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Abstract
The first-order theory of automatic sequences with addition is decidable, and this means that one
can often prove combinatorial properties of these sequences “automatically”, using the free software
Walnut written by Hamoon Mousavi. In this talk I will explain how this is done, using as an example
the measure of minimize size string attractor, introduced by Kempa and Prezza in 2018.

Using the logic-based approach, we can also prove more general properties of string attractors
for automatic sequences. This is joint work with Luke Schaeffer.
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1 Introduction

Many famous sequences, such as the Thue-Morse sequence t = 01101001 · · · and the
Fibonacci infinite word f = 01001010 · · · appear as fundamental examples in combinatorial
pattern matching.

As just a few examples, I point to [5, 1, 12], where the Thue-Morse sequence makes an
appearance, and [13], where the Fibonacci infinite word is studied.

A fundamental result, essentially due to Büchi [4] and Bruyère et al. [3], tells us that
the first-order theory of such sequences, with addition, is decidable, and there is a relatively
simple decision procedure based on automata. This decision procedure has been implemented
in free software called Walnut, originally created by Hamoon Mousavi [11]. Therefore, in
many cases, we can prove properties of such sequences of interest to the CPM community
“automatically”, merely by stating the desired property in first-order logic, and invoking
Walnut.

Recently there has been interest in a certain measure of repetitivity, based on string
attractors, originally introduced by Kempa and Prezza [6], and studied further in [9, 7, 8, 10, 2].
A string attractor of a finite word w = w[0..n − 1] is a subset S ⊆ {0, 1, . . . , n − 1} such that
every nonempty factor f of w has an occurrence that touches at least one of the indices of S.
For example, {2, 3, 4} is a string attractor of minimum size for the French word entente.

In this talk I will introduce Walnut, and explain how to obtain results on string attractors
using it and the theory behind it. This is joint work with Luke Schaeffer [14].
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2 Results

As an example of the kind of thing we can prove with Walnut, here is one theorem:

▶ Theorem 1. Let an denote the size of the smallest string attractor for the length-n prefix
of the Thue-Morse word t. Then

an =


1, if n = 1;
2, if 2 ≤ n ≤ 6;
3, if 7 ≤ n ≤ 14 or 17 ≤ n ≤ 24;
4, if n = 15, 16 or n ≥ 25.

More generally, we can prove

▶ Theorem 2. Let w be a k-automatic sequence. Either
every factor w[i..i + ℓ − 1] has a string attractor of constant size, and there exists a finite
automaton outputting the minimum size given i and ℓ, or
for all n ≥ 1, the minimum size string attractor for the length-n prefix w[0..n − 1] grows
as Θ(log n),

and we can decide which is the case for w.

For more about Walnut and its applications in combinatorics on words, see my forthcoming
book [15].
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