
Arbitrary-Length Analogs to de Bruijn Sequences
Abhinav Nellore #

Oregon Health & Science University, Portland, OR, USA

Rachel Ward #

The University of Texas at Austin, Austin, TX, USA

Abstract
Let α̃ be a length-L cyclic sequence of characters from a size-K alphabet A such that for every
positive integer m ≤ L, the number of occurrences of any length-m string on A as a substring of α̃ is
⌊L/Km⌋ or ⌈L/Km⌉. When L = KN for any positive integer N , α̃ is a de Bruijn sequence of order
N , and when L ̸= KN , α̃ shares many properties with de Bruijn sequences. We describe an algorithm
that outputs some α̃ for any combination of K ≥ 2 and L ≥ 1 in O(L) time using O(L log K)
space. This algorithm extends Lempel’s recursive construction of a binary de Bruijn sequence. An
implementation written in Python is available at https://github.com/nelloreward/pkl.
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1 Introduction

1.1 Preliminaries
This paper is concerned with necklaces, otherwise known as circular strings or circular words.
A necklace is a cyclic sequence of characters; each character has a direct predecessor and
a direct successor, but no character begins or ends the sequence. So if 101 is said to be a
necklace, 011 and 110 refer to the same necklace. In the remainder of this paper, the term
string exclusively refers to a sequence of characters with a first character and a last character.
A substring of a necklace is a string of contiguous characters whose length does not exceed
the necklace’s length. So the set of length-2 substrings of the necklace 101 is {10, 01, 11}. A
rotation of a necklace is a substring whose length is precisely the necklace’s length. A prefix
of a string is any substring starting at the string’s first character. So 011 can be called a
rotation of the necklace 101, and 10 is a prefix of that rotation.

A de Bruijn sequence of order N on a size-K alphabet A is a length-KN necklace that
includes every possible length-N string on A as a substring [69, 17, 19, 18]. There are
(K!)KN−1

/KN distinct de Bruijn sequences of order N on A [19]. (See the appendix for a
brief summary of the curious history of de Bruijn sequences.) An example for A = {0, 1}
and N = 4 is the length-16 necklace

0000110101111001 .
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9:2 Arbitrary-Length Analogs to de Bruijn Sequences

A de Bruijn sequence of order N on A is optimally short in the sense that its length is KN ,
and there are KN possible length-N strings on A. But more is true: because any length-m
string on A is a prefix of each of KN−m strings on A when m ≤ N , the sequence has precisely
KN−m occurrences of that length-m string as a substring. So in the example above, there
are 8 occurrences of 0, 4 occurrences of 00, 2 occurrences of 000, and 1 occurrence of 0000.
Note by symmetry, KN−m is also the expected number of occurrences of any length-m string
on A as a substring of a necklace of length KN formed by drawing each of its characters
uniformly at random from A. More generally, by symmetry, L/Km is the expected number
of occurrences of any length-m string on A for m ≤ L as a substring of a necklace of arbitrary
length L formed by drawing each of its characters uniformly at random from A.

1.2 P
(K)
L -sequences

Consider a necklace defined as follows.

▶ Definition 1 (P (K)
L -sequence). A P

(K)
L -sequence is a length-L necklace on a size-K alphabet

A such that for every positive integer m ≤ L, the number of occurrences of any length-m
string on A as a substring of the necklace is ⌊L/Km⌋ or ⌈L/Km⌉.

This paper proves by construction that a P
(K)
L -sequence exists for any combination of K ≥ 2

and L ≥ 1, giving an algorithm for sequence generation that runs in O(L) time using
O(L log K) space.

When L = KN for any positive integer N , ⌊L/Km⌋ = ⌈L/Km⌉ = KN−m for m ≤ N ,
and a P

(K)
L -sequence collapses to a de Bruijn sequence of order N . When L ̸= KN , a

P
(K)
L -sequence is a natural interpolative generalization of a de Bruijn sequence: it is a

necklace for which the number of occurrences of any length-m string on A for m ≤ L as a
substring differs by less than one from its expected value for a length-L necklace formed by
drawing each of its characters uniformly at random from A. When this expected value is an
integer, ⌊L/Km⌋ = ⌈L/Km⌉, and the number of occurrences of any length-m string on A
as a substring of a given P

(K)
L -sequence is equal to the number of occurrences of any other

length-m string on A as a substring of that sequence. When this expected value is not an
integer, a P

(K)
L -sequence comes as close as it can to achieving the same end, as formalized in

the proposition below.

▶ Proposition 2. Consider a P
(K)
L -sequence α̃. Load across length-m strings on A for m ≤ L

is balanced in α̃ as follows.
1. When L/Km is an integer, each length-m string on A occurs precisely L/Km times as a

substring of α̃.
2. When L/Km is not an integer, each of L − Km⌊L/Km⌋ length-m strings on A occurs

precisely ⌈L/Km⌉ times as a substring of α̃, and each of Km⌈L/Km⌉−L length-m strings
on A occurs precisely ⌊L/Km⌋ times as a substring of α̃.

Proof. Item 1 is manifestly true from ⌊L/Km⌋ = ⌈L/Km⌉. To see why item 2 is true,
consider the system of Diophantine equations

a⌊L/Km⌋ + b⌈L/Km⌉ = L

a + b = Km
. (1)

Above, a represents the number of length-m strings on A for which there are ⌊L/Km⌋
occurrences each as a substring of α̃, and b represents the number of length-m strings on A
for which there are ⌈L/Km⌉ occurrences each as a substring of α̃. The first equation says the
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total number of occurrences of strings as substrings of α̃ is L, and the second says there is a
total of Km length-m strings on A. Note the equations hold only when L/Km is nonintegral
– that is, ⌊L/Km⌋ + 1 = ⌈L/Km⌉. In this case, it is easily verified the unique solution to the
system is a = Km⌈L/Km⌉ − L and b = L − Km⌊L/Km⌋. ◀

An example for A = {0, 1} and L = 12 is the sequence

000110111001 . (2)

To see why, note L/Km for L = 12 and K = 2 is 6 for m = 1, 3 for m = 2, between 1 and
2 for m = 3, and between 0 and 1 for any m ≥ 4. Further, the sequence (2) contains, as a
substring, precisely
1. 6 occurrences of each string in the set {0, 1};
2. 3 occurrences of each string in the set {00, 01, 10, 11};
3. 2 occurrences of each string in the set {001, 011, 100, 110}, which is of size L −

Km⌊L/Km⌋ = 12 − 23⌊12/23⌋ = 4, and 1 occurrence of each string in the set
{000, 010, 101, 111}, which is of size Km⌈L/Km⌉ − L = 23⌈12/23⌉ − 12 = 4;

4. 1 occurrence of each string in the set

M := {0001, 0011, 0110, 1101, 1011, 0111, 1110, 1100, 1001, 0010, 0100, 1000} ,

which is of size L−Km⌊L/Km⌋ = 12−24⌊12/24⌋ = 12, and 0 occurrences of each of the set
of length-4 strings on A not in M , which is of size Km⌈L/Km⌉ − L = 24⌈12/24⌉ − 12 = 4;
and

5. 0 or 1 occurrences of any length-m string for 4 < m ≤ L due to item 4 above.

In distinct lines of work from the 1960s and 1970s, both Korobov [51, 52] and Stoneham
[80, 77, 78, 79] explored the extent to which the repetends of base-K “decimal” forms of
reduced proper fractions, when treated as necklaces, differed from expectation for digit
content drawn uniformly at random from [K]. While the perspective differed from ours in
that it did not a demand a particular necklace length L from the outset, the efforts did
uncover that certain fractions in base-K decimal form yielded what we call P

(K)
L -sequences

for particular combinations of K and L. Notably, in [80], Stoneham found that for L + 1
an odd prime and K a primitive root modulo (L + 1)2, the repetend of the base-K decimal
form of 1/(L + 1) is a P

(K)
L -sequence.

1.3 P
(K)
L -sequences vs. other de Bruijn-like sequences

Two other arbitrary-length generalizations of de Bruijn sequences have appeared in the
literature:
1. What we call a Lempel-Radchenko sequence is a length-L necklace on a size-K alphabet A

such that every length-⌈logK L⌉ string on A has at most one occurrence as a substring of
the necklace. As recounted by Yoeli in [87], according to Radchenko and Filippov in [66],
the existence of binary Lempel-Radchenko sequences of any length was first proved by
Radchenko in his unpublished 1958 University of Leningrad PhD dissertation [65]. Other
binary-case existence proofs were furnished by (1) Yoeli himself in [85] and [86]; (2) Bryant,
Heath, and Killik in [8] based on the work [42] of Heath and Gribble; and (3) Golomb,
Welch, and Goldstein in [40]. Explicit constructions of arbitrary-length binary Lempel-
Radchenko sequences were given by Etzion in 1986 [25]. In brief, Etzion’s approach is to
join necklaces derived from the pure cycling register, potentially overshooting the target
length L, and subsequently remove substrings as necessary in the resulting sequence
according to specific rules to achieve the target length. This takes o(log L) time per bit
generated and uses O(log2 L) space.

CPM 2022



9:4 Arbitrary-Length Analogs to de Bruijn Sequences

The existence of Lempel-Radchenko sequences of any length for any alphabet size was
proved in 1971 by Lempel in [56]. In the special case where the alphabet size is a power of
a prime number, one of two approaches for sequence construction effective at any length
L may be used: either (1) pursue the algebraic construction described by Hemmati and
Costello in their 1978 paper [43], or (2) cut out a length-L stretch of contiguous sequence
generated by a linear feedback function, as described in Chapter 7, Section 5 of Golomb’s
text [39]. In his 2000 paper [54], Landsberg built on Golomb’s technique, explaining in
the appendix how to use it to construct a Lempel-Radchenko sequence on an alphabet
of arbitrary size. The idea is to decompose the desired alphabet size into a product of
powers of pairwise-distinct primes, construct length-L sequences on alphabets of sizes
equal to factors in this product with Golomb’s technique, and finally write a particular
linear superposition of the sequences. The time and space requirements of Hemmati and
Costello’s construction, when optimized, have gone unstudied in the literature. In general,
Golomb’s technique gives a length-L Lempel-Radchenko sequence in O(L log L) time
using O(log L) space, and Landsberg’s generalization multiplies these complexities by the
number of factors in the prime power decomposition of the alphabet size. Etzion suggested
in his 1986 paper [25] that, using results from [24], his algorithm generating a binary
Lempel-Radchenko sequence could be extended to generate a Lempel-Radchenko sequence
for any alphabet size, but he did not do so explicitly. It is reported on Joe Sawada’s
website [20] that in their recent unpublished manuscript [41], Gündoǧan, Sawada, and
Cameron extend Etzion’s construction to arbitrary alphabet sizes, streamlining it so it
generates each character in O(log L) time using O(log L) space. Sawada’s website further
includes an implementation in C.

2. A generalized de Bruijn sequence is a length-L Lempel-Radchenko sequence on a size-K
alphabet A such that every length-⌊logK L⌋ string on A is a substring of the sequence.
Generalized de Bruijn sequences were recently introduced by Gabric, Holub, and Shallit in
[32, 37]. These papers also prove generalized de Bruijn sequences exist for any combination
of L ≥ 1 and K ≥ 2. No work to date has given explicit constructions of arbitrary-length
generalized de Bruijn sequences.

We prove the following.

▶ Theorem 3. A P
(K)
L -sequence is a generalized de Bruijn sequence and therefore also a

Lempel-Radchenko sequence.

Proof. Let α̃ be a P
(K)
L -sequence. The proposition is true if and only if

1. every length-⌈logK L⌉ substring of α̃ occurs precisely once in the sequence, and
2. every length-⌊logK L⌋ string on A is a substring of α̃.
Item 1 is true because from Definition 1, α̃ has

⌊L/K⌈logK L⌉⌋ =
{

1 when logK L is an integer
0 otherwise

or ⌈L/K⌈logK L⌉⌉ = 1 occurrences of any length-⌈logK L⌉ string on A as a substring. Item 2
is true because from Definition 1, α̃ has

⌈L/K⌊logK L⌋⌉ =
{

1 when logK L is an integer
k otherwise for k ∈ {2, . . . , K}

or ⌊L/K⌊logK L⌋⌋ ∈ {1, . . . , K − 1} occurrences of any length-⌊logK L⌋ string on A as a
substring. ◀
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P
(K)
L -sequences are more tightly constrained than generalized de Bruijn sequences and Lempel-

Radchenko sequences. A length-L Lempel-Radchenko sequence imposes no requirements
regarding presence or absence of particular strings as substrings; it simply requires that the
number of distinct length-⌈logK L⌉ substrings is L. A length-L generalized de Bruijn sequence
on A goes a step further, requiring not only this distinctness, but also the presence of every
string on A smaller than ⌈logK L⌉ as a substring. A P

(K)
L -sequence goes yet another step

further, requiring not only this presence, but also specific incidences of strings as substrings
that, as best as they can, try not to bias the sequence toward inclusion of any one length-m
string over another. This requirement makes P

(K)
L -sequences, in general, more de Bruijn-like

than Lempel-Radchenko sequences and generalized de Bruijn sequences.
An example (borrowed from [37]) of a Lempel-Radchenko sequence that is not a generalized

de Bruijn sequence and therefore also not a P
(K)
L -sequence for A = {0, 1} and L = 11 is

10011110000 . (3)

In this case, ⌈logK L⌉ = ⌈log2 11⌉ = 4, and indeed, there is precisely one occurrence in (3) of
every length-4 substring of (3). But ⌊logK L⌋ = ⌊log2 11⌋ = 3, and in (3) just 7 of 8 length-3
strings on A occur as substrings; the sequence is missing 101. An example of a generalized
de Bruijn sequence that is not a P

(K)
L -sequence for A = {0, 1, 2} and L = 12 is

000111101011 . (4)

Again, ⌈logK L⌉ = ⌈log2 12⌉ = 4 and ⌊logK L⌋ = ⌊log2 12⌋ = 3. Now, not only is there
precisely one occurrence in (4) of every length-4 substring of (4), but also all 8 length-3
strings on A occur as substrings. However, (4) should have ⌈L/K⌉ = ⌊L/K⌋ = 12/2 = 6
occurrences of each of 1 and 0 as substrings to be a P

(K)
L -sequence, and it has 5 occurrences of

0 and 7 occurrences of 1. This imbalance of 0s and 1s leads to further violations of constraints
on P

(K)
L -sequences at other substring lengths. Another example of a generalized de Bruijn

sequence that is not a P
(K)
L -sequence, this time on the nonbinary alphabet A = {0, 1, 2} and

for L = 20, is

02220010121120111002 . (5)

(This sequence was constructed by Landsberg in [54] using Golomb’s technique from [39] as an
example of a Lempel-Radchenko sequence.) Note ⌈logK L⌉ = ⌈log3 20⌉ = 3 and ⌊logK L⌋ =
⌊log3 20⌋ = 2, every length-3 substring occurs exactly once, and every length-2 string on A is
present as a substring. But (5) should have, for m = 2, precisely ⌈L/Km⌉ = 20/32 = 3 or
⌊L/Km⌋ = 20/32 = 2 occurrences of every length-2 string on A as a substring, and there is
only 1 occurrence of 21 as a substring of (5).

1.4 de Bruijn sequence constructions vs. de Bruijn-like sequence
constructions

Unlike the current situation with de Bruijn-like sequences of arbitrary length, there is a
veritable cornucopia of elegant constructions of de Bruijn sequences. Excellent summaries of
many of these are provided on Sawada’s website [20]. They include
1. greedy constructions. Prominent examples are the prefer-largest/prefer-smallest [58],

prefer-same [23, 29, 3], and prefer-opposite [4] algorithms;
2. shift rules. A shift rule maps a length-N substring of a de Bruijn sequence of order N to

the next length-N substring of the sequence. Shift rules are often simple, economical,
and efficient; examples generating each character of a de Bruijn sequence in amortized
constant time using O(N) space are [73, 45, 26, 28] in the binary case and [74] in the
K-ary case. See [5, 47, 35, 36, 84, 13, 88] for other specific rules;

CPM 2022



9:6 Arbitrary-Length Analogs to de Bruijn Sequences

3. concatenation rules. The best-known example, obtained by Fredricksen and Maiorana
in 1978 [31], joins all Lyndon words on an ordered alphabet of size K whose lengths
divide the desired order N in lexicographic order to form the lexicographically smallest
(i.e., “granddaddy”) de Bruijn sequence of that order on that alphabet. (Also see [27]
for Ford’s independent work generating this sequence.) The sequence is obtained in
amortized constant time per character using O(N) space with the efficient Lyndon word
generation approach of Ruskey, Savage, and Wang [68], which builds on Fredricksen,
Kessler, and Maiorana’s papers [31, 30]. Dragon, Hernandez, Sawada, Williams, and
Wong recently discovered that joining the Lyndon words in colexicographic order instead
also outputs a particular de Bruijn sequence, the “grandmama” sequence [22, 21]. A
generic concatenation approach using colexicographic order is developed in [33, 34];

4. recursive constructions. Broadly, these approaches are based on transforming a de Bruijn
sequence into a de Bruijn sequence of higher order, where the transformation can be
implemented recursively. They fall into two principal classes:
a. the constructions of Mitchell, Etzion, and Paterson in [59], which interleave punctured

and padded variants of a binary de Bruijn sequence of order N and modify the result
slightly to obtain a binary de Bruijn sequence of order 2N . If starting with a known
binary de Bruijn sequence, this process takes amortized O(1) time per output bit
while using O(1) additional space. The constructions are notable for being efficiently
decodable – that is, the position of any given string on A occurring exactly once in
the sequence as a substring can be retrieved in time polynomial in N ;

b. constructions based on Lempel’s D-morphism (otherwise known as Lempel’s homo-
morphism) [55], whose inverse lifts any length-L necklace β̃ on a size-K alphabet A to
up to K necklaces on A. When β̃ is a de Bruijn sequence of order N , the necklaces
to which it is lifted may be joined to form a de Bruijn sequence of order N + 1.
Efficient implementations constructing binary de Bruijn sequences of arbitrary order
by repeated application of Lempel’s D-morphism are given by Annexstein [6] as well
as Chang, Park, Kim, and Song [12]; in general, a length-L binary de Bruijn sequence
is generated in O(L) time using O(L) space. Lempel confined attention to the binary
case in [55]. An extension to alphabets of arbitrary size was first written by Ronse in
[67] and also developed by Tuliani in [81]; it was further generalized by Alhakim and
Akinwande in [1]. See [38, 2] for other generalizations as well as [81] for a decodable de
Bruijn sequence construction exploiting both interleaving and Lempel’s D-morphism.

It is possible construction techniques for de Bruijn sequences have been more easily
uncovered than for their arbitrary-length cousins as traditionally defined precisely because de
Bruijn sequences are more tightly constrained. But P

(K)
L -sequences are similarly constrained.

1.5 Our contribution

This paper defines P
(K)
L -sequences. Further, it extends recursive de Bruijn sequence con-

structions based on Lempel’s D-morphism [55, 67, 81, 1], giving an algorithm that outputs a
P

(K)
L -sequence on the alphabet {0, . . . , K − 1} for any combination of L ≥ 1 and K ≥ 2 in

O(L) time using O(L log K) space. The essence of our approach is to lengthen each of di

longest runs of the same nonzero character by a single character at the ith step before lifting,
where the {di} are the digits of the desired length L of the P

(K)
L -sequence when expressed

in base K – that is, for L =
∑⌊logK L⌋

i=0 diK
⌊logK L⌋−i. Finally, this paper is accompanied by

Python code at https://github.com/nelloreward/pkl implementing our algorithm.

https://github.com/nelloreward/pkl
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We were motivated to study arbitrary-length generalizations of de Bruijn sequences
by [62], which introduces nength, an analog to the Burrows-Wheeler transform [10] for offline
string matching in labeled digraphs. In a step preceding the transform, a digraph with edges
labeled on one alphabet is augmented with a directed cycle that (1) includes every vertex of
the graph and (2) matches a de Bruijn-like sequence on a different alphabet. This vests each
vertex with a unique tag along the cycle. But if the de Bruijn-like sequence is an arbitrary
Lempel-Radchenko or generalized de Bruijn sequence, some vertices may be significantly
more identifiable than others when locating matches to query strings in the graph using its
nength, biasing performance. So in general, it is reasonable to arrange that the directed
cycle matches a P

(K)
L -sequence, which distributes identifiability across vertices as evenly as

possible.
The remainder of this paper is organized as follows. The next section develops our

algorithm for generating P
(K)
L -sequences, proving space and performance guarantees. The

third and final section lists some open questions.

2 Generating P
(K)
L -sequences

2.1 Additional notation and conventions
In the development that follows, necklaces are represented by lowercase Greek letters adorned
with tildes such as β̃ and γ̃, and strings are represented by unadorned lowercase Greek letters
such as ω and ξ. A necklace or string’s length or a set’s size is denoted using | · |. So |β̃| is
the length of the necklace β̃, and |V | is the size of the set V . Necklaces and strings may be in
indexed families, where for example in β̃i, i specifies the family member. Further, a necklace
or string may be written as a function of another necklace or string. So ω(β̃) denotes that
the string ω is a function of the necklace β̃. When any function’s argument is clear from
context, that argument may be dropped with prior warning. So ω(β̃) may be written as,
simply, ω.

The operation of joining two necklaces β̃ and γ̃ at a string ω to form a new necklace λ̃ refers
to cycle joining, described in Chapter 6 of Golomb’s text [39]. λ̃ is obtained by concatenating
rotations of β̃ and γ̃ that share the prefix ω. So if β̃ = 00101101 and γ̃ = 0110001, joining
β̃ and γ̃ at 110 gives λ̃ = 110100101100010. There may be more than one occurrence of ω

as a substring of at least one of β̃ and γ̃, so there may be more than one way to join them
at ω. Any way is permitted in such a case. Note joining β̃ and γ̃ at ω preserves length-m
substring occurrence frequencies for m ≤ |ω| + 1.

For any positive integer j,

[j] := {0, 1, . . . , j − 1} .

While results are obtained for sequences on the alphabet [K] here, they may be translated to
any size-K alphabet A by appropriate substitution of characters. When a string or necklace
is initially declared to be on the alphabet [K], but an expression y for one of its characters
is written such that y /∈ [K], that character should be interpreted as y − K⌊y/K⌋. This
is simply the remainder of floored division of y by K. Put another way, expressions for
characters of strings on [K] respect arithmetic modulo K. For example, if the first character
of a string on the alphabet [2] = {0, 1} is specified as an expression that equals 9, that
character is 1.

Individual characters comprising strings are often expressed in terms of variables, so
a necklace or string may be written as a comma-separated list of characters enclosed by
parentheses, where in the necklace case, ⟳ is included as a subscript. For example, for i = 3,

CPM 2022



9:8 Arbitrary-Length Analogs to de Bruijn Sequences

if (i, i + 1, 0, 1) is said to be on the alphabet [4], it is the string 3001, while if (i, i + 1, 0, 1)⟳
is said to be on [4], it is the necklace 3001. Bracket notation is used to refer to a specific
character of a string or necklace. So ω[i] refers to the character at index i of ω. Further,
characters of a string are indexed in order, so ω[i+1] appears directly after ω[i] in ω. ω[0] and
ω[|ω| − 1] refer, respectively, to the first and last characters of the string ω. For a necklace,
the choice of the character at index 0 is arbitrary, but in a parenthetical representation of
that necklace, the character at index 0 always comes first. So an arbitrary length-L necklace
β̃ always equals

β̃ = (β̃[0], β̃[1], . . . , β̃[L − 1])⟳

but not necessarily

β̃ = (β̃[1], β̃[2], . . . , β̃[L − 1], β̃[0])⟳ .

A valid character index of a string ω is confined to [|ω|], but a valid character index of a
length-L necklace β̃ is any integer j, with the stipulation

β̃[j] = β̃[j + L] .

A string or necklace on [K] can be summed with any integer by adding that integer to each
of its characters modulo K. So for an integer j and a length-L necklace β̃,

β̃ + j = j + (β̃[0], β̃[1], . . . , β̃[L − 1])⟳ = (β̃[0] + j, β̃[1] + j, . . . , β̃[L − 1] + j)⟳ .

Finally, im is used as a shorthand for the length-m string (i, i, . . . , i), i++
m is used as a

shorthand for the length-m string (i, i + 1, . . . , i + m − 1), and ĩ++
m is used as a shorthand

for the length-m necklace (i, i + 1, . . . , i + m − 1)⟳. In a slight abuse of notation, a variable
representing a string such as ω, im, or i++

m can take the place of a character in a parenthetical
representation of a string or necklace. So if (2++

6 , 3) is said to be a substring of a string on
the alphabet [4], that substring is 2301233.

2.2 Lempel’s lift
Lempel’s lift, defined below, realizes the simplest K-ary version of Lempel’s D-morphism
[55, 67, 81, 1] in inverse form.

▶ Definition 4 (Lempel’s lift). Consider a length-L necklace β̃ on the alphabet [K]. Lempel’s
lift of β̃, denoted by {λ̃i(β̃)}, is the indexed family of necklaces on [K] specified by

λ̃i(β̃) = i +

β̃[0], β̃[0] + β̃[1], . . . ,

d(β̃)·L−1∑
j=0

β̃[j]


⟳

i ∈ [p(β̃)] . (6)

Above, d(β̃) is the smallest positive integer such that
(∑L−1

j=0 β̃[j]
)

· d(β̃) is divisible by K,

and p(β̃) = K/d(β̃).

The remainder of this subsection (i.e., Section 2.2) abbreviates functions of β̃ given above by
dropping it as an argument. For example, p is written rather than p(β̃).

Observe that λ̃i is a discrete integral of β̃, with i ∈ [p] the constant of integration. The
number d specified in Definition 4 is the smallest positive integer q ∈ {1, 2, . . . , K} such
that integrating a cycle of β̃ a total of q times gives a cycle of λ̃i. Conversely, β̃ is uniquely
determined by a discrete derivative of λ̃i, which eliminates the constant of integration:

β̃d = (λi[1] − λi[0], λi[2] − λi[1], . . . , λi[d · L − 1] − λi[d · L − 2], λi[0] − λi[d · L − 1])⟳ i ∈ [p] .

Above, the power d on the LHS denotes β̃ is concatenated with itself d times.
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In the case K = 2, Lempel’s lift of β̃ is composed of one necklace if β̃ has an odd number of
1s and two necklaces otherwise. For example, Lempel’s lift of 01011 comprises only 0110110010,
while Lempel’s lift of 01010 comprises 01100 and 10011; further, the derivative of 0110110010 is
0101101011 = (01011)2, while the derivative of each of 01100 and 10011 is 01011. As a nonbinary
example for K = 5, observe that Lempel’s lift of the length-8 necklace 02134012 comprises the single
length-40 necklace

0231001330143341134211244120440224032230 ,

whose derivative is (02134012)5.
Note the sum of the lengths of the necklaces comprising Lempel’s lift of β̃ is K · L. Other

properties of the lift pertinent to constructing P
(K)
L -sequences are as follows.

▶ Lemma 5. Suppose β̃ is a length-L necklace on the alphabet [K], and m is an integer satisfying
0 ≤ m < L. Suppose ω is a length-m string on [K], and ξℓ is the length-(m + 1) string on [K] given
by

ξℓ = ℓ +

(
0, ω[0], ω[0] + ω[1], . . . ,

m−1∑
j=0

ω[j]

)
ℓ ∈ [K] . (7)

Then ω occurs t times as a substring of β̃ if and only if ξℓ occurs t times as a substring of the
necklaces comprising Lempel’s lift of β̃. When m = 0, ω is the length-0 string occurring as a substring
at every character of β̃.

Proof. Start constructing a given λ̃i by integrating β̃ from its character index 0 up to character
index w < L. If ω occurs as a substring of β̃ at index w, it follows from (6) and (7) that ξy occurs as
a substring of λ̃i at its character index w − 1 for some y ∈ [K], and vice versa. For d > 1, continue
integrating β̃ past its character index w for another L characters to encounter ω again. This time,
how p is defined in terms of the sum of β̃’s characters implies ω’s presence as a substring of β̃ at
index w is a necessary and sufficient condition for ξy+p’s presence as a substring of λ̃i at its character
index w − 1 + L. More generally, ω occurs as a substring of β̃ at its character index w if and only if
ξy+qp occurs as a substring of λ̃i at its character index w − 1 + qL for q ∈ [d], and all occurrences
of ξℓ in Lempel’s lift of β̃ for which the difference between ℓ and y is divisible by p are in λ̃i. An
occurrence of ξℓ at any other value of ℓ is easily seen from (6) to be at a corresponding character
index w − 1 + qL of λ̃j for particular j ∈ [p] \ {i} and q ∈ [d]. So there is an invertible map from
the set of distinct occurrences of ω as a substring of β̃ into the set of distinct occurrences of ξℓ as a
substring of Lempel’s lift of β̃ for ℓ ∈ [K], giving the lemma. ◀

▶ Lemma 6. The number of occurrences of a given length-m string on the alphabet [K] for 0 < m ≤ L

as a substring in the family of necklaces comprising Lempel’s lift of a P
(K)
L -sequence on [K] is

⌊L/Km−1⌋ or ⌈L/Km−1⌉.

Proof. From (7), choosing ξℓ uniquely determines ω. So by Lemma 5, any length-m string on
[K] occurs ⌊L/Km−1⌋ or ⌈L/Km−1⌉ times as a substring in the family of necklaces comprising
Lempel’s lift of some length-L necklace β̃ if and only if a certain length-(m − 1) string on [K] occurs
⌊L/Km−1⌋ or ⌈L/Km−1⌉ times as a substring of β̃ for 0 < m ≤ L. This holds by definition when
β̃ is a P

(K)
L sequence, for which every possible length-(m − 1) string on [K] occurs ⌊L/Km−1⌋ or

⌈L/Km−1⌉ times for 0 < m ≤ L, giving the lemma. ◀

2.3 Algorithm and analysis
In this subsection (Section 2.3), α̃ is reserved to denote a P

(K)
L -sequence. Moreover, when a function

from Definition 4 is invoked, and it has α̃ as an argument, that function is abbreviated by dropping
the α̃. For example, p now refers to p(α̃).
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Lemma 6 suggests a way to obtain a P
(K)
K·L-sequence from a P

(K)
L -sequence α̃: join the necklaces

in Lempel’s lift of α̃ strategically to ensure the numbers of occurrences of specific strings as substrings
do not violate the parameters of Definition 1. Below, the procedure LiftAndJoin includes an
explicit prescription, and Theorem 8 proves it works. They are preceded by a requisite lemma
extending the discussion of cycle joining from Section 2.1.

Algorithm 1 Procedure LiftAndJoin referenced in the text.

// Returns the P
(K)
K·L

-sequence formed by joining the necklaces

// comprising Lempel’s lift of an input P
(K)
L

-sequence α̃ on the
// alphabet [K], with K a clarifying input. Here, N := ⌈logK L⌉.

1: procedure LiftAndJoin(α̃, K)
2: Construct Lempel’s lift {λ̃i : i ∈ [p]} of α̃.
3: if p = 1 then // Case 1
4: return λ̃0
5: end if
6: if 1N is a substring of α̃ then // Case 2
7: Find k ∈ [K] such that k++

N
is a substring of each of λ̃0 and λ̃1.

8: Initialize σ̃ to λ̃0.
9: for j := 1 to p − 1 do

10: Set σ̃ to the result of joining σ̃ and λ̃j at s++
N

for s = k + j − 1.
11: end for
12: return σ̃
13: end if
14: Construct the join graph G = (V, E) defined in Theorem 8. // Case 3
15: Initialize σ̃ to the necklace represented by an arbitrary vertex v ∈ V .
16: Starting at v, perform a depth-first traversal of the connected component

GC = (VC , EC) of G for which v ∈ VC , where at each vertex in VC

reached by walking across a given edge in EC , the necklace represented
by that vertex is joined with σ̃ at the string labeling that edge, and the
result is assigned to σ̃.

17: if GC = G then // Case 3a
18: return σ̃
19: end if
20: Find k ∈ [K] such that k++

N−1 is a substring of each of σ̃ and σ̃ + 1. // Case 3b

21: Initialize ζ̃ to σ̃.
22: for j := 1 to p/|VC | − 1 do
23: Set ζ̃ to the result of joining ζ̃ and σ̃ + j at s++

N−1 for s = k + j − 1.
24: end for
25: return ζ̃
26: end procedure

▶ Lemma 7. Consider two necklaces β̃ and γ̃ on the alphabet [K], and suppose the length-(m − 1)
string ω is a substring of each of them. For every k ∈ [K], suppose further that no length-m string
(ω, k) is a substring of each of β̃ and γ̃, and no length-m string (k, ω) is a substring of each of β̃

and γ̃. Finally, suppose every length-(m + 1) string on [K] occurs either zero times or one time as a
substring of the family {β̃, γ̃}. Then
1. every length-(m + 1) string on [K] occurs either zero times or one time as a substring of the

necklace σ̃ formed by joining β̃ and γ̃ at ω, and

2. every length-w string for w ≤ m occurs the same number of times as a substring of {β̃, γ̃} as it
does as a substring of σ̃.

Proof. For u, v, x, y ∈ [K], suppose the length-(m − 1) string ω occurs (1) in β̃ as a substring
of the length-(m + 1) string (u, ω, v), and (2) in γ̃ as a substring of the length-(m + 1) string
(x, ω, y). Join β̃ and γ̃ at these occurrences of ω to obtain the necklace σ̃. The operation replaces
(u, ω, v) and (w, ω, x) with (u, ω, y) and (x, ω, v) while affecting the occurrence frequencies of no
other length-(m + 1) strings as substrings and no length-w strings as substrings for w ≤ m. But
(u, ω, y) cannot occur elsewhere as a substring of σ̃ because if it does, then either (u, ω) or (ω, y)
is a substring of each of β̃ and γ̃, a contradiction. By a parallel argument, (x, ω, v) cannot occur
elsewhere in σ̃. The lemma follows. ◀
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▶ Theorem 8. Given a P
(K)
L -sequence α̃ on the alphabet [K], suppose N = ⌈logK L⌉. Consider

Lempel’s lift {λ̃i : i ∈ [p]} of α̃, and define the join graph G = (V, E) as an undirected graph with p

vertices such that
1. the vertex vi ∈ V represents λ̃i for i ∈ [p], and

2. an edge in E labeled by a length-N string of the form (j++
N−1, k) or (k, j++

N−1) for j, k ∈ [K] extends
between vertex vℓ and vertex vr if and only if that string occurs as a substring of each of λ̃ℓ and
λ̃r for ℓ, r ∈ [p].

Then the length-KL necklace output by LiftAndJoin with α̃ and K as inputs is a P
(K)
K·L-sequence.

Proof. Follow the logic of the LiftAndJoin pseudocode to prove it returns a P
(K)
K·L-sequence. To

start, line 2 constructs Lempel’s lift of α̃, which is composed of p necklaces that together have
precisely the same number of occurrences of any length-m string on [K] as a substring that a
P

(K)
K·L-sequence does, according to Lemma 8. To join the necklaces, various cases are handled in

order of increasing difficulty:
Case 1: (Lines 3-5) This is the most straightforward case, where Lempel’s lift has precisely one

necklace. By Lemma 6 and by definition of a P
(K)
L -sequence, the sole necklace is a P

(K)
K·L-sequence,

and it is returned (Line 4).

Case 2: (Line 6-13) In this case, p > 1 and 1N is a substring of α̃ so that by Lemma 5, k++
N+1 is a

substring of λ̃1 for at least one k ∈ [K]. Consequently, s++
N is a substring of each of λ̃j and λ̃j−1

for j ∈ [p] \ {0} and s = k + j − 1. Progressively joining a necklace under construction with the
jth member λ̃j of Lempel’s lift of α̃ at s++

N for s = k + j − 1 (Lines 8-11) and j running from 1
to p − 1 preserves occurrence frequencies of all strings on [K] whose lengths do not exceed N + 1.
Since by Lemma 6 a length-(N + 1) string occurs either once or never as a substring of Lempel’s
lift of α̃, a string whose length exceeds N + 1 occurs either once or never as a substring of the
joined necklace. So that joined necklace is a P

(K)
K·L-sequence, and it is returned (Line 12). When

α̃ is a de Bruijn sequence (i.e., for L = KN ), Case 2 is the K-ary extension [67, 81, 1] of the
original join prescription of the paper [55] by Lempel introducing his D-morphism.

Case 3: (Lines 14-25) Because a length-N string on [K] need not occur as a substring of α̃, 1N may
not be a substring of α̃. This bars the availability of Lempel’s join of Case 2. LiftAndJoin
then looks for the closest alternative. By definition of a P

(K)
L -sequence, 1N−1 is necessarily a

substring of α̃, and so by Lemma 5, j++
N−1 is a substring of each necklace in Lempel’s lift of α̃ for

some j ∈ [K]. So Line 14 assembles the graph G encoding all possible joins at strings of the
form (j++

N−1, k) or (k, j++
N−1) for j, k ∈ [K]. Consider any connected component GC = (VC , EC) of

G. A depth-first traversal of GC prescribes a sequence of joins, which are performed to obtain a
single necklace σ̃ (Line 16). Two cases are then considered.
Case 3a: (Lines 17-19) In this case, there is just one connected component of G. Since each

join was performed at a length-N string, by an argument parallel to that of Case 2, σ̃ is a
P

(K)
K·L-sequence, and it is returned (Line 18).

Case 3b: (Lines 20-25) If there are multiple connected components of G, by symmetry, GC

is related to any other connected component by translation modulo K. More precisely,
applying vk → vk+j to each vertex vk ∈ VC , ekℓ → ek+j,ℓ+j to each edge ekℓ ∈ EC extending
between vk ∈ VC and vℓ ∈ VC , and ϵkℓ → ϵk+j,ℓ+j + j to each edge label ϵkℓ corresponding to
ekℓ ∈ EC gives a different connected component, where j ∈ [p/|VC |] and addition operations
are performed modulo K. It follows that for every j ∈ [p/|VC |], σ̃ + j gives the result of a
sequence of joins prescribed by a different connected component of G. Because each join
was performed at a length-N string, the necklaces {σ̃ + j : j ∈ [p/|VC |]} together have the
same occurrence frequency of any length-m string on [K] as does Lempel’s lift of α̃ for
m ≤ N + 1. That occurrence frequency is 0 or 1 for m = N + 1, as it therefore also is for
m > N + 1. Because possible joins at strings of the form (s++

N−1, k) or (k, s++
N−1) for s, k ∈ [K]

were exhausted by prior joins, Lemma 7 guarantees that joins of the {σ̃ + j : j ∈ [p/|VC |]} at
strings of the form s++

N−1 for s ∈ [K] preserve the occurrence frequency of any length-m string
on [K] for m ≤ N while ensuring that when m > N , the occurrence frequency of a length-m
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string remains either 0 or 1. So when all necklaces in {σ̃ + j : j ∈ [p/|VC |]} are joined as on
Lines 21-24, the result is a P

(K)
K·L-sequence, and it is returned (Line 25). Note the joins are

performed in exact analogy to those of Case 2.
The output of LiftAndJoin is thus a P

(K)
K·L-sequence. ◀

Repeated application of LiftAndJoin on a P
(K)
L -sequence α̃ outputs a P

(K)
L -sequence whose

length multiplies the length of α̃ by a power of K. But this operation alone does not afford the
expressive capacity to build up a P

(K)
L -sequence of arbitrary length starting from an α̃ of length

less than K, in the same way that an arbitrary positive integer cannot be written as a power of K

times a positive integer less than K. A mechanism for extending the length of α̃ by up to K − 1
between applications of LiftAndJoin is required, where the length of the extension is determined
by an appropriate digit from the base-K representation of L. The mechanism used in the iterative
procedure GeneratePKL below, which outputs a P

(K)
L -sequence for any combination of K ≥ 2 and

L ≥ 1, extends a given longest run of a nonzero character by a single character. Theorem 9 proves
this approach works.

Algorithm 2 Procedure GeneratePKL referenced in the text.

// Returns a P
(K)
L

-sequence on the alphabet [K] given K ≥ 2 and
// L ≥ 1 as inputs. Here, N := ⌈logK L⌉.

1: procedure GeneratePKL(K, L)
2: Compute the digits {di} of L in its base-K representation as specified by

L =
∑N−1

i=0
diKN−i−1.

3: Initialize the necklace α̃ to 1̃++
d0

.
4: for j := 1 to N − 1 do
5: Set α̃ to LiftAndJoin(α̃, K).
6: if dj > 0 then
7: Set α̃ to the extension of α̃ by dj characters obtained by replacing a substring

kj−1 with kj for every k ∈ {1, . . . , dj}.
8: end if
9: end for

10: return α̃
11: end procedure

▶ Theorem 9. GeneratePKL(K, L) outputs a P
(K)
L -sequence for any combination of K ≥ 2 and

L ≥ 1.

Proof. Use the notation α̃0 to denote the value of α̃ after Line 3 of GeneratePKL is executed
and the notation α̃j to denote the value of α̃ after step j of the for loop of GeneratePKL. Prove
the theorem by induction, showing that if α̃j−1 is a P

(K)
Lj−1

-sequence of length Lj−1, and 0m occurs
⌊Lj−1/Km⌋ times as a substring of α̃j−1 for all m ≤ Lj−1, then α̃j is a P

(K)
Lj

-sequence of length
Lj = K · Lj−1 + dj , and 0n occurs ⌊Lj/Kn⌋ times as a substring of α̃j for all n ≤ Lj . The base
case for the induction holds: α̃0, as initialized on Line 3, is the P

(K)
L0

-sequence 1̃++
d0

of length
L0 = d0, in which 0m occurs as a substring ⌊d0/Km⌋ = 0 times for 1 ≤ m ≤ d0 and ⌊d0/Km⌋ = d0

times for m = 0. Now suppose that α̃j−1 is a P
(K)
Lj−1

-sequence of length Lj−1, and 0m occurs
⌊Lj−1/Km⌋ times as a substring of α̃j−1 for all m ≤ Lj−1. Then for every k ∈ [K], km+1 occurs
⌊Lj−1/Km⌋ = ⌊(K · Lj−1)/Km+1⌋ times as a substring of LiftAndJoin(α̃j−1, K), obtained on
Line 5. This follows from
1. Lemma 5, which says there are t occurrences of 0m as a substring of a necklace if and only if

there are t occurrences of km+1 as a substring in Lempel’s lift of that necklace, and

2. how all joins of necklaces in Lempel’s lift prescribed by LiftAndJoin, including those permitted
by Lemma 7, do not affect occurrences of substrings of the form km+1.

The extension performed on Line 7 increases the number of occurrences of km, for k = 1, 2, . . . , dj ,

from ⌊(K · Lj−1)/Km+1⌋ to ⌈(K · Lj−1)/Km+1⌉ without affecting the numbers of occurrences of any
other length-m strings as substrings for m ≤ j. The longest string of 0s is never extended, and the
number of occurrences of 0n remains ⌊(K · Lj−1)/Kn+1⌋ for all n ≤ Lj . So the resulting necklace
α̃j is a P

(K)
Lj

-sequence of length Lj = K · Lj−1 + dj , and 0n occurs ⌊Lj/Kn⌋ times as a substring of
α̃j for all n ≤ Lj .
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The for loop thus encodes the recursion

Lj = K · Lj−1 + dj j ∈ [N − 1] \ {0} (8)

with initial condition L0 = d0. The formula L = LN−1 =
∑N−1

i=0 diK
N−i−1 follows, concluding the

proof. ◀

In the binary case, GeneratePKL and the joins it requires of its subroutine LiftAndJoin
collapse to a particularly simple algorithm, which is given in the procedure GenerateP2L below.

Algorithm 3 Procedure GenerateP2L referenced in the text.

// Returns a P
(2)
L

-sequence on the alphabet {0, 1} given L ≥ 1 as
// an input. Here, N := ⌈log2 L⌉.

1: procedure GenerateP2L(L)
2: Compute the digits {di} of L in its binary representation as specified by L =∑N−1

i=0
di2N−i−1.

3: Initialize the necklace α̃ to the single character 1.
4: for j := 1 to N − 1 do
5: Construct Lempel’s lift {λ̃i : i ∈ [p]} of α̃.
6: if p = 1 then

// α̃ has an odd number of 1s.
7: Set α̃ to λ̃0.
8: else if 1j−1 is a substring of α̃ then
9: Set α̃ to the result of joining λ̃0 and λ̃1 at 0++

j−1.

10: else if λ̃0 and λ̃1 can be joined at (0++
j−2, k) or (k, 0++

j−2) for k ∈ [2] then

11: Set α̃ to the result of joining λ̃0 and λ̃1 at (0++
j−2, k) or (k, 0++

j−2) for k ∈ [2].

12: else
13: Set α̃ to the result of joining λ̃0 and λ̃1 at 0++

j−2.
14: end if
15: if dj = 1 then
16: Set α̃ to the extension of α̃ by a single character obtained by replacing 1j−1

with 1j .
17: end if
18: end for
19: return α̃
20: end procedure

Below is the final theorem of this paper, which proves complexity results.

▶ Theorem 10. GeneratePKL outputs a P
(K)
L -sequence in O(L) time using O(L log K) space.

Proof. The space required by GeneratePKL is dominated by storage of the final P
(K)
L -sequence

itself, which is O(L log K).
To see why the algorithm takes O(L) time, consider first the case L < K. GeneratePKL then

initializes α̃ to the positive integers in order up to and including L (Line 3), which scales as L. It
subsequently skips the for loop and returns α̃.

Now consider the opposite case L ≥ K. Expressing L in base K (Line 2) scales as logK L, and
initializing α̃ (Line 3) scales as K. Focus on Line 5’s call of LiftAndJoin at step j of the for loop,
where the length-Lj−1 necklace α̃j−1 is passed to LiftAndJoin in the notation of Theorem 9’s
proof. Constructing Lempel’s lift of α̃j−1 (Line 2 of LiftAndJoin) scales as K · Lj−1, the total
length of the necklaces constructed. Addressing Case 1 (Lines 3-5) takes constant time. Addressing
Case 2 (Lines 6-13) involves searching α̃j−1 for 1N , which scales as Lj−1, and successively joining
the necklaces comprising Lempel’s lift, which scales as K · Lj−1 if implemented as, e.g., a sequence
of rotations and concatenations in which indexes of join substrings are tracked. Addressing Case 3
in its entirety (Lines 14-24) involves (1) constructing the join graph G, which is dominated by the
K · Lj−1 scaling of searching Lempel’s lift for strings of the form s++

N−1 for s ∈ [K], (2) performing a
depth-first traversal of a connected component of the join graph, which takes time linear in a number
of at most K vertices, and (3) joining necklaces, which also scales as K · Lj−1. So LiftAndJoin
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is dominated by a K · Lj−1 scaling at step j of the for loop of GeneratePKL. Refocusing on
GeneratePKL, extending LiftAndJoin(α̃j−1, K) (Line 7) involves searching for longest runs of
the same character and inserting characters as necessary, scaling as K · Lj−1 if performed in one pass
through the necklace. Therefore, step j of the for loop scales as K · Lj−1, and from the recursion (8),
executing all iterations of the for loop scales as L. The time taken by the for loop dominates that of
Lines 2 and 3. So the overall scaling is L for the two cases L ≥ K and L < K, and GeneratePKL
takes O(L) time. ◀

3 Discussion

In this paper, we have introduced P
(K)
L -sequences as arbitrary-length analogs to de Bruijn sequences.

We have shown by explicit construction that a P
(K)
L -sequence exists for any combination of K ≥ 2 and

L ≥ 1, giving an O(L)-time, O(L log K)-space algorithm extending Lempel’s recursive construction
of a binary de Bruijn sequence. An implementation of the algorithm in Python is available at
https://github.com/nelloreward/pkl.

We conclude with several open questions suggested by our work:
1. What is the number of distinct P

(K)
L -sequences on A for every possible combination of K and

L? As Gabric, Holub, and Shallit did in [32, 37] for generalized de Bruijn sequences, we have
counted P

(2)
L -sequences for L up to 32 by exhaustive search. Table 1 displays our results, which

can be reproduced using code at https://github.com/nelloreward/pkl. Note the counts do
not increase monotonically with L.

2. Can the algorithm for P
(K)
L -sequence generation presented here or a variant be encoded in a

shift rule? This would reduce the space it requires, perhaps at the expense of performance.
An obstacle to deriving a shift rule from the algorithm that works for all values of L at a
given alphabet size K is that it would have to account for cases like those of LiftAndJoin.
See [61, 76, 2] for work along the lines of mathematically unrolling Lempel’s recursion and
generalizations.

3. Are there elegant constructions of P
(K)
L -sequences for any possible combination of K and L that

extend constructions of de Bruijn sequences besides Lempel’s recursive construction? There is a
considerable body of literature on constructing universal cycles. (See, e.g., [46, 48, 71, 72, 83,
36, 75]). Introduced by Chung, Diaconis, and Graham in [14], a universal cycle is a length-L
necklace in which every string in a size-L set S of length-m strings occurs as a substring. It
is possible a set S curated to ensure the universal cycle is a P

(K)
L -sequence is compatible with

existing universal cycle constructions or extensions.
4. Can an efficiently decodable P

(K)
L -sequence be constructed for any possible combination of K

and L? Toward answering this question, it may be worth further investigating the efficient
decoding of Lempel’s recursive construction of a de Bruijn sequence. (See [64] for the binary case
and [81] for the K-ary case.) Other efficiently decodable constructions of de Bruijn sequences
are given in [50, 70].

5. What other properties that can be exhibited by a necklace are preserved under Lempel’s D-
morphism, and how can they be exploited to recursively construct other useful sequences? While
this work was being prepared, Mitchell and Wild posted [60] to arXiv, which shows binary
orientable sequences can be constructed recursively using Lempel’s D-morphism. An orientable
sequence is a necklace ν̃ for which each length-n substring has precisely one occurrence in precisely
one of ν̃ and the reverse of ν̃ [9, 15]. It is perhaps unsurprising that Lempel’s D-morphism, a
kind of derivative, is so versatile and that orientability, P

(K)
L -sequence composition, and efficient

decodability can be preserved by its inverse.

https://github.com/nelloreward/pkl
https://github.com/nelloreward/pkl
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Table 1 Numbers of distinct P
(2)
L sequences on A for various values of L.

L Number of distinct P
(2)
L -sequences L Number of distinct P

(2)
L -sequences

1 2 17 32
2 1 18 36
3 2 19 68
4 1 20 57
5 2 21 138
6 3 22 123
7 4 23 252
8 2 24 378
9 4 25 504
10 3 26 420
11 6 27 1296
12 9 28 1520
13 12 29 2176
14 20 30 2816
15 32 31 4096
16 16 32 2048
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A Appendix: A brief history of de Bruijn sequences
The earliest known recorded de Bruijn sequence is the Sanskrit sutra yamātārājabhānasalagām, a
mnemonic encoding all possible length-3 combinations of short and long vowels [49]. Historians
have had some trouble placing when it was first conceived, but it may be over 2,500 years old [7],
having appeared in work by the ancient Indian scholar Pā

˙
nini (dates of birth and death unavailable).

Little is known of Pā
˙
nini beyond his foundational work A

˙
s
˙
tādhyā̄ı codifying Sanskrit grammatical

structure [82].
The question of whether and how many binary de Bruijn sequences of every order exist was first

posed by A. de Rivière (dates of birth and death unavailable) as problem 48 of [53] in 1894. That
same year, in response to the problem, the number of binary de Bruijn sequences of every order was
counted in [69] by Camille Flye Sainte-Marie (1834–1926), a member of the Mathematical Society of
France who was affiliated with the French military throughout his career [11]. His work was quickly
forgotten.

Monroe Harnish Martin (1907–2007) was first to prove the existence of de Bruijn sequences of
any order for any alphabet size in his 1934 paper [58] by explicit construction, shortly before arriving
at the University of Maryland, where he spent the rest of his eminent career. Without knowing of
Sainte-Marie’s work, Nicolaas Govert de Bruijn (1918–2012) [63] also counted the number of binary
de Bruijn sequences of every order in his 1946 work [17]. Tatyana van Aardenne-Ehrenfest and de

CPM 2022



9:20 Arbitrary-Length Analogs to de Bruijn Sequences

Bruijn were first to prove the formula for the number of de Bruijn sequences of any order for any
alphabet size in their 1951 paper [19]. It is notable that after receiving her PhD from the University
of Leiden in 1931, van Ardenne-Ehrenfest (1905–1984) made this and further significant contributions
to the mathematics of sequences despite never holding paid employment as a mathematician and
working as a homemaker [16].

Sainte-Marie’s work was ultimately rediscovered by the well-known MIT combinatorialist Richard
Peter Stanley (1944–) [44], who brought it to the attention of de Bruijn, and in 1975, de Bruijn
issued an acknowledgement [18] of the work. In this acknowledgement, de Bruijn noted that as early
as 1897, Willem Mantel (dates of birth and death unavailable) showed how to construct de Bruijn
sequences of any order for any alphabet size that is prime [57], also in response to A. de Rivière’s
problem.
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