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Abstract
Grammar-based compression is a loss-less data compression scheme that represents a given string w

by a context-free grammar that generates only w. While computing the smallest grammar which
generates a given string w is NP-hard in general, a number of polynomial-time grammar-based
compressors which work well in practice have been proposed. RePair, proposed by Larsson and
Moffat in 1999, is a grammar-based compressor which recursively replaces all possible occurrences of
a most frequently occurring bigrams in the string. Since there can be multiple choices of the most
frequent bigrams to replace, different implementations of RePair can result in different grammars. In
this paper, we show that the smallest grammars generating the Fibonacci words Fk can be completely
characterized by RePair, where Fk denotes the k-th Fibonacci word. Namely, all grammars for
Fk generated by any implementation of RePair are the smallest grammars for Fk, and no other
grammars can be the smallest for Fk. To the best of our knowledge, Fibonacci words are the first
non-trivial infinite family of strings for which RePair is optimal.
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1 Introduction

A context-free grammar in the Chomsky normal form that produces only a single string w
is called a straight-line program (SLP) for w. Highly repetitive strings that contain many
long repeats can be compactly represented by SLPs since occurrences of equal substrings
can be replaced by a common non-terminal symbol. Grammar-based compression is a loss-
less data compression scheme that represents a string w by an SLP for w. We are aware
of more powerful compression schemes such as run-length SLPs [24, 37, 6], composition
systems [19], collage systems [26], NU-systems [36], the Lempel-Ziv 77 family [42, 39, 12, 13],
and bidirectional schemes [39]. Nevertheless, since SLPs exhibit simpler structures than
those, a number of efficient algorithms that can work directly on SLPs have been proposed,
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including pattern matching [25, 24], convolutions [40], random access [8], detection of repeats
and palindromes [22], Lyndon factorizations [23], longest common extension queries [21],
longest common substrings [34], finger searches [5], and balancing the grammar [17]. More
examples of algorithms directly working on SLPs can be found in references therein and the
survey [31]. Since these algorithms do not decompress the SLPs, they can be more efficient
than solutions on uncompressed strings.

Since the complexities of the algorithms mentioned above depend on the size of the
SLP, it is important to compute a small grammar for a given string. The smallest grammar
problem is to find a grammar that derives a given string w, where the total length of the
right-hand sides of the productions is the smallest possible. The smallest grammar problem is
known to be NP-hard in general [39, 10]. Namely, there is no polynomial-time algorithm that
finds the smallest grammar for arbitrary strings, unless P = NP. Notably, the NP-hardness
holds even when the alphabet size is bounded by some constant at least 17 [9], on the other
hand, it is open whether the NP-hardness holds for strings over a smaller constant alphabet,
particularly on binary alphabets.

We consider a slightly restricted version of the smallest grammar problem where the
considered grammars are SLPs, i.e., only those in the Chomsky normal form. We follow
a widely accepted definition for the size of an SLP, which is the number of productions
in it. Thus, in the rest of our paper, grammars mean SLPs unless otherwise stated, and
our smallest grammar problem seeks the smallest SLP, which generates the input string
with the fewest productions3. There are some trivial examples of strings whose smallest
grammar sizes can be easily determined, e.g., a unary string (a)2i of length power of two4,
and non-compressible strings in which all the symbols are distinct. It is interesting to identify
classes of strings whose smallest grammars can be determined in polynomial-time since it
may lead to more and deeper insights to the smallest grammar problem. To the best of our
knowledge, however, no previous work shows non-trivial strings whose smallest grammar
sizes are computable in polynomial-time.

In this paper, we study the smallest grammars of the Fibonacci words {F1, F2, . . . , Fn, . . .}
defined recursively as follows: F1 = b, F2 = a, and Fi = Fi−1Fi−2 for i ≥ 3. We show
that the smallest grammars of the Fibonacci words can be completely characterized by
the famous RePair [30] algorithm, which is the best known practical grammar compressor
that recursively replaces the most frequently occurring bigram with a new non-terminal
symbol in linear total time. We first prove that the size of the smallest grammar of the
n-th Fibonacci word Fn is n. We then prove that applying any implementation of RePair
to Fn always provides a smallest grammar of Fn, and conversely, only such grammars can
be the smallest for Fibonacci words. This was partially observed earlier in the experiments
by Furuya et al. [15], where five different implementations of RePair produced grammars
of the same size for the fib41 string from the Repetitive Corpus of the Pizza&Chili Corpus
(http://pizzachili.dcc.uchile.cl/repcorpus.html). However, to our knowledge, this
paper is the first that gives theoretical evidence.

3 There is an alternative definition of the size of a grammar, that is, the total sum of the lengths of the
right side of its rules. This definition is usually used for non-SLP grammars.

4 Grammars for unary words are closely related to addition chains [28], and the smallest (not necessarily
SLP) grammar for (a)k is non-trivial for general k that is not a power of two. Also, in such a case,
RePair does not provide the smallest grammar for (a)k [20].

http://pizzachili.dcc.uchile.cl/repcorpus.html
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Related Work

Although the smallest grammar problem is NP-hard, there exist polynomial-time approxima-
tions to the problem: Rytter’s AVL-grammar [38] produces an SLP of size O(s∗ log(N/s∗)),
where s∗ denote the size of the smallest SLP for the input string and N is the length of
the input string. The α-balanced grammar of Charikar et al. [10] produces a (non-SLP)
grammar of size O(g∗ log(N/g∗)), where g∗ denotes the size of the smallest (non-SLP)
grammar. Upper bounds and lower bounds for the approximation ratios of other practical
grammar compressors including LZ78 [43], BISECTION [27], RePair [30], SEQUENTIAL [41],
LONGEST MATCH [27], and GREEDY [1], are also known [10, 2]. Charikar et al. [10]
showed that the approximation ratio of RePair to the smallest (non-SLP) grammar is at
most O((N/ logN)2/3) and is at least Ω(

√
logN). The lower bound was later improved by

Bannai et al. [2] to Ω(logN/ log logN). Furthermore, it is known that RePair has a lower
bound on the approximation ratio log2(3) to the smallest (non-SLP) grammar for unary
strings [20]. On the other hand, RePair is known to achieve the best compression ratio on
many real-world datasets and enjoy applications in web graph compression [11] and XML
compression [32]. Some variants of RePair have also been proposed [33, 7, 18, 16, 15, 29].

2 Preliminaries

2.1 Strings
Let Σ be an alphabet. An element in Σ is called a symbol. An element in Σ∗ is called a
string. The length of string w is denoted by |w|. The empty string ε is the string of length
0. For each i with 1 ≤ i ≤ |w|, w[i] denotes the i-th symbol of w. For each i and j with
1 ≤ i ≤ j ≤ |w|, w[i..j] denotes the substring of w which begins at position i and ends at
position j. For convenience, let w[i..j] = ε if i > j. When i = 1 (resp. j = |w|), w[i..j] is
called a prefix (resp. a suffix) of w. For non-empty strings w and b with |b| < |w|, b is called a
border of w if b is both a prefix and a suffix of w. If there are no borders of w, then w is said
to be borderless. For any non-empty string w, we call w[|w|]w[1..|w| − 1] the right-rotation
of w. For a string w, σw denotes the number of distinct symbols appearing in w. For a
non-empty string w, we denote by wR the reversed string of w, namely wR = w[|w|] · · ·w[1].

2.2 Fibonacci Words and Related Words
For a binary alphabet {a, b}, Fibonacci words F (a,b)

i (starting with a for i > 1) are defined
as follows: F (a,b)

1 = b, F (a,b)
2 = a, and F

(a,b)
i = F

(a,b)
i−1 F

(a,b)
i−2 for i ≥ 3. We call F (a,b)

i the
i-th Fibonacci word (starting with a for i > 1). By the above definition of Fibonacci words,
|F (a,b)

i | = fi holds for each i, where fi denotes the i-th Fibonacci number defined as follows:
f1 = 1, f2 = 1, fi = fi−1 + fi−2 for i ≥ 3. There is an alternative definition (e.g. [3]) of
Fibonacci words using the string morphism ϕ(a,b): The i-th Fibonacci word F

(a,b)
i (starting

with a for i > 1) is (ϕ(a,b))i−1(b), where ϕ(a,b) is a morphism over {a, b} such that ϕ(a,b)(a) =
ab and ϕ(a,b)(b) = a. We strictly distinguish the morphism ϕ(b,a) from ϕ(a,b) over the same
binary alphabet {a, b}, namely, ϕ(b,a) generates the Fibonacci words F (b,a)

i where a and b

are flipped in F
(a,b)
i . We will omit the superscript (a, b) if it is clear from contexts or it is

not essential for the discussion.
Next, we define other words, which will be utilized to analyze the smallest grammar

of Fibonacci words. Let π(a,b) be the morphism over {a, b} such that π(a,b)(a) = ab and
π(a,b)(b) = abb. Further, let θ(a,b) be the morphism over {a, b} such that θ(a,b)(a) = aab and

CPM 2022
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Table 1 Lists of F
(a,b)
i for i = 1, . . . , 10, and P

(a,b)
i and Q

(a,b)
i for i = 1, . . . , 5.

i F
(a,b)
i length

1 b 1
2 a 1
3 ab 2
4 aba 3
5 abaab 5
6 abaababa 8
7 abaababaabaab 13
8 abaababaabaababaababa 21
9 abaababaabaababaababaabaababaabaab 34
10 abaababaabaababaababaabaababaabaababaababaabaababaababa 55

i P
(a,b)
i length

1 a 1
2 ab 2
3 ababb 5
4 ababbababbabb 13
5 ababbababbabbababbababbabbababbabb 34

i Q
(a,b)
i length

1 a 1
2 aab 3
3 aabaabab 8
4 aabaababaabaababaabab 21
5 aabaababaabaababaababaabaababaabaababaababaabaababaabab 55

θ(a,b)(b) = ab. For each positive integer i, we define P (a,b)
i and Q(a,b)

i over {a, b} by P (a,b)
i =

(π(a,b))i−1(a) and Q(a,b)
i = (θ(a,b))i−1(a), respectively. We treat their superscripts as for that

of Fibonacci words. We will later show that |Pi| = |F2i−1| = f2i−1 and |Qi| = |F2i| = f2i for
any i ≥ 1. We show examples for these three words in Table 1. We remark that strings Pi

and Qi can be obtained at some point while RePair is being applied to the Fibonacci words.
We will prove this in Section 4.

For a symbol X and a string y, let ξX→y be the morphism such that ξX→y(X) = y and
ξX→y(c) = c for any symbol c ̸= X. Namely, when applied to a string w, ξX→y(w) replaces
all occurrences of X in w with y but any other symbols than X remain unchanged. For any
morphism λ and any sequence S = (s1, . . . , sm) of strings, let λ(S) = (λ(s1), . . . , λ(sm)).

2.3 Grammar Compression and RePair
A context-free grammar in the Chomsky normal form that produces a single string w is
called a straight-line program (SLP in short) for w. Namely, any production in a grammar
is of form either Xi → α or Xi → XjXk, where α is a terminal symbol and Xi, Xj , and
Xk are non-terminal symbols such that i > j and i > k, that is, there are no cycles in the
productions. In what follows, we refer to an SLP that produces w simply as a grammar of w.
Let T (G) denote the derivation tree of a grammar G, where each internal node in T (G) is
labeled by the corresponding non-terminal symbol of G. As in [38], we conceptually identify
terminal symbols with their parents so that T (G) is a full binary tree (i.e. every internal node
has exactly two children). Let G1 and G2 be grammars both deriving the same string w, and
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w  =  a b a b a a b a a b a

a b a b a a b a a b a

A AB A B A A B A A B

X1 X2

X3 X4

X5 X6

X7

X1 X2

X4

a b a b a a b a a b a

A AB A B A A B A A B

Y1 Y1

Y2 Y2

Y3 Y4

Y5

Y1 Y1

Y2

Figure 1 Illustration for the derivation trees of two distinct grammars of string w = ababaabaaba.
The size of the grammar on the left is 9 since there are nine productions; {A → a, B → b, X1 →
AB, X2 → AA, X3 → X1X1, X4 → X2B, X5 → X3X4, X6 → X4A, X7 → X5X6, }. On the other
hand, the size of the grammar on the right is 7. Note that the right one is a RePair grammar of w.
In the rest of the paper, we sometimes identify the terminal symbols (leaves) with their parents so
the derivation trees are (conceptually) full binary trees.

let Π1 and Π2 be the sets of non-terminal symbols of G1 and G2, respectively. We say that G1
and G2 are equivalent if there exists a renaming bijection f : Π1 → Π2 that transforms T (G1)
to T (G2). We say that G1 and G2 are distinct if they are not equivalent. For example, two
grammars {A → a,B → b, C → AB,D → CA} and {X → a, Y → b, Z → XY,W → ZX}
are equivalent grammars both deriving string aba.

Equivalent grammars form an equivalence class of grammars, and we pick an arbitrary
one as the representative of each equivalence class. A set S of grammars that derive the same
string w is a set which consists of (some) representative grammars, which means that any
two grammars in S are mutually distinct. See Figure 1 for examples of distinct grammars for
the same string.

The size of a grammar G, denoted by |G|, is the number of productions in G. We denote
by g∗(w) the size of the smallest grammar of string w. Further, we denote by Opt(w) the
set of all the smallest grammars of string w. While computing g∗(w) for a given string w is
NP-hard in general [10], a number of practical algorithms which run in polynomial-time and
construct small grammars of w have been proposed.

In this paper, we focus on RePair [30], which is the best known grammar-based compressor
that produce small grammars in practice. We briefly describe the RePair algorithm, which
consists of the three stages:
1. Initial stage: All terminal symbols in the input string are replaced with non-terminal

symbols. This creates unary productions.
2. Replacement stage: The algorithm picks an arbitrary bigram which has the most non-

overlapping occurrences in the string, and then replaces all possible occurrences of
the bigram with a new non-terminal symbol. The algorithm repeats the same process
recursively for the string obtained after the replacement of the bigrams, until no bigrams
have two or more non-overlapping occurrences in the string. It is clear that the productions
created in the replacement stage are all binary.

CPM 2022
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Figure 2 Illustration for the changes of strings and productions to be added when RePair is applied
to string w = abaababa. At the second level, the most frequent bigrams in string ABAABABA

are AB and BA. If AB is chosen and replaced with non-terminal symbol X1, the string changes
to X1AX1X1A and production X1 → AB is added. Otherwise (if BA is chosen and replaced with
non-terminal symbol Y1), the string changes to AY1AY1Y1 and production Y1 → BA is added. In
this example, the size of RePair(w) is four.

3. Final stage: Trivial binary productions are created from the sequence of non-terminal
symbols which are obtained after the last replacement. This ensures that the resulting
grammar is in the Chomsky normal form. We remark that when distinct bigrams have
the most non-overlapping occurrences in the string, then the choice of the bigrams to
replace depends on each implementation of RePair.

A grammar of w obtained by some implementation of RePair is called a RePair grammar
of w. We denote by RePair(w) the set of all possible RePair grammars of w. We show an
example of RePair grammars in Figure 2.

2.4 LZ-factorization
A sequence S = (s1, . . . , sm) of non-empty strings is called a factorization of string w if
w = s1 · · · sm. Each si (1 ≤ i ≤ m) is called a phrase of S. The size of the factorization S,
denoted |S|, is the number m of phrases in S.

For a factorization S = (s1, . . . , sm) of a string w, we say that the i-th phrase si is
greedy if either si is a fresh symbol that occurs for the first time in s1 · · · si, or si is the
longest prefix of si · · · sm which occurs in s1 · · · si−1. A factorization of a string w is called
the LZ-factorization of w if all the phrases are greedy. Note that this definition of the
LZ-factorization is equivalent to the one in [38]. The LZ-factorization of string w is denoted
by LZ (w), and the size of LZ (w) is denoted by z(w). We sometimes represent a factorization
(s1, s2, . . . , sm) of w by s1|s2| . . . |sm, where each | denotes the boundary of the phrases. For
example, The LZ-factorization of w = ababaabaaba is a|b|ab|a|aba|aba.

3 Basic Properties of Fibonacci and Related Words

In this section, we show some properties of the aforementioned words. We fix the alphabet
Σ = {a, b} in this section. First, for the summation of Fibonacci sequences, the next equations
hold:
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▶ Fact 1.
∑i

k=1 f2k−1 = f2i and
∑i

k=1 f2k = f2i+2 − 1.

By the definitions of Fn, Pn, and Qn, we have the following observation:

▶ Lemma 2. For each k ≥ 2, the most frequent bigrams of F2k are ab and ba, and the most
frequent bigram of F2k−1 is ab. Also, for each i ≥ 2 and each j ≥ 3, the most frequent bigram
of Pi and Qj is ab.

Proof. From the fact that bigram bb and trigram aaa do not occur in any Fibonacci word
(e.g., see [3]), we can see that any occurrence of aa is followed by b in Fibonacci words.
Thus, aa cannot occur more frequently than ab in any Fibonacci word. Also, since the third
and subsequent Fibonacci words start with ab, bigram ab occurs more frequently than aa.
Additionally, since all the Fibonacci words F2k of even order end with b and all the Fibonacci
words F2k−1 of odd order end with a, the statements for the Fibonacci words hold.

Similarly, as for string Pi, it follows from the definition of morphism π that aa does not
occur in Pi. Also, bb always succeeds a, and thus, bb cannot occur more frequently than ab.
Furthermore, by the definition of morphism π, string Pi starts with aba and ends with b for
i ≥ 3. Thus, the most frequent bigram of Pi is ab for i ≥ 3 (note that P2 is trivial).

Finally, as for string Qj , it follows from the definition of morphism θ that bb does not
occur in Qj . Also, aa always precedes b, and thus, aa cannot occur more frequently than ab.
Furthermore, by the definition of morphism θ, string Qj ends with ab for j ≥ 3. Thus, the
most frequent bigram of Qj is ab for j ≥ 3. ◀

A factorization C = (c1, . . . , cm) of a string w is called the C-factorization of w if either
ci is a fresh symbol or ci is the longest prefix of ci · · · cm which occurs twice in c1 · · · ci.
We can obtain the full characterization of the LZ-factorization of Fn immediately from the
C-factorization of Fn, as follows:

▶ Lemma 3. The LZ-factorization of Fn is (a, b, a, FR
4 , . . . , F

R
n−2, s), where s = ab if n is

odd, and s = ba otherwise.

Proof. It is shown in [4] that the C-factorization of the infinite Fibonacci word F is
(a, b, a, FR

4 , F
R
5 , . . .). Also, for each i ≥ 4, the (only) reference source of each factor FR

i is the
substring of Fn of length fi ending at just before the factor, i.e., the source does not overlap
with the factor. From these facts, it can be seen that the LZ-factorization of F is the same
as the C-factorization of F. Then, the last phrase of the C-factorization of a finite Fibonacci
word is of length two since fn =

∑n−2
i=1 fi + 1 = (1 + 1 + 2 +

∑n−2
i=4 fi) + 1 = 3 +

∑n−2
i=4 fi + 2.

Also, since the Fibonacci words of odd order (resp. even order) end with ab (resp. ba), the
last phrase is ab (resp. ba). ◀

The next lemma states that Pi and Qi are the right-rotations of Fibonacci words.

▶ Lemma 4. For each i ≥ 1, P (a,b)
i is the right-rotation of F (b,a)

2i−1, and Q
(a,b)
i is the right-

rotation of F (a,b)
2i .

Proof. The next claim can be proven by induction:

▷ Claim 5. For any non-empty string x ∈ {a, b}, (ϕ(b,a))2(x)b = bπ(a,b)(x) and
(ϕ(a,b))2(x)ab = abθ(a,b)(x) hold.

We prove the lemma by using Claim 5. Assume that the lemma holds for i. Since the last
symbol of F (b,a)

2i−1 is a, we can write F (b,a)
2i−1 = xa with some string x. From the induction

hypothesis, P (a,b)
i = ax holds. Then, P (a,b)

i+1 = π(a,b)(ax) = abπ(a,b)(x). Also, F (b,a)
2i+1 =

CPM 2022
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Pi =

F(𝚋,𝚊)
2i−1 =

a b a b b a b a b b a b b a b a b b a b   b b⋯ (F(𝚋,𝚊)
k )R ⋯

 b a b b a b a b b a b b a b a b b a b   b b a⋯ (F(𝚋,𝚊)
k )R ⋯

Figure 3 Illustration for the LZ-factorizations of Pi and F
(b,a)
2i−1. F

(b,a)
2i−1 is aligned so that the first

position of F
(b,a)
2i−1 is the second of Pi. In both of two factorizations, the k-th phrase is (F (b,a)

k )R for
each k ≥ 4.

(ϕ(b,a))2(xa) = (ϕ(b,a))2(x)ba = bπ(a,b)(x)a by Claim 5, and thus, P (a,b)
i+1 is the right-rotation of

F
(b,a)
2i+1 . Similarly, since the last symbol of F (a,b)

2i is a, we can write F (a,b)
2i = ya with some string

y. From the induction hypothesis, Q(a,b)
i = ay holds. Then, Q(a,b)

i+1 = θ(a,b)(ay) = aabθ(a,b)(y).
Also, F (a,b)

2i+2 = (ϕ(a,b))2(ya) = (ϕ(a,b))2(y)aba = abθ(a,b)(y)a by Claim 5, and thus, Q(a,b)
i+1 is

the right-rotation of F (a,b)
2i+2 . ◀

The LZ-factorizations of Pn is as follows:

▶ Lemma 6. Let i ≥ 2. The j-th phrase of LZ (P (a,b)
i ) is (F (b,a)

j )R for each j with 1 ≤ j ≤
2i− 3. The last phrase is the (2i− 2)-th phrase, and that is b.

Proof. The first three phrases of LZ(Pi) are (a, a, ab) = ((F (b,a)
1 )R, (F (b,a)

2 )R, (F (b,a)
3 )R).

By Lemma 4, Pi[2..|Pi|]a = F
(b,a)
2i−1 . Namely, LZ(Pi[2..|Pi|]a) = LZ(F (b,a)

2i−1). By Lemma 3,
for each phrase of length at least four of LZ(F (b,a)

2i−1), the length-3 prefix of the phrase is
either abb or bab. Since Pi starts with aba, for each k ≥ 4, the k-th phrase of LZ(Pia)
equals that of LZ(Pi[2..|Pi|]a) = LZ(F (b,a)

2i−1), that is, (F (b,a)
k )R (see also Figure 3). Also,

|LZ (Pi)| = |LZ (F (b,a)
2i−1)| = 2i− 2 holds, and the last phrase of LZ (Pi) is b. ◀

4 RePair Grammars of Fibonacci Words

In this section, we first show a lower bound of the size of the smallest grammar of any string,
which is slightly tighter than the well-known result shown by Rytter [38]. Second, we show
that the size of RePair grammars of Fibonacci words are always the smallest.

4.1 Tighter Lower Bound of Smallest Grammar Size
The partial derivation tree PT (G) of a grammar G is the maximal subgraph of the derivation
tree of G such that for each non-leaf node v in PT (G), there is no node whose label is the
same as v to its left. For a grammar G of a string w, the g-factorization of w w.r.t. G,
denoted by gfact(G), is the factorization of w where the phrases correspond to the leaves of
PT (G). See also Figure 4 for an example of PT (w) and gfact(G). It was shown in [38] that
|gfact(G)| ≤ |G| holds for any grammar G. We show a slightly tighter lower bound of |G| by
considering the number of distinct symbols in w.

▶ Lemma 7. For any grammar G of a string w, |gfact(G)| − 1 + σw ≤ |G|.

Proof. A grammar G in the Chomsky normal form consists of two types of productions:
Type 1 A → BC where A,B, and C are non-terminal symbols.
Type 2 A → α where A is a non-terminal symbol and α is a terminal symbol.
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a b a b a a b a a b a

A AB A B A A B A A B

X1 X2

X3 X4

X5 X6

X7

X1 X2

X4

Figure 4 Illustration for PT (G) of grammar G for string w = ababaabaaba. The circled nodes
are leaves of PT (G). For this grammar G of w, gfact(G) = a|b|ab|a|a|b|aab|a. Since |G| = 9,
|gfact(G)| = 8, and σw = 2, we can see that Lemma 7 holds for this example.

Let g1 and g2 be the numbers of productions of Type 1 and Type 2, respectively. By the
definition of PT (G), the labels of all non-leaf nodes are distinct, and they correspond to the
productions of Type 1. Thus, the number m of non-leaf nodes is at most g1. Also, σw ≤ g2
always holds. Hence, m+ σw ≤ g1 + g2 = |G|. On the other hand, m = |gfact(G)| − 1 holds
since PT (G) is a full binary tree and the number of leaves of PT (G) is |gfact(G)|. Therefore,
|gfact(G)| − 1 + σw ≤ |G| holds. ◀

We obtain the following tighter lower bound for the size of the smallest grammar(s):

▶ Theorem 8. For any string w, z(w) − 1 + σw ≤ g∗(w) holds.

Proof. It was shown in [38] that z(w) ≤ |gfact(G)| for any grammar G of w. Thus, combining
it with Lemma 7, we obtain the theorem. ◀

By regarding the recursive definition of Fn as a grammar, we can construct a size-n grammar
of Fn. Also, g⋆(Fn) is at least n by Theorem 8 since z(Fn) = n− 1 and σFn

= 2. Thus, we
obtain the following corollary:

▶ Corollary 9. The smallest grammar size of Fn is n.

4.2 RePair Grammars are Smallest for Fibonacci Words
By considering the inverse of morphism ϕ, we have the next observation:

▶ Observation 10. By replacing all occurrences of ab in F
(a,b)
i with X, we obtain F

(X,a)
i−1 .

The next lemma shows how F , P , and Q can be obtained from one of the others:

▶ Lemma 11. ξb→ba(Pi) = F2i, ξb→ab(Pi) = Qi, and ξa→ab(Qi) = Pi+1 hold.

Proof. Let ψ1 = ξb→ba, ψ2 = ξb→ab, and ψ3 = ξa→ab. First, we consider compositions of these
morphisms. Since ϕ2(ψ1(a)) = ϕ2(a) = ϕ(ab) = aba, ϕ2(ψ1(b)) = ϕ2(ba) = ϕ(aab) = ababa,
ψ1(π(a)) = ψ1(ab) = aba, and ψ1(π(b)) = ψ1(abb) = ababa, we have ϕ2 ◦ ψ1 = ψ1 ◦ π. Also,
since ψ2(π(a)) = ψ2(ab) = aab, ψ2(π(b)) = ψ2(abb) = aabab, θ(ψ2(a)) = θ(a) = aab, and
θ(ψ2(b)) = θ(ab) = aabab, we have ψ2 ◦ π = θ ◦ψ2. Also, since ψ3(θ(a)) = ψ3(aab) = ababb,
ψ3(θ(b)) = ψ3(ab) = aab, π(ψ3(a)) = π(ab) = ababb, and π(ψ3(b)) = π(b) = abb, we have
ψ3 ◦ θ = π ◦ ψ3.
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a b a a b a b a a b a a b

A AB A A B A B A A B

X1

X2

X3

X4

X5

A B

X1 X1 X1 X1

X2 X2

X3

a b a a b a b a a b a a b

A AB A A B A B A A B

Y1

Y2

Y3

Y4

Y5

A B

Y1 Y1 Y1 Y1

Y2 Y2

Y3

Figure 5 Two RePair grammars of the 7-th Fibonacci word abaababaabaab over {a, b}.

When i = 1, the lemma clearly holds. We assume that the lemma holds for i − 1
with i ≥ 2. Then, ψ1(Pi) = ψ1(π(Pi−1)) = ϕ2(ψ1(Pi−1)) = ϕ2(F2i−2) = F2i, ψ2(Pi) =
ψ2(π(Pi−1)) = θ(ψ2(Pi−1)) = θ(Qi−1) = Qi, and ψ3(Qi) = ψ3(θ(Qi−1)) = π(ψ3(Qi−1)) =
π(Pi) = Pi+1. ◀

By considering the inverses of the three morphisms in Lemma 11, we have the next corollary:

▶ Corollary 12. Let X denote a fresh non-terminal symbol. By replacing all occurrences of
ba in F

(a,b)
2i with X, we obtain P

(a,X)
i . By replacing all occurrences of ab in Q

(a,b)
i with X,

we obtain P
(a,X)
i . By replacing all occurrences of ab in P

(a,b)
i+1 with X, we obtain Q

(X,b)
i .

We show examples of two RePair grammars of F (a,b)
7 in Figure 5.

We are ready to clarify the shape of all the RePair grammars of Fibonacci words.

▶ Lemma 13. The size of every RePair grammar of Fn is n, i.e., RePair(Fn) ⊆ Opt(Fn).
Also, |RePair(Fn)| = 2⌊n/2⌋ − 2.

Proof. By Lemma 2, Observation 10 and Corollary 12, each string, that appears while
(an implementation of) the RePair algorithm is running, is one of F , P , and Q over some
binary alphabet. The change of the strings can be represented by a directed graph (V,E)
such that V = {Fi | 4 ≤ i ≤ n} ∪ {Pi | 3 ≤ i ≤ ⌊n/2⌋} ∪ {Qi | 2 ≤ i ≤ ⌊n/2⌋ − 1} and
E = {(Fi, Fi−1) | 5 ≤ i ≤ n} ∪ {(F2k, Pk) | 3 ≤ k ≤ ⌊n/2⌋} ∪ {(Pi, Qi−1) | 3 ≤ i ≤ ⌊n/2⌋}.
See Figure 6 for an illustration of the graph. Each edge represents a replacement of all
occurrences of a most frequent bigram, and thus each path from source (Fn) to sinks (F4
and Q2) corresponds to a RePair grammar of Fn. The size of a RePair grammar is the
number of edges in its corresponding path plus four, since the size of a minimal5 grammar
of length-3-binary string, such as F4 and Q2, is four. Since the number of edges in any
source-to-sinks paths is n− 4, the size of each RePair grammar of the n-th Fibonacci word is
n. Also, the number of the RePair grammars is twice the number of distinct source-to-sinks
paths since there are exactly two possible minimal grammars of any length-3 string.

Next, let us count the number of source-to-sinks paths in the graph. There is only one
path from Fn to F4, and there are ⌊n/2⌋ − 2 edges from F2k on the upper part to Pk on the
lower part for all k with 3 ≤ k ≤ ⌊n/2⌋. Thus, the number of distinct source-to-sinks paths
is ⌊n/2⌋ − 1. Therefore, the number of distinct RePair grammars is 2⌊n/2⌋ − 2. ◀

5 This means that there are no redundant productions.
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Figure 6 An example of the graph for n = 11 described in Lemma 13.

5 Optimality of RePair for Fibonacci Words

In this section, we prove our main theorem:

▶ Theorem 14. Opt(Fn) = RePair(Fn).

The derivation tree of any grammar (i.e., SLP) G is a full binary tree. Thus, there
exists a bottom-up algorithm which constructs the grammar G by replacing bigrams with a
non-terminal symbol one by one. Thus, it suffices to consider all such algorithms in order to
show the optimality of RePair for Fn. We show that any bigram-replacement that does not
satisfy the condition of RePair always produces a larger grammar than the RePair grammars.
For Fn, Pn, and Qn, there are 16 strategies that do not satisfy the condition of RePair:

Bigram to replace aa ab ba bb
(all/not all of them) all not all all not all all not all all not all

F2k 2 3 RePair 1 RePair 4 - -
F2k+1 RePair 5 6 - -

Pn - - RePair 7 8 9 10 11
Qn 15 16 RePair 12 13 14 - -

The case numbers (1–16) are written inside their corresponding cells in the table. Each
hyphen shows the case where the bigram does not occur in the string, which therefore does
not need to be considered.

In order to show the non-optimality of each of the above strategies, we utilize the
sizes of LZ-factorizations which are lower bounds of the sizes of grammars. Let R be the
string obtained by replacing occurrences of a bigram in Fn with a non-terminal symbol
X by one of the above 16 strategies. We will show that z(R) ≥ n − 1 holds for each
case. Then, by Theorem 8, the size of the corresponding grammar of Fn becomes at least
(z(R) + |{X}| − 1) + σFn

≥ (n− 1) + 2 = n+ 1, i.e., that is not the smallest by Corollary 9.
To compare the LZ-factorizations between two strings transformed from the same string

Fn, we treat the boundaries as if they are on Fn.

5.1 Non-optimality of Strategies for Fn

We first define a semi-greedy factorization SG(w) of string w which will be used in the proof for
the first three cases. Let SG(w) be the factorization of w obtained by shifting each boundary
of LZ(w) except the ones whose left phase is of length 1 to the left by one. For example,
SG(F7) = a|b|a|ab|abaab|aab since LZ(F7) = a|b|a|aba|baaba|ab. Clearly, |SG(Fn)| =
|LZ(Fn)| = n− 1. By the definition of SG(Fn) and properties of LZ(Fn) (cf. [4, 14]), the
following claim holds:
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Figure 7 Illustration for contradiction of LZ(F (X,a)
n−1 ) = (p1, . . . , pn−2) and LZ(R(X,a,b)

1 ) =
(q1, . . . , qz′ ) for Case (1). Note that the scale of this figure is based on the length of Fn ∈ {a, b}⋆,
not the lengths of phrases.

▷ Claim 15. Let SG(Fn) = (p1, . . . , pn−1) for n ≥ 5. The following statements hold:
The first four phrases are (p1, p2, p3, p4) = (a, b, a, ab).
For each i with 5 ≤ i ≤ n− 2, pi is the right-rotation of FR

i and it is a greedy phrase.
The last phase is pn−1 = aba if n is even, and pn−1 = aab otherwise.
Each boundary of SG(Fn), except the first and third ones, divides an occurrence of ba.

Case (1): Replacing some but not all the occurrences of ab in Fn

Recall that F (X,a)
n−1 is obtained by replacing all the occurrences of ab in F

(a,b)
n with X. Let

R
(X,a,b)
1 be any string obtained by replacing some but not all the occurrences of ab in

F
(a,b)
n with X. Let LZ(F (X,a)

n−1 ) = (p1, . . . , pn−2) and LZ(R(X,a,b)
1 ) = (q1, . . . , qz′) where

z′ = |LZ (R(X,a,b)
1 )|. See Figure 7 for illustration. The first mismatch of boundaries between

two factorizations is the position of the first occurrence of b in R
(X,a,b)
1 . Since the b is a

fresh symbol, it is a length-1 phrase. Suppose that this length-1 phrase is the m-th phrase
(m ≥ 2) in LZ (R(X,a,b)

1 ). Then, ξX→ab(pm−1 · · · pn−2) = ξX→ab(qm−1 · · · qz′) holds. The next
corollary follows from Claim 15:

▶ Corollary 16. The factorization ξX→ab(LZ(F (X,a)
n−1 )) of F (a,b)

n is the same as SG(F (a,b)
n )

except the first phrase. In other words, for each i with 2 ≤ i ≤ n − 2, ξX→ab(pi) is the
(i+ 1)-th phrase of SG(F (a,b)

n ).

From the greediness of ξX→ab(pm−1) in SG(F (a,b)
n ), pm−1 is not shorter than qm−1. Thus,

ξX→ab(pm · · · pn−2) is not longer than ξX→ab(qm+1 · · · qz′). For the sake of contradiction, we
assume that z′ < n−1. Then, z′ − (m+1)+1 < (n−2)−m+1 holds, and hence, there must
exist a phrase qi of LZ (R(X,a,b)

1 ) and a phrase pj of LZ (F (a,b)
n−1 ) such that ξX→ab(qi) contains

ξX→ab(pj) and their ending positions in F
(a,b)
n are different. This contradicts the greediness

of the phrase ξX→ab(pj) of SG(F (a,b)
n ) on F

(a,b)
n . Therefore, |LZ (R(X,a,b)

1 )| = z′ ≥ n− 1.
Basically, most of the remaining cases can be proven by similar argumentations, however,

we will write down the details because there are a few differences.

Case (2): Replacing all the occurrences of aa in Fn

Let R(X,a,b)
2 be the string obtained by replacing all the occurrences of aa in F

(a,b)
n with X.

The next corollary holds from Claim 15 (see also Figure 8 for a concrete example):

▶ Corollary 17. The factorization ξX→aa(LZ (R(X,a,b)
2 )) of F (a,b)

n is the same as SG(F (a,b)
n )

except the first four phrases. In other words, for each i with 5 ≤ i ≤ n− 1, ξX→aa(pi) is the
i-th phrase of SG(F (a,b)

n ), where pi is the i-th phrase of LZ (R(X,a,b)
2 ).

Thus, |LZ (R(X,a,b)
2 )| = |SG(F (a,b)

n )| = n− 1.
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SG(F9) = a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b

a b  X  b a b  X  b  X  b a b  X  b a b  X  b  X  b a b  X  b  X  bLZ(R2) =

Figure 8 Two factorizations SG(F9) and LZ(R2).

LZ(F8) = a b a a b a b a a b a a b a b a a b a b a

a  X  a  X   X  a  X  a  X   X  a  X   X  LZ(P4) =

Figure 9 Two factorizations LZ(F8) and LZ(P4).

Case (3): Replacing some but not all the occurrences of aa in Fn

Let R(X,a,b)
3 be any string obtained by replacing some but not all the occurrences of aa

in F
(a,b)
n with X. Let LZ(R(X,a,b)

2 ) = (p1, . . . , pn−1) and LZ(R(X,a,b)
3 ) = (q1, . . . , qz′) where

z′ = |LZ(R(X,a,b)
3 )|. We omit the superscripts in the following. The first mismatch of

boundaries between LZ(R2) and LZ(R3) is the position of the first occurrence of aa in
R3. Since this is the first occurrence of aa, there has to be a boundary between the two
a’s. Suppose that the phrase that starts with the second a is the m-th phrase (m ≥ 4) in
LZ (R3). By Corollary 17, pm−1 is not shorter than qm−1. Thus, ξX→aa(qm · · · qz′) is longer
than ξX→aa(pm · · · pn−1). For the sake of contradiction, we assume that z′ < n− 1. Then,
z′ − m + 1 < (n − 1) − m + 1 holds, and hence, there exist phrases qi of LZ(R3) and pj

of LZ(R2) such that ξX→aa(qi) contains ξX→aa(pj) and their ending positions in Fn are
different. This contradicts the greediness of the phrase ξX→aa(pj) of SG(Fn). Therefore,
|LZ (R3)| = z′ ≥ n− 1.

Case (4): Replacing some but not all the occurrences of ba in F2k

Recall that P (a,X)
k is obtained by replacing all the occurrences of ba in F

(a,b)
2k with X. Let

R
(X,a,b)
4 be any string obtained by replacing some but not all the occurrences of ba in

F
(a,b)
2k with X. Let LZ(P (a,X)

k ) = (p1, . . . , p2k−2) and LZ(R(X,a,b)
4 ) = (q1, . . . , qz′) where

z′ = |LZ (R(X,a,b)
4 )|. Since the only boundary in LZ (F (a,b)

2k ) that divides an occurrence of ba
is the second one, the next holds for the LZ-factorization of P (a,X)

k (see also Figure 9 for a
concrete example):

▶ Corollary 18. The factorization ξX→ba(LZ(P (a,X)
k )) of F (a,b)

n is the same as LZ(F (a,b)
2k )

except the first three phrases. In other words, for each i with 4 ≤ i ≤ 2k − 2, ξX→ba(pi) is
the (i+ 1)-th phrase of LZ (F (a,b)

2k ).

We omit the superscripts in the following. The first mismatch of boundaries between two
factorizations is the position of the first occurrence of b in R4. Since the b is a fresh
symbol, it is a length-1 phrase. Let the length-1 phrase be the m-th phrase in LZ(R4).
Then, ξX→ba(qm · · · qz′) is longer than ξX→ba(pm · · · p2k−2) by Corollary 18. For the sake of
contradiction, we assume that z′ ≤ 2k − 2. Then z′ −m+ 1 ≤ (2k − 2) −m+ 1, and hence,
there exist phrases qi of LZ (R4) and pj of LZ (Pk) such that ξX→ba(qi) contains ξX→ba(pj)
and their ending positions in F2k are different. This contradicts that the greediness of phrase
ξX→ba(pj) of LZ (F2k), Therefore, |LZ (R4)| = z′ > 2k − 2.

CPM 2022



26:14 RePair Grammars Are the Smallest Grammars for Fibonacci Words

Case (5): Replacing all the occurrences of ba in F2k+1

Let R(X,a,b)
5 be the string obtained by replacing all the occurrences of ba in F

(a,b)
2k+1 with X.

Since F (a,b)
2k+1 ends with b, the last symbol of R(X,a,b)

5 is b and it is unique in R
(X,a,b)
5 . We

omit the superscripts in the following. Since F2k+1 = F2kF2k−2F2k−3, PkPk−1 is a prefix of
R5. By Lemma 6, the first 2k − 2 phrases of LZ (R5) is the same as that of LZ (Pk+1). Also,
the (2k − 1)-th phrase ends at before b and the 2k-th phrase is b. Thus, |LZ (R5)| = 2k.

Case (6): Replacing some but not all the occurrences of ba in F2k+1

Let R(X,a,b)
6 be any string obtained by replacing some but not all the occurrences of ba

in F
(a,b)
2k+1 with X. Let LZ(R(X,a,b)

5 ) = (p1, . . . , p2k) and LZ(R(X,a,b)
6 ) = (q1, . . . , qz′) where

z′ = |LZ(R(X,a,b)
6 )|. We omit the superscripts in the following. The first mismatch of

boundaries between two factorizations is the position of the first occurrence of b in R6.
Since the b is a fresh symbol, it is a length-1 phrase. Let the length-1 phrase be the m-th
phrase in LZ(R6). Then, ξX→ba(pm · · · p2k) is not longer than ξX→ba(qm · · · qz′) by the
greediness of ξX→ba(pm−1). For the sake of contradiction, we assume that z′ < 2k. Then
z′ −m+ 1 < 2k−m+ 1, and hence, there exist phrases qi of LZ (R6) and pj of LZ (R5) such
that ξX→ba(qi) contains ξX→ba(pj) and their ending positions in F2k+1 are different. This
contradicts the greediness of phrase ξX→ba(pj) of LZ (F2k+1). Therefore, |LZ (R6)| = z′ ≥ 2k.

The proofs for the remaining ten cases can be found in a full version of this paper [35].
We remark that the remaining ten cases can also be proven by similar argumentations.

6 Conclusions

In this paper, we analyzed the smallest grammars of Fibonacci words and completely
characterized them by the RePair grammar-compressor. Namely, the set of all smallest
grammars that produce only the n-th Fibonacci word Fn equals the set of all grammars
obtained by applying (different implementations of) the RePair algorithm to Fn. Further,
we showed that the size of the smallest grammars of Fn is n and that the number of such
grammars is 2⌊n/2⌋ − 2.

To show the smallest grammar size of Fn, we revisited the result on the lower bound of
the sizes of grammars shown by Rytter [38]. Here, we gave a slightly tighter lower bound
of the grammar size z(w) − 1 + σw for any string w. Independent of the above results on
Fibonacci words, this result on a lower bound is interesting since the result will help show
the exact values of the smallest grammar size of other strings.

It is left as our future work to investigate whether it is possible to characterize the smallest
grammars of other binary words, such as Thue-Morse words and Period-doubling words, by
similar methods to Fibonacci words.
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