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Abstract
In the discrete k-Center problem, we are given a metric space (P, dist) where |P | = n and the goal
is to select a set C ⊆ P of k centers which minimizes the maximum distance of a point in P from its
nearest center. For any ϵ > 0, Agarwal and Procopiuc [SODA ’98, Algorithmica ’02] designed an
(1 + ϵ)-approximation algorithm1 for this problem in d-dimensional Euclidean space2 which runs in

O(dn log k) +
(

k

ϵ

)O(k1−1/d)
· nO(1) time. In this paper we show that their algorithm is essentially

optimal: if for some d ≥ 2 and some computable function f , there is an f(k)·
(1

ϵ

)o(k1−1/d)
·no(k1−1/d)

time algorithm for (1 + ϵ)-approximating the discrete k-Center on n points in d-dimensional
Euclidean space then the Exponential Time Hypothesis (ETH) fails.

We obtain our lower bound by designing a gap reduction from a d-dimensional constraint
satisfaction problem (CSP) to discrete d-dimensional k-Center. This reduction has the property
that there is a fixed value ϵ (depending on the CSP) such that the optimal radius of k-Center
instances corresponding to satisfiable and unsatisfiable instances of the CSP is < 1 and ≥ (1 + ϵ)
respectively. Our claimed lower bound on the running time for approximating discrete k-Center
in d-dimensions then follows from the lower bound due to Marx and Sidiropoulos [SoCG ’14] for
checking the satisfiability of the aforementioned d-dimensional CSP.

As a byproduct of our reduction, we also obtain that the exact algorithm of Agarwal and
Procopiuc [SODA ’98, Algorithmica ’02] which runs in nO(d·k1−1/d) time for discrete k-Center on
n points in d-dimensional Euclidean space is asymptotically optimal. Formally, we show that if for
some d ≥ 2 and some computable function f , there is an f(k) · no(k1−1/d) time exact algorithm for
the discrete k-Center problem on n points in d-dimensional Euclidean space then the Exponential
Time Hypothesis (ETH) fails. Previously, such a lower bound was only known for d = 2 and was
implicit in the work of Marx [IWPEC ’06].
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1 Introduction

The k-Center problem is a classical problem in theoretical computer science and was first
formulated by Hakimi [22] in 1964. In this problem, given a metric space (P, dist) and an
integer k ≤ |P | the goal is to select a set C of k centers which minimizes the maximum

1 The algorithm of Agarwal and Procopiuc [2] also works for the non-discrete, i.e., continuous, version of
the problem when C need not be a subset of P , but our lower bounds only hold for the discrete version.

2 The algorithm of Agarwal and Procopiuc [2] also works for other metrics such as ℓ∞ or ℓq metric for
q ≥ 1. Our construction also works for ℓ∞ (in fact, some of the bounds are simpler to derive!) but we
present only the proof for ℓ2 to keep the presentation simple.
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distance of a point in P from its nearest center, i.e., select a set C which minimizes the
quantity maxp∈P minc∈C dist(p, c). A geometric way to view the k-Center problem is to
find the minimum radius r such that k closed balls of radius r located at each of the points in
C cover all the points in P . In most applications, we require that C ⊆ P and this is known
as the discrete version of the problem.

As an example, one can consider the set P to be important locations in a city and solving
the k-Center problem (where k is upper bounded by budget constraints) establishes the
locations of fire stations which minimize the response time in event of a fire. In addition to
other applications in facility location, transportation networks, etc. an important application
of k-Center is in clustering. With the advent of massive data sets, the problem of efficiently
and effectively summarizing this data is crucial. A standard approach for this is via centroid-
based clustering algorithms of which k-Center is a special case. Clustering using k-Center
has found applications in text summarization, robotics, bioinformatics, pattern recognition,
etc. [41, 20, 23, 30].

1.1 Prior work on exact & approximate algorithms for discrete k-Center
The discrete3 k-Center problem is NP-hard [44], and admits a 2-approximation [24, 21]
in nO(1) time where n is the number of points. This approximation ratio is tight and the
k-Center problem is NP-hard to approximate in polynomial time to a factor (2 − ϵ) for
any constant ϵ > 0 [25, 21]. Given this intractability, research was aimed at designing
parameterized algorithms [10] and parameterized approximation algorithms for k-center.
The k-Center problem is W[2]-hard to approximate to factor better than 2 even when
allowing running times of the form f(k) · nO(1) for any computable function f [15, 13].
The k-Center problem remains W[2]-hard even if we combine the parameter k with other
structural parameters such as size of vertex cover or size of feedback vertex set [31]. Agarwal
and Procopiuc [2] designed an algorithm for discrete k-Center on n points in d-dimensional
Euclidean space which runs in nO(d·k1−1/d) time.

The paradigm of combining parameterized algorithms & approximation algorithms has
been successful in designing algorithms for k-center in special topologies such as d-dimensional
Euclidean space [2], planar graphs [19], metrics of bounded doubling dimensions [16], graphs
of bounded highway dimension [15, 4], etc. Of particular relevance to this paper is the
(1 + ϵ)-approximation algorithm4 of Agarwal and Procopiuc [2] which runs in O(dn log k) +(

k

ϵ

)O(k1−1/d)
· nO(1) time. This was generalized by Feldmann and Marx [16] who designed

an (1 + ϵ)-approximation algorithm running in
(

kk

ϵO(kD)

)
· nO(1) time for discrete k-Center

in metric spaces of doubling dimension D.

1.2 From 2-dimensions to higher dimensions
Square root phenomenon for planar graphs and geometric problems in the plane. For a
wide range of problems on planar graphs or geometric problems in the plane, a certain square
root phenomenon is observed for a wide range of algorithmic problems: the exponent of the

3 Here we mention the known results only for the discrete version of k-Center. A discussion about
results for the continuous version of the problem is given in Section 1.4.

4 This is also known as an efficient parameterized approximation scheme (EPAS) as the running time is a
function of the type f(k, ϵ, d) · nO(1).
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running time can be improved from O(ℓ) to O(
√

ℓ) where ℓ is the parameter, or from O(n)
to O(

√
n) where n is in the input size, and lower bounds indicate that this improvement is

essentially best possible. There is an ever increasing list of such problems known for planar
graphs [8, 37, 32, 38, 33, 14, 42, 39, 34, 1, 18] and in the plane [39, 36, 17, 3, 43, 27, 26]

Bounds for higher dimensional Euclidean spaces. Unlike the situation on planar graphs
and in two-dimensions, the program of obtaining tight bounds for higher dimensions is still
quite nascent with relatively fewer results [9, 40, 5, 12, 11]. Marx and Sidiropoulos [40]
showed that for some problems there is a limited blessing of low dimensionality: that is, for
d-dimensions the running time can be improved from nℓ to nℓ1−1/d or from 2n to 2n1−1/d

where ℓ is a parameter and n is the input size. In contrast, Cohen-Addad et al. [9] showed
that the two problems of k-Median and k-Means suffer from the curse of low dimensionality:
even for 4-dimensional Euclidean space, assuming the Exponential Time Hypothesis5 (ETH),
there is no f(k) · no(k) time algorithm, i.e., the brute force algorithm which runs in nO(k)

time is asymptotically optimal.

1.3 Motivation & Our Results
In two-dimensional Euclidean space there is an nO(

√
k) algorithm [2, 27, 26], and a matching

lower bound of f(k) · no(
√

k) under Exponential Time Hypothesis (ETH) for any computable
function f [36]. Our motivation in this paper is to investigate what is the correct complexity
of exact and approximate algorithms for the discrete k-Center for higher dimensional
Euclidean spaces. In particular, we aim to answer the following two questions:

(Question 1) Can the running time of the (1 + ϵ)-approximation algorithm of [2] be

improved from O(dn log k) +
(

k

ϵ

)O(k1−1/d)
· nO(1), or is there a (close to) matching

lower bound?
(Question 2) The nO(d·k1−1/d) algorithm of [2] for d-dimensional Euclidean space shows

that there is a limited blessing of low dimensionality for k-Center. But can the term
k1−1/d in the exponent be improved, or is it asymptotically tight?

We make progress towards answering both these questions by showing the following theorem:

▶ Theorem 1. For any d ≥ 2, under the Exponential Time Hypothesis (ETH), the discrete
k-Center problem in d-dimensional Euclidean space

(Inapproximability result) does not admit an (1 + ϵ)-approximation in f(k) ·
( 1

ϵ

)o(k1−1/d) ·
no(k1−1/d) time where f is any computable function and n is the number of points.
(Lower bound for exact algorithm) cannot be solved in f(k) · no(k1−1/d) time where f is
any computable function and n is the number of points.

Theorem 1 answers Question 1 by showing that the running time of the (1 + ϵ)-
approximation algorithm of Agarwal and Procopiuc [2] is essentially tight, i.e., the dependence
on ϵ cannot be improved even if we allow a larger dependence on both k and n. Theorem 1
answers Question 2 by showing that the running time of the exact algorithm of Agarwal and
Procopiuc [2] is asymptotically tight, i.e., the exponent of k1−1/d cannot be asymptotically
improved even if we allow a larger dependence on k.

5 Recall that the Exponential Time Hypothesis (ETH) has the consequence that n-variable 3-SAT cannot
be solved in 2o(n) time [28, 29].

SoCG 2022
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1.4 Discussion of the continuous k-Center problem
In the continuous version of the k-Center problem, the centers are not required to be
picked from the original set of input points. The nO(d·k1−1/d) algorithm of Agarwal and
Procopiuc [2] also works for this continuous version of the k-Center problem in Rd. Marx
[35] showed the W[1]-hardness of k-Center in (R2, ℓ∞) parameterized by k. Cabello et
al. [6] studied the complexity of this problem parameterized by the dimension, and showed
the W[1]-hardness of 4-Center in (Rd, ℓ∞) parameterized by d. Additionally, they also
obtained the W[1]-hardness of 2-Center in (Rd, ℓ2) parameterized by d; this reduction
also rules out existence of no(d) algorithms for this problem under the Exponential Time
Hypothesis (ETH). It is an interesting open question whether the nO(d·k1−1/d) algorithm
of Agarwal and Procopiuc [2] is also asymptotically tight for the continuous version of the
problem: one way to possibly prove this would be to extend the W[1]-hardness reduction of
Marx [35] for continuous k-Center in R2 (parameterized by k) to higher dimensions using
the framework of Marx and Sidiropoulos [40]. Our reduction in this paper does not extend
to the continuous version.

1.5 Notation
The set {1, 2, . . . , n} is denoted by [n]. All vectors considered in this paper have length d.
If a is a vector then for each i ∈ [d] its i-th coordinate is denoted by a[i]. Addition and
subtraction of vectors is denoted by ⊕ and ⊖ respectively. The i-th unit vector is denoted
by ei and has ei[i] = 1 and ei[j] = 0 for each j ̸= i. The d-dimensional vector whose
every coordinate equals 1 is denoted by 1d. If u is a point and X is a set of points then
dist(u, X) = minx∈X dist(u, x). We will sometimes abuse notation slightly and use x to
denote both the name and location of the point x.

2 Lower bounds for exact & approximate k-Center in d-dimensional
Euclidean space

The goal of this section is to prove Theorem 1 which is restated below:

▶ Theorem 1. For any d ≥ 2, under the Exponential Time Hypothesis (ETH), the discrete
k-Center problem in d-dimensional Euclidean space

(Inapproximability result) does not admit an (1 + ϵ)-approximation in f(k) ·
( 1

ϵ

)o(k1−1/d) ·
no(k1−1/d) time where f is any computable function and n is the number of points.
(Lower bound for exact algorithm) cannot be solved in f(k) · no(k1−1/d) time where f is
any computable function and n is the number of points.

Roadmap to prove Theorem 1. To prove Theorem 1, we design a gap reduction (described
in Section 2.2) from a constraint satisfaction problem (CSP) to the k-Center problem. The
definition and statement of the lower bound for the CSP due to Marx and Sidiropoulos [40] is
given in Section 2.1. The correctness of the reduction is shown in Section 2.4 and Section 2.3.
Finally, everything is tied together in Section 2.5 which contains the proof of Theorem 1.

2.1 Lower bound for d-dimensional geometric ≥-CSP [40]
This section introduces the d-dimensional geometric ≥-CSP problem of Marx and Sidiropoulos
[40]. First we start with some definitions before stating the formal lower bound (Theorem 5)
that will be used to prove Theorem 1. Constraint Satisfaction Problems (CSPs) are a general
way to represent several important problems in theoretical computer science. In this paper,
we will only need a subclass of CSPs called binary CSPs which we define below.
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▶ Definition 2. An instance of a binary constraint satisfaction problem (CSP) is a triple
I = (V, D, C) where V is a set of variables, D is a domain of values and C is a set of
constraints. There are two types of constraints:

Unary constraints: For some v ∈ V there is a unary constraint ⟨v, Rv⟩ where Rv ⊆ D.
Binary constraints: For some u, v ∈ V, u ̸= v, there is a binary constraint

〈
(u, v), Ru,v

〉
where Ru,v ⊆ D × D.

Solving a given CSP instance I = (V, D, C) is to check whether there exists a satisfying
assignment for it, i.e., a function f : V → D such that all the constraints are satisfied. For a
binary CSP, a satisfying assignment f has the property that for each unary constraint ⟨v, Rv⟩
we have f(v) ∈ Rv and for each binary constraint

〈
(u, v), Ru,v

〉
we have (f(u), f(v)) ∈ Ru,v.

The constraint graph of a given CSP instance I = (V, D, C) is an undirected graph
GI whose vertex set is V and the adjacency relation is defined as follows: two vertices
u, v ∈ V are adjacent in GI if there is a constraint in I which contains both u and v. Marx
and Sidiropoulos [40] observed that binary CSPs whose primal graph is a subgraph of the
d-dimensional grid is useful in showing lower bounds for geometric problems in d-dimensions.

▶ Definition 3. The d-dimensional grid R[N, d] is an undirected graph with vertex set [N ]d
and the adjacency relation is as follows: two vertices (a1, a2, . . . , ad) and (b1, b2, . . . , bd) have
an edge between them if and only if

∑d
i=1 |ai − bi| = 1.

▶ Definition 4. A d-dimensional geometric ≥-CSP I = (V, D, C) is a binary CSP whose
set of variables V is a subset of R[N, d] for some N ≥ 1,
domain is [δ]d for some integer δ ≥ 1,
constraint graph GI is an induced subgraph of R[N, d],
unary constraints are arbitrary, and
binary constraints are of the following type: if a, a′ ∈ V such that a′ = a ⊕ ei

for some i ∈ [d] then there is a binary constraint
〈
(a, a′), Ra,a′

〉
where Ra,a′ =

{(x, y) ∈ Ra × Ra′ | x[i] ≥ y[i]}.

Observe that the set of unary constraints of a d-dimensional geometric ≥-CSP is sufficient
to completely define it. The size |I| of a binary CSP I = (V, D, C) is the combined size of
the variables, domain and the constraints. With appropriate preprocessing (e.g., combining
different constraints on the same variables) we can assume that |I| = (|V| + |D|)O(1). We now
state the result of Marx and Sidiropoulos [40] which gives a lower bound on the complexity
of checking whether a given d-dimensional geometric ≥-CSP has a satisfying assignment.

▶ Theorem 5 ([40, Theorem 2.10]). If for some fixed d ≥ 2, there is an f(|V|) · |I|o(|V|1−1/d)
time algorithm for solving a d-dimensional geometric ≥-CSP I for some computable function
f , then the Exponential Time Hypothesis (ETH) fails.

▶ Remark 6. The problem defined by Marx and Sidiropoulos [40] is actually d-dimensional
geometric ≤-CSP which has ≤-constraints instead of the ≥-constraints. However, for each
a ∈ V by replacing each unary constraint x ∈ Ra by y such that y[i] = N + 1 − x[i] for each
i ∈ [d], it is easy to see that d-dimensional geometric ≤-CSP and d-dimensional geometric
≥-CSP are equivalent.

SoCG 2022
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2.2 Reduction from d-dimensional geometric ≥-CSP to k-Center in Rd

We are now ready to describe our reduction from d-dimensional geometric ≥-CSP to k-
Center in Rd. Fix any d ≥ 2. Let I = (V, D, C) be a d-dimensional geometric ≥-CSP
instance on variables V and domain [δ]d for some integer δ ≥ 1. We fix6 the following two
quantities:

r := 1
4 and ϵ := r2

(d − 1)δ2 = 1
16(d − 1)δ2 . (1)

Since d ≥ 2 and δ ≥ 1, we obtain the following bounds from Equation 1,

0 < ϵ ≤ ϵδ ≤ ϵδ2 ≤ ϵδ2(d − 1) = r2 = 1
16 . (2)

Given an instance I = (V, D, C) of d-dimensional geometric ≥-CSP, we add a set U of
points in Rd as described in Table 1 and Table 2. These set of points are the input for the
instance of the |V|-Center problem.

Table 1 The set U of points in Rd
(
which gives an instance of k-Center

)
constructed from an

instance I = (V, D, C) of d-dimensional geometric ≥-CSP.

(1) Corresponding to variables: If a ∈ V then we add the following set of points which are
collectively called as Border[a]

For each i ∈ [d], the point B+i
a which is located at a ⊕ ei · r(1 − ϵ) ⊕ (1d − ei) · 2ϵδ.

For each i ∈ [d], the point B−i
a which is located at a ⊖ ei · r(1 − ϵ) ⊖ (1d − ei) · 2ϵδ.

This set of points are referred to as border points.
(2) Corresponding to unary constraints: If a ∈ V and

〈
(a), Ra

〉
is the unary constraint on

a, then we add the following set of points which are collectively called as Core[a]:
for each x ∈ Ra ⊆ [δ]d we add a point called Cx

a located at a ⊕ ϵ · x.
This set of points are referred to as core points.

(3) Corresponding to adjacencies in GI : For every edge (a, a′) in GI we add a collection
of δ points denoted by S{a,a′}. Assume, without loss of generality, that a′ = a ⊕ ei for
some i ∈ [d]. Then the set of points S{a,a′} is defined as follows:

for each ℓ ∈ [δ] we add a point Sℓ
{a,a′} which is located at a ⊕ ei · ((1 − ϵ)2r + ϵℓ).

This set of points are referred to as secondary points.

Note that we add at most |V| · 2d many border points, at most |C| many core points, and
at most |V|2 · δ many secondary points. Hence, the total number of points n in the instance
U is ≤ |V| · 2d + |C| + |V|2 · δ = |I|O(1) where |I| = |V| + |D| + |C|. We now prove some
preliminary lemmas to be later used in Section 2.4 and Section 2.3.

2.2.1 Preliminary lemmas

▶ Lemma 7. For each a ∈ V and i ∈ [d], we have dist
(
B+i

a , B−i
a

)
≥ 2r(1 + ϵ).

6 For simplicity of presentation, we choose r = 1/4 instead of r = 1: by scaling the result holds for r = 1.
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Table 2 Notation for some special subsets of points from U . Note that a primary point is either
a core point or a border point.

For each a ∈ V, let D[a] := Core[a]
⋃

Border[a]. (3)

The set of primary points is Primary :=
⋃

a∈V
D[a]. (4)

The set of secondary points is Secondary :=
⋃

a & a′ forms an edge in GI

S{a,a′}. (5)

The final collection of points is U := Primary
⋃

Secondary. (6)

Proof. Fix any a ∈ V and i ∈ [d]. By Table 1, the points B+i
a and B−i

a are located at
a ⊕ ei · r(1 − ϵ) ⊕ (1d − ei) · 2ϵδ and a ⊖ ei · r(1 − ϵ) ⊖ (1d − ei) · 2ϵδ respectively. Hence, we
have that

dist
(
B+i

a , B−i
a

)2 = (2r(1 − ϵ))2 + (d − 1) · (4ϵδ)2 = (2r(1 − ϵ))2 + 16ϵ · (d − 1)ϵδ2,

= (2r(1 − ϵ))2 + 16ϵ · r2, (by definition of ϵ in Equation 1)
= (2r)2[(1 − ϵ)2 + 4ϵ] = (2r(1 + ϵ))2.

◀

▶ Lemma 8. For each a ∈ V, the distance between any two points in Core[a] is < r.

Proof. Fix any a ∈ V . Consider any two points in Core[a], say Cx
a and Cy

a , for some x ̸= y.
By Table 1, these points are located at a ⊕ ϵ · x and a ⊕ ϵ · y respectively. Hence, we have

dist (Cx
a , Cy

a )2 = (ϵ · dist(x, y))2
,

≤ ϵ2 · d · (δ − 1)2, (since x, y ∈ Ra ⊆ [δ]d)

= d(δ − 1)2

(d − 1)2δ4 · r4, (by definition of ϵ in Equation 1)

≤ 1
8 · r4 < r. (since d ≥ 2 and δ ≥ 1)

◀

▶ Lemma 9. For each a ∈ V, the distance of any point from Core[a] to any point from
Border[a] is < 2r.

Proof. Fix any a ∈ V and consider any point Cx
a ∈ Core[a] where x ∈ Ra ⊆ [δ]d. We prove

this lemma by showing that, for each i ∈ [d], the point Cx
a is at distance < 2r from both the

points B+i
a and B−i

a . Fix some i ∈ [d].
(i) By Table 1, the points Cx

a and B+i
a are located at a⊕ϵ·x and a⊕ei ·r(1−ϵ)⊕(1d−ei)·2ϵδ

respectively. Hence, we have

dist
(
Cx

a , B+i
a

)2 = (r(1 − ϵ) − ϵ · x[i])2 +
d∑

j=1: j ̸=i

(2ϵδ − ϵ · x[j])2,

≤ (r(1 − ϵ))2 + (d − 1)(2ϵδ)2, (since x[i], x[j] ≥ 1)
= (r(1 − ϵ))2 + 4ϵr2, (by definition of ϵ in Equation 1)
= (r(1 + ϵ))2 < (2r)2. (since ϵ < 1)

SoCG 2022
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(ii) By Table 1, the points Cx
a and B−i

a are located at a⊕ϵ·x and a⊖ei ·r(1−ϵ)⊖(1d−ei)·2ϵδ

respectively. Hence, we have

dist
(
Cx

a , B−i
a

)2 = (r(1 − ϵ) + ϵ · x[i])2 +
d∑

j=1: j ̸=i

(ϵ · x[j] + 2ϵδ)2,

≤ (r(1 − ϵ) + ϵδ)2 + (d − 1)(3ϵδ)2, (since x[i], x[j] ≤ δ)
= (r(1 − ϵ) + ϵδ)2 + 9ϵr2, (by definition of ϵ)
≤ 2r2(1 − ϵ)2 + 2ϵ2δ2 + 9ϵr2, (since (α + β)2 ≤ 2α2 + 2β2)
≤ 2r2(1 − ϵ)2 + 11ϵr2, (since ϵδ2 ≤ r2)
= 2r2((1 − ϵ)2 + 5.5ϵ) < 2r2(1 + 1.75ϵ)2 < (2r)2. (since ϵ ≤ 1/16)

◀

▶ Lemma 10. For each a ∈ V, the distance of a to any point in Border[a] is r(1 + ϵ).

Proof. Let p be any point in Border[a]. Then we have two choices for p, namely p = B+i
a

or p = B−i
a . In both cases, we have

dist(p, a)2 = (r(1 − ϵ))2 + (d − 1)(2ϵδ)2 = r2(1 − ϵ)2 + 4ϵr2 = (r(1 + ϵ))2,

where the second equality is obtained by the definition of ϵ (Equation 1). ◀

▶ Lemma 11. For each a ∈ V and each i ∈ [d],
If w ∈ U such that dist

(
w, B+i

a
)

< 2r(1 + ϵ) then w ∈
(
D[a]

⋃
S{a,a⊕ei}

)
.

If w ∈ U such that dist
(
w, B−i

a
)

< 2r(1 + ϵ) then w ∈
(
D[a]

⋃
S{a,a⊖ei}

)
.

Proof. The proof of this lemma is deferred to the full version [7]. ◀

▶ Remark 12. Lemma 11 gives a necessary but not sufficient condition. Also, it might be the
case that for some a ∈ V and i ∈ [d] the vector a ⊕ ei /∈ V (resp., a ⊖ ei /∈ V) in which case
the set S{a,a⊕ei}

(
resp., S{a,a⊖ei}

)
is empty.

▶ Lemma 13. Let a ∈ V and i ∈ [d] be such that a′ := (a ⊕ ei) ∈ V. For each ℓ ∈ [δ],
(1) If x ∈ Ra and ℓ ≤ x[i], then dist

(
Cx

a , Sℓ
{a,a′}

)
< 2r.

(2) If x ∈ Ra and ℓ > x[i], then dist
(

Cx
a , Sℓ

{a,a′}

)
≥ 2r(1 + ϵ).

(3) If y ∈ Ra′ and ℓ > y[i], then dist
(

Cy
a′ , Sℓ

{a,a′}

)
< 2r.

(4) If y ∈ Ra′ and ℓ ≤ y[i], then dist
(

Cy
a′ , Sℓ

{a,a′}

)
≥ 2r(1 + ϵ).

Proof. Recall from Table 1 that the points Cx
a and Sℓ

{a,a′} are located at a ⊕ ϵ · x and
a ⊕ ei · ((1 − ϵ)2r + ϵℓ) respectively.

(1) If ℓ ≤ x[i], then dist
(

Cx
a , Sℓ

{a,a′}

)2

= (2r(1 − ϵ) + ϵ(ℓ − x[i]))2 +
d∑

j=1: j ̸=i

(ϵ · x[j])2,

≤ (2r(1 − ϵ))2 + (d − 1)ϵ2δ2 = (2r(1 − ϵ))2 + ϵr2 (since ℓ ≤ x[i] and x[j] ≤ δ)

= (2r)2
(

(1 − ϵ)2 + ϵ

4

)
< (2r)2. (since 0 < ϵ < 1)
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(2) If ℓ > x[i], then dist
(

Cx
a , Sℓ

{a,a′}

)2

= (2r(1 − ϵ) + ϵ(ℓ − x[i]))2 +
d∑

j=1: j ̸=i

(ϵ · x[j])2,

≥ (2r(1 − ϵ) + ϵ)2 = (2r(1 − ϵ) + 4rϵ)2 = (2r(1 + ϵ))2. (since ℓ > x[i] and 4r = 1)

We now show the remaining two claims: recall from Table 1 that the points Cy
a′ and Sℓ

{a,a′}
are located at (a′ ⊕ ϵ · y) = a ⊕ ei ⊕ ϵ · y and a ⊕ ei · ((1 − ϵ)2r + ϵℓ) respectively.

(3) If ℓ > y[i], then dist
(

Cy
a′ , Sℓ

{a,a′}

)2

= (1 + ϵ · y[i] − (1 − ϵ)2r − ϵℓ)2 +
d∑

j=1: j ̸=i

(ϵ · y[j])2,

≤ (4r + ϵ · y[i] − (1 − ϵ)2r − ϵℓ)2 + (d − 1)ϵ2δ2, (since 4r = 1 and y[j] ≤ δ)
= (2r(1 + ϵ) − ϵ(ℓ − y[i]))2 + ϵr2, (since (d − 1)ϵδ2 = r2)
≤ (2r(1 + ϵ) − ϵ)2 + ϵr2, (since ℓ > y[i])
= (2r(1 − ϵ))2 + ϵr2, (since 4r = 1)

= (2r)2
(

(1 − ϵ)2 + ϵ

4

)
< (2r)2. (since 0 < ϵ < 1)

(4) If ℓ ≤ y[i], then dist
(

Cy
a′ , Sℓ

{a,a′}

)2

= (1 + ϵ · y[i] − (1 − ϵ)2r − ϵℓ)2 +
d∑

j=1: j ̸=i

(ϵ · y[j])2,

≥ (2r(1 + ϵ) + ϵ(y[i] − ℓ))2, (since 4r = 1)
≥ (2r(1 + ϵ))2. (since y[i] ≥ ℓ)

◀

▶ Lemma 14. Let a ∈ V and i ∈ [d] be such that a′ := (a ⊕ ei) ∈ V. If a′′ /∈ {a, a′} then the
distance between any point in Core[a′′] and any point in Sa,a′ is at least 2r(1 + ϵ).

Proof. Let p and q be two arbitrary points from Core[a′′] and Sa,a′ , respectively. By Table 1,
p is located at a′′ ⊕ ϵ · x for some x ∈ Ra ⊆ [δ]d and q is located at a ⊕ ei · ((1 − ϵ)2r + ϵℓ)
for some ℓ ∈ [δ].

Since a′ = a ⊕ ei and a′′ /∈ {a, a′}, we have three cases to consider:
a′′[j] = a[j] for all j ̸= i and a′′[i] ≤ a[i] − 1: In this case, we have dist(p, q)2

≥ ((a[i] + (1 − ϵ)2r + ϵℓ) − (a′′[i] + ϵ · x[i]))2
,

(only considering the i-th coordinate)
= (a[i] − a′′[i] + (1 − ϵ)2r + ϵℓ − ϵx[i])2

,

≥ (1 + (1 − ϵ)2r + ϵ · 4r − ϵδ)2
, (since a[i] − a′′[i] ≥ 1, ℓ ≥ 1 = 4r and x[i] ≤ δ)

> (2r(1 + ϵ))2. (since 1 − ϵδ ≥ 1 − 1
16 > 0)
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a′′[j] = a[j] for all j ̸= i and a′′[i] ≥ a[i] + 2: In this case, we have dist(p, q)2

≥ ((a′′[i] + ϵ · x[i]) − (a[i] + (1 − ϵ)2r + ϵℓ))2
,

(only considering the i-th coordinate)
= (a′′[i] − a[i] − (1 − ϵ)2r + ϵ · x[i] − ϵℓ)2

,

≥ (2 − (1 − ϵ)2r + ϵ − ϵδ)2, (since a′′[i] − a[i] ≥ 2, x[i] ≥ 1 and ℓ ≤ δ)
= (4r − (1 − ϵ)2r + 1 + ϵ − ϵδ)2, (since 4r = 1)
> (2r(1 + ϵ))2. (since 1 − ϵδ ≥ 1 − 1

16 > 0)

There exists j ̸= i such that a′′[j] ̸= a[j]: In this case, we have dist(p, q)

≥ |a[j] − (a′′[j] + ϵ · x[j])| , (only considering the j-th coordinate)
≥ |a[j] − a′′[j]| − ϵ · x[j], (by triangle inequality)
≥ 1 − ϵ · δ, (since a[j] ̸= a′′[j] and x[j] ≤ δ)

≥ 2r + 2r − r2 = 2r + 2r
(

1 − r

2

)
, (since 4r = 1 and ϵδ ≤ r2)

> 2r(1 + ϵ). (since 1 − r
2 > 1

16 ≥ ϵ)

◀

2.3 I has a satisfying assignment ⇒ OPT for the instance U of |V|-Center is < 2r

Suppose that the d-dimensional geometric ≥-CSP , I = (V, D, C), has a satisfying assignment
f : V → D. Consider the set of points F given by

{
C

f(a)
a : a ∈ V

}
. Since f : V → D is a

satisfying assignment for I, it follows that f(a) ∈ Ra for each a ∈ V and hence the set F is
well-defined. Clearly, |F | = |V|. We now show that

OPT(F ) :=
(

max
u∈U

(
min
v∈F

dist(u, v)
))

< 2r.

This implies that OPT for the instance U of |V|-Center is < 2r. We show OPT(F ) < 2r

by showing that dist(p, F ) < 2r for each p ∈ U . From Table 1 and Table 2, it is sufficient
to consider the two cases depending on whether p is a primary point or a secondary point.

▶ Lemma 15. If p is a primary point, then dist (p, F ) < 2r.

Proof. If p is a primary point, then by Table 1 and Table 2 it follows that p is either a core
point or a border point.

p is a core point: By Table 1, p ∈ Core[b] for some b ∈ V. Then, Lemma 8 implies
that dist

(
p, C

f(b)
b

)
< r. Since C

f(b)
b ∈ F , we have dist (p, F ) ≤ dist

(
p, C

f(b)
b

)
< r.

p is a border point: By Table 1, p ∈ Border[b] for some b ∈ V . Then, Lemma 9 implies
that dist

(
p, C

f(b)
b

)
< 2r. Since C

f(b)
b ∈ F , we have dist (p, F ) ≤ dist

(
p, C

f(b)
b

)
< 2r.

◀

▶ Lemma 16. If p is a secondary point, then dist (p, F ) < 2r.

Proof. If p is a secondary point, then by Table 1 and Table 2 it follows that there exists
a ∈ V, i ∈ [d] and ℓ ∈ [δ] such that p = Sℓ

{a,a⊕ei}. Note that C
f(a)
a ∈ F and C

f(a⊕ei)
a⊕ei

∈ F .

We now prove the lemma by showing that min
{

dist
(

p, C
f(a)
a

)
, dist

(
p, C

f(a⊕ei)
a⊕ei

)}
< 2r.

Since f : V → D is a satisfying assignment, the binary constraint on a and a ⊕ ei is satisfied,
i.e., δ ≥ f(a)[i] ≥ f(a ⊕ ei)[i] ≥ 1. Since ℓ ∈ [δ], either ℓ ≤ f(a)[i] or ℓ > f(a ⊕ ei)[i]. The
following implications complete the proof:
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If ℓ ≤ f(a)[i], then 13(1) implies that dist
(

C
f(a)
a , p

)
< 2r.

If ℓ > f(a ⊕ ei)[i], then 13(3) implies that dist
(

C
f(a⊕ei)
a⊕ei

, p
)

< 2r. ◀

From Table 2, Lemma 15 and Lemma 16 it follows that OPT for the instance U of |V|-Center
is < 2r.

2.4 I does not have a satisfying assignment ⇒ OPT for the instance U of
|V|-Center is ≥ 2r(1 + ϵ)

Suppose that the instance I = (V, D, C) of d-dimensional geometric ≥-CSP does not have a
satisfying assignment. We want to now show that OPT for the instance U of |V|-Center is
≥ 2r(1 + ϵ). Fix any set Q ⊆ U of size |V|: it is sufficient to show that

OPT(Q) :=
(

max
u∈U

(
min
v∈Q

dist(u, v)
))

≥ 2r(1 + ϵ). (7)

We consider two cases: either
∣∣Q ∩ Core[a]

∣∣ = 1 for each a ∈ V (Lemma 17) or not
(Lemma 18).

▶ Lemma 17. If
∣∣Q ∩ Core[a]

∣∣ = 1 for each a ∈ V then OPT(Q) ≥ 2r(1 + ϵ).

Proof. Since |Q| = |V| and |Q ∩ Core[a]| = 1 for each a ∈ V it follows that the only points
in Q are core points (see Table 1 for definition) and moreover Q contains exactly one core
point corresponding to each element from V. Let ϕ : V → [δ]d be the function such that
Q ∩ Core[a] = C

ϕ(a)
a . By Table 1, it follows that ϕ(a) ∈ Ra for each a ∈ V.

Recall that we are assuming in this section that the instance I = (V, D, C) of d-dimensional
geometric ≥-CSP does not have a satisfying assignment. Hence, in particular, the function
ϕ : V → [δ]d is not a satisfying assignment for I. All unary constraints are satisfied since
ϕ(a) ∈ Ra for each a ∈ V. Hence, there is some binary constraint which is not satisfied by
ϕ: let this constraint be violated for the pair a, a ⊕ ei for some a ∈ V and i ∈ [d]. Let us
denote a ⊕ ei by a′. The violation of the binary constraint on a and a ⊕ ei by ϕ implies that
1 ≤ ϕ(a)[i] < ϕ(a′)[i] ≤ δ. We now show that dist

(
Q, S

ϕ(a′)[i]
{a,a′}

)
≥ (2r(1 + ϵ) which, in turn,

implies that OPT(Q) ≥ 2r(1 + ϵ). The following implications complete the proof.
13(2) implies that dist

(
S

ϕ(a′)[i]
{a,a′} , C

ϕ(a)
a

)
≥ 2r(1 + ϵ).

13(4) implies that dist
(

S
ϕ(a′)[i]
{a,a′} , C

ϕ(a′)
a′

)
≥ 2r(1 + ϵ).

Consider any point s ∈ Q \
{

C
ϕ(a)
a , C

ϕ(a′)
a′

}
. Then s ∈ Core[a′′] for some a′′ /∈ {a, a′}.

Now Lemma 14 implies that dist
(

S
ϕ(a′)[i]
{a,a′} , s

)
≥ 2r(1 + ϵ). ◀

▶ Lemma 18. If there exists a ∈ V such that
∣∣Q ∩ Core[a]

∣∣ ̸= 1 then OPT(Q) ≥ 2r(1 + ϵ).

Proof. Suppose that OPT(Q) < 2r(1 + ϵ). To prove the lemma, we will now show that this
implies |Q ∩ Core[a]| = 1 for each a ∈ V . This is done via the following two claims, namely
Claim 19 and Claim 20.

▷ Claim 19.
∣∣Q ∩ D[a]

∣∣ = 1 for each a ∈ V.

Proof. Define three sets I0, I1 and I≥2 as follows:

I0 :=
{

a ∈ V :
∣∣Q ∩ D[a]

∣∣ = 0
}

(8)
I1 :=

{
a ∈ V :

∣∣Q ∩ D[a]
∣∣ = 1

}
(9)

I≥2 :=
{

a ∈ V :
∣∣Q ∩ D[a]

∣∣ ≥ 2
}

(10)
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By definition, we have

|I0| + |I1| + |I≥2| = |V| (11)

Consider a variable b ∈ I0. Since dist
(
Q, B+i

b
)

and dist
(
Q, B−i

b
)

< 2r(1 + ϵ), and
Q ∩ D[b] = ∅, Lemma 11 implies that for each i ∈ [d],

(i) Q must contain a point from S{b,b⊕ei}, and
(ii) Q must contain a point from S{b,b⊖ei}.

Since each secondary point can be “charged” to two variables in V (for example, the set
S{b,b⊕ei} corresponds to both b and b ⊕ ei), it follows that Q contains ≥ 2d

2 = d ≥ 2 distinct
secondary points corresponding to each variable in I0. Therefore, we have

|I0| + |I1| + |I≥2| = |V| = |Q| , (from Equation 11)
≥ |Q ∩ Primary| + |Q ∩ Secondary| ,

(since Primary ∩ Secondary = ∅)
≥ (|I1| + 2|I≥2|) + |Q ∩ Secondary| , (by definition of I1 and I≥2)
≥ (|I1| + 2|I≥2|) + 2|I0|, (12)

where the last inequality follows because Q contains at least 2 secondary points corresponding
to each variable in I0. Hence, we have |I0| + |I1| + |I≥2| ≥ 2|I0| + |I1| + 2|I≥2| which implies
|I0| = 0 = |I≥2|. From Equation 11, we get |I1| = |V|, i.e.,

∣∣Q ∩ D[a]
∣∣ = 1 for each a ∈ V.

This concludes the proof of Claim 19. ◁

Since |Q| =
∣∣V∣∣ and D[a] ∩ D[b] = ∅ for distinct a, b ∈ V, Claim 19 implies that

Q contains no secondary points. (13)

We now prove that Q doesn’t contain border points either.

▷ Claim 20.
∣∣Q ∩ Core[a]

∣∣ = 1 for each a ∈ V

Proof. Fix any a ∈ V . From Claim 19, we know that
∣∣Q∩D[a]

∣∣ = 1. Suppose that this unique
point in Q ∩ D[a] is from Border[a]. Without loss of generality, let Q ∩ D[a] =

{
B+i

a
}

for
some i ∈ [d]. Since OPT(Q) < 2r(1 + ϵ), it follows that dist

(
Q, B−i

a
)

< 2r(1 + ϵ). Hence,
Lemma 11(2) implies that Q ∩

(
D[a]

⋃
S{a,a⊖ei}

)
̸= ∅. Since Q contains no secondary

points (Equation 13), we have Q ∩
(
D[a]

⋃
S{a,a⊖ei}

)
= Q ∩ D[a] =

{
B+i

a
}

. But from
Lemma 7 we know dist

(
B+i

a , B−i
a

)
≥ 2r(1 + ϵ). We thus obtain a contradiction. This

concludes the proof of Claim 20. ◁

Therefore, we have shown that OPT(Q) < 2r(1 + ϵ) implies
∣∣Q ∩ Core[a]

∣∣ = 1 for each
a ∈ V. This concludes the proof of Lemma 18. ◀

2.5 Finishing the proof of Theorem 1
Finally, we are ready to prove Theorem 1 which is restated below.

▶ Theorem 1. For any d ≥ 2, under the Exponential Time Hypothesis (ETH), the discrete
k-Center problem in d-dimensional Euclidean space

(Inapproximability result) does not admit an (1 + ϵ)-approximation in f(k) ·
( 1

ϵ

)o(k1−1/d) ·
no(k1−1/d) time where f is any computable function and n is the number of points.
(Lower bound for exact algorithm) cannot be solved in f(k) · no(k1−1/d) time where f is
any computable function and n is the number of points.
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Proof. Given an instance I = (V, D, C) of a d-dimensional geometric ≥-CSP, we build an
instance U of |V|-Center in Rd given by the reduction in Section 2.2. This reduction has
the property that

if I does not have a satisfying assignment then OPT for the instance U of |V|-Center is
≥ 2r(1 + ϵ∗) (Section 2.4), and
if I has a satisfying assignment then OPT for the instance U of |V|-Center is < 2r

(Section 2.3),

where r = 1/4 and ϵ∗ = r2

(d − 1)δ2 ≥ 1
16(d − 1)|D|

, since |D| =
∣∣[δ]d

∣∣ ≥ δ2. Hence, any

algorithm for the |V|-center problem which has an approximation factor ≤ (1 + ϵ∗) can solve
the d-dimensional geometric ≥-CSP. Note that the instance U of k-Center in Rd has k = |V|
and the number of points n ≤ |V| · 2d + |C| + |V|2 · δ = |I|O(1) where |I| = |V| + |D| + |C|.
We now derive the two lower bounds claimed in the theorem.

(Inapproximability result) Suppose that there exists d ≥ 2 such that the k-center on n

points in Rd admits an (1 + ϵ)-approximation algorithm in f(k) ·
(

1
ϵ

)o(k1−1/d)
· no(k1−1/d)

time for some computable function f . As argued above, using a (1 + ϵ∗)-approximation
for the k-center problem with k = |V| and n = |I|O(1) points can solve the d-dimensional
geometric ≥-CSP problem. Recall that 16(d − 1)|I| ≥ 16(d − 1)|D| ≥ 1

ϵ∗ since |I| =
|V| + |D| + |C|, and hence we have an algorithm for the d-dimensional geometric ≥-
CSP problem which runs in time f (|V|) · (16d)o(k1−1/d) · |I|o(k1−1/d) which contradicts
Theorem 5.
(Lower bound for exact algorithm) Suppose that there exists d ≥ 2 such that the
k-center on n points in Rd admits an exact algorithm in f(k) · no(k1−1/d) time for some
computable function f . As argued above7, solving the k center problem with k = |V|
and n = |I|O(1) points can solve the d-dimensional geometric ≥-CSP problem. Hence, we
have an algorithm for the d-dimensional geometric ≥-CSP problem which runs in time
f (|V|) · |I|o(k1−1/d) which again contradicts Theorem 5. ◀
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