $dst i32)
3 (local.get $src)
4 (local.get $x)
5 (i32.store)
6 (local.get $dst)
7 (local.get $src)
8 (i32.load8_u offset=0)
9 (i32.store8 offset=3)

10 ;; ...
11 (return))

(b) Snippet of the Wasm program resulting from
the compilation of the program in Listing 7a.

Figure 7 Symbolic byte manipulation example.

type is used for storing different data types in the same memory segment; (2) in a standard
32-bit architecture, characters are represented by one byte and integers by four bytes; and
(3) local variables are stored in the stack segment of the C memory.

The swap function first declares two variables src and dst, which can hold either an
unsigned integer or an array of four characters. Note that, the two members of this union
take exactly the same space, 4 bytes. Then, it copies the four bytes of x to the segment of
memory referenced by src. Next, it copies each individual byte of src to the segment of
memory referenced by dst in reverse order; that is the last byte of src will be the first byte
of dst and so on and so forth. Finally, the function returns the integer value of dst.

Note that, the same segment of memory is accessed differently depending on the member
of the union type that is used to interact with it. If one uses the union member i, one
reads/writes four bytes from/into the corresponding memory segment. Conversely, if one uses
the union member c, one reads/writes a single byte from/into the corresponding memory
segment. This example clearly demonstrates the need for byte-level reasoning in SE tools.

Byte-Level Operators. In order to reason about byte-level memory operations, we make
use of the operators concat and extract, which work as follows:

The expression concat(ŝ1, ŝ2) denotes the bit-vector resulting from the concatenation of
the bit-vectors denoted by ŝ1 and ŝ2. For instance, concat(0xBE, 0xEF) = 0xBEEF.
The expression extract(ŝ, h, l) denotes the bit-vector corresponding to the bytes of the
bit-vector denoted by ŝ that occur in [l, h[. This means that the expression extract(ŝ, h, l)
denotes a bit-vector of size h− l. For instance, extract(0xBEEF, 1, 0) = 0xEF.

Given that our underlying Z3 encoding represents all primitive types as bit-vectors, the
encoding of these operators into the logic of Z3 is trivial as they have equivalent Z3 operators.

Byte-Addressable Memory. Note that our concolic Wasm memory is a mapping from
integer indexes, representing concrete memory addresses, to pairs of concrete and symbolic
bytes. This means that before we store a given value in memory, we have to obtain the
expressions denoting its corresponding bytes. Conversely, when loading a primitive type from
memory, we must concatenate the symbolic expressions denoting its component bytes to
obtain the symbolic expression that denotes the full value. To do this, we enlist two helpers:

The function store_bytes(µ, l, (c, ŝ)), that individually unpacks each concrete and
symbolic byte from the value pair (c, ŝ), using the extract operator, and then sequentially
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stores the obtained concrete and symbolic bytes into the segment of µ pointed to by the
l, resulting in a new symbolic memory µ′.
The function load_bytes(µ, l, n), that sequentially loads n concrete and symbolic bytes
from the concolic memory at address l and concatenates them using the concat operator,
resulting in a new concolic pair of the form (c, ŝ).

We mathematically formalise the functions store_bytes and load_bytes in the table below.

Memory Operations
StoreBytes
n = |c| ci = extract(c, i, i − 1)|ni=1 ŝi = extract(ŝ, i, i − 1)|ni=1

store_bytes(µ, l, (c, ŝ)) = µ [l + (i − 1) 7→ (ci, ŝi)] |ni=1

LoadBytes
(ci, ŝi) = µ(l + (i − 1))|ni=1 c = concat(c1, . . . , cn) ŝ = concat(ŝ1, . . . , ŝn)

load_bytes(µ, l, n) = (c, ŝ)

Byte-level Simplifications. While the concrete application of the operators extract and
concat always yields a fully resolved concrete value, it is often not possible to resolve the
application of these operators to symbolic values. For instance, the application of concat to
two symbolic values ŝ1 and ŝ2 simply yields the symbolic expression concat(ŝ1, ŝ2). As every
time WASP interacts with the heap, it applies byte-level operators to the values being stored
or loaded, concolic execution rapidly increases the complexity of the symbolic expressions
handled by the program. This constitutes a serious problem as the additional complexity
introduced by byte-level operators is detrimental to the overall performance of WASP. To
counter this issue, we apply two simple algebraic simplifications to symbolic values, every
time a symbolic value is loaded from memory. The simplification rules are captured by the
following algebraic identities:

h− l = size(type(ŝ))⇒ extract(ŝ, h, l) = ŝ (1)
concat(extract(ŝ, h, m), extract(ŝ, m, l)) = extract(ŝ, h, l) (2)

3.4 Shortcut Restarts

Programmers often need to test their functions not for all inputs but only for those that
satisfy a specific set of constraints. In WASP, this can be done using the sym_assume
instruction, which filters out all execution paths for which the symbolic inputs do not satisfy
the given constraints. As explained in §3.2, whenever the symbolic interpreter encounters an
assume statement whose constraint does not hold, it discards the current concolic iteration
as it is not relevant for the developer. This design is, however, inherently inefficient as it
requires WASP to restart the concolic execution of the program every time an assumption
fails. To help understand this problem, let us consider the C program given in Figure 8a.
This program starts with a sequence of n assumptions over its five symbolic variables. In the
worst-case scenario, where every assumption fails, WASP would have to restart the analysis
n times before actually starting executing the program. As a result, WASP would have
to execute O(n2) lines of code and query Z3 n times before reaching the first meaningful
concolic iteration, as illustrated by the execution tree given in Figure 8b.
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int function_test() {
int x = symb(), y = symb();
int u = symb(), v = symb();
int w = symb();
// Setup assumptions (Asm)
sym_assume(x >= 0); // Asm1
sym_assume(y >= 0); // Asm2
...
sym_assume(w != v); // Asmn
// Program starts here
...

}

(a) Chained assumptions that do not affect the
path condition set.

(b) Execution tree for the example in Listing 8a,
where the red nodes imply a restart in WASP.

Figure 8 Example of assumption handling in WASP.

To solve this problem, we propose an adaptation of the concolic semantics of SymAssume
given in Figure 4, which avoids the need for restarting the concolic execution from the
beginning of the program whenever a failed assumption is reached. The concolic semantics
of the assume instruction is captured by the rules given and described below.

Optimised SymAssume Semantic Rules
SymAssume-Fail

c = 0 (π ∧ ŝ) UNSAT
sym_assume, ((c, ŝ) :: st), π ⇒cs ρ, (¬ŝ ∧ π), AsmFail

SymAssume-Pass1
c ̸= 0

sym_assume, ((c, ŝ) :: st), π ⇒cs st, (ŝ ∧ π), Cont

SymAssume-Pass2
c = 0 ε′ = model(π ∧ ŝ) (ρ′, st′, δ′, µ′) = update_model(ε′, (ρ, st, δ, µ))

sym_assume, ρ, ((c, ŝ) :: st), ε, π, δ, µ ⇒cs ρ′, st′, ε′, (ŝ ∧ π), δ′, µ′, Cont

SymAssume-Fail. This rule is analogous to its previous version given in Figure 4. The
difference is that now the current concolic execution is only terminated if there is no
model for the conjunction of the current path condition and the formula being assumed,
π ∧ ŝ. In this case, the current execution is incompatible with the assumed formula,
meaning that it must be discarded.

SymAssume-Pass1. This rule is identical to its previous version given in Figure 4.
SymAssume-Pass2. This rule is the core of our proposed optimisation. It is applied when

the current concrete execution does not satisfy the formula being assumed but the current
path condition, π, is compatible with the assumed formula, ŝ. In this case, WASP queries
Z3 for a model for π ∧ ŝ and uses this model to build a new symbolic environment, ε′,
that satisfies the assumption. Then, WASP has to update all the concolic domains of
the program in order for them to be consistent with the new symbolic environment, ε′.
To this end, we make use of a function update_model that receives as input a symbolic
environment ε′ and a concolic state, generating a new concolic state, obtained by updating
the concrete values of the input state according to the supplied symbolic environment.

3.5 WASP-C
WASP can also be adopted as a tool for indirectly analysing C programs. This section presents
WASP-C, a symbolic execution framework to test C programs using WASP. WASP-C takes
as input C programs annotated with assumptions and assertions and outputs a test suite. A
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Figure 9 WASP-C high-level architecture.

test suite is a list of test cases, each corresponding to a JSON file, mapping the symbolic
variables in the test to their corresponding concrete values. Each test case captures a different
execution path of the program to be analysed. Since WASP does not directly operate over
the C source code, WASP-C is comprised of three modules whose end goal is to generate a
Wasm program for WASP to analyse.

WASP-C is implemented in python and is composed of three essential modules: a
C Pre-processor, a Compilation Module, and a Wasm Post-processor, which interact with
each other according to the high-level architecture described in Figure 9. Using WASP as a
submodule, WASP-C concolically executes C programs as follows. First, the C Pre-processor
parses the given program using a standard C parser called pycparser [8], generating an abstract
syntax tree (AST) that is then sent to a specialised C visitor (step 1). Our specialised C
visitor traverses the AST, replacing binary operators such as logical ANDs and ORs with
specific function calls to avoid spurious branching. Then the AST is exported back to a C
program, which is subsequently compiled into Wasm by the Compilation Module (step 2).
Lastly, the Wasm Post-processor processes the obtained Wasm module so as to inject the
appropriate WASP symbolic primitives (step 3).

4 Evaluation

We evaluate WASP with respect to five evaluation questions: (EQ1) How does WASP
compare to the existing symbolic execution tools for Wasm? (EQ2) Can WASP-C be used to
detect bugs in C data structures? (EQ3) Can WASP-C support different types of symbolic
reasoning? (EQ4) What are the performance gains of our proposed optimisation techniques?
and (EQ5) Can WASP-C scale to industry-grade code?

When it comes to EQ1, we compare WASP against Manticore [51] as it is the only
symbolic execution tool that can directly be applied to Wasm binaries; the other existing
tool, WANA [73], works only on EOSIO and Ethereum smart contracts, not including a
stand-alone symbolic execution engine for Wasm that can be run on its own.

All experiments were performed on a server with a 12-core Intel Xeon E5–2620 CPU
and 32GB of RAM running Ubuntu 20.04.2 LTS. For the constraint solver, we employed Z3
v4.8.1. For compiling our benchmarks, we used clang v10.0.0 as part of the LLVM compiler
toolchain kit v10.0.0, which includes: opt, the LLVM optimiser and analyser; l lc, the LLVM
static compiler; and wasm-ld, the Wasm version of l ld, which is the LLVM object linker.
For each execution of WASP, we use the flag -u which disables WASP’s type checker, set a
timeout of 15 minutes, and limit the executing process to 15GiB of memory.
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Figure 10 Memory layout of a simple B-tree.

4.1 EQ1: Comparison with Manticore
To compare WASP with Manticore, we use both these tools to symbolically analyse a
custom-made Wasm implementation of a B-tree data structure developed by C. Costa [22]
and inspired by that of Watt et al. [75]. This data structure allows us to effectively test the
scalability of both engines with respect to code size (≈ 4000 LoC) and the complexity of
the generated formulas. In the following, we first give a high-level description of the B-tree
implementation and the experimental set-up and then present the obtained results.

B-Tree Implementation. B-trees are n-ary self-balancing trees typically used in the im-
plementation of storage systems [55]. B-trees have a fixed branching factor d, denoting the
maximum number of children that internal nodes may have. B-tree nodes store at most d−1
keys; internal nodes additionally store the pointers to their respective children. Intuitively, it
is as if each internal node stores one key in between each two consecutive child pointers. The
keys stored inside a B-tree are arranged so that: (1) the keys of every node are ordered; and
(2) each key ki stored in between the pointers pi and pi+1 of an internal node is greater than
all the keys stored in the node pointed to by pi and less than those stored in the one pointed
to by pi+1. B-trees must additionally satisfy various other invariants; the reader is referred
to [21] for a thorough account of B-trees and their properties. Figure 10a shows a B-tree
with branching factor d = 4. The tree contains one internal node (Node 1) and four leaf
nodes (Nodes 2 to 5), with the internal node storing three keys. Observe that, for instance,
the second key stored in Node 1 (key 3) is greater than the single key stored in Node 3 (key
2) and less than both keys stored in Node 4 (keys 4 and 5).

The B-tree implementation we use [22], as that of Watt et al. [75], only holds 32-bit
integer keys. Each B-tree node is kept in a separate memory page according to the memory
layout given in Figure 10b. Each memory page stores: (1) a flag b, indicating if it represents
a leaf node; (2) an integer n, denoting the number of keys that the node holds; and (3)
n keys, k1, . . . , kn. Additionally, each internal node stores n+1 child pointers, p1, . . . , pn+1.
The implementation uses an extra memory page for keeping metadata information about the
B-tree, namely: its branching factor d, number of nodes nnodes, and address of the root node
aroot . Figure 10c shows the memory layout of the first three nodes of the B-tree presented in
Figure 10a together with the extra memory page used to store its meta-information. The
B-tree implementation comes with four main functions: (1) $createBTree(d) for creating
an empty B-tree with the specified degree; (2) $insertBTree(t, k) for inserting the key
k into the tree t; (3) $searchBTree(t, k) for checking if the tree t holds the key k; and
(4) $deleteBTree(t, k) for deleting the key k from the tree t.
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Table 1 Results WASP and Manticore applied to our B-tree benchmarks.

nu = 1 nu = 2 nu = 3
no npaths TWASP (s) TMcore (s) ×TWASP npaths TWASP (s) TMcore (s) ×TWASP npaths TWASP (s) TMcore (s) ×TWASP

2 3 0.14 2.69 ×19.2 12 1.19 22.78 ×19.1 60 15.54 260.95 ×16.8
3 4 0.55 6.31 ×11.5 20 5.04 77.13 ×15.3 120 47.52 802.42 ×16.9
4 5 2.10 11.29 ×5.4 30 8.79 170.04 ×19.3 210 137.14 1,886.55 ×13.8
5 6 1.45 18.95 ×13.1 42 16.41 340.32 ×20.7 336 286.15 4,041.37 ×14.1
6 7 2.40 35.65 ×14.8 56 29.05 627.98 ×21.6 504 696.35 8,046.52 ×11.6
7 8 7.11 54.61 ×7.7 72 51.09 1,161.62 ×22.7 720 2,003.00 15,803.34 ×7.9
8 9 6.90 90.63 ×13.1 91 74.53 1,948.36 ×26.1 – – – –
9 10 11.18 133.68 ×12.0 110 113.74 2,976.56 ×26.2 – – – –

Experimental Setup. In order to compare the performance of WASP against that of
Manticore, we use the symbolic test suite of [22]. All symbolic tests follow the same code
template but use a varying number of symbolic values, of which some are constrained to be
ordered. In the following, we use no and nu to denote respectively the number of ordered
and unordered symbolic values used in each test.

Results. Table 1 presents the results obtained when running our symbolic test suite with
WASP and Manticore. The number of ordered symbolic values used by the tests varies
between 2 and 9 and the number of unordered values between 1 and 3; i.e., 2 ≤ no ≤ 9
and 1 ≤ nu ≤ 3. For each pair (no, nu), we provide: the number of explored paths (npaths);
the execution time for WASP (TWASP); the execution time for Manticore (TMcore); and the
WASP speed-up with respect to Manticore. As expected, the number of explored paths
increases exponentially with the number of unordered symbolic values. This is reflected in
the time taken by both engines to complete the analysis. For instance, WASP takes more
than 30 minutes to run the test with no = 7 and nu = 3, while taking less than one minute
to run the test with no = 7 and nu = 2.

Most significantly, from Table 1, we observe that WASP is consistently faster than
Manticore, achieving a speed-up that ranges from 5.4× to 26.2× and averages 15.8×. We
conjecture that WASP is able to outperform Manticore for two main reasons: (1) Manticore
performs static symbolic execution, which means that it interacts more often with the
underlying SMT solver and makes more intensive use of memory; and (2) Manticore is
primarily written in Python which is significantly slower than OCaml.1

4.2 EQ2: Detecting Bugs in C Data Structures
To investigate whether WASP-C can detect bugs in complex C data structures, we used it to
symbolically test Collections-C, a generic data structure library obtained from GitHub [4],
which includes a variety of data structures, such as arrays, lists, ring buffers, and queues. In
total, it implements ten different data structures spanning just over 11k LoC. The symbolic
test suite we used to evaluate WASP on Collections-C comes from the Gillian project [26], in
the context of which Collections-C was symbollically tested using Gillian-C, an instantiation
of the Gillian framework for the C language. Gillian’s authors developed a symbolic test
suite that they run against Collections-C. This symbolic test suite consists of 161 symbolic
test programs targeting the various data structure algorithms included in Collections-C.

Here, we test two different versions of Collections-C, a version with bugs previously found
by the authors of Gillian-C,2 henceforth buggy version, and the version resulting from the

1 http://roscidus.com/blog/blog/2014/06/06/python-to-ocaml-retrospective
2 Version with the 2 bugs identified by Gillian-C: https://github.com/srdja/Collections-C/pull/119

and https://github.com/srdja/Collections-C/pull/123.

http://roscidus.com/blog/blog/2014/06/06/python-to-ocaml-retrospective
https://github.com/srdja/Collections-C/pull/119
https://github.com/srdja/Collections-C/pull/123
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Table 2 Results for Gillian-C and WASP-C applied to corrected version of Collections-C.

Baseline WASP-C
Category ni TGil (s) TWASP (s) Tloop (s) Tsolver (s) avg_paths S

(
TGil

TWASP

)
Slist 37 8.34 9.06 6.21 0.85 2 0.92

Pqueue 2 4.79 0.34 0.19 0.05 1 14.09
Stack 2 1.55 0.21 0.06 0.00 1 7.38
Deque 34 8.08 6.43 3.89 1.03 2 1.25
Array 21 7.00 7.00 5.41 1.44 5 1.00
Queue 4 2.11 1.99 1.69 0.18 4 1.06

RingBuffer 3 1.43 0.31 0.07 0.00 1 4.62
Treeset 6 7.07 4.89 4.43 1.43 7 1.45

Treetable 13 12.07 5.02 4.04 1.61 5 2.40
List 37 21.77 30.01 27.18 11.65 6 0.73

Total 159 74.21 65.26 53.17 18.24 34 1.14

correction of those two bugs,3 henceforth corrected version. Essentially, we use WASP-C
to execute 161 symbolic test programs developed in the context of the evaluation of the
Gillian-C project both against the buggy and corrected version of Collections-C.

Experimental Procedure. We performed two experiments: in the first, we use Gillian-C
and WASP-C to execute the symbolic test suite on the corrected version of Collections-C;
and in the second, we used the two tools to execute the two error-triggering symbolic tests
on the buggy version of Collections-C.

Experiment 1. Table 2 presents the results of Experiment 1, where we use both Gillian-C
and WASP-C to test the corrected version of Collections-C. We present the obtained results
for each data structure included in Collections-C, showing for each of them: the number
of tests (ni), the total execution time for Gillian-C (TGil), the total execution time for
WASP (TWASP

4), the total time spent in the concolic interpreter (Tloop), the total time in
the constraint solver (Tsolver), the average number of paths explored (avg_paths), and the
speedup between TGil and TWASP (S). From the table we observe that, overall, WASP is
1.14× faster than Gillian-C at analysing the complete benchmark suite. And, in 7 out the 10
categories, WASP completes the program analysis faster than Gillian-C (i.e., TW ASP < TGil).
We conjecture that this performance gain is due to WASP’s analysis, i.e., Gillian-C performs
static symbolic execution while WASP performs concolic execution, which is faster since it
requires fewer interactions with the underlying solver.

During Experiment 1 WASP-C found a new heap-overflow bug in the Pqueue data
structure. We confirmed the bug with a concrete test using AddressSanitizer [66], reported
it to the developers, and fixed it via a pull request, which has already been accepted by the
library’s main developer.5 The bug was caused by an integer overflow that subsequently
leads to an array-out-of-bounds heap access. WASP-C is able to detect this bug because it
models C integers using Z3 bit-vectors, whereas Gillian only used mathematical reals at the
time of testing.6

Experiment 2. Table 3 presents the results of experiment two, where we use Gillian-C and
WASP-C to test the two bug-triggering tests for the buggy version of Collections-C. Since

3 Corrected version: https://github.com/srdja/Collections-C.
4 Note that, TWASP = Tloop + Tparse and Tloop = Tsolver + Tinterpretation. Where the parsing and in-

terpretation times, respectively Tparse and Tinterpretation, were omitted from the table due to space
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Table 3 Bug-finding statistics for Collections-C bugs by WASP and Gillian-C.

Test Vulnerability TGil (s) TWASP (s) Tloop (s) Tsolver (s) npaths S

array_test_remove Found 1.40 0.20 0.08 0.03 1 7.00
list_test_zipIterAdd Found 0.57 0.40 0.18 0.00 1 1.42

Total 2/2 1.97 0.60 0.26 0.03 2 3.28

there were only two tests, each triggering a different bug, each row in the table represents a
different bug. For each bug, we indicate whether or not WASP found the bug; the remaining
columns have the same meaning as in Table 2. As the table indicates, WASP-C is able to
detect the bugs discovered by Gillian-C.

4.3 EQ3: Different Types of Symbolic Reasoning
To investigate our third evaluation question, we test WASP-C against the Test-Comp
benchmark suite (Test-Comp) [10] and compare its results with those obtained for the
testing tools submitted to the 2021 Test-Comp Competition [11]. The Test-Comp test suite
is organised into different categories with each focusing on a different type of symbolic
reasoning. For instance, the categories Arrays, BitVectors and Loops respectively aim at
reasoning about array operations, bit-operations, and loops and recursion.

Test-Comp defines two types of testing tasks: (1) Cover-Branches tasks, whose goal is to
generate a set of concrete tests that cover the greatest possible number of program branches,
and (2) Cover-Error tasks, whose goal is to generate at least one set of inputs that lead the
execution of the given program to an execution error.

Test-Comp defines a scoring system to classify testing tools depending on how well they
perform on both types of tasks. Essentially, a tool is assigned three scores, one for each type
of task and a global score. Below, we provide further details on the scoring system.

Experimental Setup. We separately evaluate WASP-C on the Cover-Branches and Cover-
Error tasks. For each task, we assign WASP-C a global score computed as in Test-Comp.
For Cover-Branches, the assigned score represents the coverage of the generated test suites.
For Cover-Error, the assigned score represents the number of bugs found. For both tasks we
present the results for each testing category (e.g., Arrays, BitVectors, ControlFlow, and so
on). We obtain the global score for all analysed categories by applying a weighted average
on the individual scores of each category according to the number of tests in that category.

Results. Table 4 presents the evaluation results per category for the Cover-Branches and
Cover-Error tasks, respectively, and compares the results obtained for WASP-C with those
obtained for the 11 tools submitted to Test-Comp 2021: FuSeBMC [2], CMA-ES Fuzz [40],
CoVeriTest [12], HybridTiger [58], KLEE [14], Legion [48], LibKluzzer [44], PRTest [45],
Symbiotic [18], TracerX [37], and VeriFuzz [7]. The table shows the minimum and maximum
recorded scores obtained for the 11 submitted tools, and the score and rank obtained by
WASP-C.7 Furthermore, in order to better compare WASP-C’s results with those of the

constraints.
5 Bug fix for heap-overflow bug: https://github.com/srdja/Collections-C/pull/148.
6 Gillian has been since extended with support for mathematical integers and can now detect the bug.
7 Cover-Error has no results for C11 and C12 because these categories have no Cover-Error tasks.

https://github.com/srdja/Collections-C/pull/148
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Table 4 Results for both meta categories: Coverage-Branches and Cover-Error.

Cover-Branches Cover-Error
Category Min Max WASP-C Rank Min Max WASP-C Rank
C1.Arrays 96 296 245/380 4th 0 96 89/100 4th

C2.BitVectors 13 40 35/57 7th 0 10 7/10 2th
C3.ControlFlow 3 18 33/54 1st 0 11 29/32 1st

C4.ECA 0 12 4/27 8th 0 16 7/18 6th
C5.Floats 16 103 78/202 7th 0 32 21/32 5th
C6.Heap 19 90 80/136 7th 0 47 41/55 7th
C7.Loops 152 424 403/572 4th 0 138 127/156 4th

C8.Recursive 9 38 27/51 8th 0 19 9/20 7th
C9.Sequentialized 0 71 25/39 9th 0 101 75/107 9th

C10.XCSP 0 97 56/100 10th 0 53 54/59 1st
C11.Combinations 0 180 28/210 7th – – – –

C12.MainHeap 51 204 175/226 8th – – – –

Score 411 1389 1090 6th 0 405 360 3rd
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(b) Box plot for Cover-Error.

Figure 11 Box plots: Test-Comp coverage results.

other tools, Figures 11a and 11b plot the results, normalising the scores of all tools in each
category and highlighting WASP-C’s score with a red dot. For Cover-Branches and Cover-
Error, WASP-C ranked sixth and third, respectively, ranking fourth overall. These results
demonstrate that WASP-C’s symbolic reasoning is on par with state-of-the-art symbolic
execution and testing tools for C.

Finally, comparing the CPU time for the top 6 scoring tools in [11], WASP-C was the
fifth-fastest tool in the Cover-Error category among these tools (with a total time of 26
hours) and the second-fastest tool in the Cover-Branches category (with a total time of 310
hours). Overall, WASP-C is the second-fastest tool among the top 6 scoring tools, finishing
its analyses in about 326 hours and ranking fourth in terms of scoring (note that KLEE, the
fastest tool, ranked sixth in terms of scoring). We further note that the tools we compare
WASP-C against were executed on a superior testbed. Test-Comp’s testbed is a computing
cluster consisting of 168 machines; each test-generation run was executed on an otherwise
wholly unloaded, dedicated machine to achieve precise measurements. Each machine had
one Intel Xeon E3-1230 v5 CPU, with eight processing units each, a frequency of 3.4GHz
and 33GB of RAM. This setting is superior to the one in which we run WASP-C: a single
server with an Intel Xeon E5–2620 CPU, a frequency of 2.5GHz and 32GB of RAM.
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Table 5 Experimental evaluation of OPTMem and OPTRestart.

TWASP (h) Tsolver (h) npaths nsolver avgcmds(M) no. ass. fls
Benchmark on off on off on off on off on off on off

OPTMem 32 71 1.80 0.04 16,196 261 15,975 26 603 7.6 106 3
OPTRestart 46 58 17.00 29.00 17,677 73,972 39,810 73,641 132 132 275 255

4.4 EQ4: WASP Optimisations
We introduce two optimisation techniques: (1) application of algebraic simplifications to
byte-level symbolic expressions generated by memory interactions (§3.3); and (2) shortcut
restarts for failed assumption statements (§3.4). In the following, we refer to the former
technique as OPTMem and to the latter as OPTRestart. To investigate the effectiveness of
these optimisations, we compare the execution times obtained for WASP-C when they are
enabled (on) against those obtained when they are disabled (off).

Experimental Setup. For each optimisation technique, we have selected a subset of the 2021
Test-Comp benchmark suite [11] with the relevant features. For OPTMem, we have selected
the four Test-Comp sub-categories with the highest number of calls to heap-manipulating
functions (e.g. malloc and calloc), whereas for the OPTRestart, we have have selected the
four sub-categories with the highest number of assume statements.

Results. Table 5 presents the results obtained for both optimisation techniques, showing:
the total execution time of WASP (TWASP); the total solver time (Tsolver); the total number
of explored paths (npaths); the total number of calls to Z3 (nsolver); the average number of
executed Wasm instructions (avgcmd); and the total number of triggered assertion violations.
The values of all metrics are given with the corresponding technique turned on and off.

With OPTMem on, WASP completes the analysis in less 39 hours (32 vs 71), explores
62 times more paths, and discovers 35 times more assertion violations. The main effect of
this optimisation is to reduce the size of concolic states by reducing the size of the symbolic
expressions that they store. This reduction enables WASP to interpret more instructions per
unit of time (5, 234.6 i/s vs 30.0 i/s), as it has been demonstrated that symbolic execution
throughput is severely impacted by intensive memory usage [17].

With OPTRestart on, WASP completes the analyses in less 12 hours and discovers 20
more assertion violations. The main effect of this optimisation is that it allows WASP to
explore fewer execution paths by ignoring the paths that lead to failed assumptions, thereby
leaving more time for the exploration of relevant paths.

4.5 EQ5: Scalability to Industry-Grade Code
To investigate our fifth evaluation question, we use WASP-C to obtain a comprehensive test
suite for part of the C implementation of the AWS Amazon Encryption SDK [67], a highly-
used cryptographic library that powers, for instance, the Amazon DynamoDB Encryption
Client [3]. The AWS Encryption SDK for C is a library for the encryption and decryption
of data that implements complex data structures and algorithms in the C language. This
library is challenging to analyse as it uses various cryptographic functions that current SMT
solvers cannot tackle. The library comes with a benchmark suite of bounded verification
proofs designed to be checked with the CBMC bounded model checker [42], which can be
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Table 6 Benchmark results applying WASP-C to the AWS Encryption SDK for C.

Category ni npaths Tloop (s) Tsolver (s) TWASP (s) Coverage

Md 2 3 0.12 0.04 0.18 60.8
Decrypt 3 151 48.81 9.03 49.00 54.4

Edk 5 194 366.83 4.64 367.13 60.2
Cmm 5 558 1,793.00 60.43 1,794.00 66.6

Private 3 962 1,792.53 406.06 1,793.11 55.0
Keyring 10 1,382 1,145.89 213.67 1,146.56 70.8
Misc-ops 7 3,851 1,907.59 134.81 1,908.18 48.5

Total 35 7,101 7,054.77 828.68 7,058.16 59.5

easily turned into symbolic tests to enable the generation of a concrete test suite for the
library. We consider 35 verification proofs totalling 2.3k LoC. The library itself contains
multiple C files totalling just under 40k LoC.

Experimental Procedure. Our experimental procedures analyse the benchmark suite
without constraining the number of paths explored during concolic execution and with
a timeout of 15 minutes. We choose these settings to enable WASP to freely analyse every
path of a program. Note that not all symbolic tests will take 15 minutes to be executed, as
some tests do not loop on symbolic values and therefore have a finite execution tree.

Results. Table 6 presents the results of running the created symbolic test suite on seven
modules of the AWS Encryption SDK for C organised by the data structure or algorithm that
they are testing. Additionally, tests for generic data structures like lists or hash tables and
generic operations like getters/setters go into the Misc-ops module as they are not specific
to the encryption library. For each module, we present the number of tests targeting that
module (ni), the total number of paths explored (npaths), the total time spent in the concolic
loop (Tloop), the total time spent in Z3 (Tsolver), the total analysis time (TWASP), and the line
coverage obtained. The table shows that, in total, WASP-C analyses the benchmark suite
in just under two hours and obtains roughly 60% of line coverage of the library’s functions.
In contrast to the data structures in Md, which are mainly populated with concrete values
and are therefore quickly analysed, the data structures Edk, Cmm, Private, and Keyring
take a significant amount of time to be analysed as they mainly operate on symbolic values.
Unsurprisingly, the symbolic tests in the former group trigger much fewer symbolic execution
paths than those in the latter. Note that analyses finish quickly in the Decrypt module
that tests decryption operations due to the small inputs given to these operations, typically,
strings with one or two characters at most.

As our symbolic test suite is automatically obtained from the bounded verification proofs
that come with the AWS Encryption SDK for C, its coverage is limited by the structure of the
bounded inputs considered in the proofs. As most proofs only consider well-formed inputs,
our symbolic test suite does not cover most of the library’s code for handling ill-formed
inputs. In the future, we plan to write additional tests to obtain 100% line coverage.

5 Related Work

Semantics of Wasm. Haas et al. [30] proposed a small-step operational semantics for Wasm
together with a type system for checking the safety of stack operations. Later, Watt [74]
mechanised both the semantics and the type system introduced in [30] using the Isabelle
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theorem prover [53] and exposing several issues in the official Wasm specification. The
authors of [75] then introduced Wasm Logic, a program logic for modular reasoning about
heap-manipulating Wasm programs. In contrast to Wasm’s native type system, Wasm
Logic can be used to establish the safety of heap operations. However, it cannot yet reason
about real-world Wasm code as it has not been automated. Very recently, Watt et al. [76]
introduced two new mechanisations of the specification of Wasm following the new official
W3C standard [72]; one developed in Isabelle and the other in the Coq [70] theorem prover.

Program Analyses for Wasm. Since the proposal of the Wasm standard [57], various
program analyses have been designed for tackling the specificities of the language. Most of
these analyses aim at the verification/testing of security properties and can broadly be divided
into two main categories: static analyses [77, 68], which analyse stand-alone Wasm modules
without the need to execute them, and dynamic analyses [69, 68], which instrument the given
module to enforce the desired security property. Among the static analyses, we highlight:

CT-Wasm [77], a type-driven extension of Wasm for provably secure implementation
of cryptographic algorithms, which enforces information flow security and resistance to
timing side-channel attacks through the use of security types;
Wassail [68], an information flow analysis for Wasm based on a standard data-flow analysis,
which the authors evaluate on a benchmark comprising 30 C programs.

Neither CT-Wasm nor Wassail can precisely reason about Wasm programs that interact with
the memory, as they both assume that the values stored in memory are always confidential.
In the future, we would like to study how to take advantage of WASP to improve the precision
of information flow analysis for Wasm using, for instance, the self-composition technique [6]
for the generation of vulnerability-triggering inputs.

Among the dynamic analyses for Wasm, we highlight the following two taint-tracking
tools: TaintAssembly [27] and the tool presented in [69]. TaintAssembly [27] is a modification
of the V8 JavaScript engine for performing basic taint tracking by adding a taint label to
function parameters, local variables, and linear memory cells. In [69], the authors present a
JavaScript virtual machine (VM) to interpret and run Wasm code, capable of monitoring
the flow of sensitive information through taint tracking. However, neither TaintAssembly
nor the JavaScript VM described in [69] can accurately track information flows in Wasm, as
the former does not propagate indirect taint in comparison operators and the latter does not
support floating-points in Wasm. Additionally, these tools are not ideal for testing generic
Wasm code as they require concrete inputs to trigger the illegal information flows in the given
program. A possible direction for future work is to combine WASP with a taint tracking
tool, using WASP to generate inputs.

Symbolic Execution. Symbolic execution has been extensively used to find crucial errors
and vulnerabilities in a broad spectrum of programming languages, such as C [28], C++ [14],
Java [64], and Python [19]. Regarding the Web, there are several state-of-the-art tools for
symbolically executing JavaScript code [60, 61, 62, 47, 65], demonstrating the need for such
tools for the validation and testing of modern Web applications.

Symbolic execution tools can be divided into two main classes: static and dynamic/con-
colic [5]. Static symbolic execution engines, such as [41, 54, 39, 71, 60, 61], explore the entire
symbolic execution tree up to a pre-established depth, while concolic execution engines, such
as [14, 28, 64, 17, 62, 47, 65], usually work by pairing up a concrete execution with a symbolic
execution and exploring one execution path at a time. An advantage of concolic execution
over static symbolic execution is that concolic execution requires less frequent interactions
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with the solver and a simpler memory model. There is a vast body of research on both
static and concolic symbolic execution tools for a wide variety of programming languages,
see [5, 15, 16] for comprehensive surveys on the topic. In the following, we give a detailed
account of the only two existing symbolic execution tools for Wasm other than WASP.

WANA [73] is a cross-platform smart contract vulnerability detection tool employed to
find vulnerabilities in EOSIO [43] and Ethereum smart contracts [38]. WANA is based on
static symbolic execution and operates over Wasm bytecode. To detect vulnerabilities in
smart contracts, WANA comes with three heuristics for EOSIO smart contracts and four for
Ethereum smart contracts. Unlike WASP, WANA lacks a stand-alone symbolic execution
engine for Wasm. Hence, it is not possible to run WANA on arbitrary Wasm code without
refactoring its internal architecture. For this reason, we were unable to evaluate WANA on
our B-tree implementation and compare its performance with those of WASP and Manticore.

Manticore [51] is a symbolic execution framework for binaries and smart contracts.
Manticore is highly flexible, supporting a wide range of binaries and computing environments,
including Wasm bytecode. When it comes to Wasm, Manticore does not expose dedicated
primitives for constructing and reasoning over symbolic values at the source language level.
Symbolic inputs and constraints are created as part of a complex Python script that must be
written for each test [33], which initialises the symbolic state and calls the appropriate Wasm
module. This process does not scale for a broad evaluation, as one would have to manually
write a python script for each symbolic test. Nonetheless, we compare the performance of
WASP with that of Manticore [51] in the analysis of a stand-alone Wasm implementation of
a B-tree data structure, demonstrating that WASP is consistently faster.

6 Conclusion

In this paper, we presented WASP, a novel concolic execution engine for testing Wasm
modules. To the best of our knowledge, WASP is the first symbolic execution tool to
analyse complex WebAssembly code for general-purpose applications. Prior existing tools for
symbolically executing Wasm code [51, 73] were only evaluated on smart contracts, which are
simpler and therefore easier to analyse than general-purpose applications. On top of WASP,
we also developed WASP-C, a symbolic execution framework to test C programs symbolically
using WASP. We have extensively evaluated our tools. Our results show that WASP: (1)
can detect bugs in complex data structure libraries, being able to find a previously unknown
bug in a widely-used generic data structure library for C; (2) supports different types of
symbolic reasoning, having comparable performance to well-established symbolic execution
and testing tools for C; and (3) can scale to industry-grade code, being able to generate a
high-coverage test suite for the Amazon Encryption SDK for C.
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