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Abstract
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1 Introduction

Our main result is the following.

▶ Theorem 1. For any planar convex body C there is a positive integer m = m(C) such that
any finite point set P in the plane can be three-colored in a way that there is no translate of
C containing at least m points of P , all of the same color.

This result closes a long line of research about coloring points with respect to planar
range spaces that consist of translates of a fixed set, a problem that was initiated by Pach
over forty years ago [21]. In general, a pair (P, S), where P is a set of points in the plane
and S is a family of subsets of the plane, called the range space, defines a primal hypergraph
H(P, S) whose vertex set is P , and for each S ∈ S we add the edge S ∩ P to the hypergraph.
Given any hypergraph H, a planar realization of H is defined as a pair (P, S) for which
H(P, S) is isomorphic to H. If H can be realized with some pair (P, S) where S is from some
family F , then we say that H is realizable with F . The dual of the hypergraph H(P, S),
where the elements of the range space S are the vertices and the points P define the edges
such that {S ∈ S | p ∈ S} is an edge for every p ∈ P , is known as the dual hypergraph and
is denoted by H(S, P ). If H = H(S, P ) where S is from some family F , then we say that H
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32:2 Three-Chromatic Geometric Hypergraphs

has a dual realization with F . Pach observed [21, 24] that if F is the family of translates of
some set, then H has a dual realization with F if and only if H has a (primal) realization
with F .

Pach proposed to study the chromatic number of hypergraphs realizable with different
geometric families F . It is important to distinguish between two types of hypergraph colorings
that we will use, the proper coloring and the polychromatic coloring.

▶ Definition 2. A hypergraph is properly k-colorable if its vertices can be colored with k

colors so that each edge contains points from at least two color classes. Such a coloring
is called a proper k-coloring. If a hypergraph has a proper k-coloring but not a proper
(k − 1)-coloring, then it is called k-chromatic.

A hypergraph is polychromatic k-colorable if its vertices can be colored with k colors so
that each edge contains points from each color class. Such a coloring is called a polychromatic
k-coloring.

Note that for a polychromatic k-coloring to exist, it is necessary that each edge of the
underlying hypergraph has at least k vertices. More generally, we say that a hypergraph is
m-heavy if each of its edges has at least m vertices.

The main question that Pach raised can be rephrased as follows.

▶ Question 3. For which planar families F is there an mk = m(F , k) such that any mk-heavy
hypergraph realizable with F has a proper/polychromatic k-coloring?

Initially, this question has been mainly studied for polychromatic k-colorings (known in
case of a dual range space as cover-decomposition problem), and it was shown that such an
mk exists if F is the family of translates of some convex polygon [22, 33, 28], or the family of
all halfplanes [14, 32], or the homothetic2 copies of a triangle [15] or of a square [2], while it
was also shown that even m2 does not exist if F is the family of translates of some appropriate
concave polygon [26, 27] or any body3 with a smooth boundary [23]. It was also shown that
there is no mk for proper k-colorings if F is the family of all lines [26] or all axis-parallel
rectangles [10]; for these families, the same holds in case of dual realizations [26, 25]. For
homothets of convex polygons other than triangles, it is known that there is no m2 for
dual realizations [19], unlike for primal realizations. Higher dimensional variants [15, 8] and
improved bounds for mk have been also studied [3, 13, 7, 16, 4, 9]. For other results, see also
the decade old survey [24], or the up-to-date website https://coge.elte.hu/cogezoo.html.

If F is the translates or homothets of some planar convex body, it is an easy consequence
of the properties of generalized Delaunay-triangulations and the Four Color Theorem that
any hypergraph realizable with F is proper 4-colorable if every edge contains at least two
vertices. We have recently shown that this cannot be improved for homothets.

▶ Theorem 4 (Damásdi, Pálvölgyi [12]). Let C be any convex body in the plane that has two
parallel supporting lines such that C is strictly convex in some neighborhood of the two points
of tangencies. For any positive integer m, there exists a 4-chromatic m-uniform hypergraph
that is realizable with homothets of C.

2 A homothetic copy, or homothet, is a scaled and translated (but non-rotated) copy of a set. We always
require the scaling factor to be positive. Note that this is sometimes called a positive homothet.

3 By body, we always mean a compact subset of the plane with a non-empty interior, though our results
(and most of the results mentioned) also hold for sets that are unbounded, or that contain an arbitrary
part of their boundary, and are thus neither open, nor closed. This is because a realization of a
hypergraph can be perturbed slightly to move the points off from the boundaries of the sets realizing
the respective edges of the hypergraph.

https://coge.elte.hu/cogezoo.html
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For translates, we recall the following result.

▶ Theorem 5 (Pach, Pálvölgyi [23]). Let C be any convex body in the plane that has two
parallel supporting lines such that C is strictly convex in some neighborhood of the two points
of tangencies. For any positive integer m, there exists a 3-chromatic m-uniform hypergraph
that is realizable with translates of C.

This left only the following question open: Is it true for any planar convex body C that
there is a positive integer m such that no 4-chromatic m-uniform hypergraph is realizable
with translates of C? Our Theorem 1 answers this question affirmatively for all C by showing
that all realizable m-heavy hypergraphs are three-colorable for some m. This has been
hitherto known to hold only when C is a polygon (in which case 2 colors suffice [28], and 3
colors are known to be enough even for homothets [18]) and pseudodisk families that intersect
in a common point [1] (which generalizes the case when C is unbounded, in which case 2
colors suffice [23]).

The proof of Theorem 1 relies on a surprising connection with two other famous results, the
solution of the two dimensional case of the Illumination conjecture [20], and a recent solution
of the Erdős-Sands-Sauer-Woodrow conjecture by Bousquet, Lochet and Thomassé [6]. In
fact, we need a generalization of the latter result, which we prove with the addition of one
more trick to their method; this can be of independent interest.

Note that the extended abstract of our first proof attempt appeared recently in the
proceedings of EuroComb 2021 [11]. That proof did not use the above two results, however,
it only worked when C was a disk, and while the generalization to other convex bodies with
a smooth boundary seemed feasible, we saw no way to extend it to arbitrary convex bodies.

The rest of the paper is organized as follows.
In Section 2 we present the three main ingredients of our proof:

the Union Lemma (Section 2.1),
the Erdős-Sands-Sauer-Woodrow conjecture (Section 2.2) – the proof of our generalization
of the Bousquet-Lochet-Thomassé theorem can be found in the full version of the paper,
the Illumination conjecture (Section 2.3), which is a theorem of Levi in the plane.

In Section 3 we give the detailed proof of Theorem 1.
In Section 4 we give a general overview of the steps of the algorithm requiring computation
to show that we can find a three-coloring in randomized polynomial time.
Finally, in Section 5, we pose some problems left open.

2 Tools

2.1 Union Lemma
Polychromatic colorability is a much stronger property than proper colorability. Any poly-
chromatic k-colorable hypergraph is proper 2-colorable. We generalize this trivial observation
to the following statement about unions of polychromatic k-colorable hypergraphs.

▶ Lemma 6 (Union Lemma). Let H1 = (V, E1), . . . , Hk−1 = (V, Ek−1) be hypergraphs on a
common vertex set V . If H1, . . . , Hk−1 are polychromatic k-colorable, then the hypergraph
k−1⋃
i=1

Hi = (V,
k−1⋃
i=1

Ei) is proper k-colorable.

SoCG 2022
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Proof. Choose c(v) ∈ {1, . . . , k} such that it differs from each ci(v). We claim that c is a

proper k-coloring of
k−1⋃
i=1

Hi. To prove this, it is enough to show that for every edge H ∈ Hi

and for every color j ∈ {1, . . . , k − 1}, there is a v ∈ H such that c(v) ̸= j. We can pick
v ∈ H for which ci(v) = j. This finishes the proof. ◀

Lemma 6 is sharp in the sense that for every k there are k − 1 hypergraphs such that
each is polychromatic k-colorable but their union is not properly (k − 1)-colorable.

We will apply the Union Lemma combined with the theorem below. A pseudoline
arrangement is a collection of simple curves, each of which splits R2 into two unbounded
parts, such that any two curves intersect at most once. A pseudohalfplane is the region on one
side of a pseudoline in such an arrangement. For hypergraphs realizible by pseudohalfplanes
the following was proved, generalizing a result of Smorodinsky and Yuditsky [32] about
halfplanes.

▶ Theorem 7 (Keszegh-Pálvölgyi [17]). Any (2k − 1)-heavy hypergraph realizable by pseudo-
halfplanes is polychromatic k-colorable, i.e., given a finite set of points and a pseudohalfplane
arrangement in the plane, the points can be k-colored such that every pseudohalfplane that
contains at least 2k − 1 points contains all k colors.

Combining Theorem 7 with Lemma 6 for k = 3, we obtain the following.

▶ Corollary 8. Any 5-heavy hypergraph realizable by two pseudohalfplane families is proper
3-colorable, i.e., given a finite set of points and two different pseudohalfplane arrangements
in the plane, the points can be 3-colored such that every pseudohalfplane that contains at least
5 points contains two differently colored points.

2.2 Erdős-Sands-Sauer-Woodrow conjecture
Given a quasi-order4 ≺ on a set V , we interpret it as a digraph D = (V, A), where the vertex
set is V and a pair (x, y) defines an arc in A if x ≺ y. The closed in-neighborhood of a vertex
x ∈ V is N−(x) = {x} ∪ {y|(y, x) ∈ A}. Similarly the closed out-neighborhood of a vertex x

is N+(x) = {x} ∪ {y|(x, y) ∈ A}. We extend this to subsets S ⊂ V as N−(S) =
⋃

x∈S

N−(x)

and N+(S) =
⋃

x∈S

N+(x). A set of vertices S such that N+(S) = V is said to be dominating.

For A, B ⊂ V we will also say that A dominates B if B ⊂ N+(A).
A complete multidigraph is a digraph where parallel edges are allowed and in which there

is at least one arc between each pair of distinct vertices. Let D be a complete multidigraph
whose arcs are the disjoint union of k quasi-orders ≺1, . . . , ≺k (parallel arcs are allowed).
Define N−

i (x) (resp. N+
i (x)) as the closed in-neighborhood (resp. out-neighborhood) of the

digraph induced by ≺i.
Proving the conjecture of Erdős, and of Sands, Sauer and Woodrow [31], Bousquet, Lochet

and Thomassé recently showed the following.

▶ Theorem 9 (Bousquet, Lochet, Thomassé [6]). For every k, there exists an integer f(k)
such that if D is a complete multidigraph whose arcs are the union of k quasi-orders, then D

has a dominating set of size at most f(k).

4 A quasi-order ≺ is a reflexive and transitive relation, but it is not required to be antisymmetric, so
p ≺ q ≺ p is allowed, unlike for partial orders.
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We show the following generalization of Theorem 9.

▶ Theorem 10. For every pair of positive integers k and l, there exist an integer f(k, l) such
that if D = (V, A) is a complete multidigraph whose arcs are the union of k quasi-orders
≺1, . . . , ≺k, then V contains a family of pairwise disjoint subsets Sj

i for i ∈ [k], j ∈ [l] with
the following properties:

|
⋃
i,j

Sj
i | ≤ f(k, l)

For each vertex v ∈ V \
⋃
i,j

Sj
i there is an i ∈ [k] such that for each j ∈ [l] there is an edge

of ≺i from a vertex of Sj
i to v.

Note that disjointness is the real difficulty here, without it the theorem would trivially
hold from repeated applications of Theorem 9. We saw no way to derive Theorem 10 from
Theorem 9, but with an extra modification the proof goes through. The proof of Theorem
10 can be found in the full version of the paper.

2.3 Hadwiger’s Illumination conjecture and pseudolines
Hadwiger’s Illumination conjecture has a number of equivalent formulations and names5.
For a recent survey, see [5]. We will use the following version of the conjecture.

Let Sd−1 denote the unit sphere in Rd. For a convex body C, let ∂C denote the boundary
of C and let int(C) denote its interior. A direction (light) u ∈ Sd−1 illuminates b ∈ ∂C if
{b + λu : λ > 0} ∩ int(C) ̸= ∅.

▶ Conjecture 11. The boundary of any convex body in Rd can be illuminated by 2d or fewer
directions. Furthermore, the 2d lights are necessary if and only if the body is a parallelepiped.

The conjecture is open in general. The d = 2 case was settled in affirmative by Levi [20]
in 1955. For d = 3 the best result is due to Prymak [30], who showed that 16 lights are
enough, improving the earlier method of Papadoperakis [29] with the help of a computer
program.

In the following part we make an interesting connection between the Illumination conjec-
ture for d = 2 and pseudolines. Roughly speaking, we show that the Illumination conjecture
implies that for any convex body in the plane the boundary can be broken into three parts
such that the translates of each part behave similarly to pseudolines, i.e., we get three
pseudoline arrangements from the translates of the three parts.

To put this into precise terms, we need some technical definitions and statements.
Fix a body C and an injective parametrization of ∂C, γ : [0, 1] → ∂C, that follows ∂C

counterclockwise. For each point p of ∂C there is a set of possible tangents touching at p.
Let g(p) ⊂ S1 denote the Gauss image of p, i.e., g(p) is the set of unit outernormals of the
tangent lines touching at p. Note that g(p) is an arc of S1 and g(p) is a proper subset of S1.

Let g+ : ∂C → S1 be the function that assigns to p the counterclockwise last element of
g(p). (See Figure 1 left.) Similarly let g− be the function that assigns to p the clockwise
last element of g(p). Thus, g(p) is the arc of S1 from g−(p) to g+(p). Let |g(p)| denote the
length of g(p).

▶ Observation 12. g+ ◦ γ is continuous from the right and g− ◦ γ is continuous from the left.

5 These include names such as Levi–Hadwiger Conjecture, Gohberg–Markus Covering Conjecture, Hadwi-
ger Covering Conjecture, Boltyanski–Hadwiger Illumination Conjecture.

SoCG 2022
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p
g−(p)

g+(p)
p

q

J2J1

Figure 1 Extremal tangents at a boundary point (on the left) and parallel tangents on two
intersecting translates (on the right).

For t1 < t2 let γ[t1,t2] denote the restriction of γ to the interval [t1, t2]. For t1 > t2 let
γ[t1,t2] denote the concatenation of γ[t1,1] and γ[0,t2]. When it leads to no confusion, we
identify γ[t1,t2] with its image, which is a closed connected part of the boundary ∂C. For
such a J = γ[t1,t2], let g(J) =

⋃
p∈J

g(p). Clearly, g(J) is an arc of S1 from g−(t1) to g+(t2);

let |g(J)| denote the length of this arc.

▶ Lemma 13. Let C be a convex body and assume that J is a closed connected part of ∂C

such that |g(J)| < π. Then there are no two translates of J that intersect in more than one
point.

Proof. Suppose J has two translates J1 and J2 such that they intersect in two points, p and
q. Now both J1 and J2 have a tangent that is parallel to the segment pq, but since they lie on
different sides of the pq line, they have opposite outer normal vectors. (See Figure 1 right.)
This shows that J has two different tangents parallel to pq and therefore |g(J)| ≥ π. ◀

▶ Lemma 14. For a convex body C, which is not a parallelogram, and an injective para-
metrization γ of ∂C, we can pick 0 ≤ t1 < t2 < t3 ≤ 1 such that |g(γ[t1,t2])|, |g(γ[t2,t3])| and
|g(γ[t3,t1])| are each strictly smaller than π.

Proof. We use the 2-dimensional case of the Illumination conjecture (proved by Levi [20]). If
C is not a parallelogram, we can pick three directions, u1, u2 and u3, that illuminate C. Pick
t1 such that γ(t1) is illuminated by both u1 and u2. To see why this is possible, suppose that
the parts illuminated by u1 and u2 are disjoint. Each light illuminates a continuous open
ended part of the boundary. So in this case there are two disjoint parts of the boundary that
are not illuminated. If u3 illuminates both, then it illuminates everything that is illuminated
by u1 or everything that is illuminated by u2. This would mean that two lights illuminate
the whole boundary but this is not possible for any convex body. Indeed, suppose that two
lights u and v illuminate the whole body. Then there is a halfplane H through the origin that
contains both vectors u and v. Take a translate of H that touches C. Clearly the touching
point is not illuminated by either u or v, a contradiction.

Using the same argument, pick t2 and t3 such that γ(t2) is illuminated by both u2 and
u3 and γ(t3) is illuminated by both u3 and u1.

Note that u1 illuminates exactly those points for which g+(p) < u1 + π/2 and g−(p) >

u1 − π/2. Therefore, |g(γ[t1,t3])| < u1 + π/2 − (u1 − π/2) = π. Similarly |g(γ[t1,t2])| < π and
|g(γ[t2,t3])| < π. ◀

Observation 12 and Lemma 14 immediately imply the following statement.

▶ Lemma 15. For a convex body C, which is not a parallelogram, and an injective para-
metrization γ of ∂C, we can pick 0 ≤ t1 < t2 < t3 ≤ 1 and ε > 0 such that |g(γ[t1−ε,t2+ε])|,
|g(γ[t2−ε,t3+ε])| and |g(γ[t3−ε,t1+ε])| are each strictly smaller than π.
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3 Proof of Theorem 1

3.1 Quasi-orders on planar point sets
Cones provide a natural way to define quasi-orders on point sets (see [33] for an example
where this idea was used). A cone is a closed region in the plane that is bounded by two rays
that emanate from the origin. For a cone K let −K denote the cone that is the reflection of
K across the origin and let q + K denote the translate of K by the vector q.

▶ Observation 16. For any p, q ∈ R2 and cone K, the following are equivalent (see Fig. 2):
p ∈ q + K

q ∈ p + (−K)
p + K ⊆ q + K

q

p

p

q

Figure 2 Basic properties of cones.

For a cone K let ≺K denote the relation on the points of the plane where a point p is
bigger than a point q if and only if p + K contains q. By Observation 16, this relation is
transitive so it is a quasi-order. Recall that when ≺K is interpreted as a digraph, qp is an
edge if and only if q ≺K p.

Figure 3 Quasi-order on a point set.

Suppose the cones K1, K2, K3 are the translates of the three corners of a triangle so
that all their apexes are in the origin, in other words the cones K1, −K3, K2, −K1, K3, −K2
partition the plane around the origin in this order. Then we will say that K1, K2, K3 is a set
of tri-partition cones. In this case the intersection of any translates of K1, K2, K3 forms a
(possibly degenerate) triangle.

▶ Observation 17. Let K1, K2, K3 be a set of tri-partition cones and let P be a planar point
set. Then any two distinct points of P are comparable in either ≺K1 , ≺K2 or ≺K3 . (See
Figure 3.)

In other words, when interpreted as digraphs, the union of ≺K1 , ≺K2 and ≺K3 forms
a complete multidigraph on P . As a warm up for the proof of Theorem 1, we show the
following theorem.

SoCG 2022
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▶ Theorem 18. There exists a positive integer m such that for any point set P , and any set
of tri-partition cones K1, K2, K3, we can three-color P such that no translate of K1, K2 or
K3 that contains at least m points of P is monochromatic.

Proof. We set m to be f(3, 2) + 13 with the function of Theorem 10. Consider the three
quasi-orders ≺K1 , ≺K2 or ≺K3 . Their union gives a complete multidigraph on P , hence we
can apply Theorem 10 with k = 3 and l = 2, resulting in subsets Sj

i for i ∈ [3], j ∈ [2]. Let
S =

⋃
i∈[3],j∈[2]

Sj
i . For each point p ∈ P \ S there is an i such that ≺Ki

has an edge from a

vertex of Si,1 and Si,2 to p. Let P1, P2, P3 be the partition of P \ S according to this i value.
We start by coloring the points of S. Color the points of S1,1 ∪ S2,1 ∪ S3,1 with the first

color and color the points of S1,2 ∪ S2,2 ∪ S3,2 with the second color.
Any translate of K1, K2 or K3 that contains f(3, 2) + 13 points of P , must contain

5 points from either P1, P2 or P3 by the pigeonhole principle. (Note that the cone might
contain all points of S.) Therefore, it is enough to show that for each i ∈ [3] the points of Pi

can be three-colored such that no translate of K1, K2, or K3 that contains at least 5 points
of Pi is monochromatic.

Consider P1; the proof is the same for P2 and P3. Take a translate of K1 and suppose
that it contains a point p of P1. By Theorem 10, there is an edge of ≺K1 from a vertex of
S1,1 to p and another edge from a vertex of S1,2 to p. Thus any such translate contains a
point from S1,1 and another point from S1,2, and hence it cannot be monochromatic.

Therefore, we only have to consider the translates of K2 and K3. Two translates of a cone
intersect at most once on their boundary. Hence, the translates of K2 form a pseudohalfplane
arrangement, and so do the translates of K3. Therefore, by Corollary 8, there is a proper
three-coloring for the translates of K2 and K3 together. ◀

▶ Remark 19. From Theorem 18, it follows using standard methods (see Section 3.2) that
Theorem 1 holds for triangles. This was of course known before, even for two-colorings
of homothetic copies of triangles. Our proof cannot be modified for homothets, but a
two-coloring would follow if instead of Corollary 8 we applied a more careful analysis for the
two cones.

3.2 Proof of Theorem 1
If C is a parallelogram, then our proof method fails. Luckily, translates of parallelograms
(and other symmetric polygons) were the first for which it was shown that even two colors
are enough [22]; in fact, by now we know that two colors are enough even for homothets of
parallelograms [2]. So from now on we assume that C is not a parallelogram.

The proof of Theorem 1 relies on the same ideas as we used for Theorem 18. We partition
P into several parts, and for each part Pi, we divide the translates of C into three families
such that two of the families each form a pseudohalfplane arrangement over Pi, while the
third family will only contain translates that are automatically non-monochromatic. Then
Corollary 8 gives us a proper three-coloring. As in the proof of Theorem 18, this is not done
directly. First, we divide the plane using a grid, and then in each small square we will use
Theorem 10 to discard some of the translates of C at the cost of a bounded number of points.

Now we start the proof of Theorem 1. The first step is a classic divide and conquer
idea [22]. We chose a constant r = r(C) depending only on C and divide the plane into a
grid of squares of side length r. Since each translate of C intersects some bounded number
of squares, by the pigeonhole principle we can find for any positive integer m another integer
m′ such that the following holds: each translate Ĉ of C that contains at least m′ points
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intersects a square Q such that Ĉ ∩ Q contains at least m points. For example, we can
choose m′ = m(diam(C)/r + 2)2, where diam(C) denotes the diameter of C. Therefore, it is
enough to show the following localized version of Theorem 1, since applying it separately for
the points in each square of the grid provides a proper three-coloring of the whole point set.

▶ Theorem 20. There is a positive integer m such that for any convex body C there is a
positive real r such that any finite point set P in the plane that lies in a square of side length
r can be three-colored in a way that there is no translate of C containing at least m points of
P , all of the same color.

We will show that m can be chosen to be f(3, 2) + 13 with the function of Theorem 10,
independently of C.

Proof. We pick r the following way. First we fix an injective parametrization γ of ∂C and
then fix t1, t2, t3 and ε according to Lemma 15. Let ℓ1, ℓ2, ℓ3 be the tangents of C touching
at γ(t1), γ(t2) and γ(t3). Let K1,2, K2,3, K3,1 be the set of tri-partition cones bordered by
ℓ1, ℓ2, ℓ3, such that Ki,i+1 is bordered by ℓi on its counterclockwise side, and by ℓi+1 on its
clockwise side (see Figure 4 left, and note that we always treat 3 + 1 as 1 in the subscript).

For a translate Ĉ of C we will denote by γ̂ the translated parametrization of ∂Ĉ, i.e.,
γ̂(t) = γ(t) + v if Ĉ was translated by vector v. Our aim is to choose r small enough to
satisfy the following two properties for each i ∈ [3].

(A) Let Ĉ be a translate of C, and Q be a square of side length r such that ∂Ĉ ∩ Q ⊂
γ̂[ti+ε/2,ti+1−ε/2] (see Figure 4 right). Then for any translate K of Ki,i+1 whose apex is
in Q ∩ Ĉ, we have K ∩ Q ⊂ Ĉ. (I.e., r is small with respect to C.)

(B) Let Ĉ be a translate of C, and Q be a square of side length r such that γ̂[ti−ε/2,ti+1+ε/2]

intersects Q. Then ∂Ĉ ∩ Q ⊂ γ̂[ti−ε,ti+1+ε]. (I.e., r is small compared to ε.)

ℓ1

ℓ2

C ℓ3

K3,1

K1,2

K2,3

γ̂(
t 1)

γ̂(t2)

ℓ1

ℓ2

γ̂(t2 − ε/2)

γ̂(
t 1

+
ε/

2)

K

Figure 4 Selecting the cones (on the left) and Property (A) (on the right).

We show that an r satisfying properties (A) and (B) can be found for i = 1. The argument
is the same for i = 2 and i = 3, and we can take the smallest among the three resulting
values of r.

First, consider property (A). Since the sides of K are parallel to ℓ1 and ℓ2, the portion of
K that lies “above” the segment γ̂(t1)γ̂(t2) is in Ĉ. Hence, if we choose r small enough so
that Q cannot intersect γ̂(t1)γ̂(t2), then property (A) is satisfied. We can choose r to be
smaller than 1√

2 times the distance of the segments γ̂(t1)γ̂(t2) and γ̂(t1 + ε/2)γ̂(t2 − ε/2).
Using that γ is a continuous function on a compact set, we can pick r such that property

(B) is satisfied. Therefore, there is an r satisfying properties (A) and (B).
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The next step is a subdivision of the point set P using Theorem 10, like we did in the
proof of Theorem 18. The beginning of our argument is exactly the same.

Apply Theorem 10 for the graph given by the union of ≺K1,2 , ≺K2,3 and ≺K3,1 . By
Observation 16, this is indeed a complete multidigraph on P .

We apply Theorem 10 with k = 3 and l = 2, resulting in subsets Sj
i for i ∈ [3], j ∈ [2].

Let S =
⋃

i∈[3],j∈[2]
Sj

i . For each point p ∈ P \ S there is an i such that ≺Ki,i+1 has an edge

from a vertex of Si,1 and Si,2 to p. Let P1, P2, P3 be the partition of P \ S according to this
i value.

We start by coloring the points of S. Color the points of S1,1 ∪ S2,1 ∪ S3,1 with the first
color and color the points of S1,2 ∪ S2,2 ∪ S3,2 with the second color.

Note that m is at least f(3, 2) + 13. Any translate of C that contains f(3, 2) + 13 points
of P must contain 5 points from either P1, P2 or P3. (Note that the cone might contain all
points of S). Thus, it is enough to show that for each i ∈ [3] the points of Pi can be 3-colored
so that no translate of C that contains at least 5 points of Pi is monochromatic.

Consider P1, the proof is the same for P2 and P3. We divide the translates of C that
intersect Q into four (not necessarily disjoint) groups. Let C0 denote the translates where
Ĉ ∩ Q = Q. Let C1 denote the translates for which ∂Ĉ ∩ Q ⊂ γ̂[t1+ε/2,t2−ε/2]. Let C2 denote
the translates for which ∂Ĉ ∩ Q ∩ γ̂[t2−ε/2,t3] ̸= ∅. Let C3 denote the remaining translates for
which ∂Ĉ ∩ Q ∩ γ̂[t3,t1+ε/2] ̸= ∅.

We do not need to worry about the translates in C0, as Q itself will not be monochromatic.
Take a translate Ĉ from C1 and suppose that it contains a point p ∈ P1. By Theorem 10,

there is an edge of ≺K1,2 from a vertex of S1,1 to p and another edge from a vertex of S1,2 to
p. I.e., the cone p + K1,2 contains a point from S1,1 and another point from S1,2, and hence
it is not monochromatic. From property (A) we know that every point in (p + K1,2) ∩ P is
also in Ĉ. Therefore, Ĉ is not monochromatic.

Now consider the translates in C2. From property (B) we know that for these translates
we have ∂Ĉ ∩ Q ⊂ γ̂[t2−ε,t3+ε]. By the definition of t1, t2 and t3, we know that this implies
that any two translates from C2 intersect at most once on their boundary within Q, i.e., they
behave as pseudohalfplanes. To turn the translates in C2 into a pseudohalfplane arrangement
as defined earlier, we can do as follows. For a translate Ĉ, replace it with the convex set
whose boundary is γ̂[t2−ε,t3+ε] extended from its endpoints with two rays orthogonal to the
segment γ̂(t2 − ε)γ̂(t3 + ε). This new family provides the same intersection pattern in Q

and forms a pseudohalfplane arrangement. We can do the same with the translates in C3.
Therefore, by Corollary 8 there is a proper three-coloring for the translates in C2 ∪ C3. ◀

4 Overview of the computational complexity of the algorithm

In this section we show that given a point set P and a convex set C, we can determine some
m = m(C) and calculate a three-coloring of P efficiently if C is given in a natural way, for
example, if C is a disk. Our algorithm is randomized and its expected running time is a
polynomial of the number of points, n = |P |.

First, we need to fix three points on the boundary, τ1, τ2, τ3 ⊂ ∂C such that Lemma 15 is
satisfied with τi = γ(ti) for some ti and ε > 0 for each i. Note that we do not need to fix
a complete parametrization γ of ∂C or ε > 0; instead, it is enough to choose some points
τ −−

i and τ ++
i that satisfy the conclusion of Lemma 15 if we assume τ −−

i = γ(ti − ε) and
τ ++

i = γ(ti + ε) for each i. If C has a smooth boundary, like a disk, we can pick τ1, τ2, τ3
to be the touching points of an equilateral triangle with C inscribed in it. If the boundary
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of C contains vertex-type sharp turns, the complexity of finding these turns depends on
how C is given, but for any reasonable input method, this should be straight-forward.
After that, one can follow closely the steps of the proof of the Illumination conjecture in
the plane to get an algorithm, but apparently, this has not yet been studied in detail.
To pick r, the side length of the squares of the grid, we can fix some arbitrary points τ −

i

between τ −−
i and τi, and points τ +

i between τi and τ ++
i , to play the roles of γ(ti − ε/2)

and γ(ti + ε/2), respectively, for each i. It is sufficient to pick r so that r
√

2, the diameter
of the square of side length r, is less than

the distance of τ +
i and τ −

i+1 from the segment τiτi+1,
the distance of τ −

i from τ −−
i , and

the distance of τ +
i from τ ++

i ,
for each i, to guarantee that properties (A) and (B) are satisfied.
Set m = f(3, 2) + 13, which is an absolute constant given by Theorem 10. We need
to construct the complete multidigraph given by the tri-partition cones determined by
τ1, τ2, τ3, which needs a comparison for each pair of points. To obtain the subsets Sj

i ⊂ P

for i ∈ [3], j ∈ [2], where P is the set of points that are contained in a square of side
length r, we randomly sample the required number of points from each of the constantly
many Tj1,...,ji

according to the probability distributions wj1,...,ji
given in the proof. These

probability distributions can be computed by LP. With high probability, all the Sj
i -s will

be disjoint – otherwise, we can resample until we obtain disjoint sets.
To find the three-coloring for the two pseudohalfplane arrangements, given by Corollary
8, it is enough to determine the two-coloring given by Theorem 7 for one pseudohalfplane
arrangement. While not mentioned explicitly in [17], the polychromatic k-coloring can be
found in polynomial time if we know the hypergraph determined by the range space, as
this hypergraph can only have a polynomial number of edges, and the coloring algorithm
only needs to check some simple relations among a constant number of vertices and edges.
Finally, to compute a suitable m′ for Theorem 1 from the m of Theorem 20, it is enough
to know any upper bound B for the diameter of C, and let m′ = m(B/r + 2)2.

5 Open questions

It is a natural question whether there is a universal m that works for all convex bodies in
Theorem 1, like in Theorem 20. This would follow if we could choose r to be a universal
constant. While the r given by our algorithm can depend on C, we can apply an appropriate
affine transformation to C before choosing r; this does not change the hypergraphs that can
be realized with the range space determined by the translates of C. To ensure that properties
(A) and (B) are satisfied would require further study of the Illumination conjecture.

Our bound for m is quite large, even for the unit disk, both in Theorems 1 and 20, which
is mainly due to the fact that f(3, 2) given by Theorem 10 is huge. It has been conjectured
that in Theorem 9 the optimal value is f(3) = 3, and a similarly small number seems realistic
for f(3, 2) as well.

While Theorem 1 closed the last question left open for primal hypergraphs realizable
by translates of planar bodies, the respective problem is still open in higher dimensions.
While it is not hard to show that some hypergraphs with high chromatic number often used
in constructions can be easily realized by unit balls in R5, we do not know whether the
chromatic number is bounded or not in R3. From our Union Lemma (Lemma 6) it follows
that to establish boundedness, it would be enough to find a polychromatic k-coloring for
pseudohalfspaces, whatever this word means.
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