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Abstract
Two boxes in Rd are comparable if one of them is a subset of a translation of the other one. The
comparable box dimension of a graph G is the minimum integer d such that G can be represented as
a touching graph of comparable axis-aligned boxes in Rd. We show that proper minor-closed classes
have bounded comparable box dimension and explore further properties of this notion.
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1 Introduction

Given a system O of subsets of Rd, we say that a graph G is a touching graph of objects
from O if there exists a function f : V (G) → O (called a touching representation by objects
from O) such that the interiors of f(u) and f(v) are disjoint for all distinct u, v ∈ V (G),
and f(u) ∩ f(v) ̸= ∅ if and only if uv ∈ E(G). Famously, Koebe [13] proved that a graph is
planar if and only if it is a touching graph of balls in R2. This result has motivated numerous
strengthenings and variations (see [14, 19] for some classical examples); most relevantly for
us, Felsner and Francis [11] showed that every planar graph is a touching graph of cubes
in R3.

An attractive feature of touching representations is that it is possible to represent
graph classes that are sparse (e.g., planar graphs, or more generally, graph classes with
bounded expansion [15]). This is in contrast to general intersection representations where
the represented class always includes arbitrarily large cliques. Of course, whether the class
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38:2 On Comparable Box Dimension

of touching graphs of objects from O is sparse or not depends on the particular system O.
For example, all complete bipartite graphs Kn,m are touching graphs of boxes in R3, where
the vertices in one part are represented by m × 1 × 1 boxes and the vertices of the other
part are represented by 1 × n × 1 boxes (throughout the paper, by box we always mean
axis-aligned box, i.e., the Cartesian product of closed intervals of non-zero length). Dvořák,
McCarty and Norin [6] noticed that this issue disappears if we forbid such a combination of
long and wide boxes. This condition can be expressed as follows. For two boxes B1 and B2,
we write B1 ⊑ B2 if B2 contains a translate of B1. We say that B1 and B2 are comparable
if B1 ⊑ B2 or B2 ⊑ B1. A touching representation by comparable boxes of a graph G is a
touching representation f by boxes such that for every u, v ∈ V (G), the boxes f(u) and f(v)
are comparable. Let the comparable box dimension dimcb(G) of a graph G be the smallest
integer d such that G has a touching representation by comparable boxes in Rd. We remark
that the comparable box dimension of every graph G is at most |V (G)|, see Section 3.1
for details. Then, for a class G of graphs, let dimcb(G) := sup{dimcb(G) : G ∈ G}. If the
comparable box dimension of graphs in G is not bounded, we write dimcb(G) = ∞.

Dvořák, McCarty and Norin [6] proved some basic properties of this notion. In particular,
they showed that if a class G has finite comparable box dimension, then it has polynomial
strong coloring numbers, which implies that G has strongly sublinear separators. They
also provided an example showing that, for many functions h, the class of graphs with
strong coloring numbers bounded by h has infinite comparable box dimension1. Dvořák et
al. [9] proved that graphs of comparable box dimension 3 have exponential weak coloring
numbers, giving the first natural graph class with polynomial strong coloring numbers and
superpolynomial weak coloring numbers (the previous example is obtained by subdividing
edges of every graph suitably many times [12]).

We show that the comparable box dimension behaves well under the operations of addition
of apex vertices, clique-sums, and taking subgraphs. Together with known results on product
structure [4], this implies the main result of this paper.

▶ Theorem 1. The comparable box dimension of every proper minor-closed class of graphs
is finite.

Additionally, we show that classes of graphs with finite comparable box dimension are
fractionally treewidth-fragile. This gives arbitrarily precise approximation algorithms for
all monotone maximization problems that are expressible in terms of distances between the
solution vertices and tractable on graphs of bounded treewidth [8], or expressible in the
first-order logic [7].

2 Parameters

In this section we bound some basic graph parameters in terms of comparable box dimension.
The first result bounds the clique number ω(G) in terms of dimcb(G).

▶ Lemma 2. For any graph G, we have ω(G) ≤ 2dimcb(G).

Proof. We may assume that G has bounded comparable box dimension witnessed by a box
representation f . To represent any clique A = {a1, . . . , aw} in G, the corresponding boxes
f(a1), . . . , f(aw) have pairwise non-empty intersections. Since axis-aligned boxes have the
Helly property, there is a point p ∈ Rd contained in f(a1) ∩ · · · ∩ f(aw). As each box is

1 In their construction h(r) has to be at least 3, and has to tend to +∞.
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full-dimensional, their interiors each intersect at least one of the 2d orthants at p. At the
same time, it follows from the definition of a touching representation that f(a1), . . . , f(ad)
have pairwise disjoint interiors, and hence w ≤ 2d. ◀

Note that a clique with 2d vertices has a touching representation by comparable boxes in
Rd, where each vertex is a hypercube defined as the Cartesian product of intervals of form
[−1, 0] or [0, 1]. From this together with Lemma 2, it follows that dimcb(K2d) = d.

The remaining bounds pertain to the chromatic number χ(G) of a graph G, and two
of its variants. An acyclic coloring (resp. star coloring) of a graph G is a proper coloring
such that any two color classes induce a forest (resp. star forest, i.e., a forest in which each
component is a star). The acyclic chromatic number χa(G) (resp. star chromatic number
χs(G)) of G is the minimum number of colors in an acyclic (resp. star) coloring of G. We
will need the fact that all the variants of the chromatic number are at most exponential in
the comparable box dimension; this follows from [6], although we include an argument to
make the dependence clear.

▶ Lemma 3. For any graph G we have χ(G) ≤ 3dimcb(G), χa(G) ≤ 5dimcb(G) and χs(G) ≤
2 · 9dimcb(G).

Proof. We focus on the star chromatic number and note that the chromatic number and the
acyclic chromatic number may be bounded similarly. Suppose that G has comparable box
dimension d witnessed by a representation f , and let v1, . . . , vn be the vertices of G written
so that vol(f(v1)) ≥ . . . ≥ vol(f(vn)). Equivalently, we have f(vi) ⊑ f(vj) whenever i > j.
Now define a greedy coloring c so that c(vi) is the smallest color such that c(vi) ̸= c(vj) for
any j < i for which either vjvi ∈ E(G) or there exists m > j such that vjvm, vmvi ∈ E(G).
Note that this gives a star coloring, since a path on four vertices always contains a 3-vertex
subpath of the form vi1vi2vi3 such that i1 < i2, i3, and our coloring procedure gives distinct
colors to vertices forming such a path.

It remains to bound the number of colors used. Suppose we are coloring vi. We shall
bound the number of vertices vj such that j < i and such that there exists m > i for which
vjvm, vmvi ∈ E(G). Let B be the box obtained by scaling up f(vi) by a factor of 5 while
keeping the same center. Since f(vm) ⊑ f(vi) ⊑ f(vj), there exists a translation Bj of f(vi)
contained in f(vj) ∩ B (see Figure 1). Two boxes Bj and Bj′ for j ̸= j′ have disjoint interiors
since their intersection is contained in the intersection of the touching boxes f(vj) and f(vj′),
and their interiors are also disjoint from f(vi) ⊂ B. Thus, the number of such indices j is at
most vol(B)/ vol(f(vi)) − 1 = 5d − 1.

A similar argument shows that the number of indices m such that m < i and vmvi ∈ E(G)
is at most 3d − 1. Consequently, the number of indices j < i for which there exists m such
that j < m < i and vjvm, vmvi ∈ E(G) is at most (3d − 1)2. This means that when choosing
the color of vi greedily, we only need to avoid colors of at most (5d − 1) + (3d − 1) + (3d − 1)2

vertices, so 2 · 9d colors suffice. ◀

3 Operations

It is clear that, given a touching representation of a graph G, one can easily obtains a
touching representation by boxes of an induced subgraph H of G by simply deleting the
boxes corresponding to the vertices in V (G)\V (H). We shall show that these representations
also behave nicely under several other basic operations on graphs. To describe the boxes, we
shall use the Cartesian product × defined among boxes of lower dimension (so that A × B
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f(vi)

B

f(v1)
B1

f(v2) B2

f(v3)B3

Figure 1 Nearby boxes obstructing colors at vi.

is the box whose projection on some first number of dimensions gives the box A, while the
projection on the remaining dimensions gives the box B), or specify its projections onto
every dimension (and in this case write A[i] for the interval obtained from projecting A on
its ith dimension).

3.1 Vertex addition
Let us start with a simple lemma which says that the addition of a vertex increases the
comparable box dimension by at most one. In particular, this implies that dimcb(G) ≤ |V (G)|.

▶ Lemma 4. For any graph G and v ∈ V (G), we have dimcb(G) ≤ dimcb(G − v) + 1.

Proof. Let f be a touching representation of G − v by comparable boxes in Rd, where
d = dimcb(G − v). We define a representation h of G as follows. For each u ∈ V (G) \ {v},
let h(u) = [0, 1] × f(u) if uv ∈ E(G) and h(u) = [1/2, 3/2] × f(u) if uv ̸∈ E(G). Let
h(v) = [−1, 0] × [−M, M ] × · · · × [−M, M ], where M is chosen large enough so that f(u) ⊆
[−M, M ] × · · · × [−M, M ] for every u ∈ V (G) \ {v}. Then h is a touching representation of
G by comparable boxes in Rd+1. ◀

3.2 Strong product
Let G ⊠ H denote the strong product of the graphs G and H, i.e., the graph with vertex
set V (G) × V (H) and with distinct vertices (u1, v1) and (u2, v2) adjacent if and only if u1
is equal to or adjacent to u2 in G and v1 is equal to or adjacent to v2 in H. To obtain a
touching representation of G ⊠ H it suffices to take a product of representations of G and
H, but the resulting representation may contain incomparable boxes. Indeed, in general
dimcb(G ⊠ H) is not bounded by a function of dimcb(G) and dimcb(H); for example, every
star has comparable box dimension at most two, but the strong product of the star K1,n

with itself contains Kn,n as an induced subgraph, and thus its comparable box dimension is
at least Ω(log n). However, as shown in the following lemma, this issue does not arise if the
representation of H consists of translates of a single box; by scaling, we can without loss of
generality assume this box is a unit hypercube.

▶ Lemma 5. Consider a graph H having a touching representation h in RdH by axis-aligned
hypercubes of unit size. Then for any graph G, the strong product G ⊠ H of these graphs has
comparable box dimension at most dimcb(G) + dH .
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Proof. It suffices to take a product of the two representations. Indeed, consider a touch-
ing respresentation g of G by comparable boxes in RdG , with dG = dimcb(G), and the
representation h of H. Let us define a representation f of G ⊠ H in RdG+dH by

f((u, v))[i] =
{

g(u)[i] if i ≤ dG

h(v)[i − dG] if i > dG.

Consider distinct vertices (u, v) and (u′, v′) of G⊠H. The boxes g(u) and g(u′) are comparable,
say g(u) ⊑ g(u′). Since h(v′) is a translation of h(v), this implies that f((u, v)) ⊑ f((u′, v′)).
Hence, the boxes of the representation f are pairwise comparable.

The boxes of the representations g and h have pairwise disjoint interiors. Hence, if
u ̸= u′, then there exists i ≤ dG such that the interiors of the intervals f((u, v))[i] = g(u)[i]
and f((u′, v′))[i] = g(u′)[i] are disjoint; if v ̸= v′, then there exists i ≤ dH such that the
interiors of the intervals f((u, v))[i + dG] = h(v)[i] and f((u′, v′))[i + dG] = h(v′)[i] are
disjoint. Consequently, the interiors of boxes f((u, v)) and f((u′, v′)) are pairwise disjoint.
Moreover, if u ̸= u′ and uu′ ̸∈ E(G), or if v ̸= v′ and vv′ ̸∈ E(G), then the aforementioned
intervals (not just their interiors) are disjoint for some i; hence, if (u, v) and (u′, v′) are not
adjacent in G ⊠ H, then f((u, v)) ∩ f((u′, v′)) = ∅. Therefore, f is a touching representation
of a subgraph of G ⊠ H.

Finally, suppose that (u, v) and (u′, v′) are adjacent in G ⊠ H. Then there exists a point
pG in the intersection of g(u) and g(u′), since u = u′ or uu′ ∈ E(G) and g is a touching
representation of G; and similarly, there exists a point pH in the intersection of h(v) and
h(v′). Then pG × pH is a point in the intersection of f((u, v)) and f((u′, v′)). Hence, f is
indeed a touching representation of G ⊠ H. ◀

3.3 Taking a subgraph
The comparable box dimension of a subgraph of a graph G may be larger than dimcb(G)
(see the end of this section for an example). However, we show that the comparable box
dimension of a subgraph is at most exponential in the comparable box dimension of the whole
graph. This is essentially Corollary 25 in [6], but since the setting is somewhat different and
the construction of [6] uses rotated boxes, we provide details of the argument.

▶ Lemma 6. If G is a subgraph of a graph G′, then dimcb(G) ≤ dimcb(G′) + 1
2 χ2

s(G′).

Proof. By removing boxes that represent vertices of G that are not in G′, we may assume
that V (G′) = V (G). Let f be a touching representation of G′ by comparable boxes in Rd,
where d = dimcb(G′). Let φ be a star coloring of G′ using colors {1, . . . , c}, where c = χs(G′).

For any distinct colors i, j ∈ {1, . . . , c}, let Ai,j ⊆ V (G) be the set of vertices u of color i

such that there exists a vertex v of color j such that uv ∈ E(G′) \ E(G). For each u ∈ Ai,j ,
let aj(u) denote such a vertex v chosen arbitrarily.

Let us define a representation h by boxes in Rd+(c
2) by starting from the representation f

and, for each pair i < j of colors, adding a dimension di,j and setting

h(v)[di,j ] =


[1/3, 4/3] if v ∈ Ai,j

[−4/3, −1/3] if v ∈ Aj,i

[−1/2, 1/2] otherwise.

Note that the boxes in this extended representation are comparable, as in the added
dimensions, all the boxes have size 1.

SoCG 2022
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Suppose uv ∈ E(G), where φ(u) = i and φ(v) = j and say i < j. We cannot have
u ∈ Ai,j and v ∈ Aj,i, as then aj(u)uvai(v) would be a 4-vertex path in G′ in colors i and j.
Hence, in any added dimension d′, we have h(u)[d′] = [−1/2, 1/2] or h(v)[d′] = [−1/2, 1/2],
and thus h(u)[d′] ∩ h(v)[d′] ̸= ∅. Since the boxes f(u) and f(v) touch, it follows that the
boxes h(u) and h(v) touch as well.

Suppose now that uv ̸∈ E(G). If uv ̸∈ E(G′), then f(u) is disjoint from f(v), and thus
h(u) is disjoint from h(v). Hence, we can assume uv ∈ E(G′) \ E(G), φ(u) = i, φ(v) = j

and i < j. Then u ∈ Ai,j , v ∈ Aj,i, h(u)[di,j ] = [1/3, 4/3], h(v)[dj,i] = [−4/3, −1/3], and
h(u) ∩ h(v) = ∅.

Consequently, h is a touching representation of G by comparable boxes in dimension
d +

(
c
2
)

≤ d + c2/2. ◀

Let us now combine Lemmas 3 and 6.

▶ Corollary 7. If G is a subgraph of a graph G′, then dimcb(G) ≤ dimcb(G′)+2 ·81dimcb(G′) ≤
3 · 81dimcb(G′).

An exponential increase in the dimension is unavoidable: we have dimcb(K2d) = d, but
the graph obtained from K2d by deleting a perfect matching has comparable box dimension
2d−1. Indeed, for every pair u, v of non-adjacent vertices there is a specific dimension i such
that their boxes span intervals [a, b] and [c, d] with b < c, while the ith interval of every other
box in the representation contains [b, c].

3.4 Clique-sums

A clique-sum of two graphs G1 and G2 is obtained from their disjoint union by identifying
vertices of a clique in G1 and a clique of the same size in G2 and possibly deleting some of
the edges of the resulting clique. A full clique-sum is a clique-sum in which we keep all the
edges of the resulting clique. The main issue to overcome in obtaining a representation for a
(full) clique-sum is that the representations of G1 and G2 can be “degenerate”. Consider, for
example, the case where G1 is represented by unit squares arranged in a grid; here there is no
space to attach G2 at the cliques formed by four squares intersecting in a single corner. This
can be avoided by increasing the dimension, but we need to be careful so that the dimension
stays bounded even after an arbitrary number of clique-sums. We thus introduce the notion
of clique-sum extendable representations.

▶ Definition 8. Consider a graph G with a distinguished clique C⋆, called the root clique of
G. A touching representation h of G by (not necessarily comparable) boxes in Rd is called
C⋆-clique-sum extendable if the following conditions hold for every sufficiently small ε > 0.
(vertices) For each u ∈ V (C⋆), there exists a dimension du, such that:
(v0) du ̸= du′ for distinct u, u′ ∈ V (C⋆),
(v1) each vertex u ∈ V (C⋆) satisfies h(u)[du] = [−1, 0] and h(u)[i] = [0, 1] for any dimension

i ̸= du, and
(v2) each vertex v /∈ V (C⋆) satisfies h(v) ⊂ [0, 1)d.

(cliques) For every clique C of G, there exists a point p(C) ∈ [0, 1)d ∩
(⋂

v∈V (C) h(v)
)

such
that, defining the clique box hε(C) by setting hε(C)[i] = [p(C)[i], p(C)[i] + ε] for every
dimension i, the following conditions are satisfied:

(c1) For any two cliques C1 ̸= C2, hε(C1) ∩ hε(C2) = ∅ (equivalently, p(C1) ̸= p(C2)).
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(c2) A box h(v) intersects hε(C) if and only if v ∈ V (C), and in that case their intersection
is a facet of hε(C) incident to p(C). That is, there exists a dimension iC,v such that
for each dimension j,

h(v)[j] ∩ hε(C)[j] =
{

{p(C)[iC,v]} if j = iC,v

[p(C)[j], p(C)[j] + ε] otherwise.

Note that the root clique can be empty, that is the empty subgraph with no vertices. In that
case the clique is denoted ∅. Let dimext

cb (G) be the minimum dimension such that G has an
∅-clique-sum extendable touching representation by comparable boxes.

Let us remark that a clique-sum extendable representation in dimension d implies the
existence of such a representation in higher dimensions as well.

▶ Lemma 9. Let G be a graph with a root clique C⋆ and let h be a C⋆-clique-sum extendable
touching representation of G by comparable boxes in Rd. Then G has such a representation
in Rd′ for every d′ ≥ d.

Proof. It clearly suffices to consider the case that d′ = d + 1. Note that the (vertices)
conditions imply that h(v′) ⊑ h(v) for every v′ ∈ V (G) \ V (C⋆) and v ∈ V (C⋆). We extend
the representation h by setting h(v)[d + 1] = [0, 1] for v ∈ V (C⋆) and h(v)[d + 1] = [0, 1

2 ]
for v ∈ V (G) \ V (C⋆). The clique point p(C) of each clique C is extended by setting
p(C)[d + 1] = 1

4 . It is easy to verify that the resulting representation is C⋆-clique-sum
extendable. ◀

The following lemma ensures that clique-sum extendable representations behave well
with respect to full clique-sums. The proof is omitted, but the key strategy is to translate
(allowing exchanges of dimensions) and scale h2 to fit in hε

1(C1).

▶ Lemma 10. Consider two graphs G1 and G2, given with a C⋆
1 - and a C⋆

2 -clique-sum
extendable representations h1 and h2 by comparable boxes in Rd1 and Rd2 , respectively. Let
G be the graph obtained by performing a full clique-sum of these two graphs on any clique
C1 of G1, and on the root clique C⋆

2 of G2. Then G admits a C⋆
1 -clique sum extendable

representation h by comparable boxes in Rmax(d1,d2).

Moreover, we can pick the root clique at the expense of increasing the dimension by ω(G).
This proof is also omitted, but it is essentially the same as that of Lemma 4.

▶ Lemma 11. For any graph G and any clique C⋆, the graph G admits a C⋆-clique-sum
extendable touching representation by comparable boxes in Rd, for d = |V (C⋆)| + dimext

cb (G \
V (C⋆)).

The last key lemma that we will need in this section is an upper bound on dimext
cb (G) in

terms of dimcb(G) and χ(G).

▶ Lemma 12. For any graph G, dimext
cb (G) ≤ dimcb(G) + χ(G).

Proof. Let h be a touching representation of G by comparable boxes in Rd, with d = dimcb(G),
and let c be a χ(G)-coloring of G. We start with a slightly modified version of h. We first
scale h to fit in (0, 1)d, and for a sufficiently small real α > 0 we increase each box in
h by 2α in every dimension, that is we replace h(v)[i] = [a, b] by [a − α, b + α] for each
vertex v and dimension i. Here, we choose α to be sufficiently small so that the boxes
representing non-adjacent vertices remain disjoint, and thus the resulting representation h1 is
an intersection representation of the same graph G. Moreover, observe that for every clique

SoCG 2022



38:8 On Comparable Box Dimension

C of G, the intersection IC =
⋂

v∈V (C) h1(v) is a box with non-zero edge lengths. For any
clique C of G, let p1(C) be a point in the interior of IC different from the points chosen for
all other cliques.

Now we add χ(G) dimensions to make the representation touching again, and to ensure
some space for the clique boxes hε(C). Formally we define h2 as

h2(u)[i] =


h1(u)[i] if i ≤ d

[1/5, 3/5] if i > d and c(u) < i − d

[0, 2/5] if i > d and c(u) = i − d

[2/5, 4/5] otherwise (if c(u) > i − d > 0).

For any clique C of G, let c(C) denote the color set {c(u) | u ∈ V (C)}. We now set

p2(C)[i] =


p1(C)[i] if i ≤ d

2/5 if i > d and i − d ∈ c(C)
1/2 otherwise.

As h2 is an extension of h1, and as in each dimension j > d, h2(v)[j] is an interval of
length 2/5 containing the point 2/5 for every vertex v, we have that h2 is an intersection
representation of G by comparable boxes. To prove that it is touching consider two adjacent
vertices u and v such that c(u) < c(v), and let us note that h2(u)[d + c(u)] = [0, 2/5] and
h2(v)[d + c(u)] = [2/5, 4/5].

For the ∅-clique-sum extendability, the (vertices) conditions are void. For the (cliques)
conditions, since p1 is chosen to be injective, the mapping p2 is injective as well, implying
that (c1) holds.

Consider now a clique C in G and a vertex v ∈ V (G). If c(v) ̸∈ c(C), then h2(v)[c(v)+d] =
[0, 2/5] and p2(C)[c(v) + d] = 1/2, implying that hε

2(C) ∩ h2(v) = ∅. If c(v) ∈ c(C) but
v ̸∈ V (C), then letting v′ ∈ V (C) be the vertex of color c(v), we have vv′ ̸∈ E(G), and thus
h1(v) is disjoint from h1(v′). Since p1(C) is contained in the interior of h1(v′), it follows that
hε

2(C) ∩ h2(v) = ∅. Finally, suppose that v ∈ C. Since p1(C) is contained in the interior of
h1(v), we have hε

2(C)[i] ⊂ h2(v)[i] for every i ≤ d. For i > d distinct from d + c(v), we have
pε

2(C)[i] ∈ {2/5, 1/2} and [2/5, 3/5] ⊆ h2(v)[i], and thus hε
2(C)[i] ⊂ h2(v)[i]. For i = d + c(v),

we have pε
2(C)[i] = 2/5 and h2(v)[i] = [0, 2/5], and thus hε

2(C)[i] ∩ h2(v)[i] = {pε
2(C)[i]}.

Therefore, (c2) holds. ◀

Together, the preceding lemmas show that comparable box dimension is almost preserved
by full clique-sums.

▶ Corollary 13. Let G be a class of graphs of chromatic number at most k. If G′ is the class
of all graphs that can be obtained from G by repeatedly performing full clique-sums, then
dimcb(G′) ≤ dimcb(G) + 2k.

Proof. Suppose a graph G is obtained from G1, . . . , Gm ∈ G by a sequence of full clique-sums.
Without loss of generality, the labelling of the graphs is chosen so that we first perform
the full clique-sum on G1 and G2, then on the resulting graph and G3, and so on. Let
C⋆

1 = ∅ and for i = 2, . . . , m, let C⋆
i be the root clique of Gi on which it is glued in the full

clique-sum operation. By Lemmas 12 and 11, Gi has a C⋆
i -clique-sum extendable touching

representation by comparable boxes in Rd, where d = dimcb(G) + 2k. Repeatedly applying
Lemma 10, we conclude that dimcb(G) ≤ d. ◀
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Putting this corollary together with Lemmas 3 and 6, we obtain the following bounds.

▶ Corollary 14. Let G be a class of graphs of comparable box dimension at most d.
The class G′ of graphs obtained from G by repeatedly performing full clique-sums has
comparable box dimension at most d + 2 · 3d.
The closure of G′ by taking subgraphs has comparable box dimension at most 1250d.

Proof. The former bound directly follows from Corollary 13 and the bound on the chromatic
number from Lemma 3. For the latter, we need to bound the star chromatic number of
G′. Suppose a graph G is obtained from G1, . . . , Gm ∈ G by performing full clique-sums.
For i = 1, . . . , m, suppose Gi has an acyclic coloring φi by at most k colors. Note that the
vertices of any clique get pairwise different colors, and thus by permuting the colors, we can
ensure that when we perform the full clique-sum, the vertices that are identified have the
same color. Hence, we can define a coloring φ of G such that for each i, the restriction of φ

to V (Gi) is equal to φi. Let C be the union of any two color classes of φ. Then for each i,
Gi[C ∩ V (Gi)] is a forest, and since G[C] is obtained from these graphs by full clique-sums,
G[C] is also a forest. Hence, φ is an acyclic coloring of G by at most k colors. By [1], G has
a star coloring by at most 2k2 − k colors. Hence, Lemma 3 implies that G′ has star chromatic
number at most 2 · 25d − 5d. The bound on the comparable box dimension of subgraphs of
graphs from G′ then follows from Lemma 6. ◀

4 The strong product structure and minor-closed classes

A k-tree is any graph obtained by repeated full clique-sums on cliques of size k from cliques
of size at most k + 1. A k-tree-grid is a strong product of a k-tree and a path. An extended
k-tree-grid is a graph obtained from a k-tree-grid by adding at most k apex vertices. Dujmović
et al. [4] proved the following result.

▶ Theorem 15. Any graph G is a subgraph of the strong product of a k-tree-grid and Km,
where

k = 3 and m = 3 if G is planar, and
k = 4 and m = max(2g, 3) if G has Euler genus at most g.

Moreover, for every t, there exists an integer k such that any Kt-minor-free graph G is a
subgraph of a graph obtained by repeated clique-sums from extended k-tree-grids.

Let us first bound the comparable box dimension of a graph in terms of its Euler genus.
As paths and m-cliques admit touching representations with hypercubes of unit size in R1

and in R⌈log2 m⌉ respectively, by Lemma 5 it suffices to bound the comparable box dimension
of k-trees.

▶ Theorem 16. For any k-tree G, dimcb(G) ≤ dimext
cb (G) ≤ k + 1.

Proof. Let H be a complete graph with k+1 vertices and let C⋆ be a clique of size k in H. By
Lemma 10, it suffices to show that H has a C⋆-clique-sum extendable touching representation
by hypercubes in Rk+1. Let V (C⋆) = {v1, . . . , vk}. We construct the representation h so
that (v1) holds with dvi

= i for each i; this uniquely determines the hypercubes h(v1), . . . ,
h(vk). For the vertex vk+1 ∈ V (H) \ V (C⋆), we set h(vk+1) = [0, 1/2]k+1. This ensures that
the (vertices) conditions holds.

SoCG 2022



38:10 On Comparable Box Dimension

For the (cliques) conditions, let us set the point p(C) for every clique C as follows:
p(C)[i] = 0 for every i ≤ k such that vi ∈ C

p(C)[i] = 1
4 for every i ≤ k such that vi /∈ C

p(C)[k + 1] = 1
2 if vk+1 ∈ C

p(C)[k + 1] = 3
4 if vk+1 /∈ C

By construction, it is clear that for each vertex v ∈ V (H), p(C) ∈ h(v) if and only if
v ∈ V (C).

For any two distinct cliques C1 and C2, the points p(C1) and p(C2) are distinct. Indeed,
by symmetry we can assume that for some i we have vi ∈ V (C1) \ V (C2), and this implies
that p(C1)[i] < p(C2)[i]. Hence, the condition (c1) holds.

Consider now a vertex vi and a clique C. As we observed before, if vi ̸∈ V (C), then
p(C) ̸∈ h(vi), and thus hε(C) and h(vi) are disjoint (for sufficiently small ε > 0). If vi ∈ C,
then the definitions ensure that p(C)[i] is equal to the maximum of h(vi)[i], and that for
j ̸= i, p(C)[j] is in h(vi)[j], implying that h(vi)[j] ∩ hε(C)[j] = [p(C)[j], p(C)[j] + ε] for
sufficiently small ε > 0. ◀

The treewidth tw(G) of a graph G is the minimum k such that G is a subgraph of a k-tree.
It is worth noting that the bound on the comparable box dimension of Theorem 16 actually
extends to graphs of treewidth at most k (proof omitted).

▶ Corollary 17. Every graph G satisfies dimcb(G) ≤ tw(G) + 1.

As every planar graph G has a touching representation by cubes in R3 [11], we have
that dimcb(G) ≤ 3. For graphs with higher Euler genus we can also derive upper bounds.
Indeed, combining the previous observation on the representations of paths and Km with
Theorem 16, Lemma 5 and Corollary 7 we obtain:

▶ Corollary 18. For every graph G of Euler genus g, there exists a supergraph G′ of G such
that dimcb(G′) ≤ 6 + ⌈log2 max(2g, 3)⌉. Consequently,

dimcb(G) ≤ 3 · 817 · max(2g, 3)log2 81.

Similarly, we can deal with proper minor-closed classes.

Proof of Theorem 1. Let G be a proper minor-closed class. Since G is proper, there exists t

such that Kt ̸∈ G. By Theorem 15, there exists k such that every graph in G is a subgraph
of a graph obtained by repeated clique-sums from extended k-tree-grids. As we have seen,
k-tree-grids have comparable box dimension at most k + 2, and by Lemma 4, extended
k-tree-grids have comparable box dimension at most 2k + 2. By Corollary 14, it follows that
dimcb(G) ≤ 12502k+2. ◀

Note that the graph obtained from K2n by deleting a perfect matching has Euler genus
Θ(n2) and comparable box dimension n. It follows that the dependence of the comparable
box dimension on the Euler genus cannot be subpolynomial (though the degree log2 81 of
the polynomial established in Corollary 18 certainly can be improved). The dependence of
the comparable box dimension on the size of the forbidden minor that we established is not
explicit, as Theorem 15 is based on the structure theorem of Robertson and Seymour [17]. It
would be interesting to prove Theorem 1 without using the structure theorem.
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5 Fractional treewidth-fragility

Suppose G is a connected planar graph and v is a vertex of G. For an integer k ≥ 2, give
each vertex at distance d from v the color d mod k. Then deleting the vertices of any of the
k colors results in a graph of treewidth at most 3k. This fact (which follows from the result
of Robertson and Seymour [18] on treewidth of planar graphs of bounded radius) is (in the
modern terms) the basis of Baker’s technique [2] for design of approximation algorithms.
However, even quite simple graph classes, such as the strong products of three paths [3],
do not admit such a coloring where the removal of any color class results in a graph of
bounded treewidth. Nonetheless, a fractional version of this coloring concept is still very
useful in the design of approximation algorithms [8] and applies to much more general graph
classes, including all graph classes with strongly sublinear separators and bounded maximum
degree [5].

A class of graphs G is fractionally treewidth-fragile if there exists a function f such that
for every graph G ∈ G and integer k ≥ 2, there exist sets X1, . . . , Xm ⊆ V (G) such that each
vertex belongs to at most m/k of them and tw(G − Xi) ≤ f(k) for every i (equivalently,
there exists a probability distribution on the set {X ⊆ V (G) : tw(G − X) ≤ f(k)} such that
Pr[v ∈ X] ≤ 1/k for each v ∈ V (G)). For example, the class of planar graphs is (fractionally)
treewidth-fragile, since we can let Xi consist of the vertices of color i − 1 in the coloring
described at the beginning of the section.

It will be useful to have a different formulation of treewidth for the argument to follow.
Recall that a tree decomposition of a graph G is a pair (T, β), where T is a rooted tree and
β : V (T ) → 2V (G) assigns a bag to each of its nodes, such that

for each edge uv ∈ E(G), there exists x ∈ V (T ) such that u, v ∈ β(x), and
for each vertex v ∈ V (G), the set {x ∈ V (T ) : v ∈ β(x)} is non-empty and induces a
connected subtree of T .

For nodes x, y ∈ V (T ), we write x ⪯ y if x = y or x is a descendant of y in T . The width of
the tree decomposition is the maximum of the sizes of the bags minus 1. The treewidth of
a graph is the minimum of the widths of its tree decompositions. Let us remark that the
treewidth obtained via this definition coincides with the one via k-trees of Section 4

The purpose of this section is to show that all graph classes of bounded comparable box
dimension are fractionally treewidth-fragile. In fact, we prove this result in a more general
setting, motivated by concepts from [6] and by applications to related representations. The
argument is motivated by the idea used in the approximation algorithms for disk graphs by
Erlebach et al. [10].

For a measurable set A ⊆ Rd, let vol(A) denote the Lebesgue measure of A. Given two
measurable subsets A and B of Rd and a positive integer s, we write A ⊑s B if for every
x ∈ B, there exists a translation A′ of A such that x ∈ A′ and vol(A′ ∩ B) ≥ 1

s vol(A). Note
that for two boxes A and B, we have A ⊑1 B if and only if A ⊑ B. An s-comparable envelope
representation (ι, ω) of a graph G in Rd consists of two functions ι, ω : V (G) → 2Rd such
that for some ordering v1, . . . , vn of vertices of G,

for each i, ω(vi) is a box, ι(vi) is a measurable set, and ι(vi) ⊆ ω(vi),
if i < j, then ω(vj) ⊑s ι(vi), and
if i < j and vivj ∈ E(G), then ω(vj) ∩ ι(vi) ̸= ∅.

We say that the representation has thickness at most t if for every point x ∈ Rd, there exist
at most t vertices v ∈ V (G) such that x ∈ ι(v). For example, if f is a touching representation
of G by comparable boxes in Rd, then (f, f) is a 1-comparable envelope representation of G

in Rd of thickness at most 2d.
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▶ Theorem 19. For positive integers t, s, and d, the class of graphs with an s-comparable
envelope representation in Rd of thickness at most t is fractionally treewidth-fragile, with a
function f(k) = Ot,s,d

(
kd

)
.

Proof. For a positive integer k, let f(k) = (2ksd + 2)dst. Let (ι, ω) be an s-comparable
envelope representation of a graph G in Rd of thickness at most t, and let v1, . . . , vn be
the corresponding ordering of the vertices of G. Let us define ℓi,j ∈ R+ for i = 1, . . . , n and
j ∈ {1, . . . , d} as an approximation of ksd|ω(vi)[j]| such that ℓi−1,j/ℓi,j is a positive integer.
Formally, it is defined by the following process.

Let ℓ1,j = ksd|ω(v1)[j]|.
For i = 2, . . . , n, let ℓi,j = ℓi−1,j , if ℓi−1,j < ksd|ω(vi)[j]|, and otherwise let ℓi,j be lowest
fraction of ℓi−1,j that is greater than ksd|ω(vi)[j]|, formally ℓi,j = min{ℓi−1,j/b | b ∈
N+ and ℓi−1,j/b ≥ ksd|ω(vi)[j]|}.

Choose xj ∈ [0, ℓ1,j ] uniformly at random, and let Hi
j be the set of hyperplanes in Rd

consisting of the points whose j-th coordinate is equal to xj +mℓi,j for some m ∈ Z. As ℓi,j is
a multiple of ℓi′,j whenever i ≤ i′, we have that Hi

j ⊆ Hi′

j whenever i ≤ i′. For i ∈ {1, . . . , n},
the i-grid is Hi =

⋃d
j=1 Hi

j , and we let the 0-grid H0 = ∅. Then, as above, we have that
Hi ⊆ Hi′ whenever i ≤ i′.

Let X ⊆ V (G) consist of the vertices va ∈ V (G) such that the box ω(va) intersects some
hyperplane H ∈ Ha, that is such that xj +mℓa,j ∈ ω(va)[j], for some j ∈ {1, . . . , d} and some
m ∈ Z. First, let us argue that Pr[va ∈ X] ≤ 1/k. Indeed, the set [0, ℓ1,j ] ∩

⋃
m∈Z(ω(va)[j] −

mℓa,j) has measure ℓ1,j

ℓa,j
· |ω(va)[j]|, implying that for fixed j, this happens with probability

|ω(va)[j]|/ℓa,j . Let a′ be the largest integer such that a′ ≤ a and ℓa′,j < ℓa′−1,j if such an
index exists, and a′ = 1 otherwise; note that ℓa,j = ℓa′,j ≥ ksd|ω(va′)[j]|. Moreover, since
ω(va) ⊑s ι(va′) ⊆ ω(va′), we have ω(va)[j] ≤ sω(va′)[j]. Combining these inequalities,

|ω(va)[j]|
ℓa,j

≤ sω(va′)[j]
ksd|ω(va′)[j]| = 1

kd
.

By the union bound, we conclude that Pr[va ∈ X] ≤ 1/k.
We now bound the treewidth of G − X. For a ≥ 0, an a-cell is a maximal connected

subset of Rd \
(⋃

H∈Ha H
)
. A set C ⊆ Rd is a cell if it is an a-cell for some a ≥ 0. A cell

C is non-empty if there exists v ∈ V (G − X) such that ι(v) ⊆ C. Note that there exists a
rooted tree T whose vertices are the non-empty cells and such that for x, y ∈ V (T ), we have
x ⪯ y if and only if x ⊆ y. For each non-empty cell C, define β(C) to be the set of vertices
vi ∈ V (G − X) such that ι(v) ∩ C ̸= ∅ and C is an a-cell for some a ≥ i.

Let us show that (T, β) is a tree decomposition of G − X. For each vj ∈ V (G − X),
the j-grid is disjoint from ω(vj), and thus ι(vj) ⊆ ω(vj) ⊂ C for some j-cell C ∈ V (T ) and
vj ∈ β(C). Consider now an edge vivj ∈ E(G − X), where i < j. We have ω(vj) ∩ ι(vi) ̸= ∅,
and thus ι(vi) ∩ C ̸= ∅ and vi ∈ β(C). Finally, suppose that vj ∈ C ′ for some C ′ ∈ V (T ).
Then C ′ is an a-cell for some a ≥ j, and since ι(vj) ∩ C ′ ̸= ∅ and ι(vj) ⊂ C, we conclude that
C ′ ⊆ C, and consequently C ′ ⪯ C. Moreover, any cell C ′′ such that C ′ ⪯ C ′′ ⪯ C (and thus
C ′ ⊆ C ′′ ⊆ C) is an a′-cell for some a′ ≥ j and ι(vj) ∩ C ′′ ⊇ ι(vj) ∩ C ′ ̸= ∅, which implies
that vj ∈ β(C ′′). It follows that {C ′ : vj ∈ β(C ′)} induces a connected subtree of T .

Finally, we bound the width of the decomposition (T, β). Let C be a non-empty cell and
let a be maximum number for which C is an a-cell. Then C is an open box with sides of
lengths ℓa,1, . . . , ℓa,d. Consider j ∈ {1, . . . , d}:

If a = 1, then ℓa,j = ksd|ω(va)[j]|.
If a > 1 and ℓa,j = ℓa−1,j , then ℓa,j = ℓa−1,j < 2ksd|ω(va)[j]| (otherwise ℓa,j = ℓa−1,j/b

for some integer b ≥ 2).
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If a > 1 and ℓa,j < ℓa−1,j , then ℓa−1,j ≥ b × ksd|ω(va)[j]| for some integer b ≥ 2. Now
let b be the greatest such integer (that is such that ℓa−1,j < (b + 1) × ksd|ω(va)[j]|) and
note that

ℓa,j = ℓa−1,j

b
< b+1

b ksd|ω(va)[j]| < 3
2 ksd|ω(va)[j]|.

Hence, in all cases we have ℓa,j < 2ksd|ω(va)[j]|. Let C ′ be the box with the same center
as C and with |C ′[j]| = (2ksd + 2)|ω(va)[j]|. For any vi ∈ β(C) \ {va}, we have i ≤ a and
ι(vi) ∩ C ̸= ∅, and since ω(va) ⊑s ι(vi), there exists a translation Bi of ω(va) that intersects
C ∩ ι(vi) and such that vol(Bi ∩ ι(vi)) ≥ 1

s vol(ω(va)). Note that as Bi intersects C, we have
that Bi ⊆ C ′. Using the initial assumption that the representation has thickness at most t,
we now have

vol(C ′) ≥ vol

C ′ ∩
⋃

vi∈β(C)\{va}

ι(vi)


≥ vol

 ⋃
vi∈β(C)\{va}

Bi ∩ ι(vi)


≥ 1

t

∑
vi∈β(C)\{va}

vol(Bi ∩ ι(vi))

≥ vol(ω(va))(|β(C)| − 1)
st

.

Since vol(C ′) = (2ksd + 2)d vol(ω(va)), it follows that

|β(C)| − 1 ≤ (2ksd + 2)dst = f(k),

as required. ◀

The proof that (generalizations of) graphs with bounded comparable box dimensions have
sublinear separators in [6] is indirect; it is established that these graphs have polynomial
coloring numbers, which in turn implies they have polynomial expansion, which then gives
sublinear separators using the algorithm of Plotkin, Rao, and Smith [16]. The existence
of sublinear separators is known to follow more directly from fractional treewidth-fragility.
Indeed, since Pr[v ∈ X] ≤ 1/k, there exists X ⊆ V (G) such that tw(G − X) ≤ f(k) and
|X| ≤ |V (G)|/k. The graph G − X has a balanced separator of size at most tw(G − X) + 1,
which combines with X to a balanced separator of size at most V (G)|/k + f(k) + 1 in G.
Optimizing the value of k (choosing it so that V (G)|/k = f(k)), we obtain the following
corollary of Theorem 19.

▶ Corollary 20. For positive integers t, s, and d, every graph G with an s-comparable envelope
representation in Rd of thickness at most t has a sublinear separator of size Ot,s,d

(
|V (G)|

d
d+1

)
.
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