
On Semialgebraic Range Reporting
Peyman Afshani #

Aarhus University, Denmark

Pingan Cheng #

Aarhus University, Denmark

Abstract
Semialgebraic range searching, arguably the most general version of range searching, is a fundamental
problem in computational geometry. In the problem, we are to preprocess a set of points in RD such
that the subset of points inside a semialgebraic region described by a constant number of polynomial
inequalities of degree ∆ can be found efficiently.

Relatively recently, several major advances were made on this problem. Using algebraic techniques,
“near-linear space” data structures [6, 18] with almost optimal query time of Q(n) = O(n1−1/D+o(1))
were obtained. For “fast query” data structures (i.e., when Q(n) = no(1)), it was conjectured that
a similar improvement is possible, i.e., it is possible to achieve space S(n) = O(nD+o(1)). The
conjecture was refuted very recently by Afshani and Cheng [3]. In the plane, i.e., D = 2, they
proved that S(n) = Ω(n∆+1−o(1)/Q(n)(∆+3)∆/2) which shows Ω(n∆+1−o(1)) space is needed for
Q(n) = no(1). While this refutes the conjecture, it still leaves a number of unresolved issues: the
lower bound only works in 2D and for fast queries, and neither the exponent of n or Q(n) seem to be
tight even for D = 2, as the best known upper bounds have S(n) = O(nm+o(1)/Q(n)(m−1)D/(D−1))
where m =

(
D+∆

D

)
− 1 = Ω(∆D) is the maximum number of parameters to define a monic degree-∆

D-variate polynomial, for any constant dimension D and degree ∆.
In this paper, we resolve two of the issues: we prove a lower bound in D-dimensions, for constant

D, and show that when the query time is no(1) + O(k), the space usage is Ω(nm−o(1)), which almost
matches the Õ(nm) upper bound and essentially closes the problem for the fast-query case, as far
as the exponent of n is considered in the pointer machine model. When considering the exponent
of Q(n), we show that the analysis in [3] is tight for D = 2, by presenting matching upper bounds
for uniform random point sets. This shows either the existing upper bounds can be improved or to
obtain better lower bounds a new fundamentally different input set needs to be constructed.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Computational Geometry, Range Searching, Data Structures and Algorithms,
Lower Bounds

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.3

Related Version Full Version: https://arxiv.org/abs/2203.07096

Funding Supported by DFF (Det Frie Forskningsråd) of Danish Council for Independent Research
under grant ID DFF−7014−00404.

1 Introduction

In the classical semialgebraic range searching problem, we are to preprocess a set of n

points in RD such that the subset of points inside a semialgebraic region, described by a
constant number of polynomial inequalities of degree ∆ can be found efficiently. Recently,
two major advances were made on this problem. First, in 2019, Agarwal et al. [5] showed for
polylogarithmic query time, it is possible to build a data structure of size Õ(nβ) space1, where
β is the number of parameters needed to specify a query polynomial. For example, for D = 2,

1 Ω̃(·), Õ(·), Θ̃(·) notations hide logo(1) n factors;
o

Ω(·),
o

O(·),
o

Θ(·) notations hide no(1) factors.

© Peyman Afshani and Pingan Cheng;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 3; pp. 3:1–3:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:peyman@cs.au.dk
mailto:pingancheng@cs.au.dk
https://doi.org/10.4230/LIPIcs.SoCG.2022.3
https://arxiv.org/abs/2203.07096
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 On Semialgebraic Range Reporting

a query polynomial is in the form of
∑

i+j≤∆ aijxiyj ≤ 0 where aij ’s are specified at the
query time, and when ∆ = 4, β can be as large as 14 (technically, there are 15 coefficients but
one coefficient can always be normalized to be 1). In this case, a major conjecture was that if
this space bound could be improved to Õ(nD) (e.g., for ∆ = 4, from Õ(n14) to Õ(n2)). Very
recently, Afshani and Cheng [3] refuted this conjecture by showing an

o

Ω(n∆+1) lower bound.
However, there are two major limitations of their lower bound. First, their lower bound
only works in R2, while the upper bound in [5] holds for all dimensions. Second, their lower
bound only works for queries of form y −

∑∆
i=0 xi ≤ 0 and thus their lower bound does not

give a satisfactory answer to the problem in the general case. For example, for D = 2, ∆ = 4,
they show a

o

Ω(n5) lower bound whereas the current best upper bound is Õ(n14). In general,
their space lower bound is at most

o

Ω(n∆+1) while the upper bound of [5] can be Õ(nΘ(∆2)),
which leaves an unsolved wide gap, even for D = 2. Another problem brought by [5] is the
space-time tradeoff. When restricted to queries of the form y −

∑∆
i=0 xi ≤ 0, the current

upper bound tradeoff is S(n) = Õ(n∆+1/Q(n)2∆) [18, 5] while the lower bound in [3] is
S(n) =

o

Ω(n∆+1/Q(n)(∆+3)∆/2). Even for ∆ = 2, we observe a discrepancy between an
S(n) = Õ(n3/Q(n)4) upper and an S(n) =

o

Ω(n3/Q(n)5) lower bound.
Here, we make progress in both lower and upper bound directions. We give a general lower

bound in D dimensions that is tight for all possible values of β. Our lower bound attains the
maximum possible β value mD,∆ =

(
D+∆

D

)
− 1, e.g.,

o

Ω(n14) for D = 2, ∆ = 4. Thus, our
lower bounds almost completely settle the general case of the problem for the fast-query
case, as far as the exponent of n is concerned. This improvement is quite non-trivial and
requires significant new insights that are not avaiable in [3]. For the upper bound, we present
a matching space-time tradeoff for the two problems studied in [3] for uniform random point
sets. This shows their lower bound analysis is tight. Since for most range searching problems,
a uniform random input instance is the hardest one, our results show that current upper
bound based on the classical method might not be optimal. We develop a set of new ideas
for our results which we believe are important for further investigation of this problem.

1.1 Background

In range searching, the input is a set of points in RD for a fixed constant D. The goal is to
build a structure such that for a query range, we can report or find the points in the range
efficiently. This is a fundamental problem in computational geometry with many practical
uses in e.g., databases and GIS systems. For more information, see surveys by Agarwal [14] or
Matoušek [17]. We focus on a fundamental case of the problem where the ranges are semial-
gebraic sets of constant complexity which are defined by intersection/union/complementation
of O(1) polynomial inequalities of constant degree at most ∆ in RD.

The study of this problem dates back to at least 35 years ago [19]. A linear space
and O(n1−1/D+o(1)) query time structure is given by Agarwal, Matoušek, and Sharir [6],
due to the recent “polynomial method” breakthrough [15]. However, it is not entirely
clear what happens to the “fast-query” case: if we insist on polylogarithmic query time,
what is the smallest possible space usage? Early on, some believed that the number of
parameters plays an important role and thus Õ(nβ) space could be a reasonable conjecture [17],
but such a data structure was not found until 2019 [5]. However, after the “polynomial
method” revolution, and specifically after the breakthrough result of Agarwal, Matoušek and
Sharir [6], it could also be reasonably conjectured that Õ(nD) could also be the right bound.
However, this was refuted recently by Afshani and Cheng [3] who showed that in 2D, and for

P. Afshani and P. Cheng 3:3

polynomials for the form y −
∑∆

i=0 xi ≤ 0, there exists an
o

Ω(n∆+1) space lower bound for
data structures with query time

o

O(1). However, this lower bound does not go far enough,
even in 2D, where a semialgebraic range can be specified by bivariate monic polynomial
inequalities2 of form

∑
i,j:i+j≤∆ aijxiyj ≤ 0 with a∆0 = −1. In this case, β can be as large

as m2,∆ =
(∆+2

2
)

− 1 = Θ(∆2), and much larger than ∆ + 1 even for moderate ∆ (e.g., for
∆ = 4, “5” versus “14”, for ∆ = 5, “6” versus “20” and so on). Another main weakness is
that their lower bound is only in 2D, but the upper bound [5] works in arbitrary dimensions.

The correct upper bound tradeoff seems to be even more mysterious. Typically, the tradeoff
is obtained by combining the linear space and the polylogarithmic query time solutions.
For simplex range searching (i.e., when ∆ = 1), the tradeoff is S(n) = Õ(nD/Q(n)D) [16],
which is a natural looking bound and it is also known to be optimal. The tradeoff bound
becomes very mysterious for semialgebraic range searching. For example, for D = 2 and
when restricted to queries of the form y −

∑∆
i=0 xi ≤ 0, combining the existing solutions

yields the bound S(n) = Õ(n∆+1/Q(n)2∆) whereas the known lower bound [3] is S(n) =
o

Ω(n∆+1/Q(n)(∆+3)∆/2). One possible reason for this gap is that the lower bound construction
is based on a uniform random point set, while in practice, the input can be pathological. But
in general the uniform random point set assumption is not too restrictive for range searching
problems. Almost all known lower bounds rely on this assumption: e.g., half-space range
searching [9, 7, 8], orthogonal range searching [11, 12, 2], simplex range searching [10, 13, 1].

1.2 Our Results
Our results consist of two parts. First, we study a problem that we call “the general
polynomial slab range reporting”. Formally, let P (X) be a monic D-variate polynomial of
degree at most ∆, a general polynomial slab is defined to be the region between P (X) = 0
and P (X) = w for some parameter w specified at the query time. Unlike [3], our construction
can reach the maximum possible parameter number mD,∆. For simplicity, we use m

instead of mD,∆ when the context is clear. We give a space-time tradeoff lower bound of
S(n) =

o

Ω(nm/Q(n)Θ((∆2+D∆)m)), which is (almost) tight when Q(n) = no(1).
For the second part, we present data structures that match the lower bounds studied in

the work by Afshani and Cheng [3]. We show that their lower bounds for 2D polynomial
slabs and 2D annuli are tight for uniform random point sets. Our bound shows that current
tradeoff given by the classical method of combining extreme solutions [18, 5] might not be
tight. We shred some lights on the upper bound tradeoff and develop some ideas which could
be used to tackle the problem. Our results are summarized in Table 1.

1.3 Technical Contributions
Compared to the previous lower bound in [3], we need to wrestle with many complications
that stem from the algebraic geometry nature of the problem. In Section 3, we cover them
in greater detail, but briefly speaking, the technical heart of the results in [3] is that “two
univariate polynomials P1(x) and P2(x) that have sufficiently different leading coefficients,
cannot pass close to each other for too long. However, this claim is not true for even bivariate
polynomials, since P1(x, y) and P2(x, y) could have infinitely many roots in common and
thus we can have P1(x, y) − P2(x, y) = 0 in an unbounded region of R2. Overcoming this
requires significant innovations.

2 We define that a D-variate polynomial P (X1, X2, · · · , XD) is monic if the coefficient of X∆
2 is −1.

SoCG 2022

3:4 On Semialgebraic Range Reporting

Table 1 Our Results (marked by ∗). Our upper bounds are for uniform random point sets.

Query Types Lower Bound Upper Bound

General Polynomial Slabs(
m = mD,∆ =

(
D+∆

D

)
− 1
) S(n) =

o

Ω
(

nm

Q(n)Θ(m)

)∗
S(n) = Õ

(
nm

Q(n)Θ(m)

)
[18, 5]

When Q(n) =
o

O(1) S(n) =
o

Ω (nm)∗
S(n) = Õ (nm) [18, 5]

2D Semialgebraic Sets(
m = m2,∆ =

(2+∆
2

)
− 1
) S(n) =

o

Ω
(

nm

Q(n)m+m2(m−1)−1

)∗ S(n) = Õ
(

nm

Q(n)2m−2

)
[18, 5]

S(n) = Õ
(

nm

Q(n)3m−4

)∗

2D Polynomial Slabs S(n) =
o

Ω
(

n∆+1

Q(n)(∆+3)∆/2

)
[3]

S(n) = Õ
(

n∆+1

Q(n)2∆

)
[18, 5]

S(n) = Õ
(

n∆+1

Q(n)(∆+3)∆/2

)∗

2D Annuli S(n) =
o

Ω
(

n3

Q(n)5

)
[3]

S(n) = Õ
(

n3

Q(n)4

)
[18, 5]

S(n) = Õ
(

n3

Q(n)5

)∗

2 Preliminaries

In this section, we introduce some tools we will use in this paper. We will mainly use the
lower bound tools used in [3]. For more detailed introduction, we refer the readers to [3].

2.1 A Geometric Lower Bound Framework
We present a lower bound framework in the pointer machine model of computation. It is a
streamlined version of the framework by Chazelle [11] and Chazelle and Rosenberg [13]. In
essence, this is an encapsulation of the way the framework is used in [3].

In a nutshell, in the pointer machine model, the memory is represented as a directed
graph where each node can store one point and it has two pointers to two other nodes. Given
a query, starting from a special “root” node, the algorithm explores a subgraph that contains
all the input points to report. The size of the explored subgraph is the query time.

Intuitively, for range reporting, to answer a query fast, we need to store its output points
close to each other. If each query range contains many points to report and two ranges share
very few points, some points must be stored multiple times, thus the total space usage must
be big. We present the framework, and refer the readers to the full version of the paper for
the proof.

▶ Theorem 1. Suppose the D-dimensional geometric range reporting problems admit an S(n)
space and Q(n)+O(k) query time data structure, where n is the input size and k is the output
size. Let µD(·) denote the D-dimensional Lebesgue measure. (We call this D-measure for
short.) Assume we can find m = nc ranges R1,R2, · · · ,Rm in a D-dimensional cube CD of
side length |l| for some constant c such that (i) ∀i = 1, 2, · · · , m, µD(Ri∩CD) ≥ 4c|l|DQ(n)/n;
and (ii) µD(Ri ∩ Rj) = O(|l|D/(n2

√
log n)) for all i ̸= j. Then, we have S(n) =

o

Ω(mQ(n)).

2.2 A Lemma for Polynomials
Given a univariate polynomial and some positive value w, the following lemma from [3] upper
bounds the length of the interval within which the absolute value of the polynomial is no
more than w. We will use this lemma as a building block for some of our proofs.

P. Afshani and P. Cheng 3:5

▶ Lemma 2 (Afshani and Cheng [3]). Given a degree-∆ univariate polynomial P (x) =∑∆
i=0 aix

i where |a∆| > 0 and ∆ > 0. Let w be any positive value. If |P (x)| ≤ w for all
x ∈ [x0, x0 + t] for some parameter x0, then t = O((w/|a∆|)1/∆).

2.3 Useful Properties about Matrices
In this section, we recall some useful properties about matrices. We first recall some properties
of the determinant of matrices. One important property is that the determinant is mutilinear:

▶ Lemma 3. Let A =
[
a1 · · · an

]
be a n×n matrix where ai’s are vectors in Rn. Suppose

aj = r · w + v for some r ∈ R and w, v ∈ Rn, then the determinant of A, denoted det(A), is

det(A) = det
([

a1 · · · aj−1 aj aj+1 · · · an

])
= r · det

([
a1 · · · aj−1 w aj+1 · · · an

])
+ det

([
a1 · · · aj−1 v aj+1 · · · an

])
.

One of the special types of matrices we will use is the Vandermonde matrix which is a
square matrix where the terms in each row form a geometric series, i.e., Vij = xj−1

i for all
indices i and j. The determinant of such a matrix is det(V) =

∏
1≤i<j≤n(xj − xi).

Given an n-tuple λ = (λ1, λ2, · · · , λn) where λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, we can define a
generalized Vandermonde matrix V ∗ defined by λ, where V ∗

ij = x
λn−j+1+j−1
i . The determinant

of V ∗ is known to be the product of the determinant of the induced Vandermonde matrix
VV ∗ with Vij = xj−1

i and the Schur polynomial sλ(x1, x2, · · · , xn) =
∑

T xt1
1 · · · xtn

n , where
the summation is over all semistandard Young tableaux [20] T of shape λ. The exponents
t1, t2, · · · , tn are all nonnegative numbers. The following lemma bounds the determinant of
a generalized Vandermonde matrix.

▶ Lemma 4. Let V ∗ be a generalized Vandermonde matrix defined by λ = (λ1, λ2, · · · , λn)
where λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. If n, λ1 = Θ(1), and for all i, xi = Θ(1), then det(V ∗) =
Θ(det(VV ∗)), where VV ∗ is the induced Vandermonde matrix with Vij = xj−1

i .

3 Lower Bound for Range Reporting with General Polynomial Slabs

In this section, we prove our main lower bound for general polynomial slabs.

▶ Definition 5. A general polynomial slab in RD is a triple (P, a, b) where P ∈ R[X] is a
degree-∆ D-variate polynomial and a, b are two real numbers such that a < b. A general
polynomial slab is defined as {X ∈ RD : a ≤ P (X) ≤ b}. Note that due to rescaling, we can
assume that the polynomial is monic.

Before presenting our results, we first describe the technical challenges of this problem.
We explain why the construction used in [3] cannot be generalized in an obvious way and
give some intuition behind our lower bound construction.

3.1 Technical Challenges

Our goal is a lower bound of the form
o

Ω(nm/Q(n)Θ(m)). To illustrate the challenges, consider
the case D = 2 and the unit square U = U2 = [0, 1] × [0, 1]. To use Theorem 1, we need to
generate about

o

Ω(nm) polynomial slabs such that each slab should have width approximately
Ω(Q(n)/n), and any two slabs should intersect with area approximately O(1/n). Intuitively,
this means two slabs cannot intersect over an interval of length Ω(1/Q(n)).

SoCG 2022

3:6 On Semialgebraic Range Reporting

In Lemma 2, for univariate polynomials, the observation behind their construction is that
when the leading coefficients of two polynomials differ by a large number, the length of the
interval in which two polynomials are close to each other is small. However, when we consider
general bivariate polynomials in R2, this observation is no longer true. For example, consider
P1(x, y) = (x + 1)(1000x2 + y) and P2(x, y) = (x + 1)(x2 + 1000y). The leading coefficients
are 1000 and 1 respectively, but since P1, P2 have a common factor (x + 1), their zero sets
have a common line. Thus any slab of width Q(n)/n generated for these two polynomial will
have infinite intersection area, which is too large to be useful.

At first glance, it might seem that this problem can be fixed by picking the polynomials
randomly, e.g., each coefficient is picked independently and uniformly from the interval
[0, 1], as a random polynomial in two or more variables is irreducible with probability 1.
Unfortunately, this does not work either but for some very nontrivial reasons. To see this,
consider picking coefficients uniformly at random from range [0, 1] for bivariate polynomials
P (x, y) =

∑
i+j≤∆ aijxiyj . The probability of pick a polynomial with 0 ≤ a0j ≤ 1

n for all a0j

is 1
n∆+1 . For such polynomials, 0 ≤ P (0, y) ≤ ∆+1

n for y ∈ [0, 1]. Suppose we sampled two
such polynomials, then the two slabs generated using them will contain x = 0 for y ∈ [0, 1],
meaning, the two slabs will have too large of an area (Ω(Q(n)/n)) in common, so we cannot
have that. Unfortunately, if we sample more than n∆+1 polynomials, this will happen with
probability close to one, and there seems to be no easy fix. A deeper insight into the issue is
given below.

Map a polynomial
∑

i+j≤∆ aijxiyj to the point (a00, a01, · · · , a∆0) in Rm. The above
randomized construction corresponds to picking a random point from the unit cube U in Rm.
Now consider the subset Γ of Rm that corresponds to reducible polynomials. The issue is that
Γ intersects U and thus we will sample polynomials that are close to reducible polynomials,
e.g., a sampled polynomial with a0j = 0 ∈ [0, 1

n] is close to the reducible polynomial with
a0j = 0. Pick a large enough sample and two points will lie close to the same reducible
polynomial and thus they will produce a “large” overlap in the construction. Our main
insight is that there exists a point p in U that has a “fixed” (i.e., constant) distance to Γ;
thus, we can consider a neighborhood around p and sample our polynomials from there.
However, more technical challenges need to be overcome to even make this idea work but it
turns out, we can simply pick our polynomials from a grid constructed in the small enough
neighborhood of some such point p in Rm.

3.2 A Geometric Lemma
In this section, we show a geometric lemma which we will use to establish our lower bound. In
a nutshell, given two monic D-variate polynomials P1, P2 and a point p = (p2, p3, · · · , pD) ∈
RD−1 in the (D − 1)-dimensional subspace perpendicular to the X1-axis, we define the
distance between Z(P1)3 and Z(P2) along the X1-axis at point p to be |a − b|, where
(a, p2, · · · , pD) ∈ Z(P1) and (b, p2, · · · , pD) ∈ Z(P2). In general, this distance is not well-
defined as there could be multiple a and b’s satisfying the definition. But we can show that
for a specific set of polynomials, a, b can be made unique and thus the distance is well-defined.
For P1, P2 with “sufficiently different” coefficients, we present a lemma which upper bounds
the (D − 1)-measure of the set of points p at which the distance between Z(P1) and Z(P2)
is “small”. Intuitively, this can be viewed as a generalization of Lemma 2. We first prove the
lemma in 2D for bivariate polynomials, and then extend the result to higher dimensions.

3 Z(P) denotes the zero set of polynomial P .

P. Afshani and P. Cheng 3:7

First, we define the notations we will use for general D-variate polynomials.

▶ Definition 6. Let ID ⊆ {(i1, i2, · · · , iD) ∈ ND}4, D ≥ 1, be a set of D-tuples where
each tuple consists of nonnegative integers. We call ID an index set (of dimension D). Let
XD = (X1, X2, · · · , XD) be a D-tuple of indeterminates. When the context is clear, we use
X for simplicity. Given an index set ID, we define

P (X) =
∑

i∈ID

AiX
i,

where Ai ∈ R is the coefficient of Xi and Xi = Xi1
1 Xi2

2 · · · XiD

D , to be a D-variate polynomial.
For any i ∈ ID, we define σ(i) =

∑D
j=1 ij. Let ∆ be the maximum σ(i) with Ai ≠ 0, and we

say P is a degree-∆ polynomial. Given a D-tuple T , we use T:j to denote a j-tuple by taking
only the first j components of T . Also, we use notation Tj to specify the j-th component
of T . Conversely, given a (D − 1)-tuple t and a value v, we define t ⊕ v to be the D-tuple
formed by appending v to the end of t.

We will consider polynomials of form

P (X) = X1 − X∆
2 +

∑
i∈ID

AiX
i,

where 0 ≤ Aij = O(ϵ) = o(1) for all σ(i) ≤ ∆ except that Ai = 0 for i = (0, ∆, 0, · · · , 0).
Intuitively, these are monic polynomials packed closely in the neighborhood of P (X) =
X1 − XD

2 . For simplicity, we call them “packed” polynomials. We will prove a property for
packed polynomials that are “sufficiently distant”. More precisely,

▶ Definition 7. Given two distinct packed degree-∆ D-variate polynomials P1, P2, we
say P1, P2 are “distant” if each coefficient of P1 − P2 has absolute value at least ξD =
δτB(ητ)(D−2)∆ > 0 if not zero for parameters δ, η, τ > 0 and ητ = O((1/ϵ)1/B), where
B =

(
b
2
)

and b = m2,∆ is the maximum number of coefficients needed to define a monic
degree-∆ bivariate polynomial.

We will use the following simple geometric observation. See the full version of the paper
for the proof.

▶ Observation 8. Let P be a packed D-variate polynomial and a = (a1, a2, · · · , aD) ∈ Z(P).
If ai ∈ [1, 2] for all i = 2, 3, · · · , D, then there exists a unique a1 such that 0 < a1 = O(1).

With this observation, we can define the distance between the zero sets of two polynomials
along the X1-axis at a point in [1, 2]D−1 of the subspace perpendicular to the X1 axis.

▶ Definition 9. Given two packed polynomials P1, P2 and a point p = (p2, p3, · · · , pD) ∈
[1, 2]D−1, we define the distance between Z(P1) and Z(P2) at p, denoted π(Z(P1), Z(P2), p),
to be |a − b| s.t. a, b > 0, and (a, p2, p3, · · · , PD) ∈ Z(P1) and (b, p2, p3, · · · , PD) ∈ Z(P2).

Now we show a generalization of Lemma 2 to distant bivariate polynomials in 2D.

▶ Lemma 10. Let P1, P2 be two distinct distant bivariate polynomials. Let I = {y :
π(Z(P1), Z(P2), y) = O(w) ∧ y ∈ [1, 2]}, where w = δ/ηB = o(1). Then |I| = O(1

ητ).

4 In this paper, N = {0, 1, 2, · · · }.

SoCG 2022

3:8 On Semialgebraic Range Reporting

Proof. We prove it by contradiction. The idea is that if the claim does not hold, then we
can “tweak” the coefficients of P2 by a small amount such that the tweaked polynomial
and P1 have b common roots. Next, we show this implies that the tweaked polynomial is
equivalent to P1. Finally we reach a contradiction by noting that by assumption at least
one of the coefficients of P1 and P2 is not close. Let P1(x, y) = x − y∆ +

∑∆
i=0
∑∆−i

j=0 aijxiyj

and P2(x, y) = x − y∆ +
∑∆

i=0
∑∆−i

j=0 bijxiyj where by definition all aij ’s and bij ’s are O(ϵ).
Suppose for the sake of contradiction that |I| = ω(1

ητ). We pick b values y1, y2, · · · , yb in
I s.t. |yi − yj | ≥ |I|/b for all i ̸= j. Let x1, x2, · · · , xb be the corresponding values s.t.
(xk, yk) ∈ Z(P1) in the first quadrant, i.e., P1(xk, yk) = 0 for k = 1, 2, · · · , b. Note that

P1(xk, yk) = 0 ≡ xk − y∆
k +

∆∑
i=0

∆−i∑
j=0

aijxi
kyj

k = 0 =⇒ xk = y∆
k − O(ϵ),

since aij = O(ϵ) and xk, yk = O(1) by Observation 8. Since π(Z(P1), Z(P2), yk) = O(w)
for all yk ∈ I, let (xk + ∆xk, yk) be the points on Z(P2), we have P2(xk + ∆xk, yk) =
P2(xk, yk) + Θ(∆xk) = 0. Since |∆xk| = O(w), P2(xk, yk) = γk for some |γk| = O(w). We
would like to show that we can “tweak” every coefficient bij of P2(x, y) by some value dij , to
turn P2 into a polynomial Q s.t. Q(xk, yk) = 0, ∀k = 1, 2, · · · , b. If so, for every pair (xk, yk),

Q(xk, yk) = xk − y∆
k +

∆∑
i=0

∆−i∑
j=0

(bij + dij)xi
kyj

k

= P2(xk, yk) +
∆∑

i=0

∆−i∑
j=0

dijxi
kyj

k

= γk +
∆∑

i=0

∆−i∑
j=0

dij(y∆
k − O(ϵ))iyj

k

= γk +
∆∑

i=0

∆−i∑
j=0

dij(yi∆
k − O(ϵ))yj

k,

where the last equality follows from ϵ = o(1) and 1 ≤ yk ≤ 2. So to find dij ’s and to be able
to tweak P2(x, y), we need to solve the following linear system

1 y1 y2
1 · · · y∆−1

1 y∆
1 − O(ϵ) · · · y∆2

1 − O(ϵ)
1 y2 y2

2 · · · y∆−1
2 y∆

2 − O(ϵ) · · · y∆2

2 − O(ϵ)
...

...
...

. . .
...

...
. . .

...
1 yb y2

b · · · y∆−1
b y∆

b − O(ϵ) · · · y∆2

b − O(ϵ)

 ·


d00
d01

...
d∆0

 =


−γ1
−γ2

...
−γb

 ,

where the exponents of yk are generated by i∆ + j for i, j ∈ {0, 1, 2, · · · , ∆}, j ̸= ∆, and
i + j ≤ ∆. Let us call the above linear system A · d = γ.

By Lemma 3, det(A) = det(A∗) +
∑Θ(1)

l=1 det(Al), where A∗ is a generalized Vandermonde
matrix defined by an b-tuple λ = (∆2 − b, . . . , 0), and each Al is a matrix with some
columns being O(ϵ). Since b =

(2+∆
2
)

− 1 is Θ(1), by Lemma 4, we can bound det(A∗) by
Θ(det(VA∗)), where VA∗ is the induced Vandermonde matrix. Since |yi −yj | = Ω(|I|) for i ≠ j,
det(VA∗) =

∏
1≤i<j≤b(yj − yi)) = Ω(|I|B). On the other hand, for every matrix Al, there is

at least one column where the magnitude of all the entries is O(ϵ). Since all other entries are
bounded by O(1), by the Leibniz formula for determinants, | det(Al)| = O(ϵ) = O((1

ητ)B).
Since |I|B = ω((1

ητ)B), we can bound | det(A)| = Ω(|I|B) and in particular | det(A)| ≠ 0

P. Afshani and P. Cheng 3:9

and thus the above system has a solution and the polynomial Q exists. Furthermore, we
can compute d = A−1γ = 1

det(A) C · γ, where C is the cofactor matrix of A. Since all
entries of A are bounded by O(1), then the entries of C, being cofactors of A, are also
bounded by O(1). Since |γk| = O(w) and |I| = ω(1

ητ), for every k = 1, 2, · · · , b, we have
|dij | = O(w/|I|B) = o(w(ητ)B) = o(δτB).

However, since both Z(P1) and Z(Q) pass through these b points, both P1 and Q should
satisfy A · c1 = 0 and A · c2 = 0, where c1, c2 are their coefficient vectors respectively. But
since det(A) ̸= 0, c1 = c2, meaning, P1 ≡ Q. This means for every i, j = 0, 1, · · · , ∆, where
j ≠ ∆ and i + j ≤ ∆, |aij − bij | = dij = o(δτB). However, by assumption, if two polynomials
are not equal, then there exists at least one cij such that they differ by at least δτB, a
contradiction. So |I| = O(1

ητ). ◀

We now generalize Lemma 10 to higher dimensions.

▶ Lemma 11. Let P1, P2 be two distinct distant D-variate polynomials. Let S = {X :
π(Z(P1), Z(P2), X) = O(w) ∧ X ∈ [1, 2]D−1}, where w = δ/ηB = o(1). Then µD−1(S) =
O(1

ητ).

Proof. We prove the lemma by induction. The base case when D = 2 is Lemma 10. Now
suppose the lemma holds for dimension D − 1, we prove it for dimension D. Observe that we
can rewrite a D-variate polynomial P (X) = X1 − X∆

2 +
∑

i∈ID AiX
i as P (X) = X1 − X∆

2 +∑
j∈ID

:D−1
(fj(XD))Xj

:D−1, where fj(XD) =
∑∆−σ(j)

k=0 Aj⊕kXk
D. Consider two distinct distant

D-variate polynomials P (X) = X1 −X∆
2 +

∑
i∈ID AiX

i and Q(X) = X1 −X∆
2 +

∑
i∈ID BiX

i.
Let fj , gj be the corresponding coefficients for Xj

:D−1. Note that there exists some j such
that fj ̸≡ gj because P1, P2 are distinct. Let hj(XD) = fj(XD) − gj(XD) and observe that
hj is a univariate polynomial in XD. We show that the interval length of XD in which
|hj(XD)| < ξD−1 is upper bounded by O(1

ητ) for any hj(XD) ̸≡ 0. Pick any hj(XD) ̸≡ 0
and note that this means there exists at least one coefficient of hj(XD) that is nonzero.
By assumption, each coefficient of hj(XD) has absolute value at least ξD if not zero. If
the constant term is the only nonzero term, then the interval length of XD in which
|hj(XD)| < ξD−1 is 0, since |hj(XD)| ≥ ξD > ξD−1 by definition. Otherwise by Lemma 2,
the interval length |r| for XD in which |hj(XD)| < ξD−1 is upper bounded by

|r| = O

((
ξD−1

ξD

)1/∆
)

= O

((
1

(ητ)∆

)1/∆
)

= O

(
1

ητ

)
.

Since the total number of different j’s is Θ(1), the total number of hj(XD) is then Θ(1).
So the total interval length for XD within which there is some nonzero hj(XD) with
|hj(XD)| < δτD−1 is upper bounded by Θ(1) · O(1

ητ) = O(1
ητ). Since we are in a unit

hypercube, we can simply upper bound µD−1(S) by O(1
ητ) · Θ(1) = O(1

ητ). Otherwise, by
the inductive hypothesis, the (D − 2)-measure of S in [1, 2]D−2 is upper bounded by O(1

ητ).
Integrating over all XD, µD−1(S) is bounded by O(1

ητ) in this case as well. ◀

3.3 Lower Bound for General Polynomial Slabs
Now we are ready to present our lower bound construction. We will use a set S of D-variate
polynomials in R[X] of form:

P (X) = X1 − X∆
2 +

∑
i∈ID

AiX
i,

SoCG 2022

3:10 On Semialgebraic Range Reporting

where X is a D-tuple of indeterminates, ID is an index set containing all D-tuples i

satisfying σ(i) ≤ ∆, and each Ai ∈ {kξD : k = ⌊ ϵ
2ξD

⌋, ⌊ ϵ
2ξD

⌋ + 1, · · · , ⌊ ϵ
ξD

⌋} for some
ξD = δτB(ητ)(D−2)∆ to be set later, except for one special coefficient: we set Ai = 0 for
i = (0, ∆, 0, · · · , 0). Note that every pair of the polynomials in S is distant. A general
polynomial slab is defined to be a triple (P, 0, w) where P ∈ S and w is a parameter to be
set later. We need w = o(ϵ) and ϵ = o(1).

We consider a unit cube UD =
∏D

i=1[1, 2] ⊆ RD and use Framework 1. Recall that to use
Framework 1, we need to lower bound the intersection D-measure of each slab we generated
and UD, and upper bound the intersection D-measure of two slabs.

Given a slab (P, 0, w) in our construction, first note that both P and P − w are packed
polynomials. We define the width of (P, 0, w) to be the distance between Z(P) and Z(P − w)
along the X1-axis. The following lemma shows that the width of each slab we generate will
be Θ(w) in UD. See the full version of the paper for the proof.

▶ Lemma 12. Let P1 ∈ S and P2 = P1−r for any 0 ≤ r = O(w). Then π(Z(P1), Z(P2), X) =
Θ(r) for any X ∈ [1, 2]D−1.

The following simple lemma bounds the (D − 1)-measure of the projection of the intersec-
tion of the zero set of any polynomial in our construction and UD on the (D −1)-dimensional
subspace perpendicular to X1-axis. See the full version of the paper for the proof.

▶ Lemma 13. Let P ∈ S. The projection of Z(P) ∩ UD on the (D − 1)-dimensional space
perpendicular to the X1-axis has (D − 1)-measure Θ(1).

Combining Lemma 12 and Lemma 13, we easily bound the intersection D-measure of any
slab in our construction and UD.

▶ Corollary 14. Any slab in our construction intersects UD with D-measure Θ(w).

Combining Lemma 12 and Lemma 11, we easily bound the intersection D-measure of
two slabs in our construction in UD.

▶ Corollary 15. Any two slabs in our construction intersect with D-measure O(w
ητ) in UD.

Since there are at most m =
(

D+∆
D

)
− 1 parameters for a degree-∆ D-variate monic

polynomial, the number of polynomial slabs we generated is then

Θ
((

ϵ

ξD

)m)
= Θ

((
n

Q(n)1+2B+(D−2)∆2((D−2)∆+2B)
√

log n

)m)
= O(nm),

by setting δ = wQ(n)B, η = Q(n), τ = 2
√

log n, ϵ = 1
Q(n)B2B

√
log n

, and w = cwQ(n)/n for a

sufficiently large constant cw. We pick cw s.t. each slab intersects UD with D-measure, by
Corollary 14, Ω(w) ≥ 4mQ(n)/n. By Corollary 15 the D-measure of the intersection of two
slabs is upper bounded by O(w

Q(n)2
√

log n
) = O(1

n2
√

log n
). By Theorem 1, we get the lower

bound S(n) =
o

Ω
(
nm/Q(n)m+2mB+m(D−2)∆−1) . Thus we get the following result.

▶ Theorem 16. Let P be a set of n points in RD, where D ≥ 2 is an integer. Let R be the
set of all D-dimensional generalized polynomial slabs {(P, 0, w) : deg(P) = ∆ ≥ 2, w > 0}
where P ∈ R[X1, X2, · · · , XD] is a monic degree-∆ polynomial. Let b (resp. m) be the
maximum number of parameters needed to specify a moinc degree-∆ bivariate (resp. D-
variate) polynomial. Then any data structure for P that can answer generalized polynomial
slab reporting queries from R with query time Q(n) + O(k), where k is the output size, must
use S(n) =

o

Ω
(

nm

Q(n)m+2mB+m(D−2)∆−1

)
space, where and B =

(
b
2
)
.

P. Afshani and P. Cheng 3:11

4 Data Structures for Uniform Random Point Sets

In this section, we present data structures for an input point set P uniformly randomly
distributed in a unit square U = [0, 1] × [0, 1] for semialgebraic range reporting queries in
R2. Our hope is that some of these ideas can be generalized to build more efficient data
structures for general point sets. To this end, we show two approaches based on two different
assumptions: one assumes the query curve has bounded curvature, and the other assumes
bounded derivatives. We show that for any degree-∆ bivariate polynomial inequality, we can
build a data structure with space-time tradeoff S(n) = Õ(nm/Q(n)3m−4), which is optimal
for m = 3 [3]. When the query curve has bounded derivatives for the first ∆ orders within
U , this bound sharpens to Õ(nm/Q(n)((2m−∆)(∆+1)−2)/2), which matches the lower bound
in [3] for polynomial slabs generated by inequalities of form y −

∑
i≤∆ aix

i ≥ 0. Since any
polynomial can be factorized into a product of O(1) irreducible polynomials, and we can
show that any irreducible polynomial has bounded curvature (See the full version of the
paper for details), we can express the original range by a semialgebraic set consisting of O(1)
irreducible polynomials. We mention that both data structures can be made multilevel, then
by the standard result of multilevel data structures, see e.g., [16] or [4], it suffices for us to
focus on one irreducible polynomial inequality. So the curvature-based approach works for all
semialgebraic sets. For both approaches, the main ideas are similar: we first partition U into
a Q(n) × Q(n) grid G, and then build a set of slabs in each cell of G to cover the boundary
∂R of a query range R. The boundaries of each slab consist of the zero sets of lower degree
polynomials. We build a data structure to answer degree-∆ polynomial inequality queries
inside each slab, then use the boundaries of slabs to express the remaining parts of R. This
lowers the degree of query polynomials, and then we can use fast-query data structures to
handle the remaining parts. We assume our data structure can perform common algebraic
operations in O(1) time, e.g., compute roots, compute derivatives, etc.

4.1 A Curvature-based Approach
The main observation we use is that when the total absolute curvature of ∂R is small, the
curve behaves like a line, and so we can cover it using mostly “thin” slabs, and a few “thick”
slabs when the curvature is big. See Figure 1 for an example. We use the curvature as a
“budget”: thin slabs have few points in them so we can afford to store them in a “fast” data
structure and the overhead will be small. Doing the same with the thick slabs will blow up
the space too much so instead we store them in “slower” but “smaller” data structures. The
crucial observation here is that for any given query, we only need to use a few “thick” slabs
so the slower query time will be absorbed in the overall query time.

Figure 1 Cover an Ellipse with Slabs of Different Widths.

SoCG 2022

3:12 On Semialgebraic Range Reporting

The high-level idea is to build a two-level data structure. For the bottom-level, we build
a multilevel simplex range reporting data structure [16] with query time Õ(1) + O(k) and
space S(n) = Õ(n2). For the upper-level, for each cell C in G and a parameter α = 2i/Q(n),
for i = 0, · · · , ⌊log Q(n)⌋, we generate a series of parallel disjoint slabs of width α/Q(n)
such that they together cover C. Then we rotate these slabs by angle γ = j/Q(n), for
j = 1, 2, · · · , ⌊2πQ(n)⌋. For each slab we generated during this process, we collect all the
points in it and build a Õ(Q(n)α) + O(k) query time and Õ((n/(Q(n)α))m) space data
structure by linearization [19] to Rm and using simplex range reporting [16].

The following lemma shows we can efficiently report the points close to ∂R using slabs
we constructed. For the proof of this lemma, we refer the readers to the full version of the
paper.

▶ Lemma 17. We can cut ∂R into a set S of O(Q(n)) sub-curves such that for each sub-curve
σ, we can find a set Sσ of slabs that together cover σ. Let Pσ be the subset of the input
that lies inside the query and inside the slabs, i.e., Pσ = R ∩ P ∩ (∪s∈Sσ s). Pσ can be
reported in time Q(n)Õ(κσ + 1/Q(n)) + O(|Pσ|), where κσ is the total absolute curvature of
σ. Furthermore, for any two distinct σ1, σ2 ∈ S, s1 ∩ s2 = ∅ for all s1 ∈ Sσ1 , s2 ∈ Sσ2 .

With Lemma 17, we can now bound the total query time for points close to ∂R by∑
σ Q(n)Õ(κσ + 1/Q(n)) + O(tσ) = Õ(Q(n)) + O(t1), where t1 is the output size. An

important observation is that after covering ∂R, we can express the remaining regions by the
boundaries of the slabs used and G, which are linear inequalities and so we can use simplex
range reporting. Lemma 18 characterizes the remaining regions. See the full version of the
paper for the proof.

▶ Lemma 18. There are O(Q(n)) remaining regions and each region can be expressed using
O(1) linear inequalities. These regions can be found in time O(Q(n)).

With Lemma 18, the query time for the remaining regions is Õ(Q(n)) + O(t2), where t2 is
the number of points in the remaining regions. Then the total query time is easily computed
to be bounded by Õ(Q(n)) + O(k), where k = t1 + t2.

To bound the space usage for the top-level data structure, note that we have Q(n)2 cells,
for each α, we generate Θ(1/Q(n)

α/Q(n)) = Θ(1/α) slabs for each of the Θ(Q(n)) angles. Since
points are distributed uniformly at random, the expected number of points in a slab of width
α/Q(n) in a cell C is O(n · 1

Q(n) · α
Q(n)). So the space usage for the top-level data structure is

S(n) =
∑

α

Q(n)2 · Θ
(

1
α

)
· Θ(Q(n)) · Õ

O
(

n · 1
Q(n) · α

Q(n)

)
Q(n)α

m

= Õ

(
nm

Q(n)3m−4

)
.

On the other hand, we know that the space usage for the bottom-level data structure is
Õ(n2). So the total space usage is bounded by Õ(nm

Q(n)3m−4) for m ≥ 3.
We therefore obtain the following theorem.

▶ Theorem 19. Let R be the set of semialgebraic ranges formed by degree-∆ bivariate polyno-
mials. Suppose we have a polynomial factorization black box that can factorize polynomials into
the product of irreducible polynomials in time O(1), then for any logO(1) n ≤ Q(n) ≤ nϵ for
some constant ϵ, and a set P of n points distributed uniformly randomly in U = [0, 1] × [0, 1],
we can build a data structure of space Õ(nm/Q(n)3m−4) such that for any R ∈ R, we can
report R∩P in time Õ(Q(n))+O(k) in expectation, where m ≥ 3 is the number of parameters
needed to define a degree-∆ bivariate polynomial and k is the output size.

P. Afshani and P. Cheng 3:13

4.2 A Derivative-based Approach
If we assume that the derivative of ∂R is O(1), the previous curvature-based approach can be
easily adapted to get a derivative-based data structure. See the full version of the paper for
details. We can even do better by using slabs whose boundaries are the zero sets of higher
degree polynomials instead of linear polynomials. Using Taylor’s theorem, we show that we
can cover the boundary of the query using “thin” slabs of lower degree polynomials, similar
to the approach above. The full details are presented in the full version of the paper.

▶ Theorem 20. Let R be the set of semialgebraic ranges formed by degree-∆ bivariate
polynomials with bounded derivatives up to the ∆-th order. For any logO(1) n ≤ Q(n) ≤ nϵ for
some constant ϵ, and a set P of n points distributed uniformly randomly in U = [0, 1] × [0, 1],
we can build a data structure which uses space Õ(nm/Q(n)((2m−∆)(∆+1)−2)/2) s.t. for any
R ∈ R, we can report P ∩ R in time Õ(Q(n)) + O(k) in expectation, where m is the number
of parameters needed to define a degree-∆ bivariate polynomial and k is the output size.

▶ Remark 21. We remark that our data structure can also be adapted to support semialgebraic
range searching queries in the semigroup model.

5 Conclusion and Open Problems

In this paper, we essentially closed the gap between the lower and upper bounds of general
semialgebraic range reporting in the fast-query case at least as far as the exponent of n is
concerned. We show that for general polynomial slab queries defined by D-variate polynomials
of degree at most ∆ in RD any data structure with query time no(1) + O(k) must use at least
S(n) =

o

Ω(nm) space, where m =
(

D+∆
D

)
− 1 is the maximum possible parameters needed to

define a query. This matches current upper bound (up to an no(1) factor).
We also studied the space-time tradeoff and showed an upper bound that matches the

lower bounds in [3] for uniform random point sets.
The remaining big open problem here is proving a tight bound for the exponent of Q(n)

in the space-time tradeoff. There is a large gap between the exponents in our lower bound
versus the general upper bound. Our results show that current upper bound might not be
tight. On the other hand, our lower bound seems to be suboptimal when the query time is
nΩ(1) + O(k). Both problems seem quite challenging, and probably require new tools.

References
1 Peyman Afshani. Improved pointer machine and I/O lower bounds for simplex range reporting

and related problems. In Proceedings of the Twenty-Eighth Annual Symposium on Compu-
tational Geometry, SoCG ’12, pages 339–346, New York, NY, USA, 2012. Association for
Computing Machinery. doi:10.1145/2261250.2261301.

2 Peyman Afshani. A new lower bound for semigroup orthogonal range searching. In 35th
International Symposium on Computational Geometry, volume 129 of LIPIcs. Leibniz Int.
Proc. Inform., pages Art. No. 3, 14. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019.

3 Peyman Afshani and Pingan Cheng. Lower Bounds for Semialgebraic Range Searching and
Stabbing Problems. In Kevin Buchin and Éric Colin de Verdière, editors, 37th International
Symposium on Computational Geometry (SoCG 2021), volume 189 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 8:1–8:15, Dagstuhl, Germany, 2021. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.SoCG.2021.8.

4 Pankaj K. Agarwal. Simplex range searching and its variants: a review. In A journey through
discrete mathematics, pages 1–30. Springer, Cham, 2017.

SoCG 2022

https://doi.org/10.1145/2261250.2261301
https://doi.org/10.4230/LIPIcs.SoCG.2021.8

3:14 On Semialgebraic Range Reporting

5 Pankaj K. Agarwal, Boris Aronov, Esther Ezra, and Joshua Zahl. Efficient algorithm for
generalized polynomial partitioning and its applications. SIAM J. Comput., 50(2):760–787,
2021. doi:10.1137/19M1268550.

6 Pankaj K. Agarwal, Jiří Matoušek, and Micha Sharir. On range searching with semialgebraic
sets. II. SIAM J. Comput., 42(6):2039–2062, 2013. doi:10.1137/120890855.

7 Sunil Arya, Theocharis Malamatos, and David M. Mount. On the importance of idempotence.
In STOC’06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pages
564–573. ACM, New York, 2006. doi:10.1145/1132516.1132598.

8 Sunil Arya, David M. Mount, and Jian Xia. Tight lower bounds for halfspace range searching.
Discrete Comput. Geom., 47(4):711–730, 2012. doi:10.1007/s00454-012-9412-x.

9 Hervé Brönnimann, Bernard Chazelle, and János Pach. How hard is half-space range searching?
Discrete Comput. Geom., 10(2):143–155, 1993. doi:10.1007/BF02573971.

10 Bernard Chazelle. Lower bounds on the complexity of polytope range searching. J. Amer.
Math. Soc., 2(4):637–666, 1989. doi:10.2307/1990891.

11 Bernard Chazelle. Lower bounds for orthogonal range searching. I. The reporting case. J.
Assoc. Comput. Mach., 37(2):200–212, 1990. doi:10.1145/77600.77614.

12 Bernard Chazelle. Lower bounds for orthogonal range searching. II. The arithmetic model. J.
Assoc. Comput. Mach., 37(3):439–463, 1990. doi:10.1145/79147.79149.

13 Bernard Chazelle and Burton Rosenberg. Simplex range reporting on a pointer machine.
Comput. Geom., 5(5):237–247, 1996. doi:10.1016/0925-7721(95)00002-X.

14 Jacob E. Goodman, Joseph O’Rourke, and Csaba D. Tóth, editors. Handbook of discrete and
computational geometry. Discrete Mathematics and its Applications (Boca Raton). CRC Press,
Boca Raton, FL, 2018. Third edition of [MR1730156].

15 Larry Guth and Nets Hawk Katz. On the Erdős distinct distances problem in the plane. Ann.
of Math. (2), 181(1):155–190, 2015. doi:10.4007/annals.2015.181.1.2.

16 Jiří Matoušek. Range searching with efficient hierarchical cuttings. Discrete Comput. Geom.,
10(2):157–182, 1993. doi:10.1007/BF02573972.

17 Jiří Matoušek. Geometric range searching. ACM Comput. Surv., 26(4):421–461, 1994. doi:
10.1145/197405.197408.

18 Jiří Matoušek and Zuzana Patáková. Multilevel polynomial partitions and simplified range
searching. Discrete Comput. Geom., 54(1):22–41, 2015. doi:10.1007/s00454-015-9701-2.

19 Andrew Chi-Chih Yao and F. Frances Yao. A general approach to d-dimensional geometric
queries (extended abstract). In Robert Sedgewick, editor, Proceedings of the 17th Annual
ACM Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA,
pages 163–168. ACM, 1985. doi:10.1145/22145.22163.

20 A. Young. On Quantitative Substitutional Analysis. Proc. Lond. Math. Soc., 33:97–146, 1901.
doi:10.1112/plms/s1-33.1.97.

https://doi.org/10.1137/19M1268550
https://doi.org/10.1137/120890855
https://doi.org/10.1145/1132516.1132598
https://doi.org/10.1007/s00454-012-9412-x
https://doi.org/10.1007/BF02573971
https://doi.org/10.2307/1990891
https://doi.org/10.1145/77600.77614
https://doi.org/10.1145/79147.79149
https://doi.org/10.1016/0925-7721(95)00002-X
https://doi.org/10.4007/annals.2015.181.1.2
https://doi.org/10.1007/BF02573972
https://doi.org/10.1145/197405.197408
https://doi.org/10.1145/197405.197408
https://doi.org/10.1007/s00454-015-9701-2
https://doi.org/10.1145/22145.22163
https://doi.org/10.1112/plms/s1-33.1.97

	1 Introduction
	1.1 Background
	1.2 Our Results
	1.3 Technical Contributions

	2 Preliminaries
	2.1 A Geometric Lower Bound Framework
	2.2 A Lemma for Polynomials
	2.3 Useful Properties about Matrices

	3 Lower Bound for Range Reporting with General Polynomial Slabs
	3.1 Technical Challenges
	3.2 A Geometric Lemma
	3.3 Lower Bound for General Polynomial Slabs

	4 Data Structures for Uniform Random Point Sets
	4.1 A Curvature-based Approach
	4.2 A Derivative-based Approach

	5 Conclusion and Open Problems

