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Abstract
We show that lengths of shortest covers of all rotations of a length-n string over an integer alphabet
can be computed in O(n) time in the word-RAM model, thus improving an O(n log n)-time algorithm
from Crochemore et al. (Theor. Comput. Sci., 2021). Similarly as Crochemore et al., we use a
relation of covers of rotations of a string S to seeds and squares in S3. The crucial parameter of a
string S is the number ξ(S) of primitive covers of all rotations of S. We show first that the time
complexity of the algorithm from Crochemore et al. can be slightly improved which results in time
complexity Θ(ξ(S)). However, we also show that in the worst case ξ(S) is Ω(|S| log |S|). This is
the main difficulty in obtaining a linear time algorithm. We overcome it and obtain yet another
application of runs in strings.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases cover, quasiperiod, cyclic rotation, seed, run

Digital Object Identifier 10.4230/LIPIcs.CPM.2022.22

Funding Jakub Radoszewski: Supported by the Polish National Science Center, grant no. 2018/31/D/
ST6/03991.
Juliusz Straszyński: Supported by the Polish National Science Center, grant no. 2018/31/D/ST6/
03991.
Tomasz Waleń: Supported by the Polish National Science Center, grant no. 2018/31/D/ST6/03991.
Wiktor Zuba: Supported by the Netherlands Organisation for Scientific Research (NWO) through
Gravitation-grant NETWORKS-024.002.003.

1 Introduction

A string C is a cover of a string S if each position in S is inside at least one occurrence of C

in S. We say that a string Y is a rotation of a string X if X = AB and Y = BA for some
strings A and B; in this case we write Y = rot|A|(X), where |A| is the length of string A.

Let us denote by CC[i] the length of the shortest cover of roti(S), where S is an input
string. We consider the following problem.

Covers of all rotations
Input: A length-n string S.
Output: The array CC[0 . . n − 1].
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22:2 Linear-Time Computation of Shortest Covers of All Rotations of a String

Let Fibn denote the n-th Fibonacci string (Fib0 = b, Fib1 = a, Fibn = Fibn−1Fibn−2).

▶ Example 1. For the Fibonacci string S = Fib6 we have

CC = [ 5, 5, 13, 3, 13, 5, 5, 13, 3, 8, 8, 3, 13 ]

The following table gives shortest covers for consecutive rotations rot0(S), . . . , rot12(S).

i rotation roti(S) shortest cover length CC[i]
0 abaababaabaab abaab 5
1 baababaabaaba baaba 5
2 aababaabaabab aababaabaabab 13
3 ababaabaababa aba 3
4 babaabaababaa babaabaababaa 13
5 abaabaababaab abaab 5
6 baabaababaaba baaba 5
7 aabaababaabab aabaababaabab 13
8 abaababaababa aba 3
9 baababaababaa baababaa 8
10 aababaababaab aababaab 8
11 ababaababaaba aba 3
12 babaababaabaa babaababaabaa 13

Covers in strings are an extensively studied notion in stringology; algorithms computing
covers in a string were proposed in [1, 4, 19, 18], not to mention approximate and generalized
variants of covers (for a recent survey, see [10]). In [8] the authors showed an O(n log n)-time
(and O(n) space) algorithm that computes the lengths of shortest covers of all rotations of a
length-n string. Later in [7] the authors developed a data structure over a length-n string that
allows to answer queries about lengths of shortest covers of factors of the string. If combined
with a data structure answering Weighted Ancestor Queries in the suffix tree in constant
time after linear-time preprocessing, proposed in a very recent result [3] or in an off-line
setting in [15], the data structure of [7] requires O(n log n)-time and space preprocessing
and allows to answer shortest cover queries for factors in O(log n) time (amortized in the
case that off-line Weighted Ancestor Queries are used). Hence, this result also yields an
O(n log n)-time algorithm for shortest covers of all rotations of a length-n string S if applied
for all length-n factors of S2, despite being far more general. This suggests that perhaps
shortest covers of all rotations can be computed in o(n log n) time. In comparison, shortest
covers of all prefixes of a string can be computed in linear time using the on-line algorithm
for computing shortest covers by Breslauer [4] (regardless of the alphabet size).

We show that this supposition is right by developing a linear-time algorithm computing
shortest covers of all rotations of a given string.

Our algorithm works on a word-RAM model with word size w = Ω(log n). We assume
that the input string is over a so-called integer alphabet [0 . . nO(1)], where n is the length of
the string, which is a common assumption in the field (see, e.g., [11]).

Our approach. We use an approach based on runs and on packed representations of sets.
We say that a string C is a seed of a string S if C is a cover of a superstring of S. In [8]
it is shown that a string C is a cover of a rotation of a string S, |C| ≤ |S|, if and only if
C2 is a factor of S3 and C is a seed of S3. Each run in S3 represents in a natural way the
set of occurrences of primitively-rooted squares and we need to extract from these sets the
occurrences of squares which are also seeds.
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2 Preliminaries and algorithmic toolbox

We consider strings over an integer alphabet. Letters of a string S are numbered 0 through
|S| − 1, with S[i] being the ith letter. A factor of S is a string S[i] . . . S[j], for any 0 ≤ i ≤
j < |S|; it is denoted as S[i . . j] or S[i . . j + 1). If i > j, we assume that S[i . . j] is the empty
string. Throughout the paper, factors of S are represented in O(1) space by specifying the
indices i, j of any of their occurrences S[i . . j]. By Occ(U, S) we denote the set of starting
positions of occurrences of U in S. If U = roti(V ), we say that U and V are cyclically
equivalent.

A string S has a period p > 0 if S[i] = S[i + p] for all i ∈ [0 . . |S| − p − 1]. The smallest
period of S is denoted as per(S). A string S is called periodic if 2 ·per(S) ≤ |S|, and aperiodic
otherwise. A string S is called primitive if S = V k for a positive integer k implies that k = 1.

2.1 Suffix tree
Let ST (S) denote the suffix tree of string S. It can be constructed in linear time for a string
over an integer alphabet [11].

The locus of a factor U of S is an (explicit or implicit) node of ST (S) such that the path
from the root to this node has string label U . An implicit node is represented by its nearest
explicit descendant and its distance to the descendant. The string depth of an (explicit or
implicit) node v is the length of the string label of v.

We use Weighted Ancestor Queries on a suffix tree. Such queries, given an explicit node v

and an integer value ℓ that does not exceed the string depth of v, ask for the highest explicit
ancestor u of v with string depth at least ℓ. We use the following very recent result.

▶ Lemma 2 ([3]). Let ST (S) be the suffix tree of S. Weighted Ancestor Queries on ST (S)
can be answered in O(1) time after linear-time preprocessing.

▶ Corollary 3. After O(n) time preprocessing, the locus of any factor of a length-n string S

can be computed in O(1) time.

A simpler off-line version of Weighted Ancestor Queries, that would be sufficient for
our purposes, with the same time guarantees was proposed earlier in [15]. We also use the
following application of the queries.

▶ Lemma 4. Any O(n) factors of a length-n string S can be ordered lexicographically in
O(n) time.

Proof. Assume that the explicit nodes of ST (S) are numbered in pre-order. Let the locus
of a factor be a pair (v, d) where v is the number of the explicit descendant and d is the
distance; d = 0 for an explicit locus. Then it suffices to use Radix Sort to order the loci of
the factors by non-decreasing first components, and by non-increasing second components in
case of a tie. ◀

2.2 Runs, trimmed runs and p-squares
A string of the form U2 = UU is called a square. A square U2 is called a p-square if U is
primitive. We denote by 1

2 PSquares(S) (p-square halves) the set of primitive factors Z of
S such that the square Z2 is also a factor of S.

The maximum number of occurrences of p-squares in a string of length n is Θ(n log n) [9],
whereas the total number of distinct square factors (hence, of distinct p-square factors) in a
string is O(n) [13].

CPM 2022



22:4 Linear-Time Computation of Shortest Covers of All Rotations of a String

A run (also known as a maximal repetition) in S is a periodic fragment R = S[i . . j] which
can be extended neither to the left nor to the right without increasing the period p = per(R),
i.e. if i > 0 then S[i − 1] ̸= S[i + p − 1] and if j < |S| − 1 then S[j + 1] ̸= S[j − p + 1]. The
exponent of a run R, denoted as exp(R), is defined as (j − i + 1)/p. Let R(S) denote the set
of all runs of string S. For a length-n string S it holds that |R(S)| = O(n); moreover, the
sum of exponents of runs in S is O(n) [17].

The center of an occurrence S[a . . a + 2ℓ) of a square U2 is defined as the position a + ℓ.
A square occurrence S[a . . b] is said to be induced by a run R = S[i . . j] if i ≤ a, b ≤ j and
per(R) = per(U). Every square is induced by exactly one run [6]. A run R = S[i . . j] with
period p induces p-squares with centers at positions in [i + p . . j − p + 1]; the length of this
interval is |R| − 2 · per(R) + 1.
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Figure 1 Four runs (presented at the top) generate all p-squares (bottom). The total length of
trimmed runs is the same as the number of occurrences of p-square factors of S.

For a run R = S[i . . j] with period p, we define a trimmed run as S[i + p . . j − p + 1]. We
assume that the trimmed run stores the period of the original run. We denote by R′(S) the
set of trimmed runs of S. The following lemma was already shown in [5]; here we give a
more direct proof in terms of p-squares.

▶ Lemma 5. For any string S of length n we have that
∑

R∈R′(S) |R| = O(n log n).

Proof. The run with period p corresponding to a trimmed run R induces |R| occurrences
of p-squares with half length p, whose centers are positions of R, and vice versa. Now the
thesis follows directly from the fact that the number of occurrences of primitively rooted
squares is O(n log n). ◀

The Lyndon root of a run R is the lexicographically smallest rotation of its length-per(R)
prefix. If L is the Lyndon root of a run R, then R can be uniquely represented as (L, y, a, b)
for 0 ≤ a, b < |L| such that R = L[|L| − a . . |L| − 1]LyL[0 . . b); we call this the Lyndon
representation of R. One can group all runs in S by Lyndon roots and compute the Lyndon
representations of all runs in O(n) time; see [6].

The Lyndon type of a primitive string U , denoted as LynType(U), is the lexicographically
smallest rotation of U .

2.3 Relation to seeds
A factor C of a string S is called a seed of S if there exists a string S′ having S as a factor
such that C is a cover of S′. In other words, C is a seed of S if S is covered by occurrences
and left and right overhangs of C; see Figure 2.
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a b a b a aa a ab a a a b

Figure 2 A string with a seed aabaa.

▶ Lemma 6 ([15]). All the seeds of a string of length n can be represented in O(n) space
as a collection of a linear number of disjoint paths in the suffix tree of the string. This
representation can be computed in O(n) time.

Weighted Ancestor Queries together with a representation of all the seeds of a string
from Lemma 6 can be used to show the following lemma.

▶ Lemma 7 ([8, see Lemma 8]). Let S be a string of length n. Given a family U of O(n)
factors of S, all strings in U that are seeds of S can be reported in O(n) time.

By PrimCov[i] we denote the set of lengths of covers of roti(S) that are primitive strings.
Let us observe that each of these sets is non-empty.

▶ Observation 8. CC[i] = min PrimCov[i].

Proof. Every string U has a cover, possibly equal to U . The shortest cover C of every string
U is primitive. Otherwise, if we had C = Dk for integer k > 1, then D would be a shorter
cover of U . ◀

We further denote by Seeds(S) the set of factors which are seeds of S. The following
lemma uses these sets for the string X := S3 in order to characterize covers of all rotations
of S. Denote by Centers(C2, X) the centers of all occurrences of C2 in X.

▶ Lemma 9 ([8, Lemma 3]). [Covers = Seeds+Squares]
Let S be a string of length n, X = S3, and C be a string of length up to n. Then |C| ∈
PrimCov[i] if and only if C ∈ Seeds(X) ∩ 1

2 PSquares(X) and n + i ∈ Centers(C2, X).

We denote ξ(S) =
∑n−1

i=0 |PrimCov[i]|.

3 A version of the algorithm in [8]

The algorithm from [8] computes the array CC in O(n log n) time and is based on the
characterization of Lemma 9. For each p-square Z2 in X such that |Z| ≤ n, if Z is a seed of
X, then for every j ∈ Occ(Z2, X), we set CC[(j + |Z|) mod n] to the minimum of its current
value (starting from n) and |Z|; see Algorithm 1.

Algorithm 1 Computing CC array as in [8].

1 X := S3; CC[0 . . n) = (n, . . . , n)
2 foreach Z ∈ 1

2 PSquares(X) ∩ Seeds(X) do
3 foreach j ∈ Occ(Z2, X) do
4 i := (j + |Z|) mod n

5 CC[i] := min(CC[i], |Z|)

Lemma 9 directly implies the following observation.

▶ Observation 10. For each execution of line 5 in Algorithm 1, we have |Z| ∈ PrimCov[i].

CPM 2022
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In the following lemma we improve the worst case complexity analysis of Algorithm 1.
The proof of the lemma generally follows the details of the algorithm from [8].

▶ Lemma 11. The time complexity of Algorithm 1 is Θ(ξ(S)).

Proof. All distinct p-squares in X can be computed in O(n) time using the algorithm from [6].
Lemma 7 can be used to check which of the p-square halves are seeds of X. For each p-square
Z2 whose half satisfies this condition, we find its locus v in ST (X) using Corollary 3. Up to
this point, all the steps work in O(n) time. Finally, all j ∈ Occ(Z2, X) can be listed in time
proportional to the number of these elements by inspecting all leaves in the subtree of v in
ST (X). For each j we perform the instruction in line 5; by Observation 10, it corresponds to
a (distinct) element from PrimCov[i]. Overall the time complexity is Θ(n + ξ(S)); however,
ξ(S) ≥ n by Observation 8. ◀

A proof of the following theorem is deferred until Section 6. The theorem implies that,
even with the improved complexity analysis, the algorithm from [8] works in Ω(n log n) time
in the worst case.

▶ Theorem 12. There exist infinitely many strings S such that ξ(S) = Ω(|S| log |S|).

▶ Remark 13. The algorithm from Section 3 can be easily modified with the aid of internal
Two-Period Queries of [16, 2] (such a query computes the smallest period of a factor of the
text in case that the factor is periodic) to output only aperiodic covers of rotations of a string
in time proportional to their total number. Still, the construction of Theorem 12 actually
provides Ω(|S| log |S|) aperiodic covers of rotations of a string.

In our approach we heavily use runs. Hence the next version of the algorithm is based on
runs and is more suitable for further improvements. We also substitute the formula with the
modulo operation by a formula that closely follows Lemma 9.

Algorithm 2 A version of Algorithm 1 employing runs.

1 X := S3; CC[0 . . n) = (n, . . . , n)
2 foreach trimmed run X[a . . b] in X with period p do
3 for i := a to b do
4 if i ∈ [n . . 2n) and X[i . . i + p) ∈ Seeds(X) then
5 CC[i − n] := min(CC[i − n], p)

4 Two useful representations of p-squares: occurrences and values

Our problem reduces to finding for each position i the length of the shortest p-square centered
at i, whose half is a seed of the string.

The trimmed runs, accompanied by additional useful data, can be treated as package
representations of p-squares. Each occurrence of a p-square can be identified with a pair
(i, p), where i is the center and p is the period of the square.

▶ Definition 14. An occurrence package γ = (I, p) of occurrences of p-squares (occ-package,
in short) corresponds to an interval I of consecutive centers of cyclically equivalent p-squares
with period p such that |I| ≤ p.

With each occ-package γ we keep the following data
L = LynType(γ): the (common) Lyndon type of all the corresponding half-squares;
first(γ) = j1 and last(γ) = j2, where rotj1(L) and rotj2(L) are the halves of the first and
last p-square in γ.
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An occ-package γ is called canonical if first(γ) ≤ last(γ). In this case the p-squares
generated by γ are rotj(L)2 for first(γ) ≤ j ≤ last(γ) and L = LynType(γ). Our algorithms
will only use canonical occ-packages.

p p p p

L L L

Figure 3 A trimmed run with period p (colored rectangles) represents the set of occurrences of
p-squares with half length p that are induced by the corresponding run (top). In this example this
set of occurrences is split into three (canonical) occ-packages. L is the Lyndon root of the run. A
single run R generates at most exp(R) occ-packages.

An occurrence-representation of occurrences of p-squares in X consists of a set of occ-
packages for X containing all p-squares of X (together with all parameters defined above).

The lemma below follows from the fact that all runs can be computed in linear time,
together with their Lyndon roots; see Figure 3.

▶ Lemma 15. For any string X we can compute in linear time, using the runs of X, an
occurrence-representation Γ(X) of occurrences of all p-square factors of X.

Proof. We compute the Lyndon representations of all runs in X [6]. For a run R = X[i . . j]
with period p and Lyndon representation (L, y, a, b), we form y occ-packages with intervals
[i + p . . i + p + a), [i + p + a . . i + 2p + a), . . . , [i + (y − 2)p + a . . i + (y − 1)p + a),
[i + (y − 1)p + a . . i + (y − 1)p + a + b] if y ≥ 2, and a single package [i + p . . i + a + b] if
y = 1. ◀

Let us note that the size of Γ(X) is O(n) if |X| = O(n), even though the total length of
intervals in occ-packages can be Ω(n log n).

Γ(X) is an interval representation of all occurrences of p-squares. We also need an
interval-type representation of all distinct p-squares in X; this time the sum of lengths will
have linear total length.

Let a p-square U2 be formally identified with (L, s), where U = rots(L) and L is the
Lyndon root of U . Let us assume that all p-square factors of length up to 2n in X are
ordered with respect to their (L, s) pairs. Let HalfSquares[i] be the i-th p-square half U in
this order. The length of the table HalfSquares is O(n) [13].

▶ Example 16. For the string S = aabbabbaabbaab and X = S3, the table HalfSquares
looks as follows; see also Figure 4.

i HalfSquares[i] L s

1 a a 0
2 aab aab 0
3 baa aab 2
4 aabaabbabbaabb aabaabbabbaabb 0

. . . . . . . . . . . .
17 baabaabbabbaab aabaabbabbaabb 13

i HalfSquares[i] L s

18 abba aabb 1
19 bbaa aabb 2
20 baab aabb 3
21 abb abb 0
22 bba abb 1
23 b b 0

CPM 2022
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a a b b a b b a a b b a a b a a b b a b b a a b b a a b a a b b a b b a a b b a a b

Figure 4 All distinct p-squares of half length smaller than |S| in X = S3 for S = aabbabbaabbaab.
For each of them, an example occurrence with the center in the middle S in X is shown.

We denote by SeedMask the Boolean vector such that

SeedMask[i] = 1 ⇔ HalfSquares[i] ∈ Seeds(X).

In other words SeedMask is the characteristic vector of the set Seeds(X) as a subset of the
set 1

2 PSquares(X).
Let us assume that an occ-package γ = ([a . . b], p) represents consecutive p-squares with

halves U1, U2, . . . , Uk. We introduce a Boolean vector SeedMaskγ such that SeedMaskγ [i] = 1
if and only if Ui is a seed of X.

▶ Lemma 17. (a) The table SeedMask can be computed in O(n) time.
(b) We can compute in O(n) time for all γ = ([a . . b], p) ∈ Γ(X) the values Φ(γ) := (a′, b′)

such that SeedMaskγ [a . . b] = SeedMask[a′ . . b′].

Proof. (a) The main part is to compute the table HalfSquares. This is done as shown below
in Algorithm 3.

Algorithm 3 Compute HalfSquares.

1 L := list of all occ-packages γ ∈ Γ(X) ordered by (LynType(γ), first(γ), −last(γ))
2 foreach occ-package γ in L but the first one do
3 γ′ := previous occ-package in L
4 if LynType(γ′) = LynType(γ) and [first(γ′) . . last(γ′)] ⊇ [first(γ) . . last(γ)] then
5 Remove γ from L
6 foreach occ-package γ in L do
7 if there is a next occ-package γ′ in L and LynType(γ′) = LynType(γ) then
8 end := min(first(γ′) − 1, last(γ))
9 else

10 end := last(γ)
11 Let γ = ([a . . b], p)
12 for i := a to a + end − first(γ) do
13 Append X[i . . i + p) to HalfSquares

In the algorithm we use Lemma 15 to compute in O(n) time an occurrence representation
Γ(X) of occurrences of p-squares in X. We can sort all occ-packages γ ∈ Γ(X) with respect
to (LynType(γ), first(γ), −last(γ)) using Lemma 4 and then Radix Sort. Intuitively, the
intervals [first(γ) . . last(γ)] for packages with equal Lyndon type are sorted from left to right,
and intervals with equal start point are ordered by non-increasing end points. Then we
scan the sorted list from left to right, removing redundant intervals [first(γ) . . last(γ)], that
is, intervals that are contained in another such interval corresponding to the same Lyndon
type. Finally, each of the non-redundant occ-packages generates some number of consecutive
elements of HalfSquares list that were not generated by any previous occ-package in L.
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Let us recall that SeedMask[i] = 1 if and only if HalfSquares[i] is a seed of X. Consequently
the whole table SeedMask can be computed in O(n) time due to Lemma 7.

(b) The function Φ can be inferred from the construction of the table HalfSquares. For
each occ-package γ that remained on the list L until the end, we set the first component of
Φ(γ) to the position in HalfSquares of the first half p-square that was introduced due to γ in
line 13. For each remaining package γ, if γ′ is the package that was used to remove γ from
L in line 4 and Φ(γ′) = (a′, b′), then the first component of Φ(γ) is a + first(γ) − first(γ′).
In either case the second component of Φ(γ) can be calculated from the first component and
the length of the interval I in γ = (I, p). ◀

Thus the bit-mask of each occ-package is a copy of a fragment of a single Boolean vector
of length O(n); see also Figure 5.

Intuition. We need to know, in the representation Γ(X), for each interval, a Boolean vector
which says which half p-square is a seed. If we do it directly, this needs Ω(n log n) space.
However, these Boolean vectors are parts of the representation SeedMask(X). Hence we can
have a reference to a part of SeedMask(X). The total number of references is asymptotically
the same as the sum of exponents of runs, which is known to be linear. However, we need to
pack O(log n)-sized chunks of Boolean vectors into machine words. With further bit-level
optimizations this eventually results in a linear-time algorithm. The exact implementation is
given in Section 5, but first we provide an O(n log n)-time implementation to illustrate the
main ideas of our approach.

We introduce bitmasks Tp[n . . 2n) for p ∈ [1 . . n] such that Tp[n + i] = 1 if and only if
roti(S) has a cover of length at most p. We have

CC[i] = min { p : Tp[n + i] = 1 }.

For two equal-length bitmasks F1[a . . a + ℓ), F2[a′ . . a′ + ℓ) we define

∆(F1, F2) = { j ∈ [0 . . ℓ) : F1[a + j] < F2[a′ + j] }.

Using the bitmask tables T and SeedMask we can write the next version of the algorithm.
The variable New is the set of centers of new p-squares, whose halves are seeds of X (which
is stored in the fragment of SeedMask as a Boolean vector). In the actual implementation
the bitmask T is extended to the range [0 . . 3n); this will be more convenient in the next
version of the algorithm.

Algorithm 4 Extraction of shortest covers of rotations.

1 Compute Γ(X), SeedMask and Φ function for X = S3

2 T [0 . . 3n) := (0, . . . , 0)
3 for p := 1 to n do ▷ Invariant: T = Tp−1
4 foreach occ-package γ = ([a . . b], p) in Γ(X) do
5 New := ∆( T [a . . b], SeedMask[a′ . . b′] )
6 foreach i ∈ New do
7 if a + i ∈ [n . . 2n) then CC[a + i − n] := p

8 T [a + i] := 1

Algorithm 4 still has O(n log n) time complexity since the total size of all processed
fragments can be Ω(n log n). However we process only a linear number of fragments. If
we implement the assignment T [i] := 1 in constant time, and the operation ∆ in time
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proportional to the size of its output (plus a constant), then the whole complexity will be
linear. We achieve that in the next section by packing log n-sized chunks of Boolean vectors
into single machine words.

a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a
0 0 0 0 0

a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a
00

00 00

a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a
1001

1001 1

a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a

11

1100011

a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a

111100001111

a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a

11111110

a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a

111111111111111111111

Figure 5 All runs of period at most |S| in X = S3 for S = Fib7 are shown, grouped by their
periods. For each run, the corresponding trimmed run generates one or more occ-packages γ (cf.
Lemma 15). Each occ-package corresponds to a fragment of SeedMask (see Lemma 17); these
fragments are shown limited to the positions in the middle occurrence of S (red lines are the
delimiters between occ-packages and correspond to Lyndon types). For each position i ∈ [n . . 2n),
the ones in bitmask at position i correspond to primitive covers of roti(S) (cf. Figure 6). The length
of SeedMask is equal to the number of distinct p-square factors of half length at most n of X, i.e.
1+2+3+5+8+7+21 = 47. For Fibonacci strings the total length of all trimmed runs is superlinear
(as the number of occurrences of p-squares), while the length of SeedMask is always O(n) (as the
number of distinct values of p-squares). This property is crucial to achieve a linear time algorithm.

5 Speeding up Algorithm 4

Instead of the original version of SeedMask and T we use now their packed versions. First we
describe several operations on a log n-sized chunk of a Boolean vector packed into a single
integer.

Bit-wise operations. Let w = Ω(log n) denote the length of the machine word. We use the
bitwise operations and, not from the word-RAM model as well as ffs (find first (bit) set;
also known under the name ctz – count trailing zeroes), which computes the index of the
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least significant set bit in a machine word. If ffs is not supported by the model, we can set
the chunk length to 1

2 log n and preprocess the ffs values for each possible machine word in
O(

√
n log n) time.

We redefine the operation ∆ to work on two machine words representing Boolean vectors
in time proportional to the size of output plus O(1). To this end we apply the operation ffs
as shown in following function (Algorithm 5).

Algorithm 5 Bitmask realisation of ∆(F1, F2).

1 F := and(not(F1), F2)
2 R := ∅
3 while F ̸= 0 do
4 i := ffs(F )
5 Set ith bit of F to 0
6 R := R ∪ {i}
7 return R

We also use an operation Extract(B, a, b, s) that, given a packed bitmask B, indices
0 ≤ a ≤ b < |B| and shift value 0 ≤ s < w, returns the fragment consisting of bits
B[a], . . . , B[b] also represented as a packed bitmask but shifted by s bits, i.e. the packed
representation of the bitmask 0s B[a . . b] 0t, where t = w − (b − a + 1 + s) mod w. It can be
implemented in O((b − a + 1)/ log n + 1) time on the word-RAM.

In the algorithm PackedT and PackedSeed are packed representations, using O(n/ log n)
machine words, of T and SeedMask.

Algorithm 6 Packed bitmask realisation of Algorithm 4.

▷ w = Ω(log n) is the length of machine word
1 Compute Γ(X), SeedMask and Φ function for X = S3

2 PackedT [0 . . ⌈3n/w⌉ − 1] := (0, . . . , 0)
3 for p := 1 to n do
4 foreach occ-package γ = ([a . . b], p) do
5 (a′, b′) := Φ(γ)
6 F := Extract(PackedSeed, a′, b′, a mod w) ▷ |F | = O((b − a)/ log n + 1)
7 d := a div w

8 for j := 0 to |F | − 1 do
9 New := ∆(F [j], PackedT [j + d])

10 foreach k ∈ New do
11 i := (j + d) · w + k

12 if i ∈ [n . . 2n) then CC[i − n] := p

13 Set k-th bit in PackedT [j + d] to 1

Thus we obtain the main result of this paper.

▶ Theorem 18. The lengths of shortest covers of all rotations of a string can be computed
in O(n) time.

Proof. We apply Algorithm 6. The initial computations in line 1 are performed in O(n)
time by Lemma 15 (computation of the occurrence-representation Γ(X)) and Lemma 17
(computation of the global SeedMask and the Φ function on occ-packages).
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By Lemma 5, the total size of SeedMaskγ over all occ-packages γ is O(n log n), and by
Lemma 15, the number of occ-packages is O(n). The for-loop in line 8 iterates over the
packed representations of seed masks, hence performs O(n) iterations in the course of the
algorithm. The complexity of all calls to Extract is the same.

The total number of iterations of the foreach-loop in line 10, equal to the total size of
the sets New, is O(n), as each of them sets one new bit of PackedT to 1. The set New is
computed in O(|New| + 1) time as shown in Algorithm 5. The complexity follows. ◀

6 Proof of Theorem 12

Let Fm = |Fibm| denote the m-th Fibonacci number. We start with a simple fact that is
probably folklore.

▶ Fact 19. rotk(Fibm) is aperiodic for 0 ≤ k < Fm−1.

Proof. A proof by induction. It is easy to check that the longest common prefix of strings
Fib2

m and Fib3
m−1 has length Fm+1 − 2, hence Fm−1 is a period of any such rotation (not

small enough to make the string periodic). If such a rotation was periodic with a period
p ≤ Fm

2 , then there would exist a square with half length p in this rotation, hence p would be
a Fibonacci number [14] and p ≤ Fm−2. Then by Fine and Wilf’s periodicity lemma [12] the
rotation would also have a period not exceeding gcd(Fm−1, p) ≤ Fm−1

2 . However, rotk(Fibm)
for 0 ≤ k < Fm−2 contains as a prefix rotk(Fibm−1) and for Fm−2 ≤ k < Fm−1 −1 it contains
a factor Fibm−1 (as Fib2

m−2 = Fibm−1Fibm−4); by the inductive hypothesis those rotations
are aperiodic. ◀

We also use the following fact that was already presented in [8].

▶ Fact 20 (see [14, 8]). If m ≥ 3, only strings of length Fk, for 3 ≤ k ≤ m, can be covers of
rotations of Fibm.

a b a a b a b a a b a a b a b a a b a b a
3 3 3 3 3

5 5 5 5 5 5
8 8 8 8 8 8 8 8

13 13 13 13 13 13 13
21 21 21 21 21 21 21 21 21 21 21 21 21 2121 21 21 21 21 21 21

Figure 6 The figure shows the lists of lengths of primitive covers of rotations of Fib7. The
numbers below the position correspond to the rotation beginning in that position. Apart from
Fm, the numbers Fk form Fm−k blocks of Fk−1 − 1 elements each. Numbers in blue correspond to
primitive covers that are not aperiodic.

▶ Lemma 21. For S = Fibm, we have ξ(S) = Θ(mFm). The same bound holds if we count
the aperiodic covers or all the covers of rotations of S.

Proof. We prove the lemma using a slight generalisation of the technique used in [8] to show
a representation of lengths of shortest covers of all rotations of Fibm.

Fact 20 shows that lengths of covers of any rotation belong to {F3, . . . , Fm}, hence also
that ξ(S) = O(mFm) (the bound holds also for all covers of all rotations), thus we focus only
on strings of those lengths when proving the lower bound.
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In [8] it was shown that the lengths of shortest covers of rotations of Fibm can be expressed
in a concise way in relation to the shortest covers of rotations of Fibk for k < m. More
precisely, if Sm is the prefix of CC(Fibm) of length Fm−1 − 1, then [8, Theorem 2(b)] shows
that for m ≥ 4,

CC(Fibm) = Sm−2, Fm, Sm−3, Fm, Sm−2, Fm, Sm−1, Fm.

The proof of the theorem, however, never used the property that the covers were shortest,
but only a division into covers of length Fm−1 and the shorter ones.

Let Am be a table of length Fm−1 − 1 of lists such that Am[i] consists of all lengths of
aperiodic covers of roti(Fibm). Since we only care about asymptotics, we will limit the proof
to the first Fm−1 − 1 rotations of Fibm. We claim that Am = A′

m−2{Fm}A′
m−3{Fm}A′

m−2,
where A′

k equals Ak with every list appended with the value Fm.
Thanks to this limitation we do not need to care about covers of lengths Fm−1 (they

are not present for those rotations), which can behave differently than Fk for k < m − 1 in
the recurrence. The values Fk for k < m − 1 behave according to the described recursive
formula as shown in the proof of [8, Theorem 2(b)], while values Fm occur in each list since
the whole rotations are their own covers and are aperiodic due to Fact 19.

Let Cm be the number of elements in all the lists in Am. Then the definition of Am

provides a recursive formula Cm = 2 · Cm−2 + Cm−3 + Fm−1 − 1. From here it can be checked
by simple induction that Cm ≥ cmFm for any c < 1

2+ϕ (where ϕ is the golden ratio) and
sufficiently large m:

2c(m − 2)Fm−2 + c(m − 3)Fm−3 + Fm−1 − 1 ≥ cmFm ⇔
c(mFm − (2m − 4)Fm−2 − (m − 3)Fm−3) ≤ Fm−1 − 1 ⇔

c(mFm−1 − (m − 4)Fm−2 − (m − 3)Fm−3) ≤ Fm−1 − 1 ⇔
c(4Fm−2 + 3Fm−3) ≤ Fm−1 − 1 ⇔

c(Fm + 2Fm−1) ≤ Fm−1 − 1 ⇔

c ≤ Fm−1 − 1
Fm + 2Fm−1

∼ 1
2 + ϕ

This concludes the proof. ◀

Proof of Theorem 12. By Lemma 21 for the family of Fibonacci strings we have ξ(Fibm) =
Ω(Fm · m) = Ω(|Fibm| log |Fibm|). ◀

7 Final Remarks

In our algorithm we extract fragments consisting of O(n log n) bits in total of a packed
bitmask consisting of O(n) bits. The fact that all these fragments can be represented in O(n)
machine words allows us to obtain linear time complexity. Each of these bitmask fragments
carries the information about which subsequent occurrences of p-squares of the same half
length are seeds of the string S3. Based on combinatorial properties of squares and seeds,
it can be the case that the total size of RLE representations of these bitmask fragments is
O(n). This would simplify the algorithm.
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