
How to Take the Inverse of a Type
Daniel Marshall #Ñ

School of Computing, University of Kent, Canterbury, UK

Dominic Orchard # Ñ

School of Computing, University of Kent, Canterbury, UK
Department of Computer Science and Technology, University of Cambridge, UK

Abstract
In functional programming, regular types are a subset of algebraic data types formed from products
and sums with their respective units. One can view regular types as forming a commutative semiring
but where the usual axioms are isomorphisms rather than equalities. In this pearl, we show that
regular types in a linear setting permit a useful notion of multiplicative inverse, allowing us to “divide”
one type by another. Our adventure begins with an exploration of the properties and applications of
this construction, visiting various topics from the literature including program calculation, Laurent
polynomials, and derivatives of data types. Examples are given throughout using Haskell’s linear
types extension to demonstrate the ideas. We then step through the looking glass to discover what
might be possible in richer settings; the functional language Granule offers linear functions that
incorporate local side effects, which allow us to demonstrate further algebraic structure. Lastly, we
discuss whether dualities in linear logic might permit the related notion of an additive inverse.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases linear types, regular types, algebra of programming, derivatives

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.5

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.1

Funding This work is supported by an EPSRC Doctoral Training Award (Marshall) and EPSRC
grant EP/T013516/1 (Verifying Resource-like Data Use in Programs via Types).

Acknowledgements Thanks to Nicolas Wu and Harley Eades III for their valuable comments and
discussion on earlier drafts, and also to the anonymous reviewers for their helpful feedback.

1 Prologue: Consuming with Inverses

Algebraic data types are the bread-and-butter of both the theory and practice of functional
programming. The algebraic view gives rise to vast possibilities for manipulating types, and
for “calculating” programs from their type structure in the Bird-Meertens tradition [7, 8, 37].

Regular types are a subset of algebraic types formed from products ×, sums +, unit 1
and empty types 0, and fixed points, giving rise to polynomial type expressions [37, 40]
and an algebraic structure akin to a commutative semiring. The multiplicative part is by
products and the unit type, and the additive part by sums and the empty type. However,
the semiring laws are relaxed to isomorphisms, e.g., a × (b × c) ∼= (a × b) × c is witnessed by
a bijection between the two ways of associating a triple expressed as pairs. The cardinality
operation |−| (mapping a type to its size) is then a semiring homomorphism (a functor)
from the structure of types to natural numbers, e.g., |a × b| = |a||b|. This provides a useful
technique for understanding when different type expressions are isomorphic by checking if
their cardinalities are equal, a fact leveraged by many a student for decades. In category
theory, we can model regular types as a (commutative) semiring category (or rig category [11])
or a (symmetric) bimonoidal category [26], with semiring rules as natural isomorphisms.
Either way, a rose by any other name is still as sweet.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© Daniel Marshall and Dominic Orchard;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 5; pp. 5:1–5:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dm635@kent.ac.uk
https://www.starsandspira.ls
https://orcid.org/0000-0002-4284-3757
mailto:d.a.orchard@kent.ac.uk
https://dorchard.github.io
https://orcid.org/0000-0002-7058-7842
https://doi.org/10.4230/LIPIcs.ECOOP.2022.5
https://doi.org/10.4230/DARTS.8.2.1
https://doi.org/10.4230/DARTS.8.2.1
https://doi.org/10.4230/DARTS.8.2.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 How to Take the Inverse of a Type

Given the rich algebraic analogues and models for types, one may then (perhaps idly)
wonder: if product types are multiplicative, is there a notion of multiplicative inverse for
types which lets us divide one type by another? We show that this question has a rather neat
and simple answer for linear types:

▶ Definition 1. The multiplicative inverse of type τ is the type of functions consuming τ :

τ−1 ≜ τ ⊸ 1

where ⊸ is the linear function type, of functions which use their argument exactly once.

Linear types are an ideal setting for capturing the idea of consumption since linear types
treat values as resources which must be used exactly once – they can never be discarded (no
weakening) or duplicated or shared (no contraction) [20, 51, 55]. Therefore, a function τ ⊸ 1
must consume its argument rather than simply returning a value of the unit type.

Linear regular types have products ⊗ (“multiplicative conjunction”) where each component
of the pair is used exactly once and sums ⊕ (“additive disjunction”) which behave like normal
sum types, though whichever component we are given must of course be used linearly. Linear
regular types again form a commutative semiring structure, with equalities as isomorphisms.

Given τ−1 ≜ τ ⊸ 1, we can immediately consult the standard meaning of multiplicative
inverse with regards to its equational theory: a group extends a monoid (X, •, e) such that
for every x ∈ X there exists an inverse element denoted x−1 ∈ X, for which x • x−1 = e and
x−1 • x = e. If the use of the notation −−1 and the terminology of inverses is warranted
then we could reasonably expect τ−1 ⊗ τ ∼= 1. Given the above definition of inverse, then
one direction of this isomorphism, from τ−1 ⊗ τ to 1, is inhabited via function application:

λ(u, x). u x : (τ−1 ⊗ τ)⊸ 1 (1)

where the first component of the pair consumes the second component. Similarly we can
construct the symmetric version (τ ⊗ τ−1)⊸ 1 by first flipping the components of the pair.

These are the only inhabitants of their types: the multiplicative inverse of τ must consume
the τ value in the other component of the pair due to the constraints of linearity. Indeed,
starting from the goal of defining a multiplicative inverse for a linear type such that the
property τ−1 ⊗ τ ⊸ 1 holds, by “currying” we must have a map from τ−1 to τ ⊸ 1.
Therefore, τ ⊸ 1 is the most natural choice for an inverse to τ , as any other inverse would
first need to be mapped to τ ⊸ 1 in order to consume the value of type τ .

We call equation (1) and its symmetric counterpart lax inverse laws following category
theory terminology: strict structures have equalities, strong have isomorphisms, and lax have
only morphisms in one direction. The rest of the commutative semiring structure of linear
regular types is “strong” as associativity, commutativity, etc. are isomorphisms. However,
for inverses, the opposite direction from 1 to τ−1 ⊗ τ does not exist in general: for any τ

we cannot necessarily form a pair τ−1 ⊗ τ as we do not have an algorithm to construct an
arbitrary τ value nor its consumer. Even if we can inhabit 1⊸ (τ−1 ⊗ τ) for a particular τ

(e.g., if there is a default value for a type and a standard way of consuming its values) this
only forms an isomorphism τ−1 ⊗ τ ∼= 1 in the limited setting of 1-element types. The crux
is that division loses information: τ−1 ⊗ τ ⊸ 1 consumes knowledge of the original τ value.

In a non-linear (“Cartesian”) setting, we could still define inverses in a similar way
as τ−1 ≜ τ → 1, and the lax inverse law τ−1 × τ → 1 would be similarly inhabited by
function application. However, non-linearity makes this definition weaker and less natural,
as ((τ → 1) × τ) → 1 is also inhabited by the function λ(u, x).1 which throws away both
of its arguments and returns the unit value. We could just as easily construct this term of

D. Marshall and D. Orchard 5:3

type (τ−1 × τ) → 1 regardless of the definition we chose for τ−1. It is only by working in the
context of linear types that our notion of inverse is given meaning, as a function τ ⊗ τ−1 ⊸ 1
must use both the term τ and its inverse, for which τ−1 ≜ τ ⊸ 1 is the natural fit.

This definition of τ−1 lets us view types as an algebraic structure which is almost
a semifield; a semifield resembles a semiring except that every nonzero element has a
multiplicative inverse. The terminology of skewness can also be applied here; for example,
a skew monoid is one in which the associativity and unit properties are morphisms rather
than isomorphisms or equalities [48, 50]. Thus our construction could be described as a
“multiplicative skew inverse”. Going forwards we use just “inverse” for brevity.

Roadmap

In this pearl, we explore various applications and consequences of this idea. We begin by
programming with inverses in Haskell via the linear types extension of the Glasgow Haskell
Compiler1 (based on the work of Bernardy et al. [6]), and proceed to consider equations
arising from functions over inverses and other algebraic implications.

One interesting result we uncover is that whilst regular types yield polynomial type
expressions, inverse types yield an analogue of the mathematical generalisation of Laurent
polynomials (Section 4); these differ from ordinary polynomials in that they can have terms of
negative degree, providing a more general notion of exponent for regular types. But inverses
turn out to have applications beyond the merely theoretical; we show inverses allow the
notion of derivatives for regular types (à la McBride [37]) to be generalized, providing the
ability to take the derivative of a type with respect to another type (Section 5). This yields a
way to generate data types with n-holes (holes of n contiguous elements) which we apply to
the common programming idiom of stencil computations.

In the second half, we consider possibilities for developing the algebraic structure of
inverse types further, by working in richer and more expressive settings. It turns out that
the multiplicative inverse becomes an involution (Section 6) if we can express sequentially-
realizable functions [32] which carry out local side effects that are not observable externally.
We demonstrate this using linear session channels à la Lindley and Morris [30] which allow
inverses to do more computationally. We show examples in the modern functional language
Granule which has linear types at its core [42]. This involution also happens to yield a
construction akin to the familiar continuation monad, which we briefly discuss.

Lastly, we show it is also possible to define an additive inverse (Section 7). However, this
requires working in a different setting where products are given by linear logic’s & rather
than ⊗ and similarly sums are ` rather than ⊕. Thus, while we can develop the theory for
each kind of inverse separately, there is not yet any type theory where the two can coexist.

A side aim of this pearl is to popularise the increasing abilities of modern functional
languages to express linear types. For those unfamiliar with linear types and wishing to go
beyond the intuitions here, Appendix A gives some standard typing rules and syntax. We
also provide an artifact2 including all code examples given throughout in both Haskell and
Granule, to aid with understanding and allow for further experimentation.

1 Available as of GHC 9.0.1, https://www.haskell.org/ghc/download_ghc_9_0_1.html, released Feb
2021.

2 https://doi.org/10.5281/zenodo.6275280

ECOOP 2022

https://www.haskell.org/ghc/download_ghc_9_0_1.html
https://doi.org/10.5281/zenodo.6275280

5:4 How to Take the Inverse of a Type

2 Programming with Inverses

We stand at an exciting juncture for our community. Finally, more than 30 years after their
conception in logic [20], linear types are starting to gain a foothold in mainstream functional
programming languages. One such language is Haskell, via GHC’s linear types extension [6]
which uses a graded type system [42] based on annotating function types a %r -> b with their
“multiplicity” r (which can also be understood as a coeffect, or consumption effect [43]), that
describes how many times the argument is used. In Haskell, this can either be 1 representing
linear behaviour or Many representing unrestricted behaviour, including the possibility of 0
uses. We can thus describe inverses and a curried version of the lax inverse law as follows:3

1 type Inverse a = a %1 -> () -- recall () is the unit type 1 of Haskell
2

3 divide :: a %1 -> Inverse a %1 -> ()
4 divide x u = u x

The naming of divide is to evoke the usual intuition associated with groups where a/b = a•b−1

and since this function “actions” the consumption of the first input by the second.
There are other linearly-typed languages in which one could also readily apply our notion

of inverses, e.g., ATS [47], Alms [49], and Quill [39]. Through some translation we can also
represent inverses in languages with more expressive graded type systems, such as Granule [42]
and Idris 2 [10], that can describe linearity as well as other flavours of resourceful data. We
focus on Haskell for now, but the ideas are the same no matter the language.

In the concrete setting of an actual language, we can now give an example inhabitant of
an inverse type. These are typically defined by some pattern matching over all the possible
inputs, where the act of pattern matching on the incoming value consumes the input as it
inspect its value. For example, an inverse to Haskell’s boolean type is given by:

1 boolDrop :: Inverse Bool
2 boolDrop True = ()
3 boolDrop False = ()

The linear-base library for Haskell provides a type class for those types which are “con-
sumable”: inhabitants of the inverse of type a. The instance of Consumable for the boolean
type is the boolDrop function defined explicitly above.

1 class Consumable a where
2 consume :: a %1-> ()
3

4 instance Consumable Bool where
5 consume True = ()
6 consume False = ()

Various built-in types like Int have a “linearly unsafe” implementation which simply drops
the argument rather than, say, consuming a machine integer by matching on the 0 case and
otherwise recursively consuming the integer decremented by 1, which would be safe but slow!
This explicit weakening operation can also be algorithmically generated from a regular type,
following a generic deriving mechanism [23].

3 Note that we first need to enable the linear types extension, by using the pragma {-# LANGUAGE
LinearTypes #-}; this will be left implicit in all of the snippets of Haskell throughout the pearl.

D. Marshall and D. Orchard 5:5

A key aspect of this typing discipline is that we do not want certain types to be consumable
without side effects; for example, file handles, sockets, channels, or any other piece of data
which acts as a proxy for a resource for which there exists some protocol of interaction. In
Section 6, we see more interesting inhabitants of inverse types in a more expressive setting.

We can consider algebraic properties of inverses and understand them through the lens of
linear regular types using this definition, while bearing in mind that our inverses are lax,
and so the properties will hold only in one direction. For example, consider the following
property, which is a simple application of the distributivity of multiplication over addition.

(τ ⊕ 1) ⊗ τ−1 ∼= ((τ ⊗ τ−1) ⊕ τ−1)
⊸ 1 ⊕ τ−1 (2)

We can understand τ ⊕1 as the linear version of the traditional Haskell Maybe data type (called
option in ML), and thus recover the following function definition in Haskell corresponding to
the above (in)equation, giving us a way to distribute an inverse into a Maybe value.

1 maybeNeg :: (Maybe a) %1 -> Inverse a %1 -> Maybe (Inverse a)
2 maybeNeg Nothing u = Just u
3 maybeNeg (Just n) u = letUnit (divide n u) Nothing
4

5 letUnit :: () %1 -> a %1 -> a -- Abstracts ‘let () = t1 in t2‘ - needed since
6 letUnit () x = x -- let bindings are currently always non-linear.

In the second case of maybeNeg, we cannot simply return Nothing since u and n are linearly
typed; we must first apply u to n (via divide) to consume both values. We then want
let () = divide n u in Nothing, but linear let-bindings are not yet implemented (as of
GHC 9.2.2, released in March 2022), so we abstract this pattern as the function letUnit
instead.

3 Calculating with Inverses

Regular types come equipped with various equations governing their operations which can
be used for reasoning about functional programs [18] and even deriving implementations
starting from equational specifications (the Bird-Meertens formalism) [7, 8, 19]. We consider
here analogous equations for calculating with inverses. We explore these equations from the
perspective of the linear λ-calculus with regular types, illustrating some points using Haskell
for convenience. One can freely translate between the two.

In a linear types setting, many of the usual equations governing products are not available
to us, because the “tupling” that combines regular functions f : A → B and g : A → C

into ⟨f, g⟩ : A → (B × C) violates linearity by copying a value of type A, and projections
π1 : A × B → A and π2 : A × B → B violate linearity by discarding one component of a
pair. We can however work with ⊗ as a bifunctor (which lifts f : A⊸ B and g : C ⊸ D to
f ⊗ g : A ⊗ C ⊸ B ⊗ D), and cotupling [h, k] : A ⊕ B ⊸ C (for h : A⊸ C and k : B ⊸ C)
is still available. Thus we have equations for (bi)functoriality of ⊗ and ⊕:

id ⊗ id = id id ⊕ id = id

(f ⊗ g) ◦ (h ⊗ k) = (f ◦ h) ⊗ (g ◦ k) (f ⊕ g) ◦ (h ⊕ k) = (f ◦ h) ⊕ (g ◦ k)

and equations interacting cotupling, injections and the ⊕ bifunctor, e.g., to name a few:

[f, g] ◦ inl = f [f, g] ◦ inr = g [h ◦ inl, h ◦ inr] = h

ECOOP 2022

5:6 How to Take the Inverse of a Type

For brevity we elide the rest as they are not the object here. Appendix A.1 gives the
remaining equations (which are the subset of those from Gibbons [18] that are permitted in
a linear setting). There are various other equations arising from the isomorphisms of regular
types (Section 1), e.g., for the isomorphisms witnessing associativity with α : (A ⊗ B) ⊗ C ⊸
A ⊗ (B ⊗ C) and αi is its converse, then we have equations α ◦ αi = αi ◦ α = id.

Inverse as a functor

A few equations arise from the simple fact that multiplicative inverse is a contravariant
functor, and thus we have a contravariant “map” function via function composition:

1 comap :: (b %1 -> a) %1 -> Inverse a %1 -> Inverse b
2 comap f g = \x -> g (f x)

A functor’s action on a morphism is commonly written using the same symbol as its action
on objects (types), just as seen above for ⊗ and ⊕. However, writing comap applied to f

as f−1 gives the wrong impression: we are not representing the inverse of a function, but
rather lifting a function to work on inverses. We therefore write f⊖1 for comap f to avoid
confusion.4

We therefore have the functoriality equations for inverses:

id⊖1 = id g⊖1 ◦ f⊖1 = (f ◦ g)⊖1

Let div : A ⊗ A−1 ⊸ 1 be the lax inverse law as a function in the linear λ-calculus (the
uncurried form of the function divide :: a -> Inverse a -> () we defined for Haskell earlier).
Given two functions h : A⊸ B, k : B ⊸ A, we then have the following naturality property:

div ◦ (h ⊗ k⊖1) = div

which can be seen more clearly in a diagram as:

A ⊗ A−1

div

##

h ⊗ k⊖1

��
B ⊗ B−1

div
// 1

i.e., transforming a value and its inverse prior to consumption is the same as us just consuming
the original value. This property follows from the definitions. We revisit this law in Section 6
once we introduce consuming functions that can have some (safe-by-linearity) side effect.

Monoidal structure of inverses

The inverse (contravariant) functor also has additional monoidal functor structure, which we
can write in Haskell simply as:

1 munit :: () %1 -> Inverse ()
2 munit () = (\() -> ())
3

4 mmult :: (Inverse a) %1 -> (Inverse b) %1 -> Inverse (a, b)
5 mmult f g = \(a, b) -> letUnit (f a) (g b)

4 We considered using the notation τ⊖1 for types as well, but thought it was too ugly to put everywhere.

D. Marshall and D. Orchard 5:7

i.e., munit consumes a unit value by pattern matching then returning unit (the standard
polymorphic identity function would have worked equally well), and mmult returns a function
that consumes a pair by using f to consume the first component then g to consume the
second. The usual axioms of a (lax) monoidal functor (associativity and unit laws) [34] hold,
interacting with the monoidal structure of ⊗; we detail these axioms in Appendix A.1.

This monoidal functor structure on inverses gives us the simple idea that we can combine
multiple inverses into a composite inverse; in other words, a pair of consumers can be turned
into a consumer of pairs. This satisfies the following equation:

ρ ◦ (div ⊗ div) = div ◦ (id ⊗ mmult) ◦ interchange

where ρ : 1⊗1⊸ 1 collapses units and interchange : (A⊗B)⊗ (C ⊗D)⊸ (A⊗C)⊗ (B ⊗D)
is derived from associativity and commutativity isomorphisms. This rule can be seen more
clearly as a diagram:

(A ⊗ A−1) ⊗ (B ⊗ B)−1

div ⊗ div
��

interchange // (A ⊗ B) ⊗ (A−1 ⊗ B−1)

id ⊗ mmult
��

1 ⊗ 1
ρ

// 1 (A ⊗ B) ⊗ (A ⊗ B)−1
div

oo

i.e., we can perform two inverse eliminations or we can rearrange, combine the inverses into
one, and then apply a single elimination.

The idea of combining products of inverses together leads naturally to notions of expo-
nentiation, but with negative exponents, which we explore next.

4 Exponentiation with Inverses

In the standard semiring of (linear) regular types discussed in Section 1, the type constructors
0, 1, ⊗ and ⊕ generate polynomials over some type meta-variable where terms with exponents
τn are represented by the n-wise product of τ where τ0 = 1. For n ≥ 0, this gives us the
usual positive exponent laws up to isomorphism (using associativity and commutativity):

∀a, b. (a ≥ 0 ∧ b ≥ 0) τa ⊗ τ b ∼= τa+b (exp+)
∀a. (a ≥ 0) σa ⊗ τa ∼= (σ ⊗ τ)a (expσ)

Introducing the multiplicative inverse allows us to generalise these to negative exponents,
and thus to generate Laurent polynomials over types, which differ from ordinary polynomials
in that they can have terms of negative degree [28].

We define exponentiation over a type τ for negative exponents as

∀a.(a ≥ 0) τ−a ≜ (τ−1)a

For example, τ−2 = (τ−1)2 = τ−1 ⊗ τ−1 capturing a pair of inverses.
It is clear that the first exponential law (equation exp+) generalises in the case that both

coefficients are negative, since we define τ−n as a product of n inverses τ−1 in much the
same way that τn represents a product of n values of type τ , i.e.,

∀a, b. (a ≥ 0 ∧ b ≥ 0) τ−a ⊗ τ−b ∼= τ−(a+b) (exp−)

This is an isomorphism as it amounts to re-associating products.

ECOOP 2022

5:8 How to Take the Inverse of a Type

In the case that just one coefficient is negative, our notion of inverse satisfies a generalisa-
tion of the exponentiation law as a lax property:

∀a, b. (a ≥ 0 ∧ b ≥ 0) τa ⊗ τ−b ⊸ τa−b (exp±)

The lax inverse law τ ⊗ τ−1 ⊸ 1 is then a specialisation of the above with a = b = 1 since
τ0 = 1. As another example, consider a = 5 and b = 3; then we can eliminate/consume three
elements of a quintuple to get pairs (a − b = 2). This raises an interesting combinatorial
question about the number of functions inhabiting this type (witnessing this lax property).

▶ Proposition 1. It turns out that the number of possible witnesses of the lax inverse law

τa ⊗ τ−b ⊸ τa−b if a ≥ 0, b ≥ 0 and a ≥ b is simply
(

a

b

)
× (a − b)! = a!

b! .

The intuition for this is that if we have some number a of values and some number b of
inverses, and we have more values than inverses, then we must apply every single inverse
to a value, and the only choice we can make is which values we are going to consume.
Combinatorially there are

(
a
b

)
= a!

b!(a−b)! ways to choose b of the a elements, leaving (a − b)
elements remaining in the end which we can permute in any order (hence the (a − b)! factor
which cancels out). If b ≥ a, then we must instead consume every value, and so conversely
we are simply choosing which a inverses we will use to do this, giving a result of b!

a! .
Thus far in the paper we have examined the linear λ-calculus and linear types in Haskell,

where inverses have no significant computational content beyond consuming a linear value.
However, later in Section 6 we will work in a setting with inverses that incorporate local side
effects. Notice that in such a setting the order in which we apply inverses may be important.
Thus, we also consider the result we obtain when taking this into consideration.

▶ Proposition 2. If reorderings are considered distinct, then the number of possible witnesses
of the lax exponentiation law τa ⊗ τ−b ⊸ τa−b if a ≥ 0, b ≥ 0 and a ≥ b is a factorial (a!).

This is derived by P (a, b) × (a − b)!, i.e. a!
(a − b)! × (a − b)! = a! since again we can “consume”

elements via their inverses in any order, giving the number of permutations P (a, b) of length
b taken from a, and there are (a − b) remaining elements left afterwards to permute. Here we
run through the proof in full, as it is instructive about how to inhabit the law in either case.

Proof. We prove that the number of possible witnesses of the lax exponentiation law is as
given above by induction on b (and recall we assume a ≥ b).

(b = 0) For the base case, we are then considering |τa ⊗ τ0 ⊸ τa−0| = |τa ⊸ τa| since
τ0 = 1. The possible inhabitants of τa ⊸ τa are then just permutations of the a-wise
product of τ and so |τa ⊸ τa| = a!, giving the result here.
(b = 1) We next consider another case where b = 1 since this is instructive (though not
necessary). Here we thus need to find how many ways there are to inhabit τa⊗τ−1 ⊸ τa−1,
i.e., how many ways to “cut out” one τ from an a-wise product of τ .
We can construct a many terms as witnesses for this type by picking any one of the τ

values to consume with the inverse τ−1:

λ((a1, a2, . . . , an), u) = let () = u a1 in (a2, . . . , an) : (τa ⊗ (τ ⊸ 1))⊸ τa−1

λ((a1, a2, . . . , an), u) = let () = u a2 in (a1, a3, . . . , an) : (τa ⊗ (τ ⊸ 1))⊸ τa−1

. . .

λ((a1, a2, . . . , an), u) = let () = u an in (a1, a2, . . . , an−1) : (τa ⊗ (τ ⊸ 1))⊸ τa−1

D. Marshall and D. Orchard 5:9

Whichever witness we choose, one inverse has been applied, so a − 1 of the original
elements remain. These can be permuted in any order, giving a total of a × (a − 1)! = a!
witnesses.
(b = n + 1) (Inductive step) We need to show that |τa ⊗ τ−(n+1) ⊸ τa−(n+1)| = a!.
We know τ−(n+1) ∼= τ−1 ⊗ τ−n as we can simply “split off” one of the n + 1 inverses from
the remaining product of n inverses. Similarly to the base case (b = 0), we first apply this
inverse to any of the elements of τa; there are a possible choices here. This leaves a − 1
of the original elements remaining, and n inverses. Therefore we can reason as follows:

|τa ⊗ τ−(n+1) ⊸ τa−(n+1)|

= |(τa ⊗ τ−1) ⊗ τ−n ⊸ τa−(n+1)| (split off one inverse, as above)

= a × |τa−1 ⊗ τ−n ⊸ τ (a−1)−n| (a ways to apply one inverse)
= a × (a − 1)! (induction with a − 1)
= a! □

Note, a ≥ (n+1) implies (a−1) ≥ n, which is needed to inductively apply the proposition.
Another way to see this intuitively is as follows. For |τa ⊗ τ−b ⊸ τa−b| (with a ≥ b), in order
to find a witness we simply need to arrange the a elements in any order, such that the first b

are assigned to the b inverses and the remaining a − b are left unused. There are a! ways to
arrange the a elements, giving the result. Again, in the case that b ≥ a we just consider the
b inverses instead, assigning inverses to elements, giving a total of b! orderings. ◀

After that divertimento into the inhabitants of the negative exponentiation law (exp±) and its
cardinality, we consider the second exponentiation law (sometimes called power of a product),
which for regular types is the following isomorphism, by commutativity and associativity:

∀a. (a ≥ 0) σa ⊗ τa ∼= (σ ⊗ τ)a (expσ)

For a version of this law with negative exponents, a special case with a = −1 is already
provided by the monoidal functor structure of Section 3 with mmult : σ−1 ⊗ τ−1 ⊸ (σ ⊗ τ)−1

which combines inverses. Composing this with the double-negative-exponents law exp− :
τ−a ⊗ τ−b ∼= τ−(a+b) yields the generalisation to all negative exponents:

∀a. (a ≥ 0) σ−a ⊗ τ−a ⊸ (σ ⊗ τ)−a (exp−σ)

For example, if a = 2 then this is derived as:

σ−2 ⊗ τ−2 α+γ∼= (σ−1 ⊗ τ−1) ⊗ (σ−1 ⊗ τ−1)
mmult⊗mmult
⊸ (σ ⊗ τ)−1 ⊗ (σ ⊗ τ)−1

exp−∼= (σ ⊗ τ)−2

where the isomorphism on the left applies associativity α and commutativity γ.
Overall, negative exponents generalise the “inverses as consumers” story. Given a product

of two exponentiated types, one positive and one negative, then “actioning” the inverses
involves consuming some number of elements of a product, leaving us with the remainder.
This captures the notion of “projection”, where some part of a type is thrown away and some
part is retained. This pattern is relevant next, where having inverses and negative exponents
for regular types allows us to define the derivative of a type with respect to another type.

5 Differentiating with Inverses

With our notion of multiplicative inverse in hand, we can apply other ideas from mathematics
which rely on the presence of division.

ECOOP 2022

5:10 How to Take the Inverse of a Type

First, let’s recall the remarkable feature of regular types (with added type variables) that
one can compute their derivative by applying the laws of Newton-Leibniz calculus [29]. This
produces a companion data type of “one-hole contexts” for the original type, a beautiful idea
due to McBride [37]. For example, for the parametric type α4 (4-tuples with elements all of
the same type) its derivative with respect to α is 4α3, equivalent to α3 + α3 + α3 + α3. The
intuition behind this is that there are four distinct ways in which you can take the original
data type (4-tuples) and remove a single element (creating a hole), leaving the surrounding
context (a triple of the three remaining elements). We can visualise these four possibilities
(each of type α3) as follows, where − represents the “hole” and where x, y, z, w : α:

(−, y, z, w) (x, −, z, w) (x, y, −, w) (x, y, z, −)

We write this derivative as ∂α(α4), i.e., the partial derivative with respect to α keeping other
variables constant (including recursion variables or other type parameters).

This approach can be applied to recursive regular types. For example, McBride’s technique
calculates ∂α(List α) = ∂α(µX.1 + α × X) = (List α) × (List α) representing the idea that a
list with a single hole is equivalent to a pair of lists – the prefix of elements before the hole
and the suffix of elements after the hole. The data type of list zippers (à la Huet [22]) is then
given by α × ∂α(List α) where we have a value α which “fills” the hole position, paired with
its context. It is possible to extend this notion further to consider derivatives of general data
types which act as containers [1] or even data which is in the process of being transformed
from one type to another [38], but here we will concentrate on the simpler cases.

A data type of contexts with two holes can be obtained by repeated differentiation,
i.e., ∂α(∂α(f(α))), and thus we can compute contexts with n holes by taking the n-th
derivative. Such holes are all independent; they can appear anywhere in the type. For
example, ∂α(∂α(List α)) = (List α×(List α×List α))+((List α×List α)×List α), representing
two ways of adding another hole to a list which already has one hole: either we have another
hole in the left sublist or in the right sublist.

Though the derivatives above are based on standard regular types which have the structure
of intuitionistic logic, linear regular types form a semiring in exactly the same syntactic
manner. Thus, the notion of taking the derivative of a type applies equally well in the linear
setting. We consider derivatives of linear regular types going forward, and show that inverses
allow us to define what it means to take a derivative with respect to another type.

First, let’s stay on the firm ground of real analysis. Recall from calculus that we can take
the derivative of a function f with respect to another function g by the following method:

∂g(α)(f(α)) = ∂α(f(α))
∂α(g(α)) (3)

For example, taking f(α) = α4 and g(α) = α2, then:

∂(α2)α
4 = ∂α(α4)

∂α(α2) = 4α3

2α
= 2α2 (4)

Giving this an interpretation in regular types, rather than R, recall α4 is a 4-tuple (a
quadruple) and α2 is a 2-tuple (a pair). Differentiating α4 with respect to α2 yields 2α2

which is the data type capturing the two possible contexts obtained by removing a pair from
the original type, leaving two elements in the remaining context. We call the pair removed
here a 2-hole, as it captures two contiguous (adjacent) holes. Note that this is different to the
case, described earlier, of differentiating with respect to α twice; this gave two independent
holes which did not necessarily have to be contiguous. The resulting type here 2α2 = α2 + α2

can be interpreted as the type of 2-hole contexts, illustrated as:

(−1, −2, z, w) and (x, y, −1, −2) (5)

D. Marshall and D. Orchard 5:11

where −1 and −2 correspond to the two successive components of the 2-hole. We are not
allowed to have the 2-hole splitting the remaining two elements like (x, −1, −2, y); the data
type of 2-hole contexts views the whole type in terms of pairs.

The derivative calculated in (4) was in R and then we interpreted the result as a type.
This however does not generalise well. Consider the derivative of α3 with respect to α2:

∂(α2)α
3 = ∂α(α3)

∂α(α2) = 3α2

2α
= 3

2α

We simplified the result following the axioms of fields here but are left with the unwieldy
3
2 which we cannot meaningfully translate into the realm of types. Using our approach of
multiplicative inverses instead yields a more generally applicable result for regular types.

▶ Definition 2. The derivative of a regular type with respect to another regular type is:

∂g(α)f(α) = ∂αf(α) ⊗ (∂αg(α))−1 (6)

This construction yields the usual derivative of the numerator, paired with a consumer of
the derivative of the denominator.

Returning to the example of taking the derivative of α4 with respect to α2 shown in
equation (4), we instead apply the inverses approach of Definition 2 which yields:

∂α2(α4) = 4α3 ⊗ (2α)−1

This is the type 4α3 of 1-hole contexts for 4-tuples (the four possible triples resulting from
removing one element) paired with an inverse which can be used to consume a further α

value to create a 2-hole. This inverse consumes 2α values, i.e., α ⊕ α, where the α value
is tagged with an extra bit of information to explain to the inverse which element is being
removed to create the 2-hole. We can see this as the four possible 1-holes with an inverse
ι : (2α)−1 which can be actioned to recover the 2-holes for 4-tuples as in equation (5):

(−, y, z, w) ⊗ ι

ι(inr y)

(x, −, z, w) ⊗ ι

ι(inl x)~~

(x, y, −, w) ⊗ ι

ι(inr w)

(x, y, z, −) ⊗ ι

ι(inl z)��
(−, −, z, w) (x, y, −, −)

(7)

with the usual injections inl : A⊸ A ⊕ B and inr : B ⊸ A ⊕ B.
We put all this together in Haskell to define a notion of 1-hole contexts for 4-tuples

(QuadContexts below), which we pair with consumers to create 2-holes (QuadTwoContexts
below):

1 -- Represents 4a^3 (the four possible ways to remove one element from a 4-tuple).
2 data QuadContexts a =
3 Mk1 a a a -- context: -, y, z, w
4 | Mk2 a a a -- context: x, -, z, w
5 | Mk3 a a a -- context: x, y, -, w
6 | Mk4 a a a -- context: x, y, z, -
7

8 data QuadTwoContexts a = Mk (QuadContexts a) (Inverse (Either a a))

We can then use the inverses, as in the above illustration, to map from a 2-hole and a context
back into the original α4 type, implementing the illustration of equation (7):

ECOOP 2022

5:12 How to Take the Inverse of a Type

1 fromContext :: (a, a) %1 -> QuadTwoContexts a %1 -> (a, a, a, a)
2 -- In the first two cases, we put the 2-hole at the start of the 4-tuple.
3 fromContext (h1, h2) (Mk (Mk1 y z w) inv) =
4 letUnit (inv (Right y)) (h1, h2, z, w) -- consume y then fill 2-hole
5

6 fromContext (h1, h2) (Mk (Mk2 x z w) inv) =
7 letUnit (inv (Left x)) (h1, h2, z, w) -- consume x then fill 2-hole
8

9 -- In the second two cases, we put the 2-hole at the end of the 4-tuple.
10 fromContext (h1, h2) (Mk (Mk3 x y w) inv) =
11 letUnit (inv (Right w)) (x, y, h1, h2) -- consume w then fill 2-hole
12

13 fromContext (h1, h2) (Mk (Mk4 x y z) inv) =
14 letUnit (inv (Left z)) (x, y, h1, h2) -- consume z then fill 2-hole

The intuition is that the inverse (2α)−1 (inv above) is used to consume an element of the
4-tuple that overlaps with the hole, with the constructor of Either delineating from which
position we are consuming.

This technique becomes more useful when we want 2-hole contexts in a type which does
not contain an even number of elements–or more generally when we want n-hole contexts
from a data type whose number of elements are not exactly divisible by n. For example, we
can now compute the type of 5-tuples with 2-holes as:

∂(α2)α
5 = 5α4 ⊗ (2α⊸ 1)

The usual interpretation in the real domain would have yielded 5
2 α3 for which we have no

interpretation in regular types. Instead, we can use the inverses approach to yield contexts
of 2-holes for 5-tuples. The resulting equivalent of fromContext then has to capture a final
hole which overlaps the preceding one, to deal with the fact that 5 is not factored by 2.

An even more interesting possibility presents itself, however. Note that the above example
of 2-hole contexts for 4-tuples considers the context to also be chunked into contiguous pairs,
and thus we cannot have the context (x, −1, −2, w) with the 2-hole “in the middle”. However,
such an interpretation should certainly be possible using the inverse approach, as there is
enough information available: in the domain of R, division (multiplying with an inverse) is
a non-injective operation (it destroys information) whereas with regular types, the inverse
preserves the structure of the original type until we apply divide. Indeed, we can define the
following alternate way of mapping the QuadTwoContexts data type back to a 4-tuple:

1 fromContext’ :: (a, a) %1 -> QuadTwoContexts a %1 -> (a, a, a, a)
2 fromContext’ (h1, h2) (Mk (Mk1 y z w) inv) =
3 letUnit (inv (Left h1)) (h2, y, z, w) -- first hole outside the 4-tuple!
4

5 fromContext’ (h1, h2) (Mk (Mk2 x z w) inv) =
6 letUnit (inv (Left x)) (h1, h2, z, w) -- 2-hole at start of the 4-tuple
7

8 fromContext’ (h1, h2) (Mk (Mk3 x y w) inv) =
9 letUnit (inv (Left y)) (x, h1, h2, w) -- 2-hole in middle of the 4-tuple

10

11 fromContext’ (h1, h2) (Mk (Mk4 x y z) inv) =
12 letUnit (inv (Left z)) (x, y, h1, h2) -- 2-hole at end of the 4-tuple

D. Marshall and D. Orchard 5:13

Compared to fromContext, this “shifts” the 2-hole through successive positions of the context,
not requiring that the surrounding context is broken up into pairs. Instead, fromContext’
uses the inverse to consume the extra value always under the left component of the hole,
leaving the remaining four elements as follows:

��h1(h2, y, z, w) (�x h1, h2, z, w) (x, �y h1, h2, w) (x, y, �z h1, h2)

with the consumed element shown here in strikethrough. Note in particular the first case
(Mk1) where the deleted element is “outside” the 4-tuple; if we have a 2-hole where the second
hole is at the leftmost position of a 4-tuple, then the first hole refers to data (h1) outside the
4-tuple to the left. We can understand such data as being a “boundary value”, which hints
at an application for n-hole context data types: stencil computations.

n-holes and stencil computations

Typically applied to arrays, a stencil computation traverses each position in an array, reading
a small neighbourhood of elements at and around the “current” position to compute the
corresponding element of a new array. This is used e.g., for image processing (e.g., Gaussian
blur), cellular automata, and the finite-difference method for solving PDEs [25]. The idea can
be generalised to types other than arrays, e.g., trees, graphs, and triangular meshes [41]. The
above notion of a generalised derivative with respect to another type and its interpretation
as a kind of zipper on n-holes captures exactly this structure. In the above example of
α2 ⊗ ∂α2(α4), the 2-hole describes a neighbourhood of two elements, looking in this case
“to the left” (in other words, the neighbourhood comprises the current element and one to
its left in the above interpretation). In the Mk1 case above, the value h1 is the boundary
value when the second hole is positioned at the leftmost point. This is standard for stencil
computations: we need a “halo” of boundary values to compute at a data structure’s edge.

As a more concrete example, consider the discrete Laplace operator over 1-dimensional
arrays. Mathematically, we can describe the operation as taking an array A and computing
the elements at position i in the output array B as follows:

Bi = Ai−1 − 2Ai + Ai+1

(Note this ignores what to do at the boundaries of the array at positions A−1 and An+1).
This can be structured using a local computation over 3-holes, e.g., in Haskell:
1 laplace :: (Float, Float, Float) %1 -> Float
2 laplace (a, b, c) = a - 2*b + c

We can then capture the data type of contexts for the corresponding global traversal of a
data structure (say lists) by computing the 3-hole contexts, e.g.,

∂α3(List α) = ∂α(List α) ⊗ (3α2 ⊸ 1)

which gives us the usual data type of 1-hole contexts plus a way to consume 2 elements,
yielding a gap for 3-holes. A recursive function can then navigate “right” through this data
structure, applying laplace to every 3-hole to compute the values of an output list, giving one
iteration of the discrete Laplace stencil computation. The actual definition of this operation
is less relevant to type inverses so we elide it here, but include it in the accompanying code
artifact for this pearl. The inverse is then needed to map this zipper data structure back to
the original list form, via an operation akin to fromContext’.

Thus, our notion of multiplicative inverse has given us a way to generalise derivatives to
n-holes, which can then be used to capture the “sliding window” of a stencil computation
through any data type.

ECOOP 2022

5:14 How to Take the Inverse of a Type

6 Communicating with Inverses

So far the inhabitants of inverses τ−1 have been rather mundane, consuming their inputs
by pattern matching. We now turn to a richer setting in which some types have an inverse
inhabited by functions which can perform some kind of local side effect. For this we use the
functional language Granule which combines linear and indexed types with graded modal
types [42], though we will mostly leverage just linear types here. We consider richer inverses
first through the question of whether our notion of inverses is an involution.

A function is an involution if it is its own inverse, i.e., f(f(x)) = x. In abstract algebra,
the inverses in groups and fields are automatically involutions.5 In the setting of Granule,
the inverse of a type is also an involution with isomorphism (τ−1)−1 ∼= τ , which might be
surprising given that so far our inverse has been lax.

One direction of the involution isomorphism τ ⊸ (τ−1)−1 is easy via function application.
We give the definition below in Granule, whose syntax closely resembles Haskell’s:

1 type Inverse a = a → ()
2

3 -- i.e. the type expands to a → ((a → ()) → ())
4 invol : ∀ {a : Type} . a → Inverse (Inverse a)
5 invol x = λf → f x

As one can see, the differences between Granule and Haskell are fairly minimal: Granule’s
arrows are linear by default (fans of lollipops ⊸ will just have to squint in code samples!)
whereas in Haskell’s linear types extension the linear multiplicity must be explicitly written.
The remainder of the translation from Haskell to Granule mainly lies in explicitly quantifying
our types and using : rather than Haskell’s :: for our type declarations. If the reader would
like to follow along using Granule for this section, we recommend the latest release.6

Usefully for this pearl, Granule implements a mechanism for algorithmically deriving a
weakening operation for regular types [23]; this can be accessed by writing drop @t for some
type t, so we have for example drop @Bool : Bool → (), providing an inverse.

This direction of the involution isomorphism is of course also well-defined in the linear
λ-calculus and in Haskell. The opposite direction (τ−1)−1 ⊸ τ is much more challenging: in
fact it is not inhabited if we restrict ourselves to the linear λ-calculus or even traditional
non-linear Haskell, but it is instead a sequentially-realizable function [32, 33].

A sequentially-realizable function is one which has outwardly pure behaviour but relies
on a notion of local side effects; these are entirely contained within the body of the function.
Traditionally, sequentially-realizable functions have only been expressible in the ML-family
of languages (which allow unrestricted side effects) but not at all in Haskell. However, in the
context of linear typing, we can now safely re-introduce some side effects via linear references
or linear channels. We show the latter approach, leveraging Granule’s session-typed linear
channels [35] inspired by the GV calculus [54]. The same approach would work equally well
in other implementations of similar calculi, such as Fst [31] or FreeST 2 [3].

Originating from Gay and Vasconcelos [17], further developed by Wadler [54], for which we
use the formulation of Lindley and Morris [30], the GV calculus extends the linear λ-calculus
with a type of channels parameterised by session types [57], which capture the protocol of
interaction allowed over the channel. Granule provides an analogous type of linear channels
LChan : Protocol → Type indexed by protocols, given by the constructors:

5 For a group (X, •, e) then the properties of inverses yield (x−1)−1 • x−1 = e which implies (x−1)−1 •
x−1 • x = x; thus, by the same properties we have (x−1)−1 = x.

6 Examples were tested on https://github.com/granule-project/granule/releases/tag/v0.8.1.0

https://github.com/granule-project/granule/releases/tag/v0.8.1.0

D. Marshall and D. Orchard 5:15

Send : Type → Protocol → Protocol End : Protocol
Recv : Type → Protocol → Protocol

The following primitives are then provided for using these (synchronous) channels:

send : ∀ {a : Type, s : Protocol} . LChan (Send a s) → a → LChan s
recv : ∀ {a : Type, s : Protocol} . LChan (Recv a s) → (a, LChan s)
close : LChan End → ()
forkLinear : ∀ {s : Protocol} . (LChan s → ()) → LChan (Dual s)

This is a subset of the available primitives. We can see that send takes an input channel with
protocol Send a s and an input value a which is sent over the channel to yield a channel
which can be used according to protocol s. The recv function is dual, taking a channel which
is allowed to follow protocol Recv a s, returning a pair of the received a value and a new
channel that can behave as s. The close primitive consumes a channel which is at the end
of a protocol. Lastly, forkLinear spawns a process from the parameter function, which is
applied to a freshly created channel, returning a channel with the “dual” protocol in order to
communicate with the new process. Here, Dual is a type-level function defined:

Dual (Send a s) = Recv a (Dual s) Dual End = End
Dual (Recv a s) = Send a (Dual s)

Interestingly, forkLinear is a combinator relating inverse and duality: (LChan s)−1 ⊸
LChan (s⊥), that is, a function consuming a channel with behaviour s yields a channel with
dual behaviour (denoted by the standard notation ⊥ as in linear logic and the GV calculus).

We now have adequate machinery to define involution in the direction (τ−1)−1 ⊸ τ :

1 involOp : ∀ {a : Type} . Inverse (Inverse a) → a
2 involOp k =
3 let r = forkLinear (λs → k (λx → let c = send s x in close c));
4 (x, c’) = recv r;
5 () = close c’
6 in x

Thus k has type (a → ()) → (), to which the function λx → let c = send s x in close c
is passed; this sends the input x : a on the channel c which is then closed. This channel is
provided by forkLinear, and so k is applied in a process taking one end of the channel to
“sneak out” the value of type a. Outside this, recv waits to receive from the dual end of the
channel returned by forkLinear. The remaining channel is closed and x is returned. A local
side effect is performed within involOp which is not observable externally, but it would not
have been possible to construct the required function without carrying out this effect.

In languages such as ML, an alternate equivalent definition can be given using mutable
references which also resembles Longley’s F combinator [32].

Lastly, the functions invol and involOp form an isomorphism, witnessing τ ∼= (τ−1)−1.
The proof of this can be shown via calculating on the definitions, with details given in
Appendix B. We refer the reader to Lindley et al. [30, 31] for details of how adding session-
typed linear channels to the linear λ-calculus (and linear System F) retains type safety.

Session types based on linear channels can also be represented in Haskell, but they do not
allow us to demonstrate a full isomorphism to the same extent. Here we illustrate the more
challenging direction of the involution using the Priority Sesh library,7 a recent package for

7 Available at https://github.com/wenkokke/priority-sesh

ECOOP 2022

https://github.com/wenkokke/priority-sesh

5:16 How to Take the Inverse of a Type

session-typed communication in Linear Haskell which is itself inspired by the GV calculus [27].
However, note that the two directions cannot quite form an involution here, since everything
must be wrapped up in the linear IO monad for these session types to be used; we cannot
confine the side effects to the function as is possible in Granule.

1 type Inverse’ a = a %1 -> Linear.IO ()
2

3 involOp :: Inverse’ (Inverse’ a) %1 -> Linear.IO a
4 involOp k = do
5 (s, r) <- new
6 void $ forkIO $ k (\z -> send s z)
7 recv r

Continuation monad

A double inverse type (τ−1)−1 = (τ ⊸ 1) ⊸ 1 is also a specialisation of the familiar
continuation monad [52], whose return type is the unit type (the Haskell data type is often
written data Cont r a = Cont ((a -> r) -> r) so this is Cont () a here). The definition
of invol provides the return operation of the monad and the “bind” operator is the usual
definition for the continuation monad:

1 return : ∀ {a : Type} . a → Inverse (Inverse a)
2 return = invol
3

4 bind : ∀ {a b : Type}
5 . Inverse (Inverse a) → (a → Inverse (Inverse b)) → Inverse (Inverse b)
6 bind m k = λc → m (λa → k a c)

A standard way of understanding the use of the continuation monad is to see that its Kleisli
arrows (functions of type a → Inverse (Inverse b)) characterise continuation-passing style
(CPS) programs which can then be sequentially composed. This can be seen via a little
algebraic manipulation:

a → Inverse (Inverse b) ≡ a → ((b → ()) → ()) ∼= (b → ()) → (a → ())

Thus we can see that the Kleisli arrows are CPS-transformed functions of “a → b”. Under
our interpretation, these are the same as functions that map consumers of b to consumers of
a, and the “double inverse” monad gives us a sequential composition for these inverses.

The usual way to “evaluate” a continuation monad computation is to end up with a
value of type Cont r r (i.e., (r -> r) -> r) to which the identity is applied to return the
“final” value of type r. This requires that the r type of the whole Cont r computation is
pre-determined based on what value we want to be able to extract from a continuation monad
computation. For Inverse (Inverse a) we can only apply the identity when a = (), i.e., only
in trivial cases. However, our “double inverse” monad is actually more powerful thanks to
linearity and sequential realizability: we can extract the value of any Inverse (Inverse a)
computation for any a by applying the sequentially-realizable involution function involOp to
extract the a value. This ends up being more flexible than the continuation monad since we
need not pre-determine the continuation “result” type (which for the double inverse is fixed
as unit anyway) and we can extract the value inside the computation at any point.

Thus, viewing the continuation monad through the lens of linear-logical inverses yields
a more flexible continuation-passing style monadic composition. The crucial restriction,
though, is that the continuations must be used linearly.

D. Marshall and D. Orchard 5:17

Calculating with inverses that communicate

Recall the naturality property discussed in Section 2:

A ⊗ A−1

div

##

h ⊗ k⊖1

��
B ⊗ B−1

div
// 1

In Granule with local side effects due to channels, this equation only holds if k ◦ h = id.
Consider the following code where divNat captures the left-bottom path of the diagram:

1 divNat : ∀ {a b : Type} . (a → b) → (b → a) → (a, Inverse a) → ()
2 divNat h k (x, y) = divide (h x) (comap k y)
3

4 example : ∀ {a b : Type} . (a → b) → (b → a) → a → a
5 example h k a =
6 let r = forkLinear (λs → divNat h k (a, λy → let c = send s y in close c));
7 (a’, c’) = recv r;
8 () = close c’
9 in a’

The example function applies divNat inside a forked process where the inverse sends the result
on the channel which is received on the outside. example h k is only the identity function if
k . h = id, e.g., example (λx→ x + 1) (λx→ x - 1) 42 evaluates to 42. Thus, we can see
the power of the local side effects; here inverses can do more than just consume.

7 Additive Inverses

As we have demonstrated, a reasonable definition of inverses exists for product types in the
realm of linear logic. One might therefore wonder whether defining inverses for sum types
(i.e., subtraction) is also feasible. In much the way that defining a multiplicative inverse
almost gives us a semifield of types because some of the identities are lax, being able to
define an additive inverse would similarly give us something closely approximating a ring of
types. The answer as to whether we can do this, however, is somewhat mixed.

The linear regular types we have been using have product types as linear logic’s “mul-
tiplicative conjunction” ⊗ and sum types as “additive disjunction” ⊕. Unfortunately, we
cannot define a sensible additive inverse for this operator. To do so we would need to have
A ⊕ −A ∼= 0. However, defining a map A ⊕ −A⊸ 0 is impossible regardless of the value of
−A, because if A is nonempty then A ⊕ B must also be nonempty which means we cannot
construct a term of type 0. Furthermore, defining a map 0⊸ A ⊕ −A is impossible unless
A = −A = 0, as otherwise we would have to be able to construct some value of either type
A or type −A from nothing. Consequently, linear regular types cannot form a field (with
both multiplicative and additive inverses).

It turns out that the reason it is not possible to define an additive inverse in the context
of standard intuitionistic logic or while using the ⊕ operation offered by linear regular types
is a corollary to a result known as Crolard’s lemma [5]. This lemma states that subtraction
A \ B cannot be defined for disjoint unions in the category of sets unless either A or B is the
empty set. In fact, this result also applies to any operation like ⊕ which allows a free choice
between A and B, so any definition of subtraction with respect to ⊕ must be trivial.

ECOOP 2022

5:18 How to Take the Inverse of a Type

However, defining products as multiplicative conjunction and sums as additive disjunction
as in regular types is not the only possible interpretation we can use for these concepts. We
can just as easily have product types that follow the rules of the & operator, pronounced
“with” and describing “additive conjunction”, and similarly we can have sum types based on
the ` operator, pronounced “par”, which describes “multiplicative disjunction”. This makes
it possible to discuss a closely related setting which we will call coregular types (as these
operations behave in a dual manner to those used to define regular types), with type syntax:

τ ::= τ & τ ′ | τ ` τ ′ | ⊤ | ⊥

where ⊤ and ⊥ are the units for & and ` respectively. The intuition for & is that a& b allows
us to select one of a or b and use it, rather than having access to both at the same time
but having to use each one, as with a ⊗ b. The ` operator is more difficult to understand
intuitively, but one interpretation is that a ` b gives two processes a and b that happen in
parallel, and we have the choice of how to interleave the two processes [4]. The important
thing to keep in mind is that & is dual to ⊕ and ` is dual to ⊗.8

If we consider the coregular ` sum types which do not allow a free choice between
A and B rather than the regular ⊕ sum types, then the outlook for defining an additive
inverse is less bleak: it is possible to define an inverse operation to multiplicative disjunction.
Cointuitionistic linear logic [5] offers an operation called linear subtraction, denoted A \ B

and read “A excludes B”, which acts as the left adjoint of `. Intuitively, we can understand
linear implication in the following way:

A ⊗ B ⊢ C if and only if A ⊢ B ⊸ C

which arises from the categorical notion of adjunctions: (− ⊗ B) is left adjoint to (B ⊸ −).
Dually, linear subtraction can be understood as follows:

A ⊢ B ` C if and only if A \ B ⊢ C

In other words, if A gives us B ` C then A excluding the possibility of B gives us C, and
conversely if A excluding B gives C then from A we can get B ` C.

In this dual setting, we must now find a definition of subtraction from a suitable unit which
acts as the additive inverse we desire. Since linear subtraction is dual to linear implication,
just as we can define implication in terms of the ` connective (i.e. A⊸ B ≡ A⊥ ` B), we
can similarly represent subtraction using the ⊗ connective, as B \ A ≡ B ⊗ A⊥.

Using this representation of linear subtraction, by duality we can show that a nontrivial
inverse to multiplicative disjunction ` exists in the context of linear type theory. Dually
to our definition of an inverse for multiplicative conjunction, we can define an inverse to
multiplicative disjunction as −τ ≜ ⊥ \ τ , via linear subtraction as discussed above.

Similarly to the lax identity τ−1 ⊗ τ ⊸ 1, the additive inverse −τ also satisfies a lax
inverse law, but in the opposite direction:

⊥⊸ τ ` −τ (8)

Via the identity between⊸ and ` and between \ and ⊗ then τ `−τ ∼= τ⊥ ⊸ (⊥⊗τ⊥). If we
had a type system involving both regular and coregular types with a duality operator the above
lax law (8) would be given constructively by the term λb.(λx.(b, x)) : ⊥⊸ τ⊥ ⊸ (⊥ ⊗ τ⊥).

8 Classical linear logic has an involutive duality operator, written (−)⊥, where (A & B)⊥ = A⊥ ⊕ B⊥

and (A ` B)⊥ = A⊥ ⊗ B⊥.

D. Marshall and D. Orchard 5:19

The applications of this identity are less apparent, as we cannot construct a witness for
it in the same way as the lax inverse law from Section 2 given the constraints of having to
choose between working with either regular or coregular types. If we were not constrained
by this limitation, we could have an algebraic structure with all four common mathematical
operations, with ⊥ acting as an additive identity and 1 acting as a multiplicative identity.9
Intuitionistic and cointuitionistic logic can be combined into a single framework, known as
bi-intuitionistic logic, and work on making sense of this through the lenses of type theory and
category theory is ongoing [15]; this could provide a way to combine regular and coregular
types in a single system.

Given the above definitions we can show a lax involution in one direction for additive
inverses. Between multiplicative conjunction and disjunction there is a distribution: (A ⊗
(B ` C))⊸ ((A ⊗ B) ` C) which is not an isomorphism, but it is a valid implication in this
direction [13]. Using this weak distribution, for all τ this lax involution is defined:

−(−τ) ∼= (⊥ \ (⊥ \ τ))
∼= ⊥ ⊗ (⊥ ⊗ τ⊥)⊥

∼= ⊥ ⊗ (1 ` τ)
⊸ (⊥ ⊗ 1) ` τ
∼= ⊥ ` τ
∼= τ

Interestingly, this kind of dichotomy between additive and multiplicative disjunction can also
be seen for conjunction. The multiplicative inverse we have defined for linear regular types
does not behave well if we attempt to apply it to the & operator (additive conjunction). We
cannot define a map A & (A⊸ 1)⊸ 1, because we can only use one of the two components
of the & on the left so we cannot apply the inverse to the A value. Furthermore, similarly to
⊗, we cannot in general define a map in the other direction as we would need to be able to
construct a value of an arbitrary type A from nothing.

In the end, linear logic cannot yet give us a field of types – it can only afford to give
us a ring or half a field (a semifield), but both at once is beyond our current budget. The
semifield interpretation however has the closest intuitions to familiar concepts in functional
programming, and linear regular types are certainly more frequently encountered than
coregular ones in the current programming landscape, hence our focus on them in this pearl.

8 Discussion: Thinking with Inverses

As we near the end of our journey, we remark on some alternate perspectives and approaches,
and some connections with related work.

Curry-Howard with inverses

From a logical standpoint, the (lax) inverse property we have discussed provides a natural
notion of inverse elimination and introduction in a natural deduction logic for a Curry-Howard
correspondent to a type’s inverse:

9 We still cannot, however, form a field even if we use ⊗ and ` as our operations; they do not obey
distributivity, A ⊗ ⊥ ̸∼= ⊥ (note for example that ⊤ ⊗ ⊥ ∼= ⊤), and indeed both types of inverse only
obey lax inverse laws, so the required isomorphisms for a field do not exist.

ECOOP 2022

5:20 How to Take the Inverse of a Type

Γ ⊢ p Γ ⊢ p−1

Γ, Γ′ ⊢ 1
−1 E

Γ, p ⊢ 1
Γ ⊢ p−1 −1 I

i.e., elimination is just a specialised modus ponens and an inverse p−1 is introduced by a
(linear) proof starting with p and concluding 1 – the subproof consumes the assumption p.

Duality

One may consider trying to use the classical linear logic notion of “duality” τ⊥ [20] to provide
multiplicative inverses, but it does not behave accordingly: 1 ⊗ 1⊥ = 1 ⊗ ⊥ = ⊥ but instead
we would like 1 ⊗ 1−1 ∼= 1. However, there are various interesting applications of linear and
classical duality relating call-by-value and call-by-name [53, 45]. These take advantage of
various properties of duality, some of which our inverses do indeed share.

Negative and fractional types

Despite the algebraic manipulation of data types producing a rich source of ideas, inverses
appear to have not had much consideration. One notable thread though is due to James and
Sabry, who consider negative and fractional types in the context of reversible computations
where a reciprocal 1/b “imposes constraints on [its] context” acting as a logical variable [24].
They present a reversible calculus admitting isomorphisms η : 1 ↔ (1/b)×b for all types: with
left-to-right direction producing a fresh logical variable α inhabiting b along with its dual,
and the inverse η−1 corresponding to unification of logical variables. Later they interpret this
categorical semantics computationally [12], defining a sound operational semantics for such
types, in which a negative type represents a computational effect that “reverses execution
flow” and a fractional type represents one that “garbage collects” values or throws exceptions.
This differs from our approach but certainly has some of the same flavour. We cannot
however construct a pair of a b−1 ⊗ b out of thin air for any b.

Cardinalities

As recalled in the introduction, the cardinality operation on types is a semiring homomorphism
from regular types to natural numbers (e.g., |a × b| = |a||b|). So what is the cardinality
of an inverse type? In a Cartesian setting a function τ → 1 simply has cardinality 1 since
|τ → 1| = |1||τ | = 1. In a linear setting without side effects (i.e., linear channels), we can
recover a similar result. As a simple example, consider the boolean type. The cardinality
of Bool is 2 as it has two elements: True and False. The cardinality of Inverse Bool, on
the other hand, is 1; the type has exactly one inhabitant: the boolDrop function shown in
Section 2.

We could however consider a different notion of cardinality that would allow for |τa|×|τ b| =
|τa+b| in general; this statement already holds for a ≥ 0 ∧ b ≥ 0, but now we consider cases
where the types are not necessarily isomorphic. In particular, we can examine the notion of
fractional cardinalities [44, 46] assigning a generalised cardinality of (1/|τ |)m to τ−m.

If we specialise this we can let a = 1 and b = −1 and see that |τ ⊗ τ−1| = |τ | × |τ−1| =
n × (1/n) = 1 = |1|; the two types have the same fractional cardinality even though we only
have a lax map from τ ⊗ τ−1 to 1. Of course, this does not match up with the standard idea
of cardinality on types, as it is clear that τ ⊗ τ−1 has at least as many inhabitants as τ . We
leave an interpretation for this as something for others to ponder.

D. Marshall and D. Orchard 5:21

Taylor series

As we have seen, it is not possible to form a field out of regular types (linear or otherwise),
because the additive operation that permits an inverse is not the same addition which
behaves like the logical ⊕ we would usually want. But it turns out that if we suspend our
disbelief and assume that types do form a field, some results from real analysis can be applied
with surprising success: Taylor series approximations can yield solutions to recursive types.
Consider the recursive definition of lists over elements of type α:

List α = 1 ⊕ (α ⊗ List α)

Through some unjustified algebraic rearrangement we get List α = 1
(1−α) on which we can

compute the Taylor expansion yielding the familiar least fixed-point solution of List α:

List α = 1 ⊕ α ⊕ α2 ⊕ α3 ⊕ . . .

i.e. a list is either empty, or has one element, or has two elements, etc.
This is quite surprising; we must apply the equations of a field to yield a derivation for

this result, using inverses we do not have access to in the realm of regular types, and yet we
end up with a result that makes sense using only regular operations. Whether there is an
interpretation of our inverses that can lend a meaningful foundation to these intermediate
manipulations is unclear, but would certainly be interesting to look into.

One might wonder whether it is coincidental that this result happens to hold true for
lists in particular, but this is not the case. Fiore and Leinster [16] show that, for all complex
numbers t and polynomials p, q1 and q2 with non-negative coefficients (with some restrictions),
then if t = p(t) implies q1(t) = q2(t) the same result also holds up to isomorphism in any
other semiring (as well as for complex numbers), which includes regular types.

This was applied to great effect for the example of finite binary trees to demonstrate
the famous “seven trees in one” result [9], showing that there is a particularly elementary
bijection (involving case distinctions only down to a fixed depth) between the set T of finite
binary trees and the set T 7 of 7-tuples of such trees. It is more difficult to find solutions
to more complex types via this kind of equational reasoning, though, particularly due to
the Abel-Ruffini theorem [2] which states that there is no solution in radicals to general
polynomial equations of degree five or higher.

9 Epilogue

Summary

Taking τ−1 ≜ τ ⊸ 1 yields a useful notion of multiplicative inverse for linear regular types.
We have seen this yields (lax) exponentiation laws in the presence of negative coefficients:

τ ⊗ τ−1 ⊸ 1 τa ⊗ τ−b ⊸ τa−b τ−a ⊗ τ−b ∼= τ−(a+b)

σ−a ⊗ τ−a ⊸ (σ ⊗ τ)−a τ ⊸ (τ−1)−1

for all a ≥ 0, b ≥ 0. The first lax identity is generalised by the second (Section 4). The fourth
is induced by −−1 being a monoidal functor (Section 3). The last lax identity becomes an
isomorphism τ ∼= (τ−1)−1 when sequentially realizable functions are permitted (Section 6).

ECOOP 2022

5:22 How to Take the Inverse of a Type

Fin

The algebraic characteristics of data types have been studied and leveraged since the dawn of
functional programming; we call them “algebraic” data types, after all. In the linear setting,
the idea of consumption as a lax multiplicative inverse has given us a fresh perspective on the
algebraic characterisation of regular linear types. Now that linear typing is becoming more
mainstream, e.g., in Haskell [6], and with closely related ideas arising in languages like Clean
and Rust (the concept of uniqueness which is in some sense dual to linearity [21, 14, 36],
and more sophisticated systems tracking ownership and borrowing [56]), this is now an
ideal time to start taking our algebraic understanding of data types to the next level. This
pearl has been a demonstration of how one weird trick can lead to a journey through many
interesting and diverse areas of our field. We hope that that this has stoked your enthusiasm
for investigating the idea of taking the inverse of a type even further.

References
1 Michael Abbott, Thorsten Altenkirch, Conor Mcbride, and Neil Ghani. ∂ for data: Differenti-

ating data structures. Fundam. Inf., 65(1–2):1–28, January 2005.
2 Niels Henrik Abel. Mémoire sur les equations algébriques, où l’on démontre l’impossibilité

de la résolution de l’équation générale du cinquième degré. 1:28–33, 1824. doi:10.1017/
CBO9781139245807.004.

3 Bernardo Almeida, Andreia Mordido, Peter Thiemann, and Vasco T. Vasconcelos. Polymorphic
context-free session types, 2021. arXiv:2106.06658.

4 Federico Aschieri and Francesco A. Genco. Par means parallel: Multiplicative linear logic
proofs as concurrent functional programs. Proc. ACM Program. Lang., 4(POPL), December
2019. doi:10.1145/3371086.

5 Gianluigi Bellin, Massimiliano Carrara, Daniele Chiffi, and Alessandro Menti. Pragmatic and
dialogic interpretations of bi-intuitionism. Part I. Logic and Logical Philosophy, 23(4):449–480,
2014.

6 Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R Newton, Simon Peyton Jones, and
Arnaud Spiwack. Linear Haskell: practical linearity in a higher-order polymorphic language.
Proceedings of the ACM on Programming Languages, 2(POPL):1–29, 2017.

7 Richard Bird and Oege de Moor. Algebra of Programming. Prentice-Hall, Inc., USA, 1997.
8 Richard S. Bird. Algebraic identities for program calculation. The Computer Journal, 32(2):122–

126, 1989.
9 Andreas Blass. Seven trees in one. Journal of Pure and Applied Algebra, 103(1):1–21, 1995.

10 Edwin Brady. Idris 2: Quantitative Type Theory in Practice. In Anders Møller and Manu
Sridharan, editors, 35th European Conference on Object-Oriented Programming (ECOOP
2021), volume 194 of Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–
9:26, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.ECOOP.2021.9.

11 Jacques Carette and Amr Sabry. Computing with semirings and weak rig groupoids. In
Proceedings of the 25th European Symposium on Programming Languages and Systems - Volume
9632, pages 123–148, Berlin, Heidelberg, 2016. Springer-Verlag.

12 Chao-Hong Chen and Amr Sabry. A computational interpretation of compact closed categories:
Reversible programming with negative and fractional types. Proc. ACM Program. Lang.,
5(POPL), January 2021. doi:10.1145/3434290.

13 J.R.B. Cockett and R.A.G. Seely. Weakly distributive categories. Journal of Pure and Applied
Algebra, 114(2):133–173, 1997. doi:10.1016/0022-4049(95)00160-3.

14 Edsko de Vries, Rinus Plasmeijer, and David M Abrahamson. Uniqueness typing simplified.
In Symposium on Implementation and Application of Functional Languages, pages 201–218.
Springer, 2007. doi:10.1007/978-3-540-85373-2_12.

https://doi.org/10.1017/CBO9781139245807.004
https://doi.org/10.1017/CBO9781139245807.004
http://arxiv.org/abs/2106.06658
https://doi.org/10.1145/3371086
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.1145/3434290
https://doi.org/10.1016/0022-4049(95)00160-3
https://doi.org/10.1007/978-3-540-85373-2_12

D. Marshall and D. Orchard 5:23

15 Harley Eades III and Gianluigi Bellin. A cointuitionistic adjoint logic, 2017. arXiv:1708.05896.
16 Marcelo Fiore and Tom Leinster. Objects of categories as complex numbers. Advances in

Mathematics, 190(2):264–277, 2005. doi:10.1016/j.aim.2004.01.002.
17 Simon J. Gay and Vasco Thudichum Vasconcelos. Linear type theory for asynchronous session

types. J. Funct. Program., 20(1):19–50, 2010. doi:10.1017/S0956796809990268.
18 Jeremy Gibbons. Calculating functional programs. In Algebraic and Coalgebraic Methods in

the Mathematics of Program Construction, pages 151–203. Springer, 2002.
19 Jeremy Gibbons. The school of Squiggol - A history of the Bird-Meertens formalism. In

Formal Methods. FM 2019 International Workshops - Porto, Portugal, October 7-11, 2019,
Revised Selected Papers, Part II, pages 35–53, 2019. doi:10.1007/978-3-030-54997-8_2.

20 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.
21 Dana Harrington. Uniqueness logic. Theoretical Computer Science, 354(1):24–41, 2006.
22 Gérard Huet. The zipper. Journal of Functional Programming, 7(5):549–554, 1997.
23 Jack Hughes, Michael Vollmer, and Dominic Orchard. Deriving distributive laws for graded

linear types. In TLLA/Linearity, 2020.
24 Roshan P James and Amr Sabry. The Two Dualities of Computation: Negative and Fractional

Types. Technical report, Indiana University, 2012.
25 Shoaib Kamil, Kaushik Datta, Samuel Williams, Leonid Oliker, John Shalf, and Katherine

Yelick. Implicit and explicit optimizations for stencil computations. In Proceedings of the 2006
Workshop on Memory System Performance and Correctness, pages 51–60, 2006.

26 G Maxwell Kelly. Coherence theorems for lax algebras and for distributive laws. In Category
seminar, pages 281–375. Springer, 1974.

27 Wen Kokke and Ornela Dardha. Deadlock-free session types in linear Haskell. In Proceedings
of the 14th ACM SIGPLAN International Symposium on Haskell, pages 1–13, 2021.

28 Serge Lang. Algebra. Springer, New York, NY, 2002.
29 Gottfried Wilhelm Leibniz. Nova methodus pro maximis et minimis, itemque tangentibus,

qua nec irrationals quantitates moratur. Acta eruditorum, 1684.
30 Sam Lindley and J Garrett Morris. A semantics for propositions as sessions. In European

Symposium on Programming Languages and Systems, pages 560–584. Springer, 2015.
31 Sam Lindley and J Garrett Morris. Lightweight functional session types. Behavioural Types:

from Theory to Tools. River Publishers, pages 265–286, 2017.
32 John Longley. When is a functional program not a functional program? In ACM SIGPLAN

Notices, volume 34(9), pages 1–7. ACM, 1999.
33 John Longley. The sequentially realizable functionals. Ann. Pure Appl. Log., 117(1-3):1–93,

2002. doi:10.1016/S0168-0072(01)00110-5.
34 Saunders Mac Lane. Categories for the Working Mathematician, volume 5. Springer Science

& Business Media, 2013.
35 Daniel Marshall and Dominic Orchard. Replicate, reuse, repeat: Capturing non-linear

communication via session types and graded modal types. Proceedings of PLACES 2022,
Electronic Proceedings in Theoretical Computer Science, 356:1–11, March 2022. doi:10.4204/
eptcs.356.1.

36 Daniel Marshall, Michael Vollmer, and Dominic Orchard. Linearity and Uniqueness: An
Entente Cordiale. In Ilya Sergey, editor, Programming Languages and Systems, pages 346–375,
Cham, 2022. Springer International Publishing.

37 Conor McBride. The derivative of a regular type is its type of one-hole contexts. Unpublished
manuscript, pages 74–88, 2001.

38 Conor McBride. Clowns to the left of me, jokers to the right (pearl): Dissecting data structures.
SIGPLAN Not., 43(1):287–295, January 2008. doi:10.1145/1328897.1328474.

39 J. Garrett Morris. The best of both worlds: linear functional programming without compromise.
In Jacques Garrigue, Gabriele Keller, and Eijiro Sumii, editors, Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan,
September 18-22, 2016, pages 448–461. ACM, 2016. doi:10.1145/2951913.2951925.

ECOOP 2022

http://arxiv.org/abs/1708.05896
https://doi.org/10.1016/j.aim.2004.01.002
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1007/978-3-030-54997-8_2
https://doi.org/10.1016/S0168-0072(01)00110-5
https://doi.org/10.4204/eptcs.356.1
https://doi.org/10.4204/eptcs.356.1
https://doi.org/10.1145/1328897.1328474
https://doi.org/10.1145/2951913.2951925

5:24 How to Take the Inverse of a Type

40 Peter Morris, Thorsten Altenkirch, and Conor McBride. Exploring the regular tree types. In
International Workshop on Types for Proofs and Programs, pages 252–267. Springer, 2004.

41 Dominic Orchard. Programming contextual computations. Technical report, University of
Cambridge, Computer Laboratory, 2014.

42 Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. Quantitative program
reasoning with graded modal types. Proceedings of the ACM on Programming Languages,
3(ICFP):1–30, 2019.

43 Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. Coeffects: a calculus of context-
dependent computation. In Proceedings of the 19th ACM SIGPLAN International Conference
on Functional Programming, Gothenburg, Sweden, September 1-3, 2014, pages 123–135, 2014.
doi:10.1145/2628136.2628160.

44 James Propp. Euler measure as generalized cardinality. arXiv: Combinatorics, 2002.
45 Ben Rudiak-Gould, Alan Mycroft, and Simon Peyton Jones. Haskell is not not ML. In

European Symposium on Programming, pages 38–53. Springer, 2006.
46 Stephen H. Schanuel. Negative sets have Euler characteristic and dimension. In Aurelio

Carboni, Maria Cristina Pedicchio, and Guiseppe Rosolini, editors, Category Theory, pages
379–385, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.

47 Rui Shi and Hongwei Xi. A linear type system for multicore programming in ATS. Science of
Computer Programming, 78(8):1176–1192, 2013. doi:10.1016/j.scico.2012.09.005.

48 Kornel Szlachányi. Skew-monoidal categories and bialgebroids. Advances in Mathematics,
231(3-4):1694–1730, 2012.

49 Jesse A. Tov and Riccardo Pucella. Practical affine types. In Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin,
TX, USA, January 26-28, 2011, pages 447–458, 2011. doi:10.1145/1926385.1926436.

50 Tarmo Uustalu, Niccolò Veltri, and Noam Zeilberger. The sequent calculus of skew monoidal
categories. Electronic Notes in Theoretical Computer Science, 341:345–370, 2018.

51 Philip Wadler. Linear types can change the world! In Programming Concepts and Methods,
volume 3(4), page 5. Citeseer, 1990.

52 Philip Wadler. The essence of functional programming. In Proceedings of the 19th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 1–14, 1992.

53 Philip Wadler. Call-by-value is dual to call-by-name. In Proceedings of the eighth ACM
SIGPLAN International Conference on Functional Programming, pages 189–201, 2003.

54 Philip Wadler. Propositions as sessions. Journal of Functional Programming, 24(2-3):384–418,
2014.

55 David Walker. Substructural type systems. Advanced Topics in Types and Programming
Languages, pages 3–44, 2005.

56 Aaron Weiss, Olek Gierczak, Daniel Patterson, and Amal Ahmed. Oxide: The essence of Rust,
2021. arXiv:1903.00982.

57 Nobuko Yoshida and Vasco T Vasconcelos. Language primitives and type discipline for
structured communication-based programming revisited: Two systems for higher-order session
communication. Electronic Notes in Theoretical Computer Science, 171(4):73–93, 2007.

A Regular Linear Types

The type syntax for linear regular types (as discussed in Section 1) is as follows.

τ ::= τ ⊗ τ ′ | τ ⊕ τ ′ | 1 | 0 | X | µX.τ

where X ranges over recursion variables. We mostly focus on the non-recursive subset (just
the first four constructs above), although recursive types make an appearance in Section 5
and we include them here for coherence with the usual description of regular types in the
literature. Throughout we use τ and σ to range over types and also A, B, C, D.

https://doi.org/10.1145/2628136.2628160
https://doi.org/10.1016/j.scico.2012.09.005
https://doi.org/10.1145/1926385.1926436
http://arxiv.org/abs/1903.00982

D. Marshall and D. Orchard 5:25

The typing rules for linear regular types are as follows, which includes their standard
term formers.

x : A ⊢ x : A
var Γ ⊢ t : A ∆ ⊢ t′ : B

Γ, ∆ ⊢ (t, t′) : A ⊗ B
⊗I Γ ⊢ t : A ⊗ B ∆, u : A, v : B ⊢ t′ : C

Γ, ∆ ⊢ let (u, v) = t in t′ : C
⊗E

⊢ ∗ : 11I Γ ⊢ t : 1 ∆ ⊢ t′ : C

Γ, ∆ ⊢ let () = t in t′ : C
1E Γ ⊢ t : A

Γ ⊢ inl t : A ⊕ B
⊕IL

Γ ⊢ t : B

Γ ⊢ inr t : A ⊕ B
⊕IR

Γ ⊢ t : A ⊕ B ∆, u : A ⊢ t′ : C ∆, v : B ⊢ t′′ : C

Γ, ∆ ⊢ case t of inl u → t′ | inr v → t′′ : C
⊕E

Note that in the above we do not include the linear function space τ ⊸ τ ′ since we considered
just the syntax of regular types in Section 1, but linear functions are used throughout the
paper. Their introduction and elimination rules are:

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A⊸ B

Γ ⊢ t : A⊸ B ∆ ⊢ t′ : A

Γ, ∆ ⊢ t t′ : B

As stated in Section 1, (linear) regular types behave like a commutative semiring, i.e., ⊗
and ⊕ are both commutative and associative with 1 and 0 as their corresponding units, with
distributivity, but all up to isomorphism.
A ⊗ (B ⊗ C) ∼= (A ⊗ B) ⊗ C

A ⊗ B ∼= B ⊗ A

1 ⊗ A ∼= A

A ⊕ (B ⊕ C) ∼= (A ⊕ B) ⊕ C

A ⊕ B ∼= B ⊕ A

A ⊕ 0 ∼= A

A ⊗ (B ⊕ C) ∼= (A ⊗ B) ⊕ (A ⊗ C)
(B ⊕ C) ⊗ A ∼= (B ⊗ A) ⊕ (C ⊗ A)

A ⊗ 0 ∼= 0

All of the above isomorphisms are witnessed by pairs of mutually inverse functions.
Regular types also permit a notion of (positive) exponent, with τa defined inductively as:

τ0 = 1 τa+1 = τ ⊗ τa

The usual positive exponent laws then hold up to isomorphism via associativity and commut-
ativity (and removal of units in the case of the leftmost isomorphism), for all a ≥ 0, b ≥ 0:

τ1 ∼= τ τa ⊗ τ b ∼= τa+b (τa)b ∼= τab (σ ⊗ τ)a ∼= σa ⊗ τa

A.1 Equations
This calculus has equations for (bi)functoriality of ⊗ and ⊕:

id ⊗ id = id id ⊕ id = id

(f ⊗ g) ◦ (h ⊗ k) = (f ◦ h) ⊗ (g ◦ k) (f ⊕ g) ◦ (h ⊕ k) = (f ◦ h) ⊕ (g ◦ k)

The following equations are on the interaction of cotupling, injections and the ⊕ bifunctor,
which are subset of those from Gibbons [18] that are derivable for the coproduct part of
linear regular types:

[f, g] ◦ inl = f [h ◦ inl, h ◦ inr] = h [f, g] ◦ (h ⊕ k) = [f ◦ h, g ◦ k]
[f, g] ◦ inr = g [inl, inr] = id h ◦ [f, g] = [h ◦ f, h ◦ g]

The usual axioms for a (lax) monoidal functor hold for the (contravariant) inverse functor.
These axioms are as follows:
mmult ◦ (munit ⊗ id) ◦ λi = λ⊖1 :A−1 ⊸ (1 ⊗ A)−1

mmult ◦ (id ⊗ munit) ◦ ρi = ρ⊖1 :A−1 ⊸ (A ⊗ 1)−1

mmult ◦ (mmult ⊗ id) ◦ αi = α⊖1◦ mmult ◦(id ⊗ mmult) :A−1⊗(B−1⊗C−1)⊸((A ⊗ B) ⊗ C)−1

where α is associativity and λ : 1 ⊗ A⊸ A and ρ : A ⊗ 1⊸ A (and their inverses λi and ρi)
witness the unit properties of ⊗.

ECOOP 2022

5:26 How to Take the Inverse of a Type

B Involution is an Isomorphism

We show that for all τ , then τ−1 is a sequentially realizable involution up to isomorphism,
i.e., (τ−1)−1 ∼= τ , with τ ⊸ ((τ ⊸ 1)⊸ 1) implemented as λx.λf.f x (see Section 6) and
the converse direction as follows, using the syntax of GV calculus (as formulated by [30])
rather than Granule as shown in Section 6, of type ((τ ⊸ 1)⊸ 1)⊸ τ :

(λk.let (x, c) = recv(fork(λc.k(λx.send c x))) in let () = wait c in x)

In order to prove that τ−1 is an involution up to isomorphism, we need to show that the
functions i : τ ⊸ ((τ ⊸ 1)⊸ 1 and j : ((τ ⊸ 1)⊸ 1)⊸ τ are mutually inverse, or in other
words that j(i(t)) = t : τ and i(j(h)) = h : (τ ⊸ 1)⊸ 1.

We leverage the βη-equality theory of GV based on its operational semantics given by [30],
which is the same operational semantics for channels implemented in Granule [42].

We show both directions separately, as follows:

j(i(t)) = (λk.let (x, c) = recv(fork(λc.k(λx.send c x))) in let () = wait c in x)(λf.f t)
= (let (x, c) = recv(fork(λc.(λf.f t)(λx.send c x))) in let () = wait c in x)
= (let (x, c) = recv(fork(λc.(λx.send c x)t)) in let () = wait c in x)
= (let (x, c) = recv(fork(λc.send c t)) in let () = wait c in x)

Checking the typing of the inner expression, we have:

λc.send c t : Chan(!τ.end!)⊸ Chan(end!)
fork(λc.send c t) : Chan(?τ.end?)

recv(fork(λc.send c t)) : τ ⊗ Chan(end?)

So we have the binding (x, c) : τ ⊗ Chan(end?). Applying the global configuration semantics
of GV [30, Figure 4], we then get the following:

let (x, c) = recv(fork(λc.send c t)) in let () = wait c in x)
(Lift+Fork)⇝ (νc)(let (x, c) = recv c in let () = wait c in x) | (send c t)
(Lift+Send)⇝ (νc)(let (x, c) = (t, c) in let () = wait c in x) | c

(LiftV)⇝ (νc)(let () = wait c in t) | c
(Lift+Wait)⇝ let () = () in t

(LiftV)⇝ t

Thus, j(i(t)) = t : τ as required.
In the opposite direction of the isomorphism we then have, h : (τ−1)−1 with

i(j(h)) = (λx.λf.f x)(let (x, c) = recv(fork(λc.h(λx.send c x))) in let () = wait c in x)
= (λf.f (let (x, c) = recv(fork(λc.h(λx.send c x))) in let () = wait c in x))
= let (x, c) = recv(fork(λc.h(λx.send c x))) in let () = wait c in (λf.f x)

Similarly to the first case, we then have the inner typing:

λx.send c x : τ ⊸ Chan(end!)
h(λx.send c x) : Chan(end!)

fork(h(λx.send c x)) : Chan(?τ.end?)
recv(fork(h(λx.send c x))) : τ ⊗ Chan(end?)

D. Marshall and D. Orchard 5:27

So, again, (x, c) : τ ⊗ Chan(end?).
Applying the global configuration semantics of GV [30, Figure 4], we get:

let (x, c) = recv(fork(λc.h(λx.send c x))) in let () = wait c in (λf.f x)
(Lift+Fork)⇝ (νc) (let (x, c) = recv c in let () = wait c in (λf.f x) | h (λx.send c x))

Recall that h : (τ ⊸ 1) ⊸ 1 therefore we know that h must necessarily use the input
parameter, applying it to some t : τ , therefore after some reduction in h (λx.send c x) we get
some let c′ = send c t in h′ : () and some configuration C in the case that evaluating to this
point had some other communication effects. Note that c′ is not in the free variables of h′

since the session typing tells us it is unused, i.e. c′ : Chan(end!).
Then we get the continuing reduction sequence:

(LiftV∗)⇝∗ (νc) (let (x, c) = recv c in let() = wait c in(λf.f x) | let c′ = send c t in h′ | C)
(Lift+Send)⇝ (νc) (let (x, c) = (t, c) in let() = wait c in(λf.f x) | let c′ = c in h′ | C)

(LiftV)⇝ (νc) (let () = wait c in (λf.f t) | let c′ = c in h′ | C)
(Lift+Wait)⇝ (λf.f t) | h′ | C

The result is a term that behaves like the original h; applying the term t from inside h to
the continuation to f results in a configuration C and has some remaining reduction to do
as h′. Thus i(j(h)) = h : (τ ⊸ 1)⊸ 1 as required.

ECOOP 2022

	1 Prologue: Consuming with Inverses
	2 Programming with Inverses
	3 Calculating with Inverses
	4 Exponentiation with Inverses
	5 Differentiating with Inverses
	6 Communicating with Inverses
	7 Additive Inverses
	8 Discussion: Thinking with Inverses
	9 Epilogue
	A Regular Linear Types
	A.1 Equations

	B Involution is an Isomorphism

