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Abstract
We consider tile covers of 2D-strings which are a generalization of periodicity of 1D-strings. We
say that a 2D-string A is a tile cover of a 2D-string S if S can be decomposed into non-overlapping
2D-strings, each of them equal to A or to AT , where AT is the transpose of A. We show that all tile
covers of a 2D-string of size N can be computed in O(N1+ε) time for any ε > 0. We also show a
linear-time algorithm for computing all 1D-strings being tile covers of a 2D-string.
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1 Introduction

A 1D-string (or simply a string) is a finite sequence of letters. A 2D-string S is a rectangular
2D-matrix consisting of n rows being strings of equal length m. The dimensions of the
2D-string are n × m and its size is |S| = N = n · m. We say that a 1D-string S has period p

if S[i] = S[i + p] for all i = 1, . . . , |S| − p. We say that a 2D-string S has horizontal (vertical)
period p if each row (column, respectively) of S has period p.

Periodicity in 2D-strings has different properties than in 1D-strings. Let us consider an
example based on the following known notions of periodicity. A run in a 1D-string (2D-string,
respectively) S is a maximal periodic factor of S (maximal submatrix that is periodic in
both dimensions). Two natural 2D-generalizations of squares in a 1D-string are known; a
quartic is a configuration that is composed of 2 × 2 occurrences of an array W and a tandem
is a configuration consisting of two occurrences of an array W that share one side. A string
of length n has O(n) distinct square factors [8, 7, 14] and O(n) runs [11, 3]. However, it was
recently shown that a 2D-string of size N can have Ω(N3/2) distinct tandems, Ω(N log N)
distinct quartics and Ω(N log N) runs [9].
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23:2 Rectangular Tile Covers of 2D-Strings

Motivated by these differences, we introduce a natural generalization of periodicity to
2D-strings which we call tile covers. A 1D-string S has a full period P if S = P k for some
positive integer k. We say that a 2D-string A is a 2D-tile cover or simply tile cover of an
n × m 2D-string S if S can be decomposed into (non-overlapping) 2D-strings each of them
equal to A or to AT , where AT is the transpose of A (the i-th row of A becomes in AT the
i-th column); see Figure 1. In this paper we consider the following problem.

Tile covers problem. Compute efficiently all tile covers A of a given 2D-string S.
We consider this problem in full generality as well as a special case in which A is a

1D-string (a rectangle consisting of a single row) which we call the 1D-tile covers problem.
Note that for a 2D-string of size N , there are at most N tile covers; each of them corresponds
to a submatrix of S starting in its top left corner. In particular, each tile cover of S can be
represented in O(1) space.

▶ Observation 1. In case when S is a 1D-string, the tile cover problem is trivial: a 1D-string
A is a tile cover of a 1D-string S if and only if S is a string power of A. However in case of
2D-strings the problem becomes complicated, even for 1D-tile covers.

a b c a b c a b c
b c a b c a b c a
a b a b a b c a b
b c b c b c a b c
c a c a a b c c a
a b a b b c a a b
b c b c a b c b c
c a c a b c a c a

a b a b a a b a b
a a a a b a b a b
b b b b a a a a a
a a a a b b b b b
b b b b a a a a a
a b a b b b b b b
a b a b a a b a b
a b a b b a b a b

Figure 1 Two examples of tile coverings of 2D-strings; the first one is by a 2 × 3 2D-tile cover
and the second one is by a 1D-tile cover of length 4. Let us notice that in the case of 1D-tile covers
both abab and its primitive root ab are 1D-tile covers of the 2D-string.

A known generalization of periodicity in 1D-strings is quasiperiodicity. A string C is
a cover of a 1D-string S if S can be created by possibly overlapping occurrences of C; see
e.g. [2, 4]. Versions of covers of 2D-strings were studied before; the main difference between
these notions and tile covers is that tile covers do not allow covering the text with overlapping
occurrences of the cover. In [5] two notions of covers of 2D-strings, called 1D-covers and
2D-covers, were considered. A 2D-string C is a 2D-cover of a 2D-string T if each position of
T is inside an occurrence of C in T . Various algorithms computing 2D-covers were presented
in [5, 6, 13]. A (1D) string C is a 1D-cover of a 2D-string T if each position of T is inside
an occurrence of C or CT . A linear-time algorithm computing all 1D-covers of a string was
proposed in [5].

Our Results. Let S be a 2D-string of size N . We show that:
all 1D-tile covers of S can be computed in O(N) time;
all tile covers of S can be computed in O(N1+ε) time for any ε > 0.

Let us recall that each tile cover can be represented in O(1) space as a submatrix of S.
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2 1D-Tile covers of 2D-strings

In this section we show how to compute 1D-tile covers of an n × m 2D-string S of size N .
Henceforth by ℓ we denote the length of the 1D-tile cover.

Let us recall some notation and properties of periodicity of 1D-strings. A string B that
is both a prefix and a suffix of a string U is called a border of U . A factor F of a string U is
called proper if |F | < |U |. By root(U), called the primitive root of U , we denote the shortest
string Z such that U is a power of Z. We say that U is primitive if root(U) = U . The string
root(U) is primitive. Let us also recall the solution to the following classical word equation;
cf. [12].

▶ Lemma 2. If strings X, Y satisfy XY = Y X, then there exists a string Z such that
X = Zx and Y = Zy for some positive integers x, y.

2.1 Unary 1D-tile covers
The unary case is simpler, but not completely trivial.
▶ Remark 3. The number of distinct unary 1D-tile coverings is potentially exponential, even
if ℓ = 2. For example, there are 12,988,816 ways to tile a standard 8 × 8 chessboard with
dominoes (to tile the 8×8 unary 2D-text by a linear unary tile of length ℓ = 2). The numbers
of distinct domino tilings of a 2 × n text are Fibonacci numbers.

We define the following auxiliary n × m table Dℓ: the first row is a prefix of (1, 2, . . . , ℓ)∞,
and each subsequent row results by adding 1 to the elements of the previous row, substituting
each ℓ + 1 with 1; see Figure 2.

1 2 3 4 5 6 1 2 3
2 3 4 5 6 1 2 3 4
3 4 5 6 1 2 3 4 5
4 5 6 1 2 3 4 5 6
5 6 1 2 3 4 5 6 1
6 1 2 3 4 5 6 1 2
1 2 3 4 5 6 1 2 3
2 3 4 5 6 1 2 3 4

Figure 2 Illustration of the proof of Lemma 5 for n = 8, m = 9, ℓ = 6. The two framed rectangles
are balanced; however the remaining 2 × 3 rectangle A is not, hence a unary 8 × 9 matrix does not
have a 1D-tile cover of length 6 (even though 6 divides 72 = 8 · 9).

We say that a submatrix of Dℓ is balanced if each integer in {1, . . . , ℓ} occurs the same
number of times in this submatrix.

▶ Observation 4. For 0 < k, r < ℓ, each k × r submatrix A of Dℓ is not balanced.

Proof. The proof is by contradiction. Assume each of the numbers 1, . . . , ℓ occurs in A the
same number of times. The integer at position min(k, r) in the first row of A occurs in the
first min(k, r) rows of A. Hence each integer in A should occur at least min(k, r) times,
altogether we have at least min(k, r) · ℓ occurrences in A. However, it is impossible since A

has only k · r positions and k · r < min(k, r) · ℓ due to the inequality k, r < ℓ. ◀

▶ Lemma 5. A unary 2D-string of size n × m has a (unary) 1D-tile cover of length ℓ if and
only if ℓ divides n or m.

CPM 2022



23:4 Rectangular Tile Covers of 2D-Strings

Proof. If ℓ divides m, then the text can be covered trivially with the use of horizontal
occurrences; symmetrically with the use of vertical ones if ℓ divides n. Let us consider the
other implication.

Each occurrence of a 1D-tile cover of length ℓ is balanced in the array Dℓ, hence the whole
2D-string can be covered only if Dℓ is balanced. Since every submatrix of Dℓ of dimensions
k × ℓ and ℓ × k is balanced, the problem reduces to the case of a matrix of dimensions
m mod ℓ and n mod ℓ, both smaller than ℓ, which is covered by Observation 4. ◀

▶ Remark 6. Let us note that it is not sufficient in the lemma for ℓ to divide n · m; see
Figure 2.

2.2 Combinatorics of non-unary 1D-tile covers
In this section we consider only non-unary texts S and non-unary tile covers (it is impossible
for a non-unary text to have a unary tile cover or for a unary text to have a non-unary tile
cover). Assume that the first row of S starts with the letter a. Consequently each 1D-tile
cover starts with an occurrence of the letter a.

▶ Definition 7. For a nonempty 2D-string U we define

ratio(U) = #a(U)
|U |

where #c(U) is the number of occurrences of the letter c in U .

We say that two 2D-strings are similar, written U1 ∼ U2, if ratio(U1) = ratio(U2).
Obviously if U is a tile cover of S, then U ∼ S.

Notice that since the top left position of S has to be covered, any 1D-tile cover U has to
be a prefix of the first row or the first column of S, and by symmetry also the suffix of the
last row or the last column of S. Henceforth we consider the case in which U is a prefix of
the first row of S and a suffix of the last row of S; the remaining cases can be handled in a
symmetric way.

▶ Definition 8. In this section we say that a 1D-string U of length at most min(n, m) is a
candidate if it satisfies the following conditions:

U is a prefix of the first row of S and a suffix of the last row of S;
U ∼ S;
The first row of S belongs to (U ∪ a)∗, that is, it can be factorized into factors equal to U

and a.

▶ Observation 9. If U is a 1D-tile cover of S, then U is a candidate.

▶ Observation 10. If U is a 1D-tile cover of S, then so is root(U).

The following auxiliary lemma plays an important role in a proof of Lemma 12 that gives
a key characterization of candidates.

▶ Lemma 11. Assume U = L ak R = R ak L, U is primitive and non-unary, and L, R ≠ ε.
Then ratio(ak R) > ratio(U).

Proof. We have that k > 0, as otherwise U = LR = RL, which implies that U is not
primitive (see Lemma 2). The word equation from the statement of the lemma is equivalent
to ak U = (ak L)(ak R) = (ak R)(ak L), hence, again by Lemma 2, strings ak U and ak R

have a common primitive root, which concludes that ratio(ak U) = ratio(ak R). However,
since U is non-unary, we have that ratio(ak R) = ratio(ak U) > ratio(U). ◀
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▶ Lemma 12. Take two candidates U, V , such that U is primitive and |U | < |V |. Then V is
a power of U .

Proof. Both U and V are candidates, which implies that U is a border of V . At the same
time, since U is a candidate, the occurrence of V that covers the top left corner of S can be
factorized into occurrences of U , letters a and a (possibly empty) string R – a proper prefix of
U – at its end; see Figure 3. Let F denote this factorization. We will show that R = ε, which
will conclude that V is a power of U . Indeed, otherwise we would have ratio(V ) > ratio(U),
contradicting the definition of a candidate.

U U U U U

U

L R

V

Figure 3 The series of grey boxes in the main line represents a factorization of the first row of
2D-string S into (non-unary) U ’s separated by a∗’s (white spaces, possibly zero a’s). The upper
brown box corresponds to the suffix of V equal to U . We focus on the first occurrence of V in the
text. If additionally we assume that ratio(U) = ratio(V ), and that U is primitive, then V must be a
power of U (that is, there are no white spaces, and the last U ends at the same point as V ).

The length-|U | suffix of V , by the factorization F , has a form LakR for some (possibly
empty) suffix L of U and k ≥ 0. However, this suffix is equal to U , so U = LakR. At the
same time, since R is a prefix of U , we also have that U = RWL for some string W . From
these two decompositions of U we see that ratio(ak) = ratio(W ), i.e. W = ak.

This will allow us to apply Lemma 11. First, if any of the strings L, R is empty and
k > 0, by Lemma 2, we obtain that U is unary, and so is V , which concludes the proof. If
any of L, R is empty and k = 0, then R = ε (since R was chosen as a proper prefix of U)
and we obtain the conclusion as shown before. Otherwise we can indeed apply Lemma 11
and obtain that ratio(ak R) > ratio(U). From the aforementioned factorization F of V we
obtain ratio(V ) > ratio(U), which contradicts the definition of a candidate. ◀

▶ Corollary 13. Assume a non-unary text S has a 1D-tile cover. Then the shortest 1D-tile
cover of S is the shortest candidate U . It is a primitive string. All other 1D-tile covers are
powers of U , though not all powers of U are necessarily 1D-tile covers of S.

The corollary suggests the following algorithm for finding the shortest 1D-tile cover:
1. Find the shortest primitive candidate U .
2. Then check if it is a 1D-tile cover.

The first step is easy because it involves only 1D-strings: first row/column and the last
row/column. The second step can be done using a greedy approach.

However, testing which powers of U are 1D-tile covers requires a slightly different number-
theoretic approach.

2.3 Computing non-unary candidates
All 1D-tile covers U satisfying |U | > min(n, m) can be trivially computed, hence we later
assume that the length of the cover is at most min(n, m).

We use the following algorithm to compute all candidates.

CPM 2022
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Algorithm 1 ALL-CAND(S).

Compute ratio(S)
Cand is initially the set of all proper borders of S1$S2 of length ≤ n, where S1 and

S2 are respectively the first and the last row of S and $ is a special symbol
using prefix-sums computation we compute ratio(Z) for each prefix of S1
remove from Cand all U such that ratio(U) ̸= ratio(S)
foreach U ∈ Cand do

if S1 /∈ (U ∪ a)∗ then remove U from Cand
// It is checked in O(m) time per each U

return Cand

▶ Corollary 14. ALL-CAND(S) computes in O(N) time all candidates.

Proof. Borders of a string of length m can be computed in O(m) time [10]. We have
|Cand| ≤ min(m, n) and each U ∈ Cand is checked in O(m) time using linear-time pattern
matching [10]. ◀

2.4 Testing a single non-unary candidate
Assume # does not occur in S. In the course of the next algorithm certain entries will be
marked, i.e., changed to #. For a 2D-string U we define two operations:

Match(i, j, U): return true if and only if there is a full occurrence of U starting in position
(i, j) in S,
Mark(i, j, U): changes each symbol in S in the occurrence of U starting in (i, j) to #.

▶ Remark 15. The following algorithm GREEDY is also well defined for a 2D-string U , but
it does not work correctly for all tile cover candidates which are not 1D-strings. We reuse it
later in Section 3.2.1.

Algorithm 2 GREEDY(S, U).

Output: True if a non-unary 2D-string U is a 1D-tile cover of S

for i := 1 to n do
for j := 1 to m do

if S[i, j] ̸= # then
if Match(i, j, U) then

▷ choosing occurrence of U

Mark(i, j, U)
else if Match(i, j, UT ) then

▷ choosing occurrence of UT

Mark(i, j, UT )
else

return false
▷ All positions are now marked

return true

▶ Theorem 16. Assume U is a 1D-string. Then GREEDY(S, U) checks if U is a 1D-tile
cover of S in O(N) time. Covering of S with U is unique (occurrences of U forming the tile
cover can be chosen only in a single, unique way).
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Proof.
Correctness. When we are processing the i-th row then the preceding rows are already
completely marked. Hence each non-marked position in this row should be marked now by
an occurrence of U or UT starting in this row. If Match(i, j, U), then U must be used instead
of UT .

Indeed, U is non-unary. Let k be its first position containing letter different from a.
Match(i, j, U) determines an existence of an uncovered letter different from a at position
(i, j + k − 1). This position cannot be covered with an occurrence of U beginning further
(k is the first such position), nor with a UT , which determines that U must be used at
position (i, j).

Complexity. Each operation Match can be done in O(|U |) time. It is amortized by marking
|U | positions which were not marked previously. Consequently, the total time is O(N). ◀

2.5 Finding all 1D-tile covers in non-unary texts
Denote by gcd(M) the greatest common divisor of integers in a set M . We use the following
algorithm (see also Figure 4).

Algorithm 3 ALL-TILES(S).

Output: All lengths of 1D-tile covers
U := shortest element of Cand(S)
if GREEDY(S, U)=false then return ∅
now GREEDY(S, U) can partition S into horizontal occurrences of U and vertical
occurrences of UT

we merge consecutive horizontal occurrences and consecutive vertical occurrences in
possibly larger disjoint horizontal and vertical strips

M := set of lengths of obtained strips
d := gcd(M)
return all powers of U whose lengths divide d

a a b a b a b a b a
b a b a b a a a a b
a a b a b b b b b a
b a a a a a a a a b
a b b b b b b b b a
b a a a a a b a b b
a b b b b a b a b a
b a b a b a b a b b

merge

Figure 4 Merging of occurrences of the smallest 1D-tile cover in the covering to compute the
larger ones. Here rectangles of length 4 and 8 appear, their greatest common divisor is 4, hence
1D-tile covers have lengths 2 and 4 (multiples of 2 and divisors of 4).

▶ Theorem 17. All 1D-tile covers of a 2D-string of size N can be computed in O(N) time.

CPM 2022



23:8 Rectangular Tile Covers of 2D-Strings

Proof.
Correctness. Let U be the shortest 1D-tile cover. By Corollary 13 only the powers of U can
be 1D-tile covers. The merged rectangles partition the 2D-string into 1D-parts. If the length
of a given power of U divides the length of each rectangle, then each part of the division is
trivially covered, hence the power is a 1D-tile cover. On the other hand if a given power of
U is a 1D-tile cover, then by applying Algorithm 3 with it as the candidate we would obtain
a different set of rectangles. This however would contradict the uniqueness of covering of S

with U given by Theorem 16.

Complexity. We find the shortest 1D-tile cover with the use of Algorithms 1 and 2 both
running in O(N) time. Algorithm 2 as a byproduct returns the set of N/|U | rectangles,
which can be merged in O(N/|U |) time. The greatest common divisor of their lengths is
computed in exactly the same time. ◀

3 2D-Tile covers in 2D-strings

In this section we consider tile covers of shape d × ℓ, where d ≤ ℓ (we find the other ones as
tile covers of ST ).

3.1 Unary 2D-tile covers
▶ Lemma 18. Unary d × ℓ 2D-string is a tile cover of a unary n × m 2D-string if either
case applies:
(a) d is a divisor of one dimension, and ℓ is a divisor of the other dimension of S,
(b) both d and ℓ divide the same dimension of S and the length of the other dimension is of

the form a · d + b · ℓ, for integers a, b ≥ 0.

Proof. From Lemma 5 we know that both d and ℓ have to divide one of the dimensions n or
m (unary tiling with d × ℓ rectangle easily divides into a one with 1 × d or 1 × ℓ rectangles).
If each dimension of U divides a different dimension of S (case (a)), then we can tile cover
S with U trivially with only occurrences of U or occurrences of UT . For the other case we
assume, that both d and ℓ divide m.

If n = a · d + b · ℓ for integers a, b ≥ 0 we can divide S into two parts of size (a · d) × m

and (b · ℓ) × m, and cover the first one with only U ’s and the second one with only UT ’s.
On the other hand if U is a tile cover of S, then the tiling divides the first column into

segments of lengths d or ℓ, hence n must be of a form a ·d+b ·ℓ for some integers a, b ≥ 0. ◀

3.2 Non-unary 2D-tile covers – testing a candidate
We make use of 2-dimensional properties of 2D-tiles related to symmetry and horizontal
periodicity. We assume later in this section that all considered 2D-tiles are of shape d × ℓ,
where d ≤ ℓ.

▶ Definition 19. A square matrix A is called symmetric if A = AT . A matrix is called
horizontally periodic (H-periodic, in short) if its i-th column equals its (i + d)-th column, for
i ≤ ℓ − d.

Denote by Pref(U)/Suf(U) the square matrix consisting of the first/last d columns of U .

▶ Definition 20. Define
γ(U) ≡ Pref(U), Suf(U) are symmetric and U is H-periodic.
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3.2.1 Case: not γ(U)

Observe that the algorithm GREEDY(S, U) can be applied also to 2D-tiles. The main
deterministic choices of this algorithm are whether to use U or UT . In this algorithm the
priority is given to U . It works correctly for 1D-tiles, unfortunately such simple solution is
incorrect for 2D-tile covers U , see Figure 5.

a b a a b a a b a

b a b b a b b a b

a b a b a a b a b

b a b a b b a b a

a b a b a a b a b

a b b a b a b a b

b a a b a b a b a

a b b a b a b a b

Figure 5 The algorithm GREEDY(S, U) from Section 2 does not work in this case: we start in
the top-left corner and take as U the prefix of S of shape 2 × 3 (2 rows, 3 columns) and fill the first
two rows this way. However when we do the same thing when we start covering the third row we
cannot continue later and GREEDY returns false. It is incorrect because U covers S in a different
non-greedy way.

▶ Lemma 21. If Pref(U) is not symmetric, or U is not H-periodic then GREEDY(S, U)
works correctly.

Proof. The only way, the algorithm GREEDY can give a bad answer is the case, where both
Match(i, j, U) and Match(i, j, UT ) return true in a given position (such that all of the previous
positions are covered), and choose to use Mark(i, j, U) even though, the right occurrence to
choose is UT .

In the case, where Pref(U) is not symmetric U and UT cannot both match in any
position (U [1..d, 1..d] ̸= UT [1..d, 1..d]).

If U is not H-periodic, then if Match(i, j, U) return true, then one of the d×d submatrices
of S with its top-left corner at position (i, k), where j < k < j + l, k mod d = j mod d is
different from Pref(U).

If Mark(i, j, UT ) was used, then position (i, k) cannot be covered neither with Mark(i, p, U)
for j < p ≤ k, p mod d = j mod d nor with Mark(i, k, UT ), and only such occurrences are
available to use. ◀

Denote by Û the matrix resulting from U by reversing each row, and then reversing each
column.

▶ Lemma 22. If Suf(U) is not symmetric then GREEDY(Ŝ, Û) returns true iff U is a tile
cover of S since it is never possible to match both U and UT in the same position.

The last two lemmas give simple linear time tile test for the case when Pref(U) or
Suf(U) is not symmetric or U is not H-periodic.

CPM 2022
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i,j

s(j),is(j),s-1(i)

s-1(i),s(j)

i,s(j)

F

G

Figure 6 Migration of an element in the matrix F via the matrix G.

3.2.2 Reduction to case gcd(d, ℓ) = 1
It may be the case, that both S and U are in fact composed of smaller, symmetric z × z

matrices. If all of those submatrices are equal, then the tile covering of S may not be unique
even though it is not unary. In this section we show, that it is only possible for z = gcd(d, ℓ),
and that the problem can be reduced to the case, where gcd(d, ℓ) = 1. This also simplifies
the algorithm in the next section.

Assume operations ⊕, ⊖ are addition and subtraction modulo k, respectively.

▶ Fact 23. Assume gcd(r, k) = 1. If Z ⊆ {0, 1, 2, . . . , k −1} is non-empty and has a property,
that if x ∈ Z implies x ⊕ r ∈ Z, then Z = {0, 1, 2, . . . , k − 1}.

In the lemma below we count rows and columns starting from zero.

▶ Lemma 24. Assume 0 < r < k and gcd(k, r) = 1. Let matrices A, B be of shapes
k × r, k × (k − r), respectively, and F = A · B, G = B · A (where · denotes horizontal
concatenation of matrices).

If F, G are symmetric, then all elements F [i ⊕ x, j ⊖ x] are equal, for given i, j and all
x ∈ {0, 1, 2, . . . , k − 1}.

Proof. Let s(x) = x ⊖ r. Then F [i, j] = G[i, s(j)]; see Figure 6.
Due to symmetry of G we have G[i, s(j)] = G[s(j), i]. Then G[s(j), i] = F [s(j), s−1(i)],

and using symmetry of F we have

F [s(j), s−1(i)] = F [s−1(i), s(j)] = F [i ⊕ r, j ⊖ r]

Consequently F [i, j] = F [i ⊕ r, j ⊖ r]. The thesis follows now from Fact 23, by iterating the
last equality. ◀

Denote z = gcd(d, ℓ) and k = d/z.

▶ Lemma 25. Assume γ(U). Let us decompose U into disjoint submatrices z × z. Then
each of these submatrices is symmetric.

Proof. Let us treat each of these z × z submatrices as single elements. Then we obtain
the k × (ℓ/z) matrix U ′. We can apply Lemma 24 to F = Pref(U ′), G = Suf(U ′). Then
Lemma 24 implies that each of our z × z sub-matrices equals a z × z sub-matrix on the main
diagonal of Pref(U) (or Suf(U)), consequently it is symmetric due to symmetry of diagonal
z × z submatrices (see Figure 7). ◀
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a b d e g h a b d e
b c e f h i b c e f
d e g h a b d e g h
e f h i b c e f h i
g h a b d e g h a b
h i b c e f h i b c

Figure 7 The figure illustrate the most general example of U of size 6 × 10 such that γ(U). Notice
that it is composed of symmetric submatrices 2 × 2 (z = 2 = gcd(6, 10)) of only k = 3 = 6/2 types.

▶ Corollary 26. If γ(U) and gcd(d, ℓ) > 1 then we can reduce in linear time our problem to
the case of d′ × ℓ′ candidate U ′, where γ(U ′) and gcd(d′, ℓ′) = 1.

Proof. We decompose U and S into disjoint z × z submatrices. By Lemma 25 we know that
the submatrices composing U are symmetric. If a decomposition of S contains a non-symetric
matrix, then U cannot be a tile cover of S. Otherwise we replace each z × z submatrix with
1 × 1 submatrix, with symbol identifying the corresponding submatrix. Then the resulting
2D-texts U ′, S′ prove the thesis. ◀

3.2.3 Case: γ(U) and gcd(d, ℓ) = 1

The following fact can be shown using Fact 23 and similar arguments as in the proof of
Lemma 24.

▶ Fact 27. Assume γ(U) and gcd(d, ℓ) = 1. Then if two distinct columns of Pref(U) are
equal, then U is unary.

Denote by first(U) the first column of U , by first(Suf(U)) the first column of Suf(U)
and by Col(i, j, S) the fragment of size d of the j-th column of S starting in row i. We use
the following algorithm.

Algorithm 4 GREEDY’(S, U).

Output: True if U is a 2D-tile cover
▷ Assume U is non-unary

for i := 1 to n do
for j := 1 to m do

if S[i, j] ̸= # then
if Match(i, j, U) and First(Suf(U)) ̸= Col(i, j + ℓ, S) then

▷ choose occurrence of U

Mark(i, j, U)
else if Match(i, j, UT ) then

▷ choose occurrence of UT

Mark(i, j, UT )
else

return false
▷ All positions are now marked

return true

CPM 2022
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▶ Example 28. Figure 8 shows how our algorithm is working. The figure illustrates the case
when First(Suf(U)) = Col(i, j + ℓ, S) for i = j = 1, (the first column of Suf(U) starts in
the 4-th column of S). Hence instead of using Mark(1, 1, U) we execute Mark(1, 1, UT ).

The next (i, j) with S[i, j] ̸= # is (1, 3). For j = 3 we have j+ℓ = 6 and First(Suf(U)) ̸=
Col(1, 6, S), hence we perform here Mark(1, 3, U).

After using Mark(5, 1, UT ) the next (i, j) with S[i, j] ̸= # is (3, 3). Here S[i, j + 3] = #,
hence we perform Mark(3, 3, U).

a b a b a a b

b a b a b b a

a b a b a a b

a b b a b a b

b a a b a b a

a b b a b a b

Figure 8 U is here the 2 × 3 prefix of S, d = 2, ℓ = 3. The algorithm GREEDY’ starts with UT

(due to additional comparison of two columns), while a naive greedy would start with U (and later
fail).

▶ Theorem 29. We can test if a given 2D-tile candidate is a 2D-tile cover in O(N) time.

Proof. If not γ(U), then we use Algorithm 2. This case was already covered by Lemmas 21
and 22. Otherwise we use Algorithm 4. Assume, that γ(U) and gcd(d, ℓ) = 1.

If Match(i, j, U), then First(Suf(U)) ̸= Col(i, j+ℓ, S) represents a break in H-periodicity
(possibly due to an occurrence of # or the end of the text). In this case if the algorithm decides
to use UT instead of U at the next not covered positions (i, j + d), (i, j + 2d), . . . , (i, j + kd)
for ℓ − d < kd < ℓ, the use of U will not be possible, and hence it will have to use UT .

However then, when trying to cover position (i, j + kd) for ℓ − d < kd < ℓ it will be
also unable to use UT due to the same break of the period. If however First(Suf(U)) =
Col(i, j + ℓ, S), then by Fact 27 Col(i, j + ℓ, S) ̸= First(U), hence after using U at position
(i, j) we will not be able to cover position (i, j + ℓ), and we know that j + ℓ ≤ m and the
position is not covered yet. ◀

3.3 Computing all non-unary 2D-tile covers
Let D(n) denote the number of natural divisors of a natural number n.

▶ Fact 30 ([1]). D(n) = o(nε) for every constant ε > 0.

▶ Corollary 31. There are only O(nε) possible shapes of 2D-tile covers of S, for m ≤ n and
any ε > 0.

▶ Theorem 32. We can compute all 2D-tile covers in time O(N1+ϵ).

Proof. For a given candidate U we can in O(|U |) time check if property γ(U) holds, and
then use Algorithm 2 or Algorithm 4, each working in O(N) time. Due to Corollary 31 there
are only O(Nε) candidates for a tile cover, which we can check in O(N1+ε) total time. ◀

▶ Observation 33. Just like in case of 1D-tile covers (see Theorem 16) covering of a
non-unary 2D-string S with its 2D-tile cover U is unique.
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4 Final remarks

We showed that 2D-tile cover problem can be solved in O(N1+ϵ) time. Our O(N) time
algorithm for 1D-tiles was based on Lemma 12, which says that all 1D-tiles are powers of the
smallest primitive one. However it does not work for 2D-tiles, see Figure 9.

We say that d × ℓ 2D-tile cover is primitive iff it is not a horizontal or vertical power of a
smaller 2D-tile.

a a b a a b

b a b b a b

a b a b a b

a a a a a a

b b b b b b

Figure 9 S has three primitive 2D-tile covers of shapes 2 × 1, 2 × 3 and 5 × 6 (S itself). None of
them is a horizontal or vertical power of another one (but a smaller one is a 2D-cover of a larger
one).

We pose the following conjectures.

▶ Conjecture 34. If a 2D-string has two distinct primitive 2D-tile covers, then one of them
is a 2D-tile cover of the other one.

▶ Conjecture 35. There is a linear time algorithm for computing all 2D-tile covers.
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