
Functional Programming with Datalog
André Pacak
JGU Mainz, Germany

Sebastian Erdweg
JGU Mainz, Germany

Abstract
Datalog is a carefully restricted logic programming language. What makes Datalog attractive is its
declarative fixpoint semantics: Datalog queries consist of simple Horn clauses, yet Datalog solvers
efficiently compute all derivable tuples even for recursive queries. However, as we argue in this
paper, Datalog is ill-suited as a programming language and Datalog programs are hard to write
and maintain. We propose a “new” frontend for Datalog: functional programming with sets called
functional IncA. While programmers write recursive functions over algebraic data types and sets,
we transparently translate all code to Datalog relations. However, we retain Datalog’s strengths:
Functions that generate sets can encode arbitrary relations and mutually recursive functions have
fixpoint semantics. We also ensure that the generated Datalog program terminates whenever the
original functional program terminates, so that we can apply off-the-shelve bottom-up Datalog
solvers. We demonstrate the versatility and ease of use of functional IncA by implementing a type
checker, a program transformation, an interpreter of the untyped lambda calculus, two data-flow
analyses, and clone detection of Java bytecode.

2012 ACM Subject Classification Software and its engineering → Software notations and tools

Keywords and phrases Datalog, functional programming, demand transformation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.7

1 Introduction

Datalog is a carefully restricted logic programming language that has seen a surge in popularity
in recent years. Originally, Datalog was conceived as a database query language that operates
on finite sets only [15], so that all queries are guaranteed to terminate. Nowadays, Datalog is
being used in a wide array of applications [12], from program analysis [10, 13, 23] to network
monitoring [1] and distributed computing [2, 3]. What makes Datalog so popular is that (i)
there are highly efficient and scalable implementations available and (ii) Datalog programs
are considered declarative. We argue that the latter is partly a misconception: Datalog’s
semantics is declarative, but Datalog’s frontend is not.

Datalog is often primed as being declarative. This can be surprising given that a Datalog
program consists of simple Horn clauses (a0 :- a1, ..., an), where a0 holds if a1 through an

hold. In Datalog, a0 is called the head of the rule and a1, ..., an form the body of the rule.
Both head and body consist of atoms a, which are of the form R(t1, ..., tn) for some relation
R and terms t. A Datalog solver computes the least fixpoint of the Horn clauses such that
the relations R contain all derivable ground tuples, called facts in Datalog. In the initial
fixpoint iteration, the semantics collects all rule heads a0 that have no precondition. In
subsequent fixpoint iterations, the semantics collects all facts that can be derived by applying
rules to previously derived facts. When terms range over finite sets, this fixpoint iteration
terminates in finitely many steps. We concur that Datalog has a declarative semantics,
because programmers do not need to think about how the derivable facts are computed.

The problem of Datalog is its frontend: It is ill-suited as a programming language and
not declarative. Consider we want to construct control-flow graphs as a basis for program
analysis. Figure 1 shows a functional program and a Datalog program that construct the

© André Pacak and Sebastian Erdweg;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 7; pp. 7:1–7:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECOOP.2022.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Functional Programming with Datalog

// Functional programming
def flow(stm: Stm): Set[(Stm, Stm)] = stm match {

case Assign(x, a) => {}
case Sequence(s1, s2) => flow(s1) ++ flow(s2) ++ {(l1, init(s2)) | l1 in final(s1)}
case If(c, s1, s2) => c match {

case True() => flow(s1) ++ {(stm, init(s1))}
case False() => flow(s2) ++ {(stm, init(s2))}
case _ => flow(s1) ++ flow(s2) ++ {(stm, init(s1)), (stm, init(s2))} }

case While(c, s) => flow(s) ++ {(stm, init(s))} ++ {(l,stm) | l in final(s)} }

// Datalog
flow(Stm, From, To) :- sequence(Stm, Stm1, _), flow(Stm1, From, To).
flow(Stm, From, To) :- sequence(Stm, _, Stm2), flow(Stm2, From, To).
flow(Stm, From, To) :- sequence(Stm, Stm1, Stm2), final(Stm1, From), init(Stm2, To).
flow(Stm, From, To) :- if(Stm, C, Stm1, _), true(C), flow(Stm1, From, To).
flow(Stm, Stm, To) :- if(Stm, C, Stm1, _), true(C), init(Stm1, To).
flow(Stm, From, To) :- if(Stm, C, _, Stm2), false(C), flow(Stm2, From, To).
flow(Stm, Stm, To) :- if(Stm, C, _, Stm2), false(C), init(Stm2, To).
flow(Stm, From, To) :- if(Stm, C, Stm1, _), not true(C), not false(C), flow(Stm1,From,To).
flow(Stm, Stm, To) :- if(Stm, C, Stm1, _), not true(C), not false(C), init(Stm1,To).
flow(Stm, From, To) :- if(Stm, C,_,Stm2), not true(C), not false(C), flow(Stm2,From,To).
flow(Stm, Stm, To) :- if(Stm, C,_,Stm2), not true(C), not false(C), init(Stm2,To).
flow(Stm, From, To) :- while(Stm, _, Stm1), flow(Stm1, From, To).
flow(Stm, Stm, To) :- while(Stm, _, Stm1), init(Stm1, To).
flow(Stm, From, Stm) :- while(Stm, _, Stm1), final(Stm1, From).

Figure 1 Constructing control-flow graphs using functional programming and Datalog.

control-flow graphs for the While language. The functional program uses pattern matching
and set-comprehensions to compute sets of edges similar to [16], whereas the Datalog program
provides rules to constrain the logic variables From and To. The most prominent problem with
Datalog in this example is the lack of structured programming and the duplication of atoms,
especially for if -statements: we must query relation if 8 times, relation true 6 times, and
relation false 6 times. Such Datalog code is hard to write and maintain. Another problem
with programming Datalog is that rules must be range-restricted: Each variable in the head
of a rule must be bound in the body of the rule. This restriction ensures relations can be
computed using Datalog’s least fixpoint semantics. For example, the increment relation
inc(X, Y) :- Y=X+1 would be correctly rejected by Datalog solvers such as Soufflé [20], because
X is not bound in the rule’s body. Datalog programmers need to work around this restriction.

So why would programmers want to use Datalog anyways instead of functional program-
ming? Because of Datalog’s declarative fixpoint semantics, which makes it easy to process
cyclic data structures such as our control-flow graphs from above. For example, we can
compute the transitive control-flow reachability with two simple rules:

flowTrans(Prog, From, To) :- flow(Prog, From, To).
flowTrans(Prog, From, To) :- flow(Prog, From, Inter), flowTrans(Prog, Inter, To).

What is remarkable is that we do not have to implement a termination condition and or
detect when the relations are stable; Datalog takes care of that. This is why Datalog is a
popular implementation language for data-flow analyses that propagate information along
the control-flow graph until reaching a fixpoint [10], despite the shortcomings of its frontend.

In this paper, we design a functional programming language with fixpoint semantics
and propose it as a “new” Datalog frontend: functional IncA. In particular, we show how
functional programs with first-order functions and recursive algebraic data types can be

A. Pacak and S. Erdweg 7:3

def entry_var(stm: Stm, prog: Stm, x: String): Val =
fold(BotVal(), joinVal, {exit_var(pred, prog, x) | (pred,stm) in flow(prog)})

def exit_var(stm: Stm, prog: Stm, x: String): Val = stm match {
case Assign(y, exp) =>

if (x == y) aeval(exp, stm, prog)
else entry_var(stm, prog, x)

case ... }
def aeval(exp: Exp, node: Stm, prog: Stm): Val = exp match {

case Var(x) => entry_var(node, prog, x)
case ... }

Figure 2 A data-flow analysis using functional programming with fixpoint semantics.

faithfully translated to negation-free Datalog. A key idea of our approach is to systematically
track the demand on functions: Which inputs must a function be run on to obtain the
computation’s final result. Since terminating functional programs only consider finitely many
inputs, we can track these inputs in Datalog relations. For programs without algebraic data
types, we can adopt a standard demand transformation [25]. However, for algebraic data
types we need to carefully instrument the demand transformation to encode constructors and
selectors through finite relations. Our translation preserves the semantics of the functional
program and, in particular, the resulting Datalog program terminates whenever the functional
program does. The translation targets Datalog with base types and operations on such types
such as integers, float, strings, booleans as well as algebraic data types. The most common
Datalog dialects such as Soufflé, IncA, Flix and Formulog all support these types. Whenever
we reference Datalog we mean Datalog with the extensions listed above.

Functional IncA replaces Datalog’s logic programming frontend, but we retain Datalog’s
key advantages: relations with fixpoint semantics. Specifically, we extend functional IncA
with set types and set operations (comprehensions, union, and folds) such that programmers
can describe and aggregate over relations. For example, Figure 2 shows a data-flow analysis
implemented in functional IncA. The analysis queries the control-flow graph flow and propa-
gates information about the value of variables (abstracted as intervals) along the control-flow
graph. Note that entry_var, exit_var, and aeval are mutually recursive and that there is no
termination condition (the program diverges under standard functional semantics). Despite
using functional programming as a frontend, all code compiles to Datalog rules, which is a key
advantage of our approach for two reasons. First, programmers can rely on the declarative
Datalog semantics to find the least fixpoint. Second, we can use any existing Datalog solver
to run the program, whereas prior Datalog dialects usually require a custom Datalog solver.

We have implemented functional IncA as part of the incremental Datalog framework
IncA [23]. We translate functional IncA into a Datalog IR and provide two backends:
one targeting IncA directly, the other targeting Soufflé [20]. While the IncA backend
provides incremental re-evaluation after input changes, the Soufflé backend provides better
non-incremental performance. The choice of the backend is transparent for the user of
the frontend, except that Soufflé does not support user-defined aggregations. We have
implemented three case studies using functional IncA. First, we implemented a type checker
for the simply-typed lambda calculus, a type-erasure transformation for the same, and an
interpreter for the untyped lambda calculus. While the encoding of type checkers in Datalog
has recently been explored [17], we are the first to support program transformations and
interpreters for Turing-complete languages in Datalog without relying on an embedded
functional programming language. Second, we implemented textbook reaching definitions
and interval analyses. Both analyses are flow-sensitive and compute a fixpoint over the

ECOOP 2022

7:4 Functional Programming with Datalog

control-flow graph. Last, we implement clone detection of Java bytecode which is represented
as Soufflé facts. We generate abstract syntax trees by querying Soufflé relations. We then
use the abstract syntax trees to determine if two methods are alpha-equivalent in respect to
their identifiers and labels. Our case studies show that functional IncA is expressive and easy
to use. Early performance measurements indicate that reusing established Datalog solvers
yields more efficient execution times.

Practically speaking, we consider functional IncA to be a stepping stone for the compilation
of other languages to Datalog. On one hand, our encoding paves the road for transferring
years of research on functional programming languages to Datalog. For example, we show in
this paper how standard defunctionalization [18] can be used to add first-class functions and
first-class relations to functional IncA. Defunctionalization translates first-class functions to
first-order functions and algebraic data types, which we can then compile to Datalog. On
the other hand, we believe that our methodology for supporting user-defined functions and
user-defined data types can be used to compile domain-specific languages to Datalog. We
leave this avenue of research for future work.

In summary, we present the following contributions:
We identify 5 principles that are necessary for the semantics-preserving translation of
first-order functions to Datalog. We define the translation formally and adapt a demand
transformation. This constitutes the first version of functional IncA (Section 3).
We show how to compile user-defined algebraic data types to Datalog and extend functional
IncA accordingly (Section 4).
We add sets and set operations to functional IncA, extend the translation, and show
how standard defunctionalization can be used to add first-class functions and first-class
relations (Section 6).
We demonstrate the expressiveness and ease of use of functional IncA by implementing a
type checker, program transformation, and interpreter for the lambda calculus (Section 5),
data-flow analyses for the While language (Subsection 7.1), and clone detection of Java
bytecode (Subsection 7.2).
We provide two backends for functional IncA, one targeting the incremental Datalog solver
used by IncA, the other targeting the non-incremental Datalog solver Soufflé (Section 8).

2 Datalog Frontends: State of the Art

We are by far not the first to recognize the shortcomings of Datalog’s frontend. Two opposing
approaches have been explored in prior work to improve the expressiveness and/or usability
of Datalog. We call these approaches backend-first and frontend-first and discuss them below.

Backend-first approach. The backend-first approach uses existing Datalog solvers as a
starting point and extends them with new language features. Usually, extensions considered
in the backend-first approach aim to increase the expressivity of Datalog, but sometimes
also focus on usability. The backend-first approach has a long tradition in Datalog solvers
and some features have become standard nowadays. For example, Datalog solvers support
stratified negation and arithmetic operations, even though neither is part of core Datalog [15].

Modern Datalog solvers provide a range of different extensions that their users can choose
from. For example, Soufflé [19] provides records, algebraic data types, and user-defined
functions; Viatra Query [29], the Datalog solver used by IncA, supports user-defined data
types and recursive aggregation over user-defined functions [22, 23]. While all of these
features improve the frontend and make Datalog programming easier, the core language
design remains the same: Horn clauses.

A. Pacak and S. Erdweg 7:5

Horn clauses (a0 :- a1, ..., an) encode implications (a1 ∧ ... ∧ an → a0). We argue Horn
clauses are inadequate as a programming language, since they inhibit structured programming
and enforce a flat structure. For example, a nested function call res = f(g(h(x))) becomes:

R(x, res) :- h(x, y), g(y, z), f(z, res)

That is, we must flatten the call chain. Or consider an expression that contains nested condi-
tionals (if (b1) x1 else x2) + (if (b2) x3 else x4), which becomes 4 separate Horn clauses:

R(b1, b2, x1, x2, x3, x4, res) :- b1, b2, res = x1 + x3.
R(b1, b2, x1, x2, x3, x4, res) :- b1, !b2, res = x1 + x4.
R(b1, b2, x1, x2, x3, x4, res) :- !b1, b2, res = x2 + x3.
R(b1, b2, x1, x2, x3, x4, res) :- !b1, !b2, res = x2 + x4.

These encodings are cumbersome to work with; they make programming and maintenance
unnecessarily difficult. We would much rather use functional programming as a frontend.

While the backend-first approach does not fundamentally improve Datalog’s frontend, it
has one decisive advantage: It leverages existing solvers. These solvers are often the result of
years of research and engineering. They automatically optimize Datalog programs, employ
highly optimized data structures and algorithms, support profiling and debugging, provide
incremental execution, and more. When designing new Datalog frontends, we should aim to
reuse these systems. However, the state of the art moves in another direction.

Frontend-first approach. Quite a few recent research projects try to improve the frontend
of Datalog by designing new DSLs to be used in its stead. We call these approaches frontend-
first because the newly designed frontend is their starting point. In particular, frontend-first
approaches do not build on top of an existing solver but develop a new solver specific to the
newly designed frontend. This allows for great flexibility in the frontend’s design.

For example, Flix [14] provides a Datalog frontend extended with lattices and monotonic
functions. Flix embeds its Datalog frontend into a functional programming language, where
constraints are first-class and can be generated at run time [13]. Formulog [9] provides a
Datalog frontend extended with a data type for constructing SMT formulas and a constraint
for solving them. While Formulog constraints are not first-class, the Datalog frontend is also
embedded into a functional programming language. In both Flix and Formulog, the Datalog
constraints can invoke functional code to assert a property or to construct new terms. In
Formulog, functional code can also recursively query Datalog relations. While both systems
present interesting designs, they also both implement their own Datalog solvers and do not
benefit from prior engineering efforts.

Datafun [6] proposes a more drastic redesign for Datalog, namely as a higher-order
functional programming language with fixpoint semantics. Datafun functions can accept and
produce relations and the language supports the aggregation over lattices. As such, we believe
Datafun’s frontend is a well-suited replacement for Datalog. However, there are two limiting
factors, First, in contrast to other modern implementations of Datalog, Datafun programs
are constructor-free and enforce termination. While this equips Datafun with a nicer theory,
it is a practical limitation, although one that could be easily eliminated. Second, like Flix
and Formulog above, Datafun provides its own Datalog solver and existing optimizations
and advances in Datalog engines have to be retrofitted to Datafun. For example, semi-naïve
evaluation had to be adapted for Datafun [5], even though it has been the standard bottom-up
evaluation model for a long time [27].

ECOOP 2022

7:6 Functional Programming with Datalog

Our approach: Frontend compilation. We would like to achieve the best of both prior
approaches: Build on top of existing Datalog solvers as in the backend-first approach, but be
free to design functional and domain-specific frontends as in the frontend-first approach. The
solution to this problem is compilation: By compiling the frontend language to Datalog, we
can use existing solvers to run programs. This way, Datalog really becomes the intermediate
representation (IR) of a compiler framework, where different Datalog frontends all generate
the same Datalog IR. This architecture is well-known from existing compiler frameworks
such as LLVM; we propose to adopt it for Datalog.

Although frontend compilation may seem like the obvious solution, it is difficult to
implement. The problem is that Datalog imposes severe restrictions on programs, so that
bottom-up evaluation is well-defined and terminates. When generating Datalog code, we
must adhere to these restrictions. In the remainder of this paper, we show how a first-order
functional language (Section 3) with algebraic data types (Section 4), and sets (Section 6)
can be compiled to Datalog. In doing so, we will solve key challenges regarding user-defined
functions and user-defined data types that can be transferred to other frontends.

3 Compiling First-Order Functions to Datalog

We want to provide a functional-programming frontend for Datalog. In this section, we
tackle the first step in this direction: Compiling user-defined first-order functions to Datalog.
While we already outlined why this is challenging in the introduction, here we revisit the
problem with a more involved example before presenting our solution.

3.1 Compilation by example
In this paper and in our implementation, we use a simple functional frontend language that
features first-order function definitions, let bindings, conditionals, and arithmetic operations.
We also support algebraic data types, set operations, and first-class functions, which we will
explain later. Consider the following recursive factorial function in functional IncA:

def fact(n: Int): Int = if (n == 0) 1 else n * fact(n - 1)

We aim to write functions like this and compile them to Datalog, so that we can use them as
part of larger Datalog programs. A simple strategy gets us close to the desired result:
Principle 1: Functions as relations. It is well-known that functions f : (T1, ..., Tn) -> T

can be encoded as relations f : (T1, ..., Tn, T). We use this encoding of functions.
Principle 2: Control-flow paths as rules. For each path from function entry to function

exit, we generate a rule that describes how inputs translates to outputs. Since control-flow
paths are mutually exclusive in deterministic languages, so are the rules we generate.

When we apply this strategy to our factorial function, we obtain a relation fact: (Int, Int).
Since the fact function has two exits, we derive two rules that collect all conditions and
computations along the path from entry to exit. In doing so, we introduce auxiliary variables
for intermediate results as needed.

fact(n, out) :- n = 0, out = 1.
fact(n, out) :- n != 0, fact(n-1, out’), out = n * out’.

Unfortunately, like in the introduction, the Datalog rules violate range-restrictedness. A
rule is range-restricted if every variable that occurs in the head of the rule is bound in
the body of the rule. Range-restrictedness is an important property for Datalog programs
and a prerequisite for bottom-up evaluation.Datalog engines like Soufflé [20] apply bottom-
up evaluation to exhaustively enumerate all derivable tuples. Usually, this is an efficient

A. Pacak and S. Erdweg 7:7

evaluation strategy, but it diverges for rules that are not range-restricted. In our example,
the second rule is not range-restricted because n is not bound in the body, hence n could be
any integer term. It follows that the fact relation contains infinitely many tuples. Therefore,
Soufflé will reject the Datalog code we generated for the fact function.

It is hardly surprising that functions over (virtually) infinite domains describe (virtually)
infinite relations. So is this approach doomed? To move forward, we make an important
observation: Even though a function may be defined over an infinite domain, any terminating
application of that function will only see finitely many inputs. If we can restrict a function’s
relation to these inputs, the entire relation turns finite and each rule becomes range-restricted.

To determine the relevant inputs of a function, we must consider how the function is
used and what inputs it is applied to. For our factorial example, consider a main call fact(5),
which stipulates that n = 5 is a relevant input of the fact relation. But since fact is recursive,
we must also track which relevant inputs are induced by n = 5. If we collect all relevant
inputs in fact_input = {5,4,3,2,1,0}, we can use this relation to guard the bodies of fact:

run_fact(out) :- fact(5,out).
fact(n, out) :- fact_input(n), n = 0, out = 1.
fact(n, out) :- fact_input(n), n != 0, fact(n-1, out’), out = n * out’.

Note how all rules are range-restricted now. Input variables are range-restricted by the query
of the input relation; output variables are range-restricted because they are functionally
dependent on the input variables. Thus, fact is finite when fact_input is finite.
Principle 3: Input relations as guards. For each function, collect all relevant inputs in an

input relation and use the input relation as a guard for the function’s relation.
Relevant inputs stem from external calls of the function or from recursive calls. Therefore, it
is not easy to collect all relevant inputs in a relation. Fortunately, we can apply an existing
algorithm that is well-known in the Datalog community: the magic-set transformation [8]. The
magic-set transformation was developed to optimize the bottom-up evaluation of terminating
Datalog programs. The key idea of the magic-set transformation is to only derive those tuples
bottom-up that would also be derived by top-down evaluation, where the relevant inputs
are known. To this end, the magic-set transformation generates Datalog rules for auxiliary
relations that prescribe which inputs are relevant. Note that we say “inputs” here because
the relations we care about correspond to functions; in general, the magic-set transformation
collects terms that are known at the call-site during run time. Since function inputs are
always known at the call-site during run time, the magic-set transformation will at least
collect all relevant function inputs. Technically, we apply a more efficient variation of the
magic-set transformation called the demand transformation [25] and we use that name in
the remainder of the paper.
Principle 4: Demand transformation yields input relations. The demand transformation

identifies all relevant inputs for each function in the program. Since all function call-sites
must be known, our compilation strategy is not modular but requires the whole program.

For our example, the demand transformation will generate the following input relation:

fact_input(5).
fact_input(n-1) :- fact_input(n), n != 0.

We obtain one rule for each call of fact. The first rule collects the input of the main
invocation fact(5). The second rule collects the input of the recursive invocation and contains
all constraints leading up to the call. Together, these two rules describe the required relation
fact_input = {5,4,3,2,1,0}. Since fact_input is finite, fact is finite and contains the following
tuples: fact = {(5,120), (4,24), (3,6), (2,2), (1,1), (0,1)}.

ECOOP 2022

7:8 Functional Programming with Datalog

(Functional programs) p ::= F

(functions) F ::= [@main] def f (x : T) : T = e

(expressions) e ::= v | x | let x = e in e | if (e) e else e | f(e) | φ(e)
(values) v ::= base
(types) T ::= Base

Figure 3 Functional IncA with first-order functions, base values, and base functions φ.

(Datalog programs) D ::= r

(rules) r ::= R(t) :- a.

(atoms) a ::= t = t | R(t)
(terms) t ::= v | x | φ(t)
(values) v ::= base

Figure 4 An intermediate representation for Datalog with base values and base functions.

So far, all function inputs were statically known. But we can easily extend our compilation
strategy to support user-provided inputs. To this end, functional IncA allows the declaration
of main functions:

@main def run_fact(n: Int): Int = fact(n)

The demand transformation will correctly propagate the input of run_fact to fact:

fact_input(n) :- run_fact_input(n).
fact_input(n-1) :- fact_input(n), n != 0.

But what is the input of run_fact? The input of run_fact is dynamic and must be provided
by the user of the program. In Datalog, such data lives in the so-called extensional database,
which is filled by the user prior to Datalog execution. We modify the demand transformation
to generate a query of the extensional database for main functions.
Principle 5: Main input in extensional database. For each main function, we add a rule to

the input relation that retrieves dynamic inputs from the extensional database.
For our example, we obtain the following input relation for run_fact:

run_fact_input(n) :- ext_run_fact_input(n).

The user can provide any number of inputs to run_fact as part of the extensional database.
The Datalog engine will propagate those inputs to run_fact_input and fill all relations.

Note that our encoding retains crucial Datalog behavior, such as memoization and reuse.
For example, consider we want to run fact on multiple inputs 5, 7, and 9, all of which we put
into the extensional database. How many tuples will relation fact contain? Since queries
of fact will retrieve existing tuples when possible, the three fact computations will share
all intermediate results and fact will only contain 10 tuples (the largest input plus one). A
similar effect can be observed for functions like Fibonacci, where recursive calls can share
results. All of this is transparent to the user.

3.2 Translating functional programs to Datalog, technically
We now implement Principles 1 and 2 from the previous subsection, that is, we translate
functional programs to Datalog. In the subsequent subsection, we will explain and apply the
demand transformation to implement the remaining principles.

A. Pacak and S. Erdweg 7:9

J.K : e → P(t × P(a))

JvK = {(v, ∅)}

JxK = {(x, ∅)}

Jlet x = e1 in e2K = {(t2, {x = t1} ∪ a1 ∪ a2) | (t1, a1) ∈ Je1K, (t2, a2) ∈ Je2K}

Jif (e1) e2 else e3K = {(t2, {t1 = true} ∪ a1 ∪ a2) | (t1, a1) ∈ Je1K, (t2, a2) ∈ Je2K}

∪ {(t3, {t1 = false} ∪ a1 ∪ a3) | (t1, a1) ∈ Je1K, (t3, a3) ∈ Je3K}

Jf(e1, ..., en)K = {(y, {f(t1, ..., tn, y)} ∪ a1 ∪ ... ∪ an) | (t1, a1) ∈ Je1K, ..., (tn, an)∈JenK}
where y is fresh

Jφ(e1, ..., en)K = {(φ(t1, ..., tn), a1 ∪ ... ∪ an) | (t1, a1) ∈ Je1K, ..., (tn, an) ∈ JenK}

Figure 5 Compiling expressions yields a set of alternative terms, each guarded by constraints.

Jdef f(x : T) : T ′ = eKfun = {f(x, y) :- a, y = t. | (t, a) ∈ JeK} where y is fresh

JF Kprog =
⋃

f∈F JfKfun

Figure 6 Compiling functions to Datalog rules.

Figure 3 defines the syntax of functional IncA. The language consists of first-order
functions, let bindings, conditionals, and function calls. We distinguish calls to user-defined
functions f from calls to base functions φ. Our compilation target is an intermediate
representation (IR) of Datalog extended with base values and base functions as shown in
Figure 4. This Datalog IR is compatible with many existing Datalog solvers, which support
different kind of base functions. Note that we excluded negation from the Datalog IR because
our translation does not require it.

We first translate expressions to Datalog. While an expression is structured and eventually
computes a value, Datalog only provides flat terms. Thus, a nested expression f(g(x)) must be
compiled to a flat term that is guarded by constraints (y2, {g(x, y1), f(y1, y2)}). Since condi-
tional expressions (if (b) f(x) else g(x)) yield alternative values depending on b, compilation in
general yields a set of alternative terms {(y1, {b = true, f(x, y1)}), (y2, {b = false, g(x, y2)})}.
This correponds to Principle 2 from the previous subsection.

Figure 5 defines the translation of expressions as a compositional function J.K. Values v

and variables x directly translate to Datalog values and variables. Let bindings yield the
body’s result under a constraint that binds the let-bound variable. Conditionals compile to
two alternative sets of terms: If the condition is true, the resulting terms are taken from the
then-branch, otherwise they are taken from the else-branch. Calls to user-defined functions
f translate to queries of a relation of the same name f , which has the function’s result as
an additional column in accordance with Principle 1. In contrast, calls to base functions φ

translate to a call of the same function, but passing Datalog terms as arguments.
We use the translation of expressions J.K to compile function definitions J.Kfun and programs

J.Kprog as shown in Figure 6. For a function definition, we compile its body and generate a
separate Datalog rule for each alternative term that the body can yield. The constraints a of
the term become constraints in the generated rule. To compile a whole program, we simply
compile each function and collect the resulting rules.

ECOOP 2022

7:10 Functional Programming with Datalog

For a concrete example, consider the translation of the Fibonacci function to Datalog:
Jdef fib(n) = if (n<2) n else fib(n-1) + fib(n-2)K = { fib(n, y3) :- n<2 = true, y3 = n.,

fib(n, y4) :- n<2 = false, fib(n-1,y1), fib(n-2,y2), y4 = y1+y2. }

The Fibonacci function compiles to two Datalog rules, one for the base case and one for the
recursive case. But is this translation correct?

Translation correctness. We claim that our translation preserves the semantics of the
original functional program. More precisely, we claim that if a function call f(v) evaluates
to w, then the generated Datalog program will also provide w as the only result of the call
under top-down evaluation. Here we must require top-down evaluation for Datalog, since
the generated rules are not necessarily range-restricted yet, which we will fix in the next
subsection. Top-down evaluation is possible nonetheless, because it only explores required
results and uses known values in doing so. Since the values of function arguments are always
known during evaluation, top-down evaluation of the generated Datalog closely corresponds
to function evaluation. However, we did not formalize top-down evaluation and therefore
formulate translation correctness as a conjecture:

▶ Conjecture 1 (Translation correctness). Given a functional program p with a main function
f such that f(v) evaluates to w. Then the top-down evaluation of the Datalog atom f(v, x)
under JpKprog yields a single substitution {x 7→ w}.

A key component for proving this conjecture is to ensure the Datalog constraints behave
deterministically, just like the original expression did:

▶ Lemma 2 (Deterministic atoms). Given an expression e such that JeK={(t1, a1), ..., (tn, an)}
both of the following hold:

i. JeK yields at least one result: a1 ∨ ... ∨ an

ii. JeK yields at most one result: (ai ∧ aj) → ti = tj

Proof. By structural induction over e. The only interesting case are if -expressions, where
(t1 = true) and (t1 = false) are mutually exclusive. ◀

▶ Lemma 3 (Deterministic rules). Given f such that JfKfun ={f(x, y1):- a1., ..., f(x, yn):- an.}
both of the following hold:

i. JfKfun yields at least one result: a1 ∨ ... ∨ an

ii. JfKfun yields at most one result: (ai ∧ aj) → yi = yj

Proof. Follows from Lemma 2. ◀

Note that Conjecture 1 does not make any assertions about non-terminating function calls.
Indeed, some diverging functions compile to terminating Datalog programs. For example,
def f(x) = f(x) compiles to f(x,y) :- f(x,y). While function call f(1) diverges, query f(1, y)

terminates and yields the empty substitution. However, Conjecture 1 ensures terminating
function calls translate to terminating Datalog programs under top-down evaluation.

3.3 Demand-driven bottom-up evaluation
We compile functional programs to Datalog rules that execute well in top-down fashion,
but may diverge under bottom-up evaluation. In bottom-up evaluation, Datalog solvers
exhaustively enumerate all derivable tuples, starting from known facts. For example, the
bottom-up evaluation of the factorial function will start with fact(0,1), from which it can

A. Pacak and S. Erdweg 7:11

derive fact(1,1), fact(2,2), fact(3,6), fact(4,24), and so on. This enumeration will not
terminate, because bottom-up evaluation is unaware of the context in which relation fact

is being used. Accordingly, we cannot apply any of the efficient Datalog solvers that use
bottom-up evaluation, such as Soufflé.

The demand transformation by Tekle and Liu rewrites Datalog rules such that bottom-up
evaluation becomes demand-driven and only computes tuples that are transitively demanded
by the main query [25]. Indeed, bottom-up evaluation of the rewritten Datalog rules computes
exactly the same tuples as top-down evaluation. Since we already asserted that top-down
evaluation computes the correct result for terminating functional programs, the demand
transformation allows us to apply bottom-up evaluation, also yielding the correct result.

We adopt the demand transformation, which transforms a set of Datalog rules in three
steps: compute demand patterns, introduce demand predicates, derive demand rules. In
this section, we replace the first step of the demand transformation to take functional IncA
into account, adopt the second step unchanged, and extend the third step to account for the
inputs of main functions. Later sections will make further changes.

Step 1. We compute demand patterns ⟨g, s⟩, where g is the name of a relation and s ∈ (b | f)∗

is a pattern string that indicates how the relation is queried, namely if an argument occurs
bound or free. For functions, demand patterns can be easily computed by finding all function
calls reachable from the main functions. Formally, given a functional program p, the demand
patterns dp(p) of p is the smallest set such that:

For each main function (@main def g(x1, ..., xn) = ...) in p, we have ⟨g, bnf⟩ ∈ dp(p).
That is, main functions have demand with n bound parameters and one free return value.
If demand pattern ⟨g, s⟩ ∈ dp(p) and g is defined as (def g(...) = e) in p, we have
⟨h, bnf⟩ ∈ dp(p) for each call h(e1, ..., en) in e.

The second and third step of the demand transformation operate on and rewrite the generated
Datalog rules D = JpKprog. In particular, we will make no assumptions about the format of
pattern strings s, so that we can later introduce extensions of Step 1 easily.

Step 2. We introduce demand predicates as guards into existing rules to implement
Principle 3 from Subsection 3.1. Formally, we obtain a rewritten Datalog program guarded(D):

For each ⟨g, s⟩ ∈ dp(p) and each (g(t1, ..., tm) :- a1, ..., an.) in D, we obtain a rule

g(t1, ..., tm) :- g_input_s(t1, ..., tm|s), a1, ..., an.

in guarded(D), where t|s selects those ti that are bound according to pattern string s.
Note that the rules of unreachable functions are dropped and not propagated to guarded(D).

Step 3. In the final step, we must derive those rules that define the input relations g_input_s

to implement Principle 4 and Principle 5 from Subsection 3.1. Formally, we obtain a rewritten
Datalog program demanded(D) from guarded(D) and the original program p as follows:

We retain each rule from guarded(D), such that guarded(D) ⊆ demanded(D).
For each main function (@main def g(x1, ..., xn) = ...) in p, we obtain a rule

g_input_s(x1, ..., xn) :- ext_g_input_s(x1, ..., xn).

in demanded(D), where ext_g_input_s is an extensional relation to be filled by the user.
This implements Principle 5.

ECOOP 2022

7:12 Functional Programming with Datalog

For each rule (g(...) :- a1, ..., an.) in guarded(D) and each ai = h(t1, ..., tm), we obtain

h_input_s(t1, ..., tm|s) :- a1, ..., ai−1

to demanded(D), where s is the pattern string of h(t1, ..., tm), indicating which ti are
bound by the previous constraints a1, ..., ai−1 already.

The demand transformation implements Principles 3 - 5 and ensures that the resulting
Datalog derives the same tuples in bottom-up evaluation as in top-down fashion.

Example. To illustrate, consider again the Fibonacci function with a main call:
def fib(n) = if (n<2) n else fib(n-1) + fib(n-2)
@main def run(x: Int): Int = fib(x)

This program compiles to the following Datalog rules using the translation from Subsection 3.2:
fib(n, y3) :- n<2 = true, y3 = n.
fib(n, y4) :- n<2 = false, fib(n-1,y1), fib(n-2,y2), y4 = y1+y2.
run(x, y5) :- fib(x, y5).

We now apply our demand transformation. First, we derive demand patterns of the program,
which are ⟨run, bf ⟩ and ⟨fib, bf ⟩. Note that all three calls of fib yield the same demand pattern.
Second, we insert demand predicates into the rules according to the demand patterns:
fib(n, y3) :- fib_input_bf(n), n<2 = true, y3 = n.
fib(n, y4) :- fib_input_bf(n), n<2 = false, fib(n-1,y1), fib(n-2,y2), y4 = y1+y2.
run(x, y5) :- run_input_bf(x), fib(x, y5).

Third, to these rules we add the following rules to define the input relations:
run_input_bf(x) :- ext_run_input_bf(x).
fib_input_bf(x) :- run_input_bf(x).
fib_input_bf(n-1) :- fib_input_bf(n), n<2 = false.
fib_input_bf(n-2) :- fib_input_bf(n), n<2 = false, fib(n-1,y1).

The first and second rule are due to the main function run, which receives its input from
the user and propagates it to fib. The third and fourth rule are due to the recursive calls
of fib. Note how we retain all constraints prior to a call. In particular, we retain the first
recursive call of fib as a constraint for the second recursive call of fib, although a smart
compiler might eliminate this constraint subsequently. The resulting Datalog program is
demand-driven and can be executed by standard bottom-up Datalog solvers.

Correctness. The demand transformation yields a Datalog program that derives the exact
same tuples as a top-down evaluation [25]. As of Conjecture 1, top-down evaluation yields
the correct tuples. Hence, so does bottom-up evaluation of the demand-driven Datalog rules:

▶ Corollary 4 (Bottom-up translation correctness). Given a functional program p with a main
function f such that f(v) evaluates to w. Then the bottom-up evaluation of the Datalog
program demanded(JpKprog) yields a database in which the query f(v, x) has a single match
{f(v, w)}.

4 Compiling Algebraic Data Types to Datalog

The functional IncA we presented in the previous section supports user-defined functions
ranging over base types. In this section, we explore how to extend functional IncA to allow
user-defined data types. In particular, we want to faithfully compile recursive functions over
algebraic data types to Datalog rules that existing bottom-up Datalog solvers can execute.

A. Pacak and S. Erdweg 7:13

4.1 Compiling user-defined data types by example
We extend functional IncA to allow recursive definitions of user-defined algebraic data types,
constructor calls, and pattern matching. As a simple example, consider the Peano numbers:

data Nat = Zero() | Succ(Nat)
def plus(m: Nat, n: Nat): Nat = m match {

case Zero() => n
case Succ(pred) => Succ(plus(pred, n)) }

@main def twice(n: Nat): Nat = plus(n, n)

We generate three kind of relations for an algebraic data type:

Constructor relations represent the constructor functions of algebraic data types. We
translate constructor calls in the program to queries of constructor relations, similar to
how we translated regular function calls. In doing so, it is crucial we ensure only finitely
many values are constructed during bottom-up evaluation of the resulting Datalog code.
Selector relations map a constructed value to its constituents. We use selector relations
to implement pattern matching. Importantly, queries of selector relations may never lead
to the construction of new values.
Instance relations enumerate all constructed instances of a data type. They will become
useful when we introduce relational programming in Section 6.

To construct user-defined data at run time, we extend the Datalog IR with a built-in
constructor #constr for each constructor constr. For example, #Succ(#Succ(#Zero())) encodes
two as a Peano number. In practice, there are different ways a Datalog solver can support
such built-in constructors. For example, we can define a generic built-in function that creates
a new value given the constructor’s name and arguments. We have used this approach in
our implementation using IncA, but this would work in any Datalog solver that supports
user-defined built-in functions, including Soufflé, Flix, and Formulog. Alternatively, if a
Datalog solver natively supports algebraic data types, we can use their constructors directly
or encode them using a number representation. For example, Soufflé supports algebraic data
types (but not recursive functions over them) and we can generate a Soufflé data type and
use its constructors. This is to say that adding built-in constructors to the Datalog IR does
not limit the applicability of our approach in practice. Flix, Formulog, IncA and Soufflé have
support for algebraic data. However, they do not support enumerating all instances of a
specific algebraic data type like functional IncA. We will see how to enumerate all instances
of an algebraic data type by utilizing instance relations in Section 6.

For the Peano numbers, we derive the following Datalog rules initially:
// constructor relations
Zero(n) :- n = #Zero().
Succ(p, n) :- n = #Succ(p).

// selector relations
un_Zero(n) :- Zero(n).
un_Succ(n, p) :- Succ(p, n).

// instance relation
Nat(n) :- Zero(n).
Nat(n) :- Succ(_, n).

Note that the rule of the Succ constructor relation is not range-restricted and consequently
cannot be computed bottom-up. However, the rules of the selector and instance relations
merely query the constructor relations. Hence, if we can ensure the constructor relations
remain finite, all three kind of relations will be finite.

Like in the previous section, we seek to apply the demand transformation in order to track
the demand of constructor relations. However, we need to adapt the demand transformation
to account for our encoding of algebraic data types. Specifically, the constructor queries
within the selector and instance relations must be ignored, since they do not actually indicate
additional demand. Moreover, selector and instance relations do not require any rewriting
themselves, because they merely query constructor relations to enumerate constructor tuples.

ECOOP 2022

7:14 Functional Programming with Datalog

Zero(n) :- n = #Zero(). // no demand relation since there are no bound inputs
Succ(p, n) :- Succ_input_bf(p), n = #Succ(p).
Succ_input_bf(y4) :- plus_input_bbf(m, n), un_Succ(m, pred), plus(pred, n, y4).

// selector and instance relations un_Zero, un_Succ, and Nat as above
plus(m, n, out) :- plus_input_bbf(m, n), un_Zero(m), out = n.
plus(m, n, out) :- plus_input_bbf(m, n), un_Succ(m, pred),

plus(pred, n, y4), Succ(y4, y5), out=y5.
plus_input_bbf(n, n) :- twice_input_bf(n).
plus_input_bbf(pred, n) :- plus_input_bbf(m, n), un_Succ(m, pred).

twice(n, out) :- twice_input_bf(n), plus(n, n, out).
twice_input_bf(n) :- ext_twice_input_bf(n).

Zero(n) :- ext_Zero(n).
Succ(p, n) :- ext_Succ(p, n).

Figure 7 Compilation result for the plus and twice functions on Peano numbers.

Figure 7 shows the compilation result after demand transformation for the plus function on
Peano numbers from above. Relation Zero has no demand relation because its demand pattern
⟨Zero, f⟩ does not specify bound inputs. Relation Succ has a demand relation Succ_input_bf

that tracks the invocation of Succ in the recursive case of plus. Importantly, there is no
demand on Succ from the selector or instance relations, as our adaption of the demand
transformation will ensure. Relation plus shows how we compile pattern matching: Each
case becomes an alternative rule that queries the selector. This is sufficient since we assume
pattern matches are complete and overlap-free, so that their order does not matter.

Since twice is a main function, its demand relation queries an extensional input relation as
described in the previous section. This way, users can for example request twice(Succ(Zero())).
But how can our Datalog program deconstruct the user-provided data? Recall that selector
relations simply query constructor relations. Thus, we must include the user-provided
algebraic data in our constructor relations. To this end, we require users to insert algebraic
data in extensional constructor relations. We then generate one additional rule for each
constructor that queries the corresponding extensional constructor relation, as shown at the
end of Figure 7. We need to provide the contents of extensional constructor relations in the
form of tuples consistent with the format supported by the targeted Datalog dialect. In the
case of Soufflé, we insert tuples containing algebraic data and literal values of the Soufflé
language in the extensional constructor relations.

4.2 Extending functional IncA with algebraic data types

Based on the observations from the previous subsection, we add algebraic data types to
functional IncA. We then extend the translation from functional code to Datalog code and
the demand transformation accordingly.

Figure 8 extends the abstract syntax of functional IncA with algebraic data types. For
pattern matching we assume that patterns are complete and overlap-free. We do not change
the syntax of Datalog since we model constructors as built-in functions φ.

We extend the translation of Subsection 3.2 from functional code to Datalog code to
handle algebraic data types as shown in Figure 9. We add a new translation function J.Kdata

for data types and use that when compiling programs in J.Kprog. The translation of functions

A. Pacak and S. Erdweg 7:15

(Functional programs) prog ::= F , d

(data definitions) d ::= data N = c(T, ..., T)
(expressions) e ::= ... | c(e) | e match {case c(x, ..., x) => e}
(types) T ::= ... | N

Figure 8 Extending the frontend syntax with algebraic data types.

JF , dKprog =
⋃

f∈F JfKfun ∪
⋃

d∈d JdKdata

Jc(e1, ..., en)K = {(y, {c(t1, ..., tn, y)} ∪ a1 ∪ ... ∪ an) | (t1, a1)∈ Je1K, ..., (tn, an)∈ JenK}
where y is fresh

Je match {cs}K =
⋃

(case c(x) =>e′)∈cs {(t′, {un_c(t, x)} ∪ a ∪ a′) | (t, a)∈ JeK, (t′, a′)∈ Je′K}

Jdata N = CKdata = {c(x1, ..., xn, y) :- y = #c(x1, ..., xn). | c(T1, ..., Tn) ∈ C}

∪ {c(x1, ..., xn, y) :- y = ext_c(x1, ..., xn, y). | c(T1, ..., Tn) ∈ C}

∪ {un_c(y, x1, ..., xn) :- c(x1, ..., xn, y). | c(T1, ..., Tn) ∈ C}

∪ {N(y) :- c(x1, ..., xn, y). | c(T1, ..., Tn) ∈ C}

Figure 9 Translating algebraic data types to Datalog.

J.Kfun remains the same, but it uses an extended translation for expressions J.K that handles
the new expressions: constructor calls and pattern matching. The translation of constructor
calls is identical to the translation of regular function calls, except the generated code queries
a constructor relation. Pattern matching yields alternative rules for each case, and each case
queries the selector relation un_c to test if the term matches the pattern. The translation of
data types J.Kdata generates rules as described in the previous subsection: rules that invoke
the built-in constructor functions, rules that query the extensional constructor relations,
rules for the selector relations, and rules for the instance relations.

Next, we extend the demand transformation from Subsection 3.3 to consider constructors:

In Step 1, when considering reachable subexpressions h(e1, ..., en), we also generate a
demand pattern ⟨h, b...bf⟩ when g is a constructor.

In Step 2, note that selector and instance relations are never demanded, since we ignored
them in Step 1. Hence, we propagate their rules unchanged to guarded(D).

In the last case of Step 3, we ignore atoms ai = h(t1, ..., tm) that occur in the rules of
selector or instance relations. These atoms always query a constructor relation and we
do not want to treat these queries as demand.

With these modifications, the demand transformation will correctly track the demand
of constructors while ignoring selectors and instance relations. Together, the extended
translation and the demand transformation constitute a compiler for functional IncA with
algebraic data types. Since all rules of the generated Datalog code are range-restricted, we
can run the code with off-the-shelf bottom-up Datalog solvers.

ECOOP 2022

7:16 Functional Programming with Datalog

data Exp = Num(Int) | Lam(String, Type, Exp) | App(Exp, Exp) | Var(String)
data Type = TInt() | TFun(Type, Type)
data UExp = UNum(Int) | ULam(String, Exp) | UApp(Exp, Exp) | UVar(String)
def typeOf(ctx: Ctx, exp: Exp): Maybe[Type] = exp match {

case App(fun, arg) => typeOf(ctx, fun) match {
case Just(TFun(ty1, ty2)) => typeOf(ctx, arg) match {

case Just(argty) => if (eqType(argty, ty1)) Just(ty2) else Nothing()
... }

def erase(exp: Exp): UExp = exp match {
case Num(v) => UNum(v)
case Lam(n, ty, b) => ULam(n, erase(b))
case App(fun, arg) => UApp(erase(fun), erase(arg))
case Var(n) => UVar(n) }

def interp(env: Env, exp: UExp): Maybe[Val] = exp match {
case UApp(fun, arg) => interp(env, fun) match {

case Just(VClosure(param, prog, fenv)) => interp(env, arg) match {
case Just(argv) => interp(BindEnv(param, argv, fenv), body)

... }
@main def run(exp: Exp): Maybe[Val] = typeOf(EmptyCtx(), exp) match {

case Just(ty) => interp(EmptyEnv(), erase(exp))
case Nothing() => Nothing() }

Figure 10 A type checker, type erasure, and interpreter for a lambda calculus with numbers.

5 Case study: Type Checking, Type Erasure, and Interpretation

Functional IncA supports user-defined functions and data types. In this section, we demon-
strate that these features allow us to express interesting computations in Datalog. In
particular, we implement a type checker, type erasure, and an interpreter for a lambda
calculus with numbers as illustrated in Figure 10. These functions compile to complex
Datalog code that could not practically be written by hand.

Figure 10 shows an excerpt of the relevant data types and functions, all of which are
completely standard. In particular, we describe the expressions of the simply typed lambda
calculus Exp and the untyped lambda calculus UExp as algebraic data types. We define a
type checker typeOf as a function in functional IncA, but only show the App case here. Our
implementation supports parametric polymorphism by applying monomorphization before
translating to Datalog. Since the App case has five alternative control-flow paths, this case
alone compiles into five Datalog rules for typeOf. For example, consider the rule generated
for the path that yields Just(ty2):
typeOf(ctx, exp, out0) :-

typeOf_input_bbf(ctx,exp), un_App(exp,fun,arg), typeOf(ctx,fun,o1),
un_JustType(o1,funty), un_TFun(funty,ty1,ty2), typeOf(ctx,arg,o2),
un_JustType(o2,argty), eqType(argty,ty1,o3), o3 == true, JustType(ty2,out0).

This Datalog rule consists of 10 atoms, where the selector predicates ensure that the correct
control-flow path has been chosen. Overall, the typeOf function consists of 24 lines of code,
but compiles to 114 lines of complex Datalog code with mutually dependent relations typeOf

and typeOf_input. These numbers represent the Datalog program after applying optimizations.
In contrast to program optimizations of functional and imperative programs, our Datalog
optimizations reduce the number of rules and atoms instead of increasing them.

Next, we define type erasure as a transformation from Exp to UExp. Although function
erase is completely standard, this is the first program transformation implemented in Datalog
to the best of our knowledge. While erase is guaranteed to terminate, we can also define
functions whose termination is undecidable. Specifically, we implement a standard interpreter
interp for the untyped lambda calculus, which is a Turing-complete language. Indeed, the
Datalog program is only guaranteed to terminate when the original interpreter terminates.

A. Pacak and S. Erdweg 7:17

Overall, the type checker, type erasure, and interpreter comprise 8 algebraic data types
and 7 functions. We compile this code to 65 relations defined by 154 rules that contain
484 atoms in total. These numbers are measured after optimization, where we eliminate
aliases and propagate constants.
Although implementing an interpreter in Datalog may seem to be of little use, this and
similar challenges occur during program analysis regularly. For example, Pacak et al. recently
have shown how to compile typing rules to Datalog to derive incremental type checkers
systematically [17]. They also mention that it is necessary to translate the dynamic semantics
of a language to Datalog in order to support the incremental type checking of a dependently
typed programming language. Similarly, data-flow analyses often need to abstractly interpret
programs, for example, to determine the bounds of numeric variables or the value of a
Boolean condition. Functional IncA can also support such data-flow analyses, but we must
be able to express control-flow graphs and other relations.

6 Mixing Functions and Relations

The previous sections showed how we can use functional programming as a frontend for
Datalog. However, in doing so, we have also lost a key feature of Datalog: relations. Indeed,
functional IncA makes it difficult to encode non-functional relations, such as the edges of
a graph. In the present section, we show how we can elegantly extend functional IncA to
re-introduce relations.

6.1 Computing a control-flow graph functionally
Consider we want to compute the control-flow graph (CFG) of a program as part of a
Datalog-based program analysis. We want to represent the CFG such that it corresponds
to a Datalog relation, so that we can easily compute its transitive closure later. While the
functions of functional IncA compile to Datalog relations, our functions cannot be used to
encode arbitrary relations. In particular, a function (def flow(from: Stm): Stm = e) cannot
handle conditional statements that fork the control flow and connect to multiple successor
statements. To support such relations, we must extend our frontend language.

We want to extend functional IncA in a way that integrates functions and relations ele-
gantly. This is a language-design challenge and therefore naturally somewhat subjective. But
it is the reason why we rejected the first idea that came to mind: to introduce relations next
to functions. For example, a top-level relation (rel flow(from: Stm, to: Stm) :- constraints)

could capture the CFG of a program. The problem is that we are now back at constraint
programming, which is exactly what we wanted to avoid with functional IncA.

We propose a different extension of functional IncA that not only avoids this problem
but that is simpler too: We introduce sets and tuples. Immutable sets and tuples are staple
ingredients of functional programming and programmers already know how to use them.
Moreover, any relation can be encoded as a set containing tuples of related values. Thus, the
only question is if and how we can map functional programs over sets and tuples to Datalog.
But first, let us illustrate how the extended functional IncA can be used.

In their classic textbook, Nielson et al. [16] compute the control flow of a While-statement
through three functions. We can represent these functions in the extended functional IncA
almost verbatim as shown in Figure 11. Here, init is a regular function whereas final and
flow compute sets. A set literal {e1,...,en} constructs a set and set union ++ composes two
sets. For example, final uses these features to compute the final statement of each conditional

ECOOP 2022

7:18 Functional Programming with Datalog

data Exp = ...
data Stm = Assign(String, Exp) | Sequence(Stm, Stm) | If(Exp, Stm, Stm) | While(Exp, Stm)
def init(stm: Stm): Stm = ... // a regular function that finds the statement’s entry
def final(stm: Stm): Set[Stm] = stm match { // finds all of the statement’s exits

case Assign(x, a) => {stm}
case Sequence(s1, s2) => final(s2)
case If(b, s1, s2) => final(s1) ++ final(s2)
case While(b, s) => {stm} }

// flow as seen in Figure 1 (Introduction)

Figure 11 Computing the control-flow graph as a set of tuples in out extended Datalog frontend.

(functions) F ::= ... | [@main] def f (x : T) : Set[T] = s

(set expressions) s ::= {e} | s ++ s | {e|pred} | let x = e in s | if (e) s else s | f(e)
(predicates) pred ::= e | e in s | e in N

(expressions) e ::= ... | fold(f, f, f)

Figure 12 Extended abstract syntax with set and set operations.

branch. Sets can be processed through set comprehensions as shown in the definition of flow

which can be seen in Figure 1. In particular, (x1,...,xn) in set retrieves the elements of set,
binds those x that are free, and tests for membership of those x that are bound.

Our encoding of relations makes it easy to implement computations that exercise Datalog’s
declarative fixpoint semantics, such as transitive closure, cycle detection, and recursive
aggregation. We have already demonstrated such computations in the introduction of this
paper and refrain from repeating them here. Instead, we show how to translate functional
programs with sets and tuples to Datalog.

6.2 Translating tuples and first-order sets to Datalog
The translation of sets and tuples to Datalog is mostly straightforward except for one thing:
neither sets nor tuples are first-class in Datalog. For tuples this is hardly an issue since we
can simply flatten tuples when translating them to Datalog. For example, a function foo(

t: (T1,...,Tn)): (U1,...,Um) becomes a flat relation foo(T1,...,Tn,U1,...,Um), and a function
call foo(e) becomes foo(t1,...,tn,u1,...,um), where e translates to n terms (t1,...,tn) and
the function call yields m result terms (u1,...,um). Although our implementation supports
tuples, we omit tuples from our translation semantics and focus on sets instead.

We want to translate sets to Datalog relations, but relations are first-order in Datalog
and can only appear as top-level definitions. Thus, if we want to support first-class sets in
functional IncA, we need to lift those sets first. For example, to translate a call transitive

({(1,2),(2,3),(3,4)}) to Datalog, we have to translate {(1,2),(2,3),(3,4)} to a top-level
relation that can be queried from within transitive. To achieve this, we propose a clean
solution in two steps:
1. We extend functional IncA first-order sets, which may only appear as function results.

First-order sets translate to first-order relations as shown in the present subsection.
2. The subsequent subsection shows that a standard defunctionalization transformation

simultaneously adds support for first-class functions and first-class sets to functional
IncA.

Figure 12 defines the extended functional IncA, where we introduce first-order sets syn-
tactically through a new non-terminal s. This syntactic differentiation does not replace
type checking of the functional code, but serves to explain which expressions may yield

A. Pacak and S. Erdweg 7:19

J{e}K =
⋃

e∈eJeK

Js1 ++ s2K = Js1K ∪ Js2K

J{e | p1, ..., pn}K = {(t, {t1 = true, ..., tn = true} ∪ a ∪ a1 ∪ ... ∪ an)

| (t, a) ∈ JeK, (t1, a1) ∈ Jp1Kpred , ..., (tn, an) ∈ JpnKpred}

Jfold(finit , fop, fset)K = {(aggregate(fset , toPrimitiveFun(finit), toPrimitiveFun(fop)), ∅)}

JeKpred = JeK

Je in sKpred = {(true, {t1 = t2} ∪ a1 ∪ a2 | (t1, a1) ∈ JeK, (t2, a2) ∈ JsK}

Je in NKpred = {(true, {N(t)} ∪ a | (t, a) ∈ JeK}

Figure 13 Compiling sets and set operations to Datalog.

sets without presenting functional IncA’s type system, which is completely standard and
uninteresting. First-order sets may only occur as the body of a function that yields a set and
within other set expressions. A set comprehension can use predicates pred to check a boolean
condition e, to query another set (e in s), or to query all instances of an algebraic data type
(e in N). Here we finally see why we introduced instance relations for algebraic data types
in Section 4. At last, we can convert a set to an atomic value through fold(finit , fop, fset),
where fset must be the name of a top-level definition.

We extend J.K to also handle set expressions s, and we add a translation function J.Kpred
for predicates. Figure 13 shows both translation functions. A set literal translates to a set of
alternative terms and set union computes the union of alternative terms. A set comprehension
builds all terms t generated by e for which all predicates are true.

We can only translate folds if the targeted Datalog engine supports aggregation over
user-defined functions. In our experience, such user-defined functions must be implemented
in the same language as the Datalog engine (e.g., C++ for Soufflé, a JVM language for
Formulog and IncA). Thus, fold operations are considered built-in functions φ by Datalog
engines. We extend the Datalog IR with aggregation accordingly:

(Datalog terms) t ::= ... | aggregate(R, φ, φ)

All we have left to do is to translate frontend functions f to built-in functions φ, which we
assume function toPrimitiveFun accomplishes. In our implementation, we target IncA and
compile user-defined frontend functions to Scala, which was straightforward. Soufflé does
not support aggregation over user-defined functions, hence we cannot target Soufflé if the
functional IncA program contains fold operations.

6.3 First-class functions and first-class sets
Functional IncA paves the road for transferring insights from functional programming
languages to Datalog. Here, we exemplify this potential by studying defunctionalization in
the context of functional IncA. Defunctionalization [18] is a well-known compilation technique
that compiles higher-order functions into first-order functions and first-class function values
into algebraic data. In particular, defunctionalization generates auxiliary apply functions that
dispatch on the algebraic data to execute the corresponding function body. Since functional
IncA supports first-order functions and algebraic data types, we can apply defunctionalization
to extend functional IncA with first-class functions.

ECOOP 2022

7:20 Functional Programming with Datalog

(expressions) e ::= ... | f | (x : T) ⇒ e | (x : T) ⇒ s | e(e)

(types) T ::= ... | T ⇒ T

Figure 14 Adding first-class functions to our Datalog frontend.

Figure 14 shows how we extend functional IncA’s syntax with first-class functions. A
function value is either a reference to a top-level function f or a lambda. Note that we permit
lambdas to yield sets, since they will translate to first-order functions, which we translate
to first-order relations. Finally, we adapt function application to allow any expressions in
function position.

For example, consider an excerpt from our data-flow analyses of the While language:

def findExps(exp: Exp, f: Exp => Boolean): Set[Exp] = (exp match {
case Var(s) => {}
case Num(i) => {}
case Add(e1, e2) => findExps(e1, f) ++ findExps(e2, f)

}) ++ (if (f(exp)) {exp} else {})
def freevars(exp: Exp): Set[String] = {varName(e) | e in findExps(exp, isVar)}
def availableExps(exp: Exp): Set[Exp] = findExps(exp, (e: Exp) => e match {

case Var(s) => false
case Num(i) => false
case Add(e1, e2) => true })

We define a higher-order function findExps that selects all subexpressions satisfying predicate
f. We use findExps twice, once to find all free variables of an expression and once to find all
non-trivial subexpressions. We implement a standard defunctionalization transformation
that translates this program into a first-order functional program:

data Defun0 = Funref0() | Lambda0()
def applyDefun0(fun: Defun0, e: Exp): Boolean = fun match {

case Funref0() => isVar(e)
case Lambda0() => e match {

case Var(s) => false
case Num(i) => false
case Add(e1, e2) => true } }

def findExps(exp: Exp, f: Defun0): Set[Exp] = (...) ++ (if (applyDefun0(f, exp)) {exp} else
{})

def freevars(exp: Exp): Set[String] = {varName(e) | e in findExps(exp, Funref0())}
def availableExps(exp: Exp): Set[Exp] = findExps(exp, Lambda0())

We can then translate the defunctionalized program to Datalog as described before. Thus,
we have successfully extended functional IncA with first-class functions.

But how does this enable first-class sets? We already added support for first-order sets,
which may only occur as function results. But since first-class functions translate to first-order
functions, first-class functions may also yield sets. Thus, we can encode a first-class set s as
a thunk () => s. For example, we can define a higher-order relation transitive as follows:

def transitive(cfg: () => Set[(Stm, Stm)]): Set[(Stm, Stm)] =
cfg() ++ {(s1,s3) | (s1,s2) in cfg(), (s2,s3) in transitive(cfg)}

@main def transitiveFlow(prog: Stm): Set[(Stm, Stm)] = let cfg = () => flow(prog) in
transitive(cfg)

Since function values become algebraic data, thunk-encoded sets are truly first-class: They
can be assigned to variables and they can be passed as arguments. This shows how functional
IncA permits insights from functional programming languages to carry over to Datalog,
where they can unleash additional benefits.

A. Pacak and S. Erdweg 7:21

def gen(stm: Stm): Set[(String,Maybe[Stm])] = stm match {
case Assign(x, a) => {(x, Just(stm))}
case Sequence(s1, s2) => {}
case If(c, s1, s2) => {}
case While(c, s) => {} }

def retain(stm: Stm, x: String): Boolean = ...
def entry(stm: Stm, prog: Stm): Set[(String, Maybe[Stm])] =

if (stm == init(prog)) {(x, Nothing()) | x in freevarsStm(prog)}
else {(x,d) | (pred, stm) in flow(prog), (x,d) in exit(pred, prog)}

def exit(stm: Stm, prog: Stm): Set[(String,Maybe[Stm])] =
gen(stm) ++ {(x,d) | (x,d) in entry(stm, prog), retain(stm, x)}

@main def allExits(prog: Stm): Set[(Stm, String, Maybe[Stm])] =
{(s,x,d) | s in Stm, (x,d) in exit(s, prog)}

Figure 15 A reaching definitions analysis for the While language that we compile to Datalog.

7 Case Studies: Data-Flow Analyses and Clone Detection

We have presented functional Datalog frontend with relations that compiles to Datalog. In
these final case studies, we want to demonstrate why this design is useful and how it enables
a new way of implementing Datalog-based static analyses. To this end, we implemented
flow-sensitive reaching definitions and interval analyses for the While language in functional
IncA. Additionally, we show how to describe clone detection of Java bytecode.

7.1 Data-Flow Analyses
Figure 15 shows an excerpt of the reaching definitions analysis, which determines where a
variable was last defined. Our analysis implementation is completely standard except that
we use a retain filter in place of the usual kill set. This is because functional IncA does
not support negation yet, which is needed for set difference. We hope to extend functional
IncA with negation in future work, but note that negation in Datalog is far from trivial and
deserves a separate study.

The reaching definitions case study shows how we benefit from using functions and
relations. The main benefit of functions is the ease of implementation in a well-known
programming paradigm, as illustrated by gen in our example. The main benefit of relations is
the implicit fixpoint semantics provided by Datalog. Specifically, note that entry and exit call
each other unconditionally and diverges under functional-programming semantics. However,
Datalog implicitly computes the least fixpoint of relations, which is computable because the
relations are finite: There are only finitely many variables and assignments in any program.
Here, functional IncA reaps the rewards of compiling to Datalog.

In the reaching definitions analysis, the fixpoint computation within entry and exit only
invokes simple functions gen and retain. Therefore, it is reasonable to implement the reaching
definitions in Datalog directly, although we believe functional IncA is easier to use. In
contrast, our second data-flow analysis implements an interval analysis that requires complex
functions to abstractly interpret expressions. We show an excerpt of the interval analysis in
Figure 16 and Figure 2. We use data type Val to represent abstract values and use relations
entry_var and exit_var to map variables to their abstract value. For an Assign statement,
exit_var invokes an abstract interpreter aeval that computes the abstract value of the assigned
expression. Even for this simple While language, the abstract interpreter already consists
of 90 lines of functional code that compile to 342 lines of Datalog code. Moreover, aeval is
part of the fixpoint loop, because it invokes entry_var for variable references, which invokes

ECOOP 2022

7:22 Functional Programming with Datalog

data Val = BotVal() | IntervalVal(Interval) | BoolVal(Bool) | TopVal()
...
// entry_var, exit_var, and aeval as shown in Figure 2 (Introduction)
def add(v1: Val, v2: Val): Val = ...
def addInterval(iv1: Interval, iv2: Interval): Interval = iv1 match {

case TopInterval() => TopInterval()
case IV(l1, h1) => iv2 match {

case TopInterval() => TopInterval()
case IV(l2, h2) => IV(l1 + l2, h1 + h2) } }

def joinVal(v1: Val, v2: Val): Val = ...
def joinInterval(iv1: Interval, iv2: Interval): Interval = iv1 match {

case TopInterval() => TopInterval()
case IV(l1, h1) => iv2 match {

case TopInterval() => TopInterval()
case IV(l2, h2) => widenInterval(IV(Math.min(l1, l2), Math.max(h1, h2))) } }

Figure 16 Interval analysis of the While language using abstract interpretation.

def getStm(inst: Instruction): Set[Stm] = {
InvokeStm(recvExp, meth, args) |

(inst, v) not in _AssignReturnValue,
(inst, _, meth, recv, _) in _VirtualMethodInvocation,
recvExp in getExp(recv),
args in getArgs(inst, 0) } ++ ...

def getExp(v: String): Set[Exp] = ...
def getArgs(inst: Instruction, currentIdx: Int): Set[List[Exp]] = ...
def isStmClone(s1:Stm, s2:Stm, iPairs:NPairs, lPairs:NPairs): Boolean = (s1,s2) match {

case (InvokeStm(r1, m1, a1), InvokeStm(r2, m2, a2)) =>
m1 == m2 && isExpClone(r1, r2, iPairs) && isArgListClone(a1, a2, iPairs)

... }

Figure 17 Clone detection of Shimple Code.

exit_var, which invokes aeval. Therefore, aeval really must translate to Datalog rules and
cannot be represented as a built-in function, because then it could not invoke entry_var.
Finally, note that we use a user-defined function joinVal to aggregate abstract values in
entry_var. In particular, joinVal implements widening on intervals to ensure the analysis
always terminates. All of these concerns are easy to address in functional IncA, because we
can use functional programming while relying on Datalog’s fixpoint semantics.

7.2 Clone Detection

Figure 17 shows an excerpt of how to construct an abstract syntax tree of Shimple
code and apply clone-detection techniques such as testing for alpha-equivalence. Shimple
is a variant of the Java bytecode representation Jimple [28] in SSA form. To access the
Shimple representation, we extend functional IncA to read Soufflé relations, because the
Doop framework [10] generates Soufflé facts. Using Soufflé facts enables us to detect clones
of real-world Java programs. The Soufflé relations are prefixed by an underscore. Technically,
we compile the Soufflé program and the functional program to a single Datalog program.
However, we do not derive demand patterns for relations of the Soufflé program.

The function getStm constructs an abstract syntax tree representation of Shimple code. We
highlight the case for constructing an invocation statement. We only generate an invocation
statement for an instruction inst if it is a virtual method invocation and the instruction does

A. Pacak and S. Erdweg 7:23

not assign a return value for the given instruction. Note that functional IncA does not allow
negation in general. However, it is possible to query Soufflé relations negatively as we do not
apply the demand transformation to Soufflé relations. Hence, the demand transformation
does not introduce negated dependency cycles. We generate the receiver of the method
call by using function getExp which constructs an expression tree given a variable name. At
last, we construct the argument of the given invocation statement by calling getArgs. Note
while getStm, getExp and getArgs have Set as return type, the functions yield singleton sets.
Returning a set is necessary due to the fact that we query Soufflé relations.

Next, we use the constructed abstract syntax trees as a basis to detect clones. We show a
clone-detection function isStmClone which checks if the statements are alpha-equivalent. We
traverse the statements s1 and s2 simultaneously while checking that the statements and
inner expressions are equal. Because we rely on Soufflé relations generated by the Doop
framework [10], we could integrate static analysis information such as points-to information
into clone detection. The case study shows that describing alpha-equivalence of Java bytecode
in a functional style is straightforward. It is possible to realize more sophisticated clone-
detection techniques using functional IncA such as structural diffing [11].

8 Implementation and Performance Evaluation

In this section we will discuss our implementation and do an early performance evaluation.

8.1 Implementation
We implemented functional IncA by compiling it to a Datalog IR provided by the IncA
framework. The Datalog IR can target two different backends namely IncA and Soufflé without
any change to the underlying Datalog solvers VIATRA [29] and Soufflé [20] respectively. Our
compiler generates Datalog code as shown in this paper, including the demand transformation.
This implementation not only demonstrates the feasibility of our design, but also shows how
advantageous it is to reuse existing Datalog solvers. In particular, the VIATRA Datalog solver
supports incrementality: Changes in extensional relations trigger incremental updates in
derived relations. We inherit this incrementality for free. For example, we can run the interval
analysis of Subsection 7.1 incrementally by diffing the input programs and feeding the resulting
patch to IncA [11]. Targeting Soufflé allows us to generate efficient and scalable C++ programs
that run on multi-core machines. However, Soufflé does not support user-defined aggregation,
hence we do not support translating functional IncA programs containing fold operations.
The implementation is available at https://gitlab.rlp.net/plmz/inca-scala.

8.2 Performance Evaluation
We evaluate the performance of functional IncA and show that it is advantageous to use
established solvers instead of implementing custom Datalog solvers for new frontends. We
compare the running times of executing a data-flow analysis for the While language run with
Souffé, IncA, and Formulog. We choose Soufflé and IncA as they are already established
Datalog frameworks. We choose Formulog because it is one representative of the frontend-first
approach which combines first-order ML functions with Datalog by implementing a custom
Datalog solver. Even though IncA uses an incremental Datalog solver VIATRA [29], we do
not measure the incremental performance of IncA which we leave as future work.

The data-flow analysis that we run is an adapted interval analysis. The analysis collects
all integers −100 ≤ i ≤ 100, a variable can be assigned to. Whenever we encounter an integer
i < −100 we return the default value −1000 and when we encounter an integer i > 100 we

ECOOP 2022

https://gitlab.rlp.net/plmz/inca-scala

7:24 Functional Programming with Datalog

return 1000. We implement this cut-off to ensure that the data-flow analysis terminates in
the presence of loops. We have chosen this type of analysis instead of an interval analysis,
because an interval analysis requires user-defined aggregation which Formulog and Soufflé
currently do not support. We implement four different programs as input of the data-flow
analysis. The programs consist of nested while and if statements and are designed in such a
way that a lot of information has to propagated along the edges of the control-flow graph.

For Formulog and IncA, both of which are Datalog solvers that run on the JVM, we
first do 10 warmup runs and then measure 90 runs. We do not measure the time it takes
to initialize the extensional database but only measure the running times of deriving the
intensional database. For Soufflé, we compile an executable and measure the running time of
the compiled Soufflé solver to derive the intensional database 9 times. Note that we do no
warmup for Soufflé programs as they are compiled to C++ and then to executable machine
code. We store the extensional database within input files and do not measure the I/O
actions needed to read those input files. We load the contents of the input files into RAM by
executing the compiled Soufflé program once. Hence, the following measured runs access the
extensional database stored in RAM. We performed our benchmarks on a machine with an
Intel Core i7 at 2.7 GHz with 16 GB of RAM, running 64-bit OSX 11.4, Java 1.14.0_1.

0

100

200

300

400

500

R
un

ni
ng

 T
im

e
(m

s)

Datalog solvers
Soufflé
IncA
Formulog

Program 1 Program 2 Program 3 Program 4

We show the running times of deriving the intensional database in milliseconds for each
program in the figure above. We see that the custom Datalog solver for Formulog is slower
than the established solvers such as Soufflé and IncA for all input programs. The Formulog
solver is ∼ 3.7x slower than the Soufflé solver and ∼ 2.2x slower than the IncA solver. Note
that the compiled executable of Soufflé has the fastest running time of all three solvers. This
shows that is desirable to compile Datalog with functional constructs to already established
Datalog dialects instead of implementing custom solvers for new Datalog frontends if possible.

9 Related Work

We propose functional programming with sets as a frontend for Datalog to replace Datalog’s
traditional constraint programming. This design differs from most prior works, which retain
constraint programming as a basis and add functional aspects on top of it. Our approach has
three advantages: (i) functional programming is easy to use, (ii) we can compute fixpoints
across functions and relations, and (iii) we can reuse existing Datalog solvers. In the remainder
of this section, we discuss related work.

IncA is an incremental Datalog framework that supports recursive aggregation over
user-defined functions and data types [22, 23]. These user-defined functions and data types
must be implemented in a JVM language and cannot query Datalog relations. The original

A. Pacak and S. Erdweg 7:25

frontend of IncA provides a shallow abstraction over Datalog called pattern functions [24].
These pattern functions consist of sequences of constraints and really are not comparable to
the functional programming we support in functional IncA.

Flix [14] exposes constraint programming to the user, but extends it with functional
programming. The runtime system of Flix executes functional code but also contains a custom
Datalog solver. While functional and Datalog aspects are intertwined in Flix, they cannot
interact as tightly as the functions and relations in our approach. Specifically, user-defined
functions cannot recursively query derived relations, as required by our interval analysis.
However, it is also not obvious how to extend our approach to compile Flix to Datalog,
because Flix supports the generation of additional Datalog constraints at run time [13].

Formulog [9] combines first-order ML functions with Datalog and SMT solvers. In
particular, Datalog rules can contain ML expressions and ML code can recursively query
Datalog relations. Formulog’s runtime understands both languages, which is why a custom
Datalog solver was needed that can evaluate ML expressions and Datalog constraints
interleaved. Our approach should naturally extend to Formulog. Indeed, we could add SMT
solving as a built-in function (def solveSMT(spec: String): String) and rely on user-defined
data types for SMT formulae and models, both of which are built-in types in Formulog.

Datafun [6] defines a higher-order functional programming language with sets and fixpoint
semantics. From a language-design perspective, Datafun is the most closely related work.
Both languages support commonly known functional expressions. One difference is how
fixpoint computations are expressed in the surface syntax. Datafun provides a fixpoint
expression which explicitly states over which function a fixpoint will be computed. However,
in functional IncA the fixpoint computation is not explicitly given but implicitly given by
the dependencies between functions. Datafun and functional IncA follow different design
philosophies. Datafun provides a termination guarantee: If a Datafun program is well-typed,
then a unique least fixed point exists and the program will terminate. Our language does
not provide such a guarantee since a well-typed program can still diverge. Consequently,
Datafun is more restrictive to guarantee termination while functional IncA gives developers
more freedom (and responsibility). Datafun requires that the lattice type over which a
fixpoint is computed does not contain an infinite ascending chain. One disadvantage of
Datafun’s design is that some programs that terminate in our system are not accepted by
Datafun. For example, the interval analysis we presented is not well-typed in Datafun as the
interval lattice has an infinite ascending chains. To ensure termination in functional IncA,
we had to introduce widening to break the infinite ascending chains of the interval lattice.
Many interesting static analyses use infinite lattices with infinite ascending chains. Hence,
Datafun cannot be used to express such analyses. While it is an interesting question how
to guarantee termination for as many programs as possible, our system is more viable to
implement real-world programs. Another difference is that Datafun has its own bottom-up
semantics which was recently extended to support semi-naïve evaluation [5]. In contrast,
we translate programs to Datalog and utilize off-the-shelve Datalog solvers, which readily
implement semi-naïve evaluation and other optimizations.

QL [7] is a logic programming language with object-oriented features such as classes and
methods to structure logic programs. QL compiles to Datalog to encode inheritance and
virtual dispatch of member predicates. We also propose to compile to Datalog, but focus on
functional programming with algebraic data types. It would be interesting to see how we
can extend functional IncA with object-oriented features and how these interact.

Mercury [21] is a logic programming language that consists of relations and rules deriving
those relations. Like any Datalog, Mercury also supports the encoding of functions as relations,
but in Mercury users can additionally annotate parameters as inputs and deterministic

ECOOP 2022

7:26 Functional Programming with Datalog

outputs. Mercury implements a custom Datalog solver that exploits such functional relations
by executing them like a deterministic program. It would be interesting to explore generic
Datalog optimizations that exploit functional relations, since we can easily generate the
necessary annotations in functional IncA.

Bloom [2, 3] is a domain-specific language for distributed systems that uses the Datalog
variant Dedalus [4] under the hood. Bloom provides built-in higher-order functions such as
map and reduce that operate over collections. Bloom is embedded in Ruby and user-defined
functions and data types can be written in Ruby, but these user-defined functions cannot
access the contents of relations. Therefore, we cannot describe an interval analysis in the
same style we have shown in the previous section in Bloom.

Soufflé [20] an efficient Datalog solver that can interpret Datalog rules directly or translate
them to C++. It is possible to define user-defined functions as C++ functions, but again
these functions cannot access the contents of relations. Soufflé has support for algebraic data
types, but developers have to ensure that only finitely many values are constructed. For our
use cases, this amounts to encoding the input relations by hand.

10 Conclusion

Datalog is supposedly declarative, but many programs are hard to express as constraints.
We propose functional programming with sets as a new frontend for Datalog that solves this
problem: functional IncA. Specifically, we translate functional IncA programs to Datalog
and employ a demand transformation to ensure the Datalog program terminates whenever
the original program terminates. While users of functional IncA only need to learn a single
functional programming language, they enjoy Datalog’s fixpoint semantics across functions
and relations. Moreover, since all generated code is pure Datalog, we can use off-the-shelve
Datalog solvers rather than building our own. Specifically, we implemented our approach as
a frontend for IncA [23] as well as Soufflé [20] and demonstrated how easy it is to express
complex Datalog programs with it. Our case studies include clone detection of real-world
Java programs, program analyses, a program transformation, and an interpreter, all of which
are easy to express functionally but translate to highly complex Datalog code. We have
shown through early performance measurements that it is indeed desirable to use established
Datalog solvers than implement custom solvers that embed a functional programming
language as Formulog did. In future work, we want to investigate the performance of the
generated Datalog code and study how compiler optimization can help. We also want to
support negation in functional IncA, but the demand transformation potentially breaks the
stratifiability of programs. We want to explore if the solution by Tekle and Liu [26] can be
used. At last, we want to investigate how to properly debug functional IncA programs.

References
1 Serge Abiteboul, Zoë Abrams, Stefan Haar, and Tova Milo. Diagnosis of asynchronous discrete

event systems: datalog to the rescue! In Chen Li, editor, Proceedings of the Twenty-fourth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 13-15,
2005, Baltimore, Maryland, USA, pages 358–367. ACM, 2005. doi:10.1145/1065167.1065214.

2 Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy, Joseph M. Hellerstein, and
Russell Sears. Boom analytics: exploring data-centric, declarative programming for the cloud.
In Christine Morin and Gilles Muller, editors, European Conference on Computer Systems,
Proceedings of the 5th European conference on Computer systems, EuroSys 2010, Paris, France,
April 13-16, 2010, pages 223–236. ACM, 2010. doi:10.1145/1755913.1755937.

https://doi.org/10.1145/1065167.1065214
https://doi.org/10.1145/1755913.1755937

A. Pacak and S. Erdweg 7:27

3 Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak. Consistency
analysis in bloom: a CALM and collected approach. In CIDR 2011, Fifth Biennial Conference
on Innovative Data Systems Research, Asilomar, CA, USA, January 9-12, 2011, Online
Proceedings, pages 249–260. www.cidrdb.org, 2011. URL: http://cidrdb.org/cidr2011/
Papers/CIDR11_Paper35.pdf.

4 Peter Alvaro, William R. Marczak, Neil Conway, Joseph M. Hellerstein, David Maier, and
Russell Sears. Dedalus: Datalog in time and space. In Oege de Moor, Georg Gottlob, Tim
Furche, and Andrew Jon Sellers, editors, Datalog Reloaded - First International Workshop,
Datalog 2010, Oxford, UK, March 16-19, 2010. Revised Selected Papers, volume 6702 of Lecture
Notes in Computer Science, pages 262–281. Springer, 2010. doi:10.1007/978-3-642-24206-9_
16.

5 Michael Arntzenius and Neel Krishnaswami. Seminaïve evaluation for a higher-order functional
language. Proc. ACM Program. Lang., 4(POPL):22:1–22:28, 2020. doi:10.1145/3371090.

6 Michael Arntzenius and Neelakantan R. Krishnaswami. Datafun: A functional Datalog. In
Jacques Garrigue, Gabriele Keller, and Eijiro Sumii, editors, Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan,
September 18-22, 2016, pages 214–227. ACM, 2016. doi:10.1145/2951913.2951948.

7 Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. QL: object-oriented
queries on relational data. In Shriram Krishnamurthi and Benjamin S. Lerner, editors, 30th
European Conference on Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome,
Italy, volume 56 of LIPIcs, pages 2:1–2:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.ECOOP.2016.2.

8 Catriel Beeri and Raghu Ramakrishnan. On the power of magic. The Journal of Logic
Programming, 10(3):255–299, 1991. Special Issue: Database Logic Progamming. doi:10.1016/
0743-1066(91)90038-Q.

9 Aaron Bembenek, Michael Greenberg, and Stephen Chong. Formulog: Datalog for SMT-
based static analysis. Proc. ACM Program. Lang., 4(OOPSLA):141:1–141:31, 2020. doi:
10.1145/3428209.

10 Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophisticated
points-to analyses. In Shail Arora and Gary T. Leavens, editors, Proceedings of the 24th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA, pages 243–262.
ACM, 2009. doi:10.1145/1640089.1640108.

11 Sebastian Erdweg, Tamás Szabó, and André Pacak and. Concise, type-safe, and efficient
structural diffing. In Programming Language Design and Implementation (PLDI). ACM, 2021.

12 Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. Datalog and emerging applications:
an interactive tutorial. In Timos K. Sellis, Renée J. Miller, Anastasios Kementsietsidis, and
Yannis Velegrakis, editors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011, pages 1213–1216.
ACM, 2011. doi:10.1145/1989323.1989456.

13 Magnus Madsen and Ondrej Lhoták. Fixpoints for the masses: programming with first-
class Datalog constraints. Proc. ACM Program. Lang., 4(OOPSLA):125:1–125:28, 2020.
doi:10.1145/3428193.

14 Magnus Madsen, Ming-Ho Yee, and Ondrej Lhoták. From Datalog to Flix: A declarative
language for fixed points on lattices. In Chandra Krintz and Emery Berger, editors, Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, pages 194–208. ACM, 2016. doi:
10.1145/2908080.2908096.

15 David Maier, K. Tuncay Tekle, Michael Kifer, and David Scott Warren. Datalog: concepts,
history, and outlook. In Michael Kifer and Yanhong Annie Liu, editors, Declarative Logic
Programming: Theory, Systems, and Applications, pages 3–100. ACM / Morgan & Claypool,
2018. doi:10.1145/3191315.3191317.

ECOOP 2022

http://cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf
https://doi.org/10.1007/978-3-642-24206-9_16
https://doi.org/10.1007/978-3-642-24206-9_16
https://doi.org/10.1145/3371090
https://doi.org/10.1145/2951913.2951948
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.1016/0743-1066(91)90038-Q
https://doi.org/10.1016/0743-1066(91)90038-Q
https://doi.org/10.1145/3428209
https://doi.org/10.1145/3428209
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1989323.1989456
https://doi.org/10.1145/3428193
https://doi.org/10.1145/2908080.2908096
https://doi.org/10.1145/2908080.2908096
https://doi.org/10.1145/3191315.3191317

7:28 Functional Programming with Datalog

16 Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of program analysis.
Springer, 1999.

17 André Pacak, Sebastian Erdweg, and Tamás Szabó. A systematic approach to deriving
incremental type checkers. Proc. ACM Program. Lang., 4(OOPSLA):127:1–127:28, 2020.
doi:10.1145/3428195.

18 John C. Reynolds. Definitional interpreters for higher-order programming languages. High.
Order Symb. Comput., 11(4):363–397, 1998. doi:10.1023/A:1010027404223.

19 Bernhard Scholz, Herbert Jordan, Pavle Subotic, and Till Westmann. On fast large-scale
program analysis in Datalog. In Ayal Zaks and Manuel V. Hermenegildo, editors, Proceedings
of the 25th International Conference on Compiler Construction, CC 2016, Barcelona, Spain,
March 12-18, 2016, pages 196–206. ACM, 2016. doi:10.1145/2892208.2892226.

20 Bernhard Scholz, Kostyantyn Vorobyov, Padmanabhan Krishnan, and Till Westmann. A
Datalog source-to-source translator for static program analysis: An experience report. In
24th Australasian Software Engineering Conference, ASWEC 2015, Adelaide, SA, Australia,
September 28 - October 1, 2015, pages 28–37. IEEE Computer Society, 2015. doi:10.1109/
ASWEC.2015.15.

21 Zoltan Somogyi, Fergus Henderson, and Thomas C. Conway. The execution algorithm of
mercury, an efficient purely declarative logic programming language. J. Log. Program., 29(1-
3):17–64, 1996. doi:10.1016/S0743-1066(96)00068-4.

22 Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter. Incrementalizing
lattice-based program analyses in Datalog. Proc. ACM Program. Lang., 2(OOPSLA):139:1–
139:29, 2018. doi:10.1145/3276509.

23 Tamás Szabó, Sebastian Erdweg, and Gábor Bergmann. Incremental whole-program analysis
in Datalog with lattices. In Programming Language Design and Implementation (PLDI). ACM,
2021.

24 Tamás Szabó, Sebastian Erdweg, and Markus Voelter. Inca: a DSL for the definition of incre-
mental program analyses. In David Lo, Sven Apel, and Sarfraz Khurshid, editors, Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering, ASE 2016,
Singapore, September 3-7, 2016, pages 320–331. ACM, 2016. doi:10.1145/2970276.2970298.

25 K. Tuncay Tekle and Yanhong A. Liu. Precise complexity analysis for efficient datalog queries.
In Temur Kutsia, Wolfgang Schreiner, and Maribel Fernández, editors, Proceedings of the
12th International ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, July 26-28, 2010, Hagenberg, Austria, pages 35–44. ACM, 2010. doi:10.1145/
1836089.1836094.

26 K. Tuncay Tekle and Yanhong A. Liu. Extended magic for negation: Efficient demand-driven
evaluation of stratified Datalog with precise complexity guarantees. In Bart Bogaerts, Esra
Erdem, Paul Fodor, Andrea Formisano, Giovambattista Ianni, Daniela Inclezan, Germán
Vidal, Alicia Villanueva, Marina De Vos, and Fangkai Yang, editors, Proceedings 35th Interna-
tional Conference on Logic Programming (Technical Communications), ICLP 2019 Technical
Communications, Las Cruces, NM, USA, September 20-25, 2019, volume 306 of EPTCS, pages
241–254, 2019. doi:10.4204/EPTCS.306.28.

27 Jeffrey D. Ullman. Bottom-up beats top-down for Datalog. In Avi Silberschatz, editor,
Proceedings of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, March 29-31, 1989, Philadelphia, Pennsylvania, USA, pages 140–149. ACM
Press, 1989. doi:10.1145/73721.73736.

28 Raja Vallee-Rai and Laurie J Hendren. Jimple: Simplifying java bytecode for analyses and
transformations, 1998.

29 Dániel Varró, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, István Ráth, and Zoltán
Ujhelyi. Road to a reactive and incremental model transformation platform: three generations
of the VIATRA framework. Software & Systems Modeling, 15(3):609–629, July 2016. doi:
10.1007/s10270-016-0530-4.

https://doi.org/10.1145/3428195
https://doi.org/10.1023/A:1010027404223
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.1109/ASWEC.2015.15
https://doi.org/10.1109/ASWEC.2015.15
https://doi.org/10.1016/S0743-1066(96)00068-4
https://doi.org/10.1145/3276509
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1145/1836089.1836094
https://doi.org/10.1145/1836089.1836094
https://doi.org/10.4204/EPTCS.306.28
https://doi.org/10.1145/73721.73736
https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.1007/s10270-016-0530-4

	1 Introduction
	2 Datalog Frontends: State of the Art
	3 Compiling First-Order Functions to Datalog
	3.1 Compilation by example
	3.2 Translating functional programs to Datalog, technically
	3.3 Demand-driven bottom-up evaluation

	4 Compiling Algebraic Data Types to Datalog
	4.1 Compiling user-defined data types by example
	4.2 Extending functional IncA with algebraic data types

	5 Case study: Type Checking, Type Erasure, and Interpretation
	6 Mixing Functions and Relations
	6.1 Computing a control-flow graph functionally
	6.2 Translating tuples and first-order sets to Datalog
	6.3 First-class functions and first-class sets

	7 Case Studies: Data-Flow Analyses and Clone Detection
	7.1 Data-Flow Analyses
	7.2 Clone Detection

	8 Implementation and Performance Evaluation
	8.1 Implementation
	8.2 Performance Evaluation

	9 Related Work
	10 Conclusion

