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Abstract
We study in this paper the Doubly Partially Ordered Pattern Matching (or DPOP
Matching) problem, a natural extension of the Permutation Pattern Matching problem.
Permutation Pattern Matching takes as input two permutations σ and π, and asks whether
there exists an occurrence of σ in π; whereas DPOP Matching takes two partial orders Pv and Pp
defined on the same set X and a permutation π, and asks whether there exist |X| elements in π whose
values (resp., positions) are in accordance with Pv (resp., Pp). Posets Pv and Pp aim at relaxing
the conditions formerly imposed by the permutation σ, since σ yields a total order on both positions
and values. Our problem being NP-hard in general (as Permutation Pattern Matching is), we
consider restrictions on several parameters/properties of the input, e.g., bounding the size of the
pattern, assuming symmetry of the posets (i.e., Pv and Pp are identical), assuming that one partial
order is a total (resp., weak) order, bounding the length of the longest chain/anti-chain in the posets,
or forbidding specific patterns in π. For each such restriction, we provide results which together give
a(n almost) complete landscape for the algorithmic complexity of the problem.
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1 Preamble

Let us play the following little puzzle game. Among the selection of fifteen cities of the Czech
Republic depicted in Figure 1 together with their geographic coordinates, find (if they exist)
five cities, say A, B, C, D and E, such that:

A and C are west of D and north of B,
E is east of B and south of A,
D is west of B and north of A and C.

It is assumed that no two cities have the same longitude or latitude. Notice that the game
does not provide complete information as, for example, no information is provided about the
relative positioning of A and C (and silence is tantamount to consent). We may assume that
the information is minimal: requiring C is west of B is unnecessary since C is west of D
and D is west of B. One solution is A = Praha, B = Brno, C = Plzeň, D = Liberec and
E = Olomouc. Note that the solution is not unique, as A = Plzeň, B = Jindřichův Hradec,
C = Cheb, D = Ústí nad Labem and E = Brno is another solution.
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Figure 1 A Czech Republic map showing 15 of its cities. Their names and GPS coordinates, in
increasing order of their longitudes, are: Cheb (50◦4′N 12◦22′E), Plzeň (49◦44′N 13◦22′E), Ústí nad
Labem (50◦39′N 14◦1′E), Praha (50◦5′N 14◦25′E), České Budějovice (48◦58′N 14◦28′E), Jindřichův
Hradec (49◦9′N 15◦0′E), Liberec (50◦46′N 15◦3′E), Pardubice (50◦2′N 15◦46′E), Hradec Králové
(50◦12′N 15◦49′E), Brno (49◦11′N 16◦36′E), Olomouc (49◦35′N 17◦15′E), Zlín (49◦13′N 17◦40′),
Opava (49◦56′N 17◦54′E), Ostrava (49◦50′N 18◦17′E) and Karviná (49◦51′N 18◦32′E).
© Creative Commons CC0 1.0 Universal Public Domain Dedication.

We show that this puzzle game can be modeled as a permutation pattern matching
problem for doubly partially ordered patterns. Let us first associate a permutation π ∈ S(15)
with the problem (see Figure 2). We sort the fifteen cities of the Czech Republic depicted in
Figure 1 both by increasing longitude (E) and by increasing latitude (N), so that π(i) = j if
the i-th city going west to east is also the j-th city going south to north. In our example,
the “Czech Republic permutation” is π = 11 6 14 12 1 2 15 10 13 3 5 4 9 7 8. For example,
π(2) = 6 since Plzeň is the second city going west to east, and the sixth city going south to
north. What is left is to define our pattern P : P is composed of two partially ordered sets on
the variables {A, B, C, D, E} (see Figure 3): one partially ordered set (denoted Pv for value
poset in the sequel) describes the south-to-north constraints and another partially ordered
set (denoted Pp for position poset in the sequel) describes the west-to-east constraints.

2 Introduction

We say that a permutation σ occurs in another permutation π (or that π contains σ) if there
exists a subsequence of elements of π that has the same relative order as σ. Otherwise, we
say that π avoids σ. For example, π contains the permutation σ = 123 (resp., σ = 321) if
it has an increasing (resp., a decreasing) subsequence of size 3. Similarly, σ = 4312 occurs
in π = 6152347, as shown in 6 1 5 2 3 4 7, but the same π = 6152347 avoids σ′ = 2341.

Deciding whether a permutation σ ∈ S(k) occurs in some permutation π ∈ S(n) is
NP-complete [7], but is fixed-parameter tractable for the parameter k [15, 17]. Several
exponential-time algorithms have been recently proposed [5, 16], improving upon [1, 10]. A
vast literature is devoted to the case where both the pattern σ and the target π are restricted
to a proper permutation class, e.g., 321-avoiding permutations [18, 2, 21], (213, 231)-avoiding
permutations [26], (2413, 3142)-avoiding (a.k.a. separable) permutations [19, 25], and (k . . . 1)-
avoiding permutations [11]. For more background on permutation patterns and pattern
avoidance, we refer to [6] and [24].
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Figure 2 Permutation π = 11 6 14 12 1 2 15 10 13 3 5 4 9 7 8 corresponding to the map from
Figure 1. The solution of our puzzle, depicted Figure 1, is also represented.
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π = 11 6 14 12 1 2 15 10 13 3 5 4 9 7 8

. C . A . . D . . B E . . . .

A C D . . B . . . E . . . . .

C . . A . . . . D . B E . . .

Figure 3 A dpop P = (Pv, Pp) representing the pattern for our puzzle, together with three
distinct occurrences. Note that partial orders are represented by Hasse diagrams, i.e., a bottom-up
path in Pv (resp., Pp) implies a bottom-up (resp., left-right) relation in the occurrence of P in π.

In the last years, the notion of pattern has been generalized in several ways. A vincular
pattern is a permutation in which some entries must occur consecutively [4]. Consecutive
patterns are a special case of vincular patterns in which all entries need to be adjacent [13].
Bivincular patterns generalize classical patterns even further than vincular patterns by
requiring that not only positions but also values of elements involved in a matching may
be forced to be adjacent [8]. Mesh patterns (a further generalization of bivincular patterns)
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impose further restrictions on the relative positions of the entries in an occurrence of a
pattern [9] and boxed mesh patterns are special cases of mesh patterns [3]. Strongly related
to our approach are partially ordered patterns that are vincular patterns in which the relative
order of some elements is not fixed [23]. The best general reference is [24].

In this paper, we consider a new generalization of classical patterns in which both the
relative order and the relative positioning of some elements are not fixed. The idea is to
allow the possibility for some elements to be incomparable in value (i.e., their relative order
is unknown) and to go one step further by allowing the possibility for some elements to be
incomparable in position (i.e., their relative positioning in the occurrence is unknown). Since
the problem is clearly NP-hard (as it contains Permutation Pattern Matching as a
sub-problem), our goal is to identify tractable cases when restrictions apply to the pattern
and/or to the permutation.

The restrictions we consider here apply to the following parameters of the problem: size
of the pattern; symmetry (i.e., same partial order in positions and values); one partial order
is a total (resp., weak) order; size of the longest chain (resp., anti-chain) in the partial orders
(height and width); forbidden patterns in π. On the positive side, we show that the FPT
algorithm for Permutation Pattern Matching can be generalized to our setting (with
the pattern size as parameter). We further give polynomial-time algorithms when the pattern
is a symmetric disjoint union of a constant number of weak orders. Finally, we also provide
polynomial-time algorithms when the pattern is symmetric and the permutation belongs
to some restricted classes, such as (123, 132)-avoiding permutations. We complement these
positive results with NP- or W[1]-hardness proofs in most of the remaining cases.

3 Definitions

Permutations and Patterns

A permutation σ is said to be contained in (or is a sub-permutation of) another permutation π,
which we denote by σ ⪯ π, if π has a (not necessarily contiguous) subsequence whose terms
are order-isomorphic to σ. We also say that π admits an occurrence of the pattern σ. If no
such subsequence exists, we say that π avoids σ (or is σ-avoiding). A permutation is separable
if it avoids both 2413 and 3142. Permutation Pattern Matching is the problem of
deciding whether a permutation is contained into another permutation.

For any non-negative integer n, we denote by [n] the set {1, 2, . . . , n}. When n ⩾ 1, we also
note ip(n) = 1 2 . . . n the increasing permutation of length n and dp(n) = n (n − 1) . . . 1 the
decreasing permutation of length n. Let π ∈ S(n). The reverse (resp., complement) of π is the
permutation πr = π(n)π(n−1) . . . π(1) (resp., πc = (n−π(1)+1)(n−π(2)+1) . . . (n−π(n)+1)).
The inverse of π is the permutation π-1 ∈ S(n) defined by π-1(j) = i if and only if π(i) = j.
Given a permutation π of size m and a permutation σ of size n, the skew sum of π and σ is
the permutation of size m + n defined by

(π ⊖ σ)(i) =
{

π(i) + n for 1 ⩽ i ⩽ m,

σ(i − m) for m + 1 ⩽ i ⩽ m + n,

and the direct sum of π and σ is the permutation of size m + n defined by

(π ⊕ σ)(i) =
{

π(i) for 1 ⩽ i ⩽ m,

σ(i − m) + m for m + 1 ⩽ i ⩽ m + n.
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Orders

A relation ⩽ is a partial order on a set X if it has:
reflexivity: for all x ∈ X, x ⩽ x (i.e., every element is related to itself);
transitivity: for all x, x′, x′′ ∈ X, if x ⩽ x′ and x′ ⩽ x′′, then x ⩽ x′′;
antisymmetry: for all x, x′ ∈ X, if x ⩽ x′ and x′ ⩽ x, then x = x′ (i.e., no two distinct
elements precede each other).

If ⩽ has the following additional property, we say that it is a weak order on X:
transitivity of incomparability: for all pairwise distinct x, x′, x′′ ∈ X, if x is incomparable
with x′ (i.e., neither x ⩽ x′ nor x′ ⩽ x is true) and if x′ is incomparable with x′′, then x

is incomparable with x′′.
Two subsets X1, X2 are independent if there is no x1 ∈ X1, x2 ∈ X2 such that x1 ⩽ x2
or x2 ⩽ x1. We say that a partial order is k-weak if there exists a partition of X into k

pairwise independent sets X1, . . . , Xk such that, for each i, the restriction of ⩽ to Xi is a
weak order (in other words, ⩽ is the disjoint union of k weak partial orders).

Let P = (X,⩽) be a finite partially ordered set. A chain in P is a set of pairwise
comparable elements (i.e., a totally ordered subset) and an antichain in P is a set of pairwise
incomparable elements. The partial order height of P, denoted by height(P), is defined as
the maximum cardinality of a chain in P, and the partial order width of P, denoted by
width(P), is defined as the maximum cardinality of an antichain in P . By Dilworth Theorem,
width(P) is also the minimum number of chains in any partition of P into chains. The dual
of P is the partial order P∂ = (X,⩽∂) defined by letting ⩽∂ be the converse relation of ⩽,
i.e., x ⩽∂ x′ if and only if x′ ⩽ x. The dual of a partial order is a partial order and the dual
of the dual of a relation is the original relation. A total order is a partial order in which any
two elements are comparable, and a set equipped with a total order is a totally ordered set.
A linear extension of a partial order is a total order that is compatible with the partial order.
It will be convenient to represent a linear extension of a poset P = (X,⩽) as the mapping
τP : X → [ |X| ] such that τP(i) < τP(j) if i < j in the linear extension.

A doubly partially ordered pattern (dpop) P is a pair, denoted by P = (Pv, Pp), of posets
Pv = (X,⩽v) and Pp = (X,⩽p) defined over the same set X. We call Pv and Pp the value
poset and the position poset, respectively. A dpop P = (Pv, Pp) is symmetric if Pv = Pp,
dual if Pv = Pp∂ , and semi-total if one of Pp or Pv is a total order. We let height(P ) and
width(P ) stand for max{height(Pv), height(Pp)} and max{width(Pv), width(Pp)}, respect-
ively. Finally, the size of P is defined as the cardinality |X| and is denoted by |P |.

▶ Definition 1 (DPOP Matching). Given a permutation π ∈ S(n) and a dpop P = (Pv, Pp),
an occurrence (or mapping) of P in π is an injective function φ : X → [n] such that:

π ◦ φ is ⩽v-non-decreasing, i.e., for all x, y ∈ X, if x ⩽v y then π(φ(x)) ⩽ π(φ(y)), and
φ is ⩽p-non-decreasing, i.e., for all x, y ∈ X, if x ⩽p y then φ(x) ⩽ φ(y).

The DPOP Matching problem consists in deciding whether P occurs in π.

First Observations

▶ Observation 2. Permutation Pattern Matching is the special case of DPOP Match-
ing where both ⩽v and ⩽p are total orders.

We note that applying a vertical and/or horizontal symmetry on both pattern and
permutation does not alter the existence of an occurrence.

CPM 2022
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▶ Observation 3. Let P = (Pv, Pp) be a dpop and π be a permutation. The following
statements are equivalent:

1. (Pv, Pp) occurs in π;
2. (Pv, (Pp)∂) occurs in πr;
3. ((Pv)∂ , Pp) occurs in πc;

4. ((Pv)∂ , (Pp)∂) occurs in πc r;
5. (Pp, Pv) occurs in π-1.

The following reformulation will prove useful.

▶ Observation 4. Let P = (Pv, Pp) be a dpop with Pv = (X,⩽v), Pp = (X,⩽p) and k = |X|,
and let π ∈ S(n) be a permutation. The following statements are equivalent:

P occurs in π.
There exists a linear extension τv : X → [k] of Pv and a linear extension τp : X → [k]
of Pp such that the permutation σ ∈ S(k) defined by σ(i) = τv(τ−1

p (i)) for 1 ⩽ i ⩽ k is
contained in π.

The rationale for the reformulation introduced in Observation 4 stems from the following
corollary that sets the general context.

▶ Corollary 5 ([17]). DPOP Matching is FPT for the parameter |P |.

Indeed, it is enough to guess two linear extensions τv : X → [k] of Pv and τp : X → [k]
of Pp, and to check if the permutation σ ∈ S(k) defined by σ(i) = τv(τ−1

p (i)) for 1 ⩽ i ⩽ k

is contained in π. There are O(k!2) pairs of such extensions and, for each of them, one can
check whether σ occurs in π in n 2O(k2 log k) time [17].

4 Semi-Total Patterns

In this section we focus on semi-total patterns, i.e., without loss of generality, on the case
where Pp is a total order (up to symmetry by Observation 3). This case still contains
Permutation Pattern Matching as a special case, and is thus NP-hard. We focus on
small-height value partial orders, i.e., on dpops with constant height(Pv), and give an XP
algorithm for weak orders (Proposition 6) and paraNP-hardness in general (Proposition 7).

▶ Proposition 6. DPOP Matching is solvable in O
(
nheight(Pv)) time if Pv is a weak order

and Pp is a total order.

Proof. Let π ∈ S(n) be a permutation and P = (Pv, Pp) be a dpop on some ground set X,
where Pv is a weak order and Pp is a total order. Without loss of generality, we assume
that X is the set [k] and that Pp is the usual order on integers. For every x ∈ X, we abusively
denote by height(x) the maximum cardinality of a chain with maximum element x in Pv.
Finally, set ℓ = height(Pv).

For any two distinct variables x, y ∈ X, we have x <v y if and only if height(x) < height(y).
Thus, P occurs in π if and only there exists a sequence 0 = a0 < a1 < a2 < . . . < aℓ = n such
that wσ is a subsequence of wπ, where wπ ∈ [ℓ]n and wσ ∈ [ℓ]k are the two words defined
by wπ[i] = min{j : aj−1 < π(i) ⩽ aj} and wσ[i] = height(i).

As for the running time, there exist
(

n−1
ℓ−1

)
distinct sequences (ai)0⩽i⩽ℓ and deciding

whether wσ occurs in wπ as a subsequence is a linear-time procedure. ◀

▶ Proposition 7. DPOP Matching is NP-complete even if height(Pv) = 2, Pp is a total
order and π avoids 1234.
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Figure 4 Top left: vertex cover (in red) in a 5-vertex graph G. Bottom left: partially ordered
set Pv constructed from G. Right: an occurrence of P in π obtained from our size-3 vertex cover.

Proof. We perform a reduction from Vertex Cover, which is known to be NP-complete [22].
Let G = (V, E) be a graph and let k be a positive integer. We identify V with the set [n].

We construct a dpop P = (Pv, Pp), where Pv = (X,⩽v) is a height-2 partial order and
Pp = (X,⩽p) a total order, as follows. We set X = {a1, b1, c1, a2, b2, c2, . . . , an, bn, cn}, so
that |X| = 3n. Then, we set a1 ⩽p b1 ⩽p c1 ⩽p a2 ⩽p b2 ⩽p c2 ⩽p . . . ⩽p an ⩽p bn ⩽p cn,
which defines the total order ⩽p. Finally, for each edge {i, j} in E with i < j, we set ai ⩽v bj ;
all other elements of X are pairwise incomparable by ⩽v. This defines a partial order ⩽v
such that height(⩽v) = 2.

Write now N = 3n + 3 and m = (k + 1)N − 2, and define a permutation π ∈ S(m) as
follows:

π(iN + j) = (m + 1) − (iN + j + k) whenever 0 ⩽ i ⩽ k and 1 ⩽ j ⩽ N − 2;
π(iN − 1) = (k + 1) − i and π(iN) = (m + 1) − i whenever 1 ⩽ i ⩽ k.

It is straightforward to check that π is 1234-avoiding. It is also easy to see how the
construction, illustrated in Figure 4, can be accomplished in polynomial-time.

Let us see under which conditions an injective ⩽p-non-decreasing function φ : X → [m]
maps P into π. We say that a vertex i belongs to the j-th gadget if one of the integers φ(ai)
or φ(bi) is equal to jN − 1 or to jN , i.e., if {φ(ai), φ(bi)} ∩ {jN − 1, jN} ≠ ∅. When two
elements in the range of φ are consecutive, either they are integers φ(ai) and φ(bi) for a
given i, or one of them is an integer φ(ci) for some i. Therefore, no two distinct vertices i

and i′ can belong to the same j-th gadget. Consequently, and since there are k gadgets, the
set V ′ of vertices i that belong to some gadget is of size at most k.

Then, we define a notion of height as follows: for each element x of X, we set height(x) = 0
if N divides φ(x) + 1, height(x) = 2 if N divides φ(x), and height(x) = 1 otherwise. By
construction, for all x, y ∈ X such that x ⩽p y, we have π(φ(x)) ⩽ π(φ(y)) if and only if x

CPM 2022
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is of smaller height than y. Therefore, if φ maps P into π, and for each relation ai ⩽v bj ,
either ai has height 0 or bj has height 2. In particular, either i or j must belong to V ′, and
therefore V ′ is a vertex cover of size at most k.

Conversely, provided that there exist vertices v(1) < v(2) < . . . < v(k) that form a vertex
cover V ′, we construct an occurrence of P in π as follows. First, we abusively set v(0) = 0.
Then, for all i ∈ [k], we set f(i) = jN + 3(i − v(j)), where j is the largest integer such
that v(j) ⩽ i. We set φ(aj) = f(j) − 1, φ(bj) = f(j) and φ(cj) = f(j) + 1.

By construction, we have f(i) + 3 ⩽ f(i + 1) for all i, and therefore φ is an injective
⩽p-non-decreasing function. Moreover, for every i ∈ [n], the elements ai and bi have heights 0
and 2 if i ∈ V ′, and they have height 1 if i /∈ V ′. It follows that π(φ(ai)) ⩽ π(φ(bj)) whenever
ai ⩽v bj , i.e., that φ is an occurrence of P in π. ◀

5 Symmetric Patterns

This section is devoted to studying complexity issues of pattern matching for symmetric
dpop (i.e., those dpops P = (P, P), whose value and position posets coincide). We further
focus on two special cases, first when P has a bounded width, then when π is restricted to
constrained pattern-avoiding classes of permutations.

5.1 Symmetric Pattern with Bounded Width
We first observe that the problem is polynomial for width 1 (Observation 8). We further prove
W[1]-hardness for the parameter k when P is a disjoint union of k chains (Proposition 10).
We complement this result with an XP algorithm for the slightly more general case where P is
a disjoint union of weak orders (Proposition 11). Note that the existence of an XP algorithm
for the width parameter remains open, and we conjecture that the problem is NP-hard even
for constant width.

▶ Observation 8. DPOP Matching is solvable in O(n log log |P |) time for a symmetric
dpop P of width 1 (i.e., a total symmetric dpop P ).

Proof. If P has width 1, then P = (P, P) for some total order P = (X,≼). In particular,
we can write X = {x1, . . . , x|X|} with xi ≺ xj for i < j, and in any mapping ϕ : X → [n],
the elements πϕ(x1), . . . , πϕ(x|X|) must form an increasing subsequence of π. Conversely, any
size-|X| increasing subsequence of π can be used as an image for ϕ, so in this setting DPOP
Matching corresponds to the longest increasing subsequence problem, which can be solved
in O(n log log |X|) time [12]. ◀

To simplify the exposition of our next result, we introduce a new problem that may be of
independent interest. Given a positive integer k and a permutation π ∈ S(kn), Balanced
k-Increasing Coloring is the problem of deciding whether there exists a balanced k-
coloring of π (i.e., a partition of [kn] into k subsets of size exactly n) such that each color
induces an increasing subsequence of π.

▶ Proposition 9. Balanced k-Increasing Coloring for 312-avoiding permutations is
W[1]-hard for the parameter k.

Proof. We perform a reduction from Unary Bin Packing parameterized by the number of
bins, which is known to be W[1]-hard [20]. In this version of Bin Packing, we are given
a list of integers s1, s2, . . . , sn encoded in unary, and two integers B and k. These integers
are interpreted as item sizes, and the task is to decide whether the items can be partitioned
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s1 + 1

k − 1

s2 + 1

k − 1

s6 + 1

k − 1

s3 + 1

k − 1

s4 + 1

k − 1

s5 + 1

k − 1

s7 + 1

k − 1

s8 + 1

k − 1

π (avoids 312)

n+B

P

Figure 5 Reduction from Unary Bin Packing to Balanced k-Increasing Coloring for
the list 6, 4, 3, 3, 3, 2, 2, 1, which admits the partition ({6}, {4, 2}, {3, 3}, {3, 2, 1}), and the integers
B = 6, k = 4. Left: dpop P that consists of k chains, each of length n + B. Right: 312-avoiding
permutation π that consists of n blocks. Each color/shape induces an increasing subsequence of π.

into k susbets, each of total size B. We show that there is a reduction from Unary Bin
Packing, parameterized by the number of bins, to Balanced k-Increasing Coloring,
parameterized by the number of colors.

Consider an arbitrary instance of Unary Bin Packing containing n items with item
sizes S = {s1, s2, . . . , sn}, and two integers B and k. Define π ∈ S(kB + kn) by

π =
n⊕

i=1
(ip(si + 1) ⊖ dp(k − 1)) .

Each pattern ip(si +1)⊖dp(k −1) is called the i-th block of π. See Figure 5 for an illustration.
It is straightforward to check that π is 312-avoiding.

We claim that the n items s1, s2, . . . , sn can be partitioned into k susbets, each of total
size B, if and only if there exists a k-coloring of π such that each color induces an increasing
pattern of length B + n.

Suppose first that the n items s1, s2, . . . , sn can be partitioned into k susbets, each of
total size B. Write S = S1 ∪ S2 ∪ · · · ∪ Sk such a partition. Define a k-coloring of π as follows.
Consider the i-th block ip(si + 1) ⊖ dp(k − 1) of π, and suppose that si ∈ Sj . Color the
whole ascending pattern ip(si + 1) with color cj and arbitrarily color the elements of the
descending pattern dp(k − 1) with the remaining k − 1 colors (each element of dp(k − 1) is
assigned to a distinct color). We claim that every color cj induces an increasing pattern of
length B + n in π. First, it is clear that the above k-coloring induces increasing patterns only.
As for the length of each induced increasing pattern, focus on any color cj . We note that,
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in every block ip(si + 1) ⊖ dp(k − 1) of π, either the whole subpattern ip(si + 1) is colored
with color cj (if si ∈ Sj) or exactly one element of the subpattern dp(k − 1) is colored with
color cj (if si /∈ Sj). It follows that the increasing pattern induced by color cj in π has length∑

si∈Sj
(si + 1) + n − |Si| =

∑
si∈Sj

si + |Si| + n − |Si| = B + n.
For the reverse direction, suppose now that there exists a k-coloring of π such that each

color induces an increasing pattern of length B + n. Every block ip(si + 1) ⊖ dp(k − 1)
requires at least k colors, as it contains a decreasing subpattern of length k. Therefore, the
whole subpattern ip(si + 1) is colored with the same color. For every j ⩽ k, let Sj be the set
of all si such that, in the i-th block ip(si + 1) ⊖ dp(k − 1), the subpattern ip(si + 1) is colored
with color cj . We have B + n =

∑
si∈Sj

(si + 1) + n − |Sj | =
∑

si∈Sj
si + |Sj | + n − |Sj |, and

hence
∑

si∈Sj
si = B. Therefore, the n items s1, s2, . . . , sn can be packed into k bins, each

of capacity B. ◀

Most of the interest in Proposition 9 stems from the following proposition.

▶ Proposition 10. DPOP Matching for symmetric dpop and 312-avoiding permutations is
W[1]-hard for the parameter width(P ).

Proof. We perform a reduction from Balanced k-Increasing Coloring, which is W[1]-
hard for the parameter k. Let π ∈ S(kn) for some positive integers k and n. We construct a
symmetric dpop P = (P, P), where P = (X,≼), as follows: X = [k] × [n] and (i, j) ≼ (i′, j′)
if and only if i = i′ and j ⩽ j′. We claim that P occurs in π if and only π admits a k-coloring
for which every color induces an increasing pattern of length n.

If π admits such a k-coloring into colors c1, c2, . . . , ck, the function φ : X → [kn] that
maps each pair (i, j) to the j-th smallest position with color ci is an occurrence of P in π.

Conversely, suppose that some injective function φ : X → [kn] is an occurrence of P in π.
For each i ⩽ k, the set {i}× [n] forms a chain of ≼, and therefore it is mapped to an increasing
pattern of size n. Coloring this pattern in color ci produces the desired k-coloring. ◀

We show now that the problem where P consists of k independent chains is XP for the
parameter k. In fact, we generalize this result to k-weak partial orders (i.e., if P consists
of k independent weak orders).

▶ Proposition 11. DPOP Matching for k-weak symmetric dpop is XP with parameter k.

Proof. Let P be a disjoint union of k weak symmetric dpops P1, P2, . . . , Pk. For each dpop Pi,
let ≼i be a linear extension of Pi, and let Pi,1, Pi,2, . . . , Pi,pi

be the maximal antichains of Pi,
ordered by ≼i. Finally, for each k-tuple a = (a1, a2, . . . , ak) of integers such that ai ⩽ |Pi|,
we denote by Pa the dpop obtained from P by removing the ai ≼i-least elements of each
dpop Pi, and by P min

i,a the set of ≼i-minimal elements of Pa.¨
Then, given a permutation π ∈ S(n), a k-tuple I = (I1, . . . , Ik) of intervals of [n], a

k-tuple a and an integer ℓ, a function φ : Pa → {ℓ, ℓ + 1, . . . , n} is called a partial matching
for (π, I, a, ℓ) if:

φ and π ◦ φ are ≼i-non-decreasing for each i, and
for each i, and each element x of Pa, π(x) ∈ Ii if and only if x ∈ P min

i,a .

Before going further, we denote by 1i the k-tuple with one element 1 (in position i) and
k − 1 elements 0. We also denote by <i the partial order on tuples I of intervals, where
I <i I′ if Ij = I ′

j whenever j ̸= i and x < x′ whenever x ∈ Ii and x′ ∈ I ′
i.
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When ai = |Pi| for all i, such a partial matching exists for all permutations π, tuples
of intervals I and integers ℓ. When ai = 0 for all i and ℓ = 1, and once π is fixed, such
partial matchings coincide with (standard) matchings, and thus we are interested in checking
whether a partial matching exists. Finally, for all tuples I and a and for all ℓ ⩽ n, a partial
matching φ for (π, I, a, ℓ) exists precisely when one of the following cases occur:
1. φ is a partial matching for (π, I, a, ℓ + 1), i.e., ℓ /∈ φ(Pa);
2. there exists an integer i ⩽ k for which the ≼i-least element of P min

i,a , say x, is such that
φ(x) = ℓ and π(ℓ) ∈ Ii, and either

x is not the only element of P min
i,a , and φ is a partial matching for (π, I, a + 1i, ℓ + 1), or

x is the only element of P min
i,a and there exists a tuple I′ >i I such that φ is a partial

matching for (π, I′, a + 1i, ℓ + 1).

Consequently, we can compute by dynamic programming the list of triples (I, a, ℓ) such
that there exists a partial matching for (π, I, a, ℓ): deciding whether adding a triple (I, a, ℓ) to
the list simply requires to check which triples of the form (I′, a′, ℓ + 1) already belong to the
list. Since there are less than n3k+1 triples, this provides us with a Õ(n6k+2) algorithm. ◀

5.2 Symmetric Pattern and Pattern-Avoiding π

In this final section, we consider restrictions on the shape of π, via pattern-avoiding restrictions.
Our goal here is to identify tractable cases among classes of permutations avoiding one or
more size-3 patterns. We give an almost complete dichotomy of polynomial/NP-hard cases,
as shown in Table 1. Hardness results are proven in Proposition 12, and also apply to height-2
dpops. Polynomial cases are proven in Proposition 13 and apply to dpops of any height.

▶ Proposition 12. DPOP Matching for height-2 symmetric dpop P and permutation π is
NP-hard even if π is separable (it avoids 2413 and 3142) and one of the following restrictions
occurs:
1. π is 123-avoiding;
2. π is (132, 213)-avoiding;
3. π is (132, 321)-avoiding;

4. π is (231, 312)-avoiding;
5. π is (132, 312)-avoiding;
6. π is (213, 321)-avoiding;

7. π is (213, 312)-avoiding;
8. π is (132, 231)-avoiding;
9. π is (213, 231)-avoiding.

Proof. In each of the cases presented below, we define a symmetric dpop P = (P, P) for
some partially ordered set P = (X,≼). Each time, we identify P with the partial order ≼.

Table 1 Polynomial (green/light) and NP-hard (red/dark) cases for DPOP Matching with
symmetric dpop and pattern-avoiding permutation π, for combinations of size-3 avoided patterns.
For each case, see the referenced proposition and case for more details. Diagonal cases follow from
any other hard case in the same row or column. For hard cases, the problem used for reduction is
indicated as follows: bic: Biclique, 3P: 3-Partition, bin: Unary Bin Packing, bis: Bisection.
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b1

b2

b3
π1

(avoids 123)

b1

b2

b3

π2
(avoids 132,213)

a1 = 6

a3 = 4

a5 = 4

a7 = 3

a9 = 3

a2 = 4

a4 = 3

a6 = 2

a8 = 4

P

Figure 6 Reductions from 3-Partition and Unary Bin Packing to DPOP Matching on 123-
avoiding and (132, 213)-avoiding permutations. Left: the height-2 dpop P used in both reductions.
Right: the 123-avoiding and (132, 213)-avoiding permutations used in each reduction. The mapping
of three subsets of P corresponding to a first bin gadget is highlighted in each figure.

Case 1: π is 123-avoiding and separable. We use a reduction from 3-Partition, as illustrated
in Figure 6 with permutation π1. Let (A, B) be an instance of 3-Partition, where A is a
list of integers a1, a2, . . . , a3n with sum nB, all being larger than 1.

For all p ⩽ n, we define a bin gadget bp as the permutation dp(3) ⊕ dp(B − 3): we see
this gadget as consisting of two parts. Our permutation π is now defined by π = ⊖n

p=1bp.
Then, our partial order ≼ is defined on a set X of nB elements, noted xi, yi,2, . . . , yi,ai

for
each i ⩽ 3n, so that xi ≼ yi,j for all i and j.

If P has an occurrence φ : X → [nB] in π, this occurrence is bijective. Moreover, each
element xi is sent to the bottom-left of yi,2, and thus it must is mapped to the left part of
some gadget, say bf(i). Each element yi,j must then be mapped to the right part of the same
gadget. Now, for each p ⩽ n, the set Sp = {i : f(i) = p} is of size 3, and exactly B elements
of X are mapped to the gadget bp, which means that

∑
i∈Sp

ai = B. Moreover, S1 ∪ . . . ∪ Sp

forms a partition of [3n], hence it yields a 3-partition of A.
Conversely, given a partition S1 ∪ . . . ∪ Sn of [3n] such that |Sp| = 3 and

∑
i∈Sp

ai = B

for each p, we build an occurrence of P in π by mapping the three elements xi (for i ∈ Sp)
to the left part of bp, and the B − 3 elements yi,j (for i ∈ Xp) to the right part of bp.
Case 2: π is (132, 213)-avoiding. We use a reduction from Unary Bin Packing, as
illustrated in Figure 6 with permutation π2. Given an instance (A, B, k) of Unary Bin
Packing, where A is a list of integers a1, a2, . . . , an larger than 1, we use the same dpop as
in Case 1: our partial order ≼ is defined on a set X of nB elements, noted xi, yi,2, . . . , yi,ai

for each i ⩽ n, so that xi ≼ yi,j for all i and j. However, this time, our gadget bp is the
permutation ip(B), and our permutation π is again defined by π = ⊖n

p=1bp.
If P has an occurrence φ : X → [nB] in π, this occurrence is bijective. Each element xi

is sent to some gadget, say bf(i), and the elements yi,j must then be mapped to the same
gadget. Now, for each p ⩽ k, let Sp = {i : f(i) = p}. Exactly B elements of X are mapped
to the gadget bp, which means that

∑
i∈Sp

ai = B. This means that (S, B, k) is a positive
instance of the Unary Bin Packing problem.

Conversely, given a partition S1 ∪ . . . ∪ Sk of [n] such that
∑

i∈Sp
ai = B for each i, we

build an occurrence of P in π by mapping the B elements xi and yi,j (for i ∈ Sp) to bp.
Case 3: π is (132, 321)-avoiding. We use a reduction from Bisection, as illustrated in
Figure 7. Given a graph G = (V, E) and an integer k, the Bisection problem consists in
deciding whether V admits a partition V1 ∪ V2 such that |V1| = |V2| and that splits at most
k edges (i.e., at most k edges have one endpoint in V1 and one endpoint in V2).
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Figure 7 Simplified version (for W = 1 and L = 7) of the reduction from Bisection to
DPOP Matching on (132, 321)-avoiding permutations. Top left: a size-6 graph with a bisection
({a, b, c}, {d, e, f}) that splits k = 2 edges. Bottom left: height-2 dpop P (note that, in general, each
element from the bottom line should appear W times and not just once). Right: permutation π;
elements of P are mapped to A, B or C depending on whether they are colored in red, green or blue.

Our reduction is as follows. Let n = |V |/2, m = |E|, W = m + k + 1, and L = nW + m.
Our permutation is defined by π = (ip(L)⊖ ip(L))⊕ ip(k). These three parts of π are noted A,
B and C, from left to right. Then, our partial order ≼ is defined on a set X of 2nW + m

elements: 2nW elements, noted xv,i for each v ∈ V and i ⩽ W , and m elements, noted ye

for each e ∈ E. This order contains the relations xv,i ≼ ye for which v is an endpoint of e.
Assume that there exists a mapping of P into π. For each v ∈ V , and since C has

size k < W , at least one of the elements xv,i is mapped to A, in which case we say that v

has type A, or to B, in which case v has type B. Then, each vertex has at least one type,
and possibly both. We partition V into three sets VA, VB , VAB containing the vertices of
type A, B and both A and B, respectively. Moreover, for each v ∈ VA, each element xv,i

must be mapped either to A or to C: these two parts together contain L + k elements,
so |VA| ⩽ (L + k)/W = n + 1 − 1/W , and |VA| ⩽ n. Similarly, |VB | ⩽ n.

We build a set V1 as the union of VA with n − |VA| vertices of VAB , and V2 as V \ V1, so
that |V1| = |V2| = n. Moreover, for every v ∈ V1 (resp., v ∈ V2), some element xv,i, say xv,1,
is mapped to A (resp., to B). Then, each edge e = (u, v) that is split by (V1, V2) must be
mapped to a point above some point of A and to the right of some point of B. This means
that ye is mapped to C, and that (V1, V2) splits at most k edges, i.e., is a valid bisection.

Conversely, given a bisection (V1, V2) splitting at most k edges, we map P into π as
follows: map elements xv,i for v ∈ V1 (resp., V2) to the first nW elements of A (resp., B),
map elements ye for which e is induced by V1 (resp., V2) to the following elements of A

(resp. B), and finally map all elements ye such that e is split by (V1, V2) into C. This mapping
is an occurrence of P in π.

Case 4: π is (231, 312)-avoiding. We use a reduction from Biclique, as illustrated in
Figure 8 with permutation π1. Given a bipartite graph G = (V, E) and an integer k, the
Biclique problem consists in deciding whether V admits a complete bipartite subgraph Kk,k.
If V = A ∪ B is a partition of V into two independent sets, adding independent vertices if
needed allows us to assume that A and B have the same size n, and that no vertex in either
side is fully connected to the other side.

Our permutation π is defined by π = dp(n − k) ⊕ dp(2k) ⊕ dp(n − k). These three parts
of π are noted b1, b2 and b3. Our partial order ≼ is the order on V such that x ≼ y whenever
x ∈ A, y ∈ B and {x, y} /∈ E.
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Figure 8 Reduction from Biclique to DPOP Matching on (231, 312)-avoiding and (213, 231)-
avoiding permutations. Left: a bipartite graph G with a (2, 2) biclique and the corresponding
height-2 dpop P , built from the complement of G. Right: permutations π1 and π2 with a mapping
of the vertices 1 to 8, including the biclique vertices mapped into the central 2k positions.

Consider a mapping of P into π. For each element x ∈ A, there exists y ∈ B such
that x ≼ y, and therefore x cannot be mapped into b3. Symmetrically, no element y ∈ B

may be mapped into b1. Overall, since |π| = |V | = 2n, b1 contains n − k elements from A, b3
contains n − k elements from B, and b2 contains a size-k subset A′ of A and a size-k subset
B′ of B. No two elements x ∈ A′ and y ∈ B′ that are mapped into b2 are comparable for ≼,
which means that {x, y} ∈ E for each such pair, i.e., that (A′, B′) is a biclique.

Conversely, if G has a biclique (A′, B′), we map all elements of A \ A′ into b1, all elements
of A′ ∪ B′ into b2, and all elements of B \ B′ into b3. This mapping satisfies all relations
x ≼ y with x ∈ A and y ∈ B, except for x ∈ A′ and y ∈ B′, but indeed there is no such
relation since (A′, B′) is a biclique.
Case 5: π is (132, 312)-avoiding. We also use a reduction from Biclique, as illustrated
in Figure 6 with permutation π2. Our partial order ≼ is the same as in Case 4, and our
permutation π is defined by π = ((dp(n − k) ⊕ ip(k)) ⊖ dp(k))⊕ ip(n−k). These three parts
of π are noted b1, b2, b3 and b4.

Consider a mapping of P into π. For each element y ∈ B, there exists x ∈ A such
that x ≼ y, and therefore y cannot be mapped into b1 or b3. Thus, and since |B| = n,
the elements of B are mapped to b2 or b4, and the elements of A are mapped to b1 or b3.
Hence, b2 contains a size-k subset B′ of B and b3 contains a size-k subset A′ of A. No
element of b2 is comparable to any element of b3, and therefore (A′, B′) is a biclique.

Conversely, if G has a biclique (A′, B′), we map all elements of A \ A′ into b1, all elements
of A′ into b3, all elements of B′ into b2 and all elements of B \ B′ into b4. This mapping
satisfies all relations x ≼ y with x ∈ A and y ∈ B, except for x ∈ A′ and y ∈ B′, but indeed
there is no such relation since (A′, B′) is a biclique.
Cases 6–9: These cases are symmetric to Cases 3, 5, 5 and 7, respectively. Indeed, if (P, π) is
an instance of DPOP Matching with P a height-2 symmetric dpop, (P ∂ , πc r) and (P, π-1)
are equivalent instances of DPOP Matching with height-2 symmetric dpops, and
Case 6: if π avoids 132 and 321 (Case 3), πc r avoids 132c r = 213 and 321c r = 321;
Case 7: if π avoids 132 and 312 (Case 5), πc r avoids 132c r = 213 and 312c r = 312;
Case 8: if π avoids 132 and 312 (Case 5), π-1 avoids 132-1 = 132 and 312-1 = 231;
Case 9: if π avoids 213 and 312 (Case 7), π-1 avoids 213-1 = 213 and 312-1 = 231. ◀



L. Bulteau, G. Fertin, V. Jugé, and S. Vialette 21:15

▶ Proposition 13. DPOP Matching is in P for symmetric dpop P if one of the following
restrictions on π occurs:
1. π is (123, 231)-avoiding;
2. π is (123, 132)-avoiding;

3. π is (123, 321)-avoiding;
4. π is (123, 312)-avoiding; 5. π is (123, 213)-avoiding.

Proof. In each of the cases presented below, we are given a permutation π and a symmetric
dpop P = (P, P) for some partially ordered set P = (X,≼). Each time, we identify P with
the partial order ≼.
Case 1: π is (123, 231)-avoiding. There exist integers k, ℓ and m, with sum n, such that
π = dp(k) ⊖ (dp(ℓ) ⊕ dp(m)). These three parts of π are noted b1, b2 and b3. Then, for every
pair (u, v) such that u ≺ v, we must map u into b2 and v into b3. Such values can be mapped
greedily, since elements in b2 are pairwise incompatible, as well as those in b3. Thus, P can
be mapped into π if and only if it has height at most 2, there are at most a elements that
are lower bounds, and at most b elements that are upper bounds.

Note that, if P is not symmetric, the problem becomes NP-hard, since reversing the
horizontal order of Pp and π transforms π into the (132, 321)-avoiding permutation of the
NP-hard Case 3 in Proposition 12.
Case 2: π is (123, 132)-avoiding. The permutation π is a skew sum π = ⊖k

p=1dp of patterns of
the form dp = dp(ap) ⊕ dp(1) for some integer ap ⩾ 0. Then, no two elements in X can share
a strict lower bound, i.e., if u ≺ v and u ≺ w then v = w. Thus, P is of height at most 2,
and there exists a partition S1 ∪ . . . ∪ Sℓ of X in which each set Si contains a distinguished
element si, such that x ≼ si if and only if x ∈ Si. Up to reordering the patterns dp and
the sets Si, which are pairwise incomparable, we assume that a1 ⩾ a2 ⩾ . . . ⩾ ak and that
|S1| ⩾ |S2| ⩾ . . . ⩾ |Sℓ|. Let also m be the number of sets Si with size at least 2.

Each set Si must be mapped into a single pattern, say dp(i), and if i ⩽ m, i.e., if |Si| ⩾ 2,
the element si must be mapped to the unique top-right element of dp(i). Such a mapping
exists if and only if k ⩾ m and ai ⩾ |Si| − 1 for all i ⩽ m: we shall choose p(i) = i and
map greedily the elements of Si \ {si} to the bottom-left part of di. Finally, the elements of
singleton sets Si can be mapped to the remaining places in π.
Case 3: π is (123, 321)-avoiding. Erdős-Szekeres theorem [14] proves that n ⩽ 4.
Cases 4–5: These cases are symmetric to Cases 1 and 2, respectively. Indeed, if (P, π) is an
instance of DPOP Matching with P a height-2 symmetric dpop, (P ∂ , πc r) and (P, π-1)
are equivalent instances of DPOP Matching with height-2 symmetric dpops, and
Case 4: if π avoids 123 and 231 (Case 1), π-1 avoids 123-1 = 123 and 231-1 = 312;
Case 5: if π avoids 123 and 132 (Case 2), πc r avoids 123c r = 123 and 132c r = 213. ◀

6 Concluding Remarks

Some open complexity questions remain among the parameters we identified for DPOP
Matching. For semi-total dpops, the complexity is open for constant width, and for most
classes of pattern-avoiding permutations (although, according to Propositions 7 and 10, the
problem is NP-hard when π avoids 1234 or 312, respectively). For symmetric dpops, it
would be interesting to settle the complexity status of deciding whether a dpop occurs in
a (231, 321)-avoiding or (312, 321)-avoiding permutation. In particular, for these cases, we
conjecture that the problem becomes polynomial when height(P ) is constant.

Regarding the original puzzle formulation of the problem, an interesting question is to
generate instances that yield a unique solution, i.e., given a permutation π, find a dpop
with a unique occurrence in π. This can be done by using a semi-total dpop (e.g., take X
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with |X| = |π|, let Pp be a total order and Pv be an empty order), but one could try to
minimize |X| or the number of pairs of comparable elements in P (i.e., the number of clues)
in order to have a unique solution.
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