
Finding Weakly Simple Closed Quasigeodesics on
Polyhedral Spheres
Jean Chartier #

Univ. Paris Est Creteil, CNRS, LAMA, F-94010 Creteil, France

Arnaud de Mesmay #

LIGM, CNRS, Univ. Gustave Eiffel, ESIEE Paris, F-77454 Marne-la-Vallée, France

Abstract
A closed quasigeodesic on a convex polyhedron is a closed curve that is locally straight outside
of the vertices, where it forms an angle at most π on both sides. While the existence of a simple
closed quasigeodesic on a convex polyhedron has been proved by Pogorelov in 1949, finding a
polynomial-time algorithm to compute such a simple closed quasigeodesic has been repeatedly posed
as an open problem. Our first contribution is to propose an extended definition of quasigeodesics
in the intrinsic setting of (not necessarily convex) polyhedral spheres, and to prove the existence
of a weakly simple closed quasigeodesic in such a setting. Our proof does not proceed via an
approximation by smooth surfaces, but relies on an adapation of the disk flow of Hass and Scott
to the context of polyhedral surfaces. Our second result is to leverage this existence theorem to
provide a finite algorithm to compute a weakly simple closed quasigeodesic on a polyhedral sphere.
On a convex polyhedron, our algorithm computes a simple closed quasigeodesic, solving an open
problem of Demaine, Hersterberg and Ku.
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1 Introduction

A geodesic is a curve on a surface, or more generally in a manifold, which is locally shortest.
The study of geodesics on surfaces dates back at least to Poincaré [20] and led to a celebrated
theorem of Lyusternik and Schnirelmann [18] proving that any Riemannian sphere admits at
least three distinct simple (i.e., not self-intersecting) closed geodesics (while the initial proof
of the theorem was criticized, the result is now well-established, see for example Grayson [15]).
This bound is tight, as showcased by ellipsoids.

In this article, we investigate closed geodesics in a polyhedral setting. In such a setting,
the following relaxed notion is key: a quasigeodesic is a curve such that the angle is at most
π on both sides at each point of the curve. In 1949, Pogorelov [19] proved the existence of
three simple (i.e., non self-intersecting) and closed quasigeodesics on any convex polyhedron.
The proof is non-constructive and it was asked by Demaine and O’Rourke [13, Open Problem
24.24] whether one could compute such a closed quasigeodesic in polynomial time. Recent
progress on this question was made by Demaine, Hersterberg and Ku [12] who provided
the first algorithm to compute a closed quasigeodesic on a convex polyhedron, and their
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algorithm runs in pseudo-polynomial time. However, their algorithm is ill-adapted to find
closed quasigeodesics which are simple – this has remained an open problem [12, Open
Problem 1]. Furthermore, as they note, for this problem, “even a finite algorithm is not
known or obvious”: indeed there is no known upper bound on the combinatorial complexity
of a simple closed quasigeodesic (for example the number of times that it intersects each
edge), so there is no natural brute-force algorithm. We refer to the extensive introduction
of [12] for a panorama on the difficulties in finding closed quasigeodesics.

Our results. Our contributions in this article are two-fold.
First, we extend the theorem of Pogorelov to a non-convex and non-embedded setting.

Precisely, we work in the abstract setting of compact polyhedral spheres, which consist of the
following data: (1) a finite collection of Euclidean polygons, and (2) gluing rules between
pairs of boundaries of equal length, so that the topological space resulting from the gluings is
a topological sphere. A face, edge or vertex of a polyhedral sphere is respectively a polygon,
an edge or a vertex of one of the polygons, and a vertex is convex (respectively concave)
if the sum of the angles of the polygons around the vertex is at most 2π, respectively at
least 2π. Let us emphasize that such a polyhedral sphere is not a priori embedded in R3. In
particular, edges of the triangles might not be shortest paths. This intrinsic description of
non-smooth surfaces appears under various names in the literature, see, e.g., piecewise-linear
surfaces [14] or intrinsic triangulations [21], and dates back to at least Alexandrov, who
proved [2, Chapter 4] that when all the vertices are convex, such a polyhedral sphere is the
metric structure of a unique convex polyhedron in R3 (see [17] for an algorithmic version of
this result). In the non-convex case, a celebrated theorem of Burago and Zalgaller [8], shows
that one can always find a piecewise-linear isometric embedding of a compact polyhedral
sphere into R3, but it might require a large number of subdivisions and the proof has to our
knowledge not been made algorithmic.

Note that by definition, a polyhedral sphere is locally Euclidean at every point that is
not a vertex. We propose the following generalization of the definition of quasigeodesics to a
polyhedral sphere S: a closed quasigeodesic is a closed curve that is locally a straight line
around any point that is not a vertex, and that is locally a pair of straight lines around a
vertex, forming an angle at most π on each side if the vertex is convex, and forming an angle
at least π on each side if the vertex is concave. A closed curve γ : S1 → S is simple if it is
injective, and is weakly simple if it is a limit of simple curves (see Section 2 for details).

Our first theorem shows the existence of a weakly simple closed quasigeodesic of controlled
length on a polyhedral sphere. We denote by M the edge-sum of S, which we define as the
sum of the lengths of the edges of an iterated barycentric subdivision of a triangulation of S.

▶ Theorem 1 (Existence). Let S be a polyhedral sphere and denote by M its edge-sum. There
exists a weakly simple closed quasigeodesic of length at most M .

The original proof of Pogorelov in the convex case proceeds by first approximating the
polyhedron with smooth surfaces, and then taking the limit of the simple closed geodesics on
the smooth surfaces, whose existence is guaranteed by the Lyusternik–Schnirelmann theorem.
The proof technique for that latter theorem, originating from the work of Birkhoff [5], goes
roughly as follows: we consider sweep-outs, i.e., a family of simple closed curves sweeping
the polyhedron from one point to another point (see Section 2 for a precise definition), and
consider the sweep-out where the longest curve has minimal length. Then, by applying a
curve-shortening process, one can use this optimal sweep-out to find simple closed geodesics.
This last step is notoriously perilous [3, 4, 15], hence the tumultuous history of the Lyusternik-
Schnirelmann theorem. Our proof proceeds by working directly on the polyhedral sphere
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and we prove the existence of a weakly simple closed quasigeodesic using a similar technique
based on sweep-outs. Our key technical contribution is to rely on a curve-shortening process
that is well-adapted to the polyhedral structure of the problem: we adapt the disk flow
originally designed by Hass and Scott [16] for Riemannian surfaces so as to handle the disks
formed by the stars of vertices in a seamless way. We are hopeful that this polyhedral variant
of the disk flow could find further applications in the study of quasigeodesics.

Theorem 1 provides, in addition to the existence of a weakly simple closed quasigeodesic,
a bound on its length. Our second result is to leverage this bound in order to control the
combinatorics of the quasigeodesic, which allows us to design a finite algorithm to compute a
weakly simple closed quasigeodesic on a polyhedral sphere.

▶ Theorem 2 (Algorithm). Given a polyhedral sphere S, we can compute a weakly simple
closed quasigeodesic in time exponential in n and ⌈M/h⌉, where n is the number of vertices
of S, M is its edge-sum, and h is the smallest altitude over all triangles of some triangulation
of S.

Note that a bound on the length of a quasigeodesic does not translate directly into a
bound on the number of times that it crosses each edge of the polyhedral sphere, as these
crossings could happen arbitrarily close to vertices, and thus contribute an arbitrarily small
length. Our proof of Theorem 2 investigates the local geometry of quasigeodesics around
vertices to show that this does not happen too much, and that one can indeed bound the
multiplicity of each edge. Then, our algorithm guesses the correct combinatorics of the simple
closed quasigeodesic and checks in polynomial time that it is realizable.

Our proof techniques for Theorem 1 only provide the existence of weakly simple quasi-
geodesics instead of simple quasigeodesics. We believe this to be a necessary evil in any
generalization to the non-convex case, as shortest paths accumulate on concave vertices,
making it impossible to define a curve-shortening process in the neighborhood of those which
preserves simplicity. However, when all the vertices are convex, the result of Pogorelov does
show the existence of a (actually three) simple closed quasigeodesics, where we include as a
degenerate simple case a curve connecting twice two vertices of curvature at least π. Fur-
thermore, his proof also provides an upper bound on the length of this simple quasigeodesic,
as we explain an the end of Section 4. Since our algorithm behind Theorem 2 only relies on
such an upper bound on the length and on the (weak) simplicity of the sought after curve, we
can also use it to compute simple closed quasigeodesics in the convex case. This solves Open
Problem 1 of [12], but note that we are still a long way off a polynomial-time algorithm.

Some of the proofs have been omitted and are available in the full version [11].

2 Preliminaries

In this article, a polyhedral sphere is a finite collection of Euclidean polygons, and gluing rules
for boundaries of the same length, so that the space obtained by identifying the boundaries
of the polygons via the gluing rules is homeomorphic to a sphere. Such a sphere is naturally
endowed with a metric which is locally Euclidean at every point except at the vertices of
the polygons, where it might display a conical singularity: if the total angle of the polygons
glued around that vertex is larger than 2π (respectively at most 2π), we say that the vertex
is concave (respectively convex), and its curvature is the angular defect compared to 2π

(which is thus negative for concave vertices). Given a (not necessarily convex) polyhedron
described via the coordinates of its vertices in R3, one can easily compute the underlying
polygons and thus the structure as a Euclidean sphere. The reverse direction of embedding a
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polyhedral sphere in R3 is significantly more intricate (see [17] for the convex case and [8]
for the general case), hence our choice of the intrinsic model.

Triangulating each polygon defining a polyhedral sphere yields a triangulated polyhedral
sphere. Furthermore, by doing up to two barycentric subdivisions in each triangle if necessary,
we can assume that there are no loops nor multiple edges in this triangulation. Note that
this triangulation and these subdivisions do not change the metric of the sphere and do not
impact quasigeodesicity (see next paragraph). Therefore, for convenience, in this article we
will always assume that our polyhedral spheres are triangulated and that they contain neither
loops nor multiple edges, and we will denote such a sphere by S from now on. A shelling of
a triangulated sphere S is an order (T1, . . . , Tℓ) on the triangles that S consists of so that
for all i ∈ [1, ℓ − 1],

⋃k=i
k=1 Tk is homeomorphic to a 2-disk D2. It is well-known that all the

triangulated spheres are shellable, for example because, by Steinitz’s theorem [22, Chapter 4]
they form the 2-skeleton of a polytope, and those are shellable [6]. Throughout this article,
we use the following notations for a polyhedral sphere: its vertices are denoted by p1, . . . , pn,
its edges by e1, . . . , em (or sometimes eij to emphasize the vertices that it connects to) and
its triangles by T1, . . . , Tℓ. The order induced by the numbering of the triangles is a shelling
order. The star of vertex pi, denoted by Ci is the union of the triangles Tk having pi for
common vertex, identified along the edges adjacent to pi. It is convex (resp. concave) if pi is
(but note that the shortest path in S between two points of a convex star is not necessarily
contained in that star). We optionally rename the vertices of P to have p1 ∈ T1 and pn ∈ Tℓ.
Finally, we denote by M the sum of the lengths of the edges of S, and by h the smallest
altitude of all the triangles in S. Note that h is a lower bound on the distance between any
two vertices. For γ an edge or a curve on S, we denote by L(γ) its length.

A closed curve c on S is a continuous map c : S1 → S. A closed curve is piecewise-linear
if it is locally straight except at a finite number of points.

▶ Definition 3. A closed curve is a quasigeodesic if it is locally straight around every point
of S that is not a vertex, and around a vertex it forms an angle at most (respectively at least)
π on both sides if the vertex is convex (respectively concave).

We emphasize that this definition is non-standard in the non-convex case, where it is
sometimes simply forbidden for a quasigeodesic to go through a concave vertex [13]. Note
that a quasigeodesic is straight around a vertex with zero curvature. A closed curve is simple
if it is injective. Throughout this article, all the curves will always be parameterized at
constant speed. We endow the space of piecewise-linear curves with the uniform convergence
metric, i.e., d(c1, c2) = maxt∈S1 d(c1(t), c2(t)). A closed curve is weakly simple if it is a limit
of simple curves for this metric: intuitively a weakly simple curve is a curve with tangencies
but no self-crossings. We denote by P the set of constant closed curves, i.e., closed curves c

such that there exists p ∈ S such that ∀t ∈ S1, c(t) = p.
We denote by Ω the space of rectifiable closed curves of length at most M . This space is

compact for the uniform convergence metric, as can be shown via the Arzelà-Ascoli theorem,
the bound on the length and the constant-speed parameterization providing equicontinuity
(see for example [7, Theorem 2.5.14]). We denote by Ωpl the subspace of Ω consisting of
piecewise-linear and weakly simple closed curves. A monotone sweep-out of S is a continuous
map β : S2 −→ S, where S2 is seen as the quotient of the cylinder [0, 1] × S1 by the relation
which identifies the circles (0,S1) and (1,S1) to two points, and such that:

β(0, ·) and β(1, ·) belong to P, i.e., are two constant closed curves on S,
β has topological degree one,
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for s ∈ (0, 1), each fiber β(s, ·) : S1 −→ S belongs to Ωpl, and
the sweep-out is monotone, i.e., if Ds denotes the disk to the left of β(s, ·), the disks Ds

are nested: Ds ⊆ Ds′ for s′ > s.
The requirement on the topological degree informally means that each point is covered once
by the sweep-out ; it is there to prevent trivial sweep-outs (for example constant at a point).
It can be replaced by the requirement that the starting and endpoints are distinct. The
monotonicity corresponds to the third condition, and typical sweep-outs in the literature do
not assume it (see [9]), but in this paper we will only use monotone sweep-outs and thus
for simplicity we will henceforth drop the word monotone. The width of a sweep-out is the
length of the longest fiber. We denote by B the space of sweep-outs.

The algorithm underlying Theorem 2 has complexity exponential in ⌈M/h⌉, i.e., it
depends on the actual values of the lengths of the boundaries of the polygons. Therefore, we
do not work on a real RAM model and rely rather on a word RAM model, which is powerful
enough to express all the operations that we require: see for example [12, Section 2] for a
description of the O(1)-Expression RAM model which can be encoded in the word RAM
model and allows for a restricted notion of real numbers and algebraic operations thereon.

3 Disk flow and sweep-outs

We start by describing a monotone sweep-out of controlled width.

▶ Lemma 4. Let S be a triangulated polyhedral sphere of edge-sum M . There exists a
monotone sweep-out of S of width at most M .

This lemma is proved by sweeping triangles one by one, in the order prescribed by a
shelling order of the sphere S.

The disk flow. We define here a curve-shortening process that we call the disk flow, which
is an iterative process Φ shortening locally a curve in Ωpl successively in each star Ci, with
the key property that the only fixed points of Φ are quasigeodesics or trivial curves. In
a second step, we will extend Φ into a map Φ̂ that acts on monotone sweep-outs, which
will require interpolating at the points where Φ is discontinuous. This disk flow is directly
inspired by the work of Hass and Scott [16] who defined an analogous flow on Riemannian
surfaces. The key difference with their setup is that the star Ci around a convex vertex is
not strongly convex (i.e. there is no uniqueness of shortest paths), which causes additional
tears when extending Φ to sweep-outs and thus requires further operations. Furthermore,
instead of working with very small convex disks as they are doing, we work directly with the
stars Ci as we strive to preserve curves whose piecewise-linear structure matches that of S.
This requires us to deal with tangencies with the boundaries of stars in a different manner.

Let c be a curve in Ωpl and let Ci be a star crossed by c ∈ Ωpl. An arc of Ci is a restriction
of c whose image is a connected component of Ci ∩ Im(c). Let γ be an arc of Ci, from a
closed curve c. The points γ(t0) = c(t0) ∈ ∂Ci such that c([t0 − ε, t0)) or c((t0, t0 + ε]) is
contained in the interior of Ci for a small enough ε > 0, are called the gates of γ. Note that
two kinds of arcs have no gates: loops strictly inside the star and arcs never meeting the
interior of the star. Unless γ is included in Ci, the orientation of S1 naturally designates a
first gate, denoted by front(γ), and a final gate, denoted by exit(γ). The gates can give
access to the interior of the star for values of t greater (resp. less) than t0 – we say that
the gate is open to the right (resp. to the left). A gate can be open to the right and to the
left. Thus, front gates are open to the right and exit gates are open to the left. Figure 1
illustrates different possible sequences of gates.

SoCG 2022
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Figure 1 Three examples of sequences of gates.

Relative to two gates A and B and independently of the path followed between A and
B, we define the right region Cr

i (A, B) and the left region Cℓ
i (A, B) of the star, as being

the two parts of Ci whose union is Ci and which intersect along the edges [Api] and [piB].
The orientation right/left is chosen compatible with that of c between the two gates. The
angles of the regions at the pi vertex are called the right angle θr(A, B) and the left angle
θℓ(A, B).

▶ Lemma 5. Let c be a curve in Ωpl. There exists a map Φ : Ωpl −→ Ωpl satisfying the
following two conditions :

The only fixed points of Φ are quasigeodesics and constant curves.
L(Φ(c)) ≤ L(c), with equality if and only if c is a fixed point.

We stress that the map Φ is in general not continuous.

Proof. We define Φ as follows. Let c be a closed curve in Ωpl. We pick an arbitrary order on
the vertices of S, which induces an arbitrary order on the stars Ci. The map Φ consists in
repeating in this order a straightening process Φi

loc successively in each star. Consider in Ci

an arc γ of c. Note that between two of its consecutive gates, A open to the right and B

open to the left, γ lies in Ci.
If Ci is convex, the straightening is defined as follows for each subset of γ between two

consecutive gates (which by a slight abuse of notation we also denote by γ):
If pi ∈ γ and if θr(A, B) and θℓ(A, B) are less than or equal to π, we replace γ by
[Api] ∪ [piB].
If pi /∈ γ and if θr(A, B) and θℓ(A, B) are less than or equal to π, we replace γ by the
shortest path between A and B staying in the same region relative to A and B.
If θr(A, B) (resp. θℓ(A, B)) is strictly greater than π, we replace γ by the shortest path
between A and B in Cℓ

i (resp. Cr
i ).

If Ci is concave, the straightening is defined as follows:
If θr(A, B) and θℓ(A, B) are at least π, and even if pi /∈ γ, we replace γ by [Api] ∪ [piB].
If θr(A, B) (resp. θℓ(A, B)) is strictly less than π, we replace γ by the shortest path
between A and B in Cr

i (resp. Cℓ
i ).

In case γ = c is strictly included in the interior of Ci, then Φi
loc(c) = 0, where 0 denotes

an arbitrary constant curve based at a point p in Ci.
We denote by Φi

loc, relative to a given star Ci, the straightening process described
above, applied in this star to each arc of a closed curve c ∈ Ωpl. Then Φ is defined as the
concatenation Φ := ◦n

i=1Φi
loc. Let us first show that Φ has values in Ωpl, note that it suffices

to prove it for Φi
loc. It is immediate that the image under Φi

loc is piecewise-linear. In order
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to prove that the image is weakly simple, we look at the case of two arcs of the same closed
curve c in a star, one delimited by two gates A and B, the other delimited by two gates A′

and B′. As c belongs to Ωpl, the two arcs do not cross, so they delimit a band in the star. If
Φi

loc sends both arcs to the same side of pi, then their images form two shortest paths in
the same region and do not intersect. If Φi

loc sends the two arcs on opposite sides of pi, a
configuration where the two arcs cross twice is impossible because the angles θr(A, B) and
θr(A′, B′) on the one hand, and θℓ(A, B) and θℓ(A′, B′) on the other hand are arranged in
the same order.

If c is a quasigeodesic, each of its arcs possibly behaves in two ways in the star it crosses:
either it reaches and leaves the vertex in a straight line from and up to the boundary of the
star, forming on each side an angle at most π in the convex case, or at least π in the concave
case. Or it connects its gates via a shortest path, entirely contained in the more acute of the
two regions that it induces. In both cases, the previous process does not change its trajectory.
So Φ fixes the quasigeodesics. Conversely, if c is not a quasigeodesic, then either it does not
take a shortest path through a face or in neighborhood of a transverse intersection with an
edge, either it forms on the passage of a vertex an angle greater than π on one side. This
will be straightened when applying Φi

loc in a star containing that face, edge, or vertex in its
interior, and therefore c is not a fixed point of Φi

loc. By construction, since Φi
loc does not

increase lengths, we have that L(Φ(c)) ≤ L(c). Let us show that if L(Φ(c)) = L(c), then
c is a quasigeodesic. If an arc of c is not fixed by Φi

loc in a star, while remaining on the
same side of the vertex, then it loses length, because there is uniqueness of the shortest path
within a (left or right) region of a star. On the other hand, if Φi

loc passes an arc on the
other side of the vertex (or pushes it against the vertex), it is because its length exceeds
L([Api]) + L([piB]). So the arc loses at least this excess in length. Finally, since some Φi

loc

decreases the length of a non-quasigeodesic c, such a c cannot be a fixed point of Φ. ◀

In this proof, we could have taken the simpler choice of always replacing an arc in a star
by a shortest path, irrespective of the angle at the vertex. The more delicate choice that is
made here is tailored so as to be able to extend Φ to sweep-outs in Lemma 8.

The following property will be useful.

▶ Lemma 6. For all ε > 0, there exists η > 0 such that for any curve c ∈ Ωpl and for any i,
if L(c) − L(Φi

loc(c)) < η, then dH(c, Φi
loc(c)) < ε, where dH denotes the Hausdorff distance.

The following lemma shows that applying Φ iteratively to a curve either makes the curve
trivial in finite time, or converges to a quasigeodesic. Note that the lemma is not as obvious
as it might seem as Φ is not continuous on Ωpl.

▶ Lemma 7. Let c ∈ Ωpl. We consider the sequence of iterates of Φ, i.e., (Φj(c))j. If
this sequence does not reach 0 in finite time, then it admits a subsequence converging to a
quasigeodesic (with respect to the uniform convergence metric).

We now explain how to apply the disk flow to a monotone sweep-out, so that it extends
the action on each of the fibers.

▶ Lemma 8. There exists a map Φ̂ : B −→ B and a piecewise continuous injective map
ι : [0, 1] −→ [0, 1], such that

∀s ∈ [0, 1], Φ̂(β)(ι(s), ·) = Φ(β(s, ·)).

The map ι induces a surjection f that maps [0, 1] on to [0, 1], which continually extends ι−1,
with the property that L(Φ̂(β)(s, ·)) ≤ L(β(f(s), ·)), with equality if and only if β(f(s), ·) is a
quasigeodesic.

SoCG 2022
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Proof. Let β be a sweep-out in B. We explain how to apply a local step Φ̂i
loc of the

curve-shortening process to β. Then, as before, we will define Φ̂ as the concatenation
◦n

i=1Φ̂i
loc.

Before analyzing the effect of Φi
loc on β, we apply an artificial thickening of β which fills

its “problematic” portions on the boundary of each star and is defined as follows. We call
the bare boundary of Ci the set of points of ∂Ci which are not the gates of any arc of a fiber
of β crossing Ci. Consider a connected component of the bare boundary of a certain star Ci.
It is fully contained in the image of at least1 one fiber c of β that:

either connects two gates which are neither a front gate nor an exit gate,
or it connects a front or exit gate on one side only (see the green curve on Figure 2, top
left),
or it does not connect any gate (see the green curve on Figure 2, top right).

In all three cases, we can see that applying Φi
loc would induce a discontinuity around c.

This is pictured in Figure 2, where one sees that the action of Φi
loc on the red curve and the

green curve would be very different, despite them being arbitrarily close. We handle this
discontinuity as follows. Case 1 will fit into the more general surgery described below, and
thus is not addressed at this stage. In cases 2 and 3, the idea is to replace the parameter s

of c = β(s, ·) by a closed interval describing a collection of copies of c all identical (hence the
artificial nature of this thickening), except that we drag artificially the position of the single
extremal gate (case 2) or we add two new front/exit gates (case 3), one of which moves along
∂Ci. In both cases, the new gates keep or gain an open character to the right or to the left.
The aim of this operation is that the arcs of c between these new artificial gates will become
straightened by Φi

loc, thus ensuring the continuity of Φi
loc at c (see Figure 2).

Figure 2 We artificially add gates on bare edges to obtain interpolating curves in their neighbor-
hoods.

After this pre-processing, we consider the map β′ : [0, 1] × S1 −→ S defined by:

∀s ∈ [0, 1], β′(s, ·) = Φi
loc(β(s, ·)).

The discontinuity of Φi
loc on arcs within the star Ci induces a finite number of tears in β′.

These discontinuities occur around a convex vertex or when a fiber is tangent to the boundary
of a star, and can be of the following four types.

1 If there is an infinite number of them, they are parameterized in β by a closed interval. We then consider
the representative closest to the interior of the star.
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Disappearance of one or more gates far from the vertex, see Figure 3.

Figure 3 Disappearance of one or more gates far from the vertex: Two examples of interpolation.
In the example in the bottom picture, the γs0 fiber has been added during the preprocessing and
provided with an artificial gate. The missing part of the interpolation will be covered by the new
gates induced in the preprocessing.

Double tear around a convex vertex, see Figure 4.
Single tear around a vertex, see Figure 5.
Disappearance of interior curves, see Figures 6 and 7.

In all four cases, the discontinuities are filled by (1) blowing up the parameter space
around a discontinuity point s to an interval gap(s) and (2) adding interpolating curves in
this interval gap(s), one of which is Φi

loc(β(s, ·)). We refer to Athe full version for a precise
description of these interpolating procedures. Such interpolating curves are pictured in green
in Figure 3, 4, 5, 6 and 7 and they are obtained by shortcutting β(s, ·) using shortest paths,
therefore all of them have length bounded by that of β(s, ·). We define the map ι as the one
sending s to the parameter corresponding to the fiber Φi

loc(β(s, ·)), while the surjection f

maps the entire interval gap(s) to s (the maps ι and f are defined in the natural way outside
of the discontinuities). Therefore we have defined a new map which we denote by Φ̂i

loc(β),
whose parameter space is connected to that of β using the maps ι and f . As the Φ̂i

loc get
composed to yield Φ̂, the maps ι and f are also composed in the natural way.
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Figure 4 Double tear around a convex vertex: Interpolation.

We argue that the resulting map is a monotone sweep-out. It starts and ends at trivial
curves, and by constructions each fiber is piecewise-linear. Furthermore, the disks defined by
the fibers are nested, since the effect of Φ̂i

loc is restricted to the star Ci, where the nesting of
disks that was present in β is preserved, as the interpolated curves are put inbetween their
interpolation targets. Generically, points are covered by the new sweep-out exactly once
(since all the fibers can be slightly perturbed to be disjoint), thus the topological degree
is one. Finally, since all the interpolating curves have length at most that of a curve it
interpolates from, we have the inequality L(Φ̂(β)(s, ·)) ≤ L(β(f(s), ·)), with equality if and
only if β(f(s), ·) is a quasigeodesic. ◀

▶ Remark. This proof showcases why our definition of quasigeodesic is the correct one for
the disk flow to be appropriately defined on sweep-outs. If we had chosen more strict rules
around convex vertices (for example only allowing curves with equal angles on both sides),
we could have defined Φ in a more abrupt way by simply replacing arcs with shortest paths,
thus ensuring that no arc through a vertex is fixed by the disk flow. However, this would
have yielded tears around a convex vertex p in which our interpolating technique could not
have worked, since no fiber of β′ would be going through the vertex, and there would have
been no way to add interpolating fibers of controlled length. In this sense, allowing for an
angle at most π on both sides is the minimum angular spread allowing for the interpolation
steps in the proof of Lemma 8 to work. For concave vertices, shortest paths between points
on the boundary of a star Ci might require the whole spread of angles at least π on both
sides, hence this choice of definition.

4 Existence of a simple closed quasigeodesic

We are now ready to prove Theorem 1. At this stage, our proof follows the same lines as
that of Hass and Scott [16, Theorem 3.11].

Proof of Theorem 1. Let β be the monotone sweep-out of B of width at most M described
by Lemma 4. We consider the sequence of sweep-outs (Φ̂j(β))j . For any j ∈ N, the parameter
space of Φ̂j(β) is the product of an interval [0, 1] by S1, the first factor being related to that of
Φ̂j−1(β) via the surjection fj of Lemma 8. Therefore, in order to track the history of a fiber
in Φ̂j(β) under the action of Φ̂, we introduce the sequence of parameters Oj = (s0, . . . , sj)
such that for all k beetwen 0 and j − 1 : sk = fk(sk+1). Each space of parameters describing
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Figure 5 Single tear around a vertex: Two examples of interpolation.

Oj is homeomorphic to the interval [0, 1] (via the trivial homeomorphism (s0, . . . , sj) 7→ sj),
and we consider the projective limit I of these intervals, which is thus also homeomorphic to
an interval [0, 1]. An element of this projective limit therefore consists of an infinite sequence
O = (s0, s1 . . .) such that for all k, sk = fk(sk+1).

Let O = (s1, s2 . . .) be an element of I, which thus corresponds to a family of curves
cj := Φ̂j(β)(sj), and let us assume that all these curves are trivial for j bigger than some k.
Then there is an open neighborhood of O for which this is also the case, as a curve becomes
trivial under the action of some Φ̂i

loc if and only if it is fully contained in the interior of a
star. Therefore, the set Vk ⊂ I of sequences of curves for which the kth curve is not trivial is
a closed subset of I. Furthermore, it is not empty, as otherwise some intermediate sweep-out
after Φ̂k−1(β) would consist of only curves contained in the interior of some star and thus
would miss some point of the sphere S, in contradiction with the requirement that a sweep-out
be of topological degree one. Finally, we have the natural inclusion Vk+1 ⊂ Vk since if
Φ̂k+1(β)(sk+1) is not trivial, then this is also the case for Φ̂k(β)(sk). We can thus consider
the intersection ∩k∈NVk which is an infinite intersection of nested closed non-empty subsets
of I and is thus non-empty. An element in this intersection is a sequence O∞ = (s1, s2 . . .)
such that none of the curves cn = Φ̂n(β)(sn) is trivial. As Ωpl is compact, we can extract
from this sequence of curves a convergent subsequence ck, which converges to a curve c∞.
We claim that c∞ is a weakly simple closed quasigeodesic of length at most M . The curve
c∞ is weakly simple because it is a limit of weakly simple curves. The bound on the length
follows from the fact that by Lemma 4, the width of each of the sweep-outs Φ̂n(β) is at most
M , and thus in particular c∞ is a limit of curves of length at most M and thus has length at
most M , since the length is a lower semi-continuous function on Ω.
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Figure 6 Disappearance of interior curves: Three examples of interpolation.

Figure 7 Interpolating to fill the last hole when an interior curve disappears.

Finally, in order to prove that c∞ is a quasigeodesic, the argument is identical to the one
in the proof of Lemma 7, to which we refer. If c∞ is not a quasigeodesic, there is one point p

in its image which is not locally quasigeodesic, i.e., there are two points p1 and p2 in a small
neighborhood in c∞ such that p1, p and p2 are not aligned, and if p is a vertex, the angle
at p is disallowed by the curvature there. For k big enough, ck will also have this property.
Now, we consider a star Ci which contains p in its interior. Here observe that Lemma 6 is
also valid under the action of Φ̂, i.e., for interpolating curves: indeed, those are displaced
even less than under the action of Φ. Therefore, ck will have moved very little when Φi

loc

acts on it, and thus this action will diminish its length by a fixed quantity that can be lower
bounded based on c∞, which is impossible since the lengths of the ck converge. ◀

Our techniques only guarantee the existence of a weakly simple closed quasigeodesic of
length at most M . In contrast, in the convex case, Pogorelov [19] proved the existence of a
simple closed quasigeodesic (where the degenerate case of two vertices of curvature at least
π connected twice by a curve is allowed). The proof of Pogorelov works by approximating
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a convex polyhedron by smooth surfaces, appealing to the Lyusternik-Schnirrelmann on
the smooth surfaces to find simple closed geodesics, taking the limit of such simple closed
geodesics and arguing that (1) the limit is a quasigeodesic and (2) it is simple. We argue
that the same technique proves the existence of a simple closed quasigeodesic of length at
most M + ε, for an arbitrarily small ε > 0. Indeed, the sweep-out that we describe on S

naturally induces sweep-outs of width at most M + ε on the approximating smooth surfaces
that are close enough, and thus the first simple closed geodesic output by the Lyusternik-
Schnirrelmann theorem in each of these surfaces has length at most M + ε. Taking the limit
of those yields a simple closed quasigeodesic of length at most M + ε. We will use this result
at the end of the next section.

5 An algorithm to compute a weakly simple closed quasigeodesic

In this section, we leverage the existence of a weakly simple closed quasigeodesic of length at
most M proved in Theorem 1 in order to design an algorithm to find it.

Let S be a polyhedral sphere and denote by E = {p1, . . . , pn, e1, . . . , em} be the set of
vertices and open edges of S. To a closed curve c : S1 −→ S, we associate the cyclic word
E(c) whose successive letters are the elements of E met by c(t) as t moves around S1 (note
that an edge can be either crossed or followed). Given a bound on the length of c, we want
to derive a bound on the combinatorics of c, i.e., a bound on the length of E(c). This is
hopeless without any assumption, as a curve spiraling around a vertex for an arbitrarily long
time showcases. But when c is a weakly simple quasigeodesic, we can obtain such a bound.
Indeed, our first observation is that a weakly simple quasigeodesic never spirals around a
vertex.

▶ Lemma 9. Let γ be a weakly simple closed quasigeodesic and Ci be the open star of a vertex
vi of degree di. Then for any connected component α of γ ∩ Ci, the number of intersections
of α with edges and vertices of Ci is at most di.

Proof. If α passes through the vertex vi, then it exits on both sides tracing a straight line in
one of the triangles of Ci. This straight-line reaches directly the opposite edge of the triangle,
therefore in this case the number of intersections of α with edges and vertices of Ci is at most
two.

If α does not pass through the vertex vi, then let us denote by e the first edge adjacent
to vi that it crosses. Note that within a triangle of Ci, by quasigeodesicity, α enters from one
edge and does not backtrack, i.e., it escapes from another edge. Therefore, either α escapes
from Ci before crossing e again, in this case it crosses at most di edges, or it crosses e again.
In the latter case, up to reversing orientation of α we can assume that the second crossing
point is closer to vi than the first crossing point. Tracing α after the second crossing point,
we see that in each triangle that it enters, it cannot escape Ci since, by weak simplicity, it
cannot cross the previous edge that it traced, and is thus forced to continue spiraling around
vi indefinitely. This contradicts the assumption that γ is closed, finishing the proof. ◀

The following geometric lemma will come handy to bound the combinatorics of a closed
simple quasigeodesic.

▶ Lemma 10. Let Q be a Euclidean quadrilateral consisting of two Euclidean triangles glued
along an edge. Then the distance between two opposite sides of Q is lower bounded by the
smallest altitude of the two triangles.

Combining Lemmas 9 and 10 yields the following proposition.

SoCG 2022
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▶ Proposition 11. Let S be a polyhedral sphere, let M denote the sum of the edge-lengths of
the triangles of S, let h denote the smallest altitude of the triangles of S, and let d be the
maximum degree of a vertex in S. Then there exists a weakly simple closed quasigeodesic on
S such that the length of E(γ) is bounded by:

ηγ = ⌈(d + 1)M/h⌉

We now have all the tools to prove Theorem 2.

Proof of Theorem 2. Let γ be a weakly simple closed quasigeodesic whose combinatorial
complexity is controlled by ηγ as specified by Proposition 11. First, we observe that we can
assume that this quasigeodesic meets a vertex (see full version).

Figure 8 Unfolding a (tentative) quasigeodesic along the set of edges that it crosses.

Then, we guess the cyclic word w of size at most ηγ describing the combinatorics of γ,
a weakly simple closed quasigeodesic going through at least one vertex. For each subword
p1e1 . . . ekp2 between two consecutive vertices, if e1 is adjacent to p1, we simply check that
the next letter is the other endpoint of p1. Otherwise, we first check that successive letters
of that word are adjacent to a common triangle. Then we compute a local unfolding of the
polyhedral sphere along the edges e1, e2 . . . ek, i.e., we first place the triangle T1 spanned by
p1 and e1, to which we attach along e1 the triangle T2 spanned by e2 and e3, and so on until
we reach the last triangle Tk spanned by ek and p2. Now, in this unfolded picture, we trace
the straight line Σ12 between p1 and p2. There remains to check that the combinatorics of
this straight line match those of the guessed word: in the first and last triangles, we check
that Σ12 exits via or follows e1 (or ek), and in each other triangle Ti it suffices to check that
the three vertices of Ti are on the sides of Σ12 prescribed by the edges ei and ei+1 (i.e., if
ei = ab and ei+1 = bc, then a and c should be one side of Σ12 while b should be on the other
side). Then, we check that the angle between each pair Σi,i+1,Σi+1,i+2 is within the rules
specified by the curvature at the vertex pi+1. Finally, we check that this curve is weakly
simple, for example via known algorithms [1, 10] or by brute-forcing in exponential time the
choice of on which side two overlapping segments can be desingularized. If all the checks are
positive, we have found the unique closed quasigeodesic matching the combinatorics of the
word w, which is thus weakly simple. ◀



J. Chartier and A. de Mesmay 27:15

Finally, let us discuss how to find a simple closed quasigeodesic of bounded length in the
case of a convex polyhedron. Following the discussion at the end of Section 4, Pogorelov’s
theorem implies that there exists a simple closed quasigeodesic of length at most M + ε, for
an arbitrarily small ε, and allowing as a “simple” closed quasigeodesic the degenerate case
of a curve connecting twice two vertices of curvature at least π. This degenerate case is a
weakly simple curve that will be found by our algorithm. For the non-degenerate case, the
arguments of Proposition 11 apply verbatim to provide a bound on the combinatorics of
some simple closed quasigeodesic γ. If this quasigeodesic goes through at least one vertex,
the algorithm described just above finds it, and it is immediate to check that it is simple. If
not, we can push it as in the proof of Theorem 2 to a weakly simple closed geodesic that
goes through a vertex, and it will stay simple until it hits that vertex, where it will form an
angle exactly π in the direction where it came from. Since the total angle at each vertex is
at most 2π, this implies that this curve is either degenerate or simple, and in both cases it
will be found by our algorithm.
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