
Short Topological Decompositions of
Non-Orientable Surfaces
Niloufar Fuladi #

LIGM, CNRS, Univ. Gustave Eiffel, ESIEE Paris, F-77454 Marne-la-Vallée, France

Alfredo Hubard
LIGM, CNRS, Univ. Gustave Eiffel, ESIEE Paris, F-77454 Marne-la-Vallée, France

Arnaud de Mesmay #

LIGM, CNRS, Univ. Gustave Eiffel, ESIEE Paris, F-77454 Marne-la-Vallée, France

Abstract
We investigate short topological decompositions of non-orientable surfaces and provide algorithms
to compute them. Our main result is a polynomial-time algorithm that for any graph embedded
in a non-orientable surface computes a canonical non-orientable system of loops so that any loop
from the canonical system intersects any edge of the graph in at most 30 points. The existence of
such short canonical systems of loops was well known in the orientable case and an open problem in
the non-orientable case. Our proof techniques combine recent work of Schaefer-Štefankovič with
ideas coming from computational biology, specifically from the signed reversal distance algorithm
of Hannenhalli-Pevzner. This result confirms a special case of a conjecture of Negami on the joint
crossing number of two embeddable graphs. We also provide a correction for an argument of Negami
bounding the joint crossing number of two non-orientable graph embeddings.

2012 ACM Subject Classification Mathematics of computing → Geometric topology; Mathematics
of computing → Graphs and surfaces

Keywords and phrases Computational topology, embedded graph, non-orientable surface, joint
crossing number, canonical system of loop, surface decomposition

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.41

Related Version Full Version: https://arxiv.org/abs/2203.06659 [9]

Funding This work was partially supported by the ANR project SoS (ANR-17-CE40-0033).

Acknowledgements We are grateful to Marcus Schaefer and Daniel Štefankovič for providing us the
full version of [25], to Francis Lazarus for insightful discussions, and to the anonymous reviewers for
very helpful comments.

1 Introduction

Decomposing a surface along a graph or a curve is a standard way to simplify its topology. The
classification of surfaces and classical tools to compute both homology groups and fundamental
groups typically rely on such topological decompositions, which are also important in meshing
and 3D-modeling (see for example [27]). Surfaces often come with extra structure which
can be modeled by an embedded graph. Decomposing such a surface efficiently then means
finding a graph that intersects the original graph transversely and that does not intersect the
embedded graph too much but nevertheless carries the topological complexity of the surface,
as is done for example in [18] or [8]. Such decompositions also appear in algorithm design:
often, to generalize results on planar graph to graphs embedded on surfaces, it is enough to
find a decomposition that cuts open the surface into a disk, then solve the resulting planar
instance and stitch back the solution, see, e.g., [4, 7, 18]. Sometimes it is important that the
cut graph is canonical in some way, e.g. in order to compute a homeomorphism between two
surfaces, one cuts them into disks, puts these disks in correspondence, and glues back the
surfaces. This works only if the cut graphs have the same combinatorial structure.

© Niloufar Fuladi, Alfredo Hubard, and Arnaud de Mesmay;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 41; pp. 41:1–41:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:niloufar.fuladi@aol.com
mailto:arnaud.de-mesmay@univ-eiffel.fr
https://doi.org/10.4230/LIPIcs.SoCG.2022.41
https://arxiv.org/abs/2203.06659
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Short Topological Decompositions of Non-Orientable Surfaces

Lazarus, Pocchiola, Vegter and Verroust [18] (see also [17]) were the first to design
an algorithm that finds, for any graph G embedded in a closed orientable surface S a
canonical system of loops H such that no edge of H intersects1 any edge of G more than
a constant number of times. Here, by a canonical system of loops we mean a one-vertex
and one-face embedded graph in which the cyclic ordering of the edges around the vertex is
a1b1a−1

1 b−1
1 . . . agbga−1

g b−1
g . Such a decomposition is an instance of the joint crossing number

problem. More precisely, consider a pair of graphs G1 and G2 embedded on a surface S of
genus g and define the joint crossing number as the minimal number of crossings between
h(G1) and G2 over all the homeomorphisms h : S → S. This quantity was introduced by
Negami [22] who made the following conjecture:

▶ Conjecture 1. There exists a universal constant C such that for any pair of graphs G1
and G2 embedded on a surface S, the joint crossing number is at most C|E(G1)||E(G2)|.

Furthermore, he proved an upper bound of Cg|E(G1)||E(G2)|. His conjecture has been
investigated further [1, 15, 23] and variants of this problem have appeared in works with
applications as diverse as finding explicit bounds for graph minors [10] or designing an
algorithm for the embeddability of simplicial complexes into R3 [19].

In the non-orientable case, no instance of Negami’s conjecture seem to be known. Even if
G1 is the non-orientable canonical system of loops, that is, a system of one-sided loops with
the cyclic ordering a1a1a2a2 . . . agag around the vertex, the best known bound is O(g|E(G2)|)
crossings for each loop (see [17]), which matches Negami’s bound. Non-orientable surfaces
have been often somehow neglected in computational topology, but there are many reasons
to want to correct this: a random surface that arises from pasting a set of polygons along
their edges is non-orientable with overwhelming probability, they appear as configuration
spaces in diverse contexts [11, 26], and insights garnered from non-orientable surfaces can
sometimes also be applied to the orientable ones; see for example [24]. Furthermore, the
orientable genus of a graph can be arbitrarily larger than its non-orientable genus, while the
reverse does not happen (see Lemma 7).

Our results. In this article, we initiate a study of short topological decompositions on non-
orientable surfaces. We first show that the proof of the aforementioned result of Negami [22]
has a minor flaw in the non-orientable case, we provide a counter-example to the proof
technique and an alternative proof based on different techniques.

▶ Theorem 2. Let S be a non-orientable surface of genus g ≥ 1 and G1 and G2 be two
graphs embedded on S. Then there exists a homeomorphism h such that any edge of h(G1)
crosses each edge of G2 at most O(g) times. In particular, the total number of crossings
between h(G1) and G2 is O(g|E(G1)||E(G2)|).

Then our main result is the following theorem providing, to the best of our knowledge, the
first known case of a short topological decomposition into a disk for non-orientable surfaces.

▶ Theorem 3. There exists a polynomial time algorithm that given a graph cellularly embedded
on a non-orientable surface computes a non-orientable canonical system of loops such that
each loop in the system intersects any edge of the graph in at most 30 points.

1 Throughout the article, we decompose surface-embedded graphs by cutting them along embedded graphs
which are transverse to the original graph, and count the number of intersections. This is equivalent to
the primal setting studied in, e.g., Lazarus, Pocchiola, Vegter and Verroust [18] via graph duality.

N. Fuladi, A. Hubard, and A. de Mesmay 41:3

Figure 1 From left to right: 1) The combinatorial information of a one-vertex graph. 2) A
cross-cap drawing of this graph, with cross-caps connected to a base-point. 3) A joint drawing of
the graph and a canonical system of loops. 4) A different representation: decomposing the graph
along the canonical system of loops.

Main ideas and proof techniques. As in many similar works, the first step in most of our
results is to contract a spanning tree of the underlying graph, reducing the problems to the
setting of one-vertex graph embedded on a non-orientable surface. The combinatorics of a
one-vertex embedded graph are completely described by a rotation system, or embedding
scheme.This will be the basic object with which we work.

Then, a simple but important object that we rely on extensively is an orienting curve, i.e.,
a closed curve on a non-orientable surface such that cutting along it produces an orientable
surface. It was shown by Matoušek, Sedgwick, Tancer and Wagner [19] that given a graph
embedded on a non-orientable surface, one can compute such an orienting loop that crosses
each edge of the graph at most twice. This tool will be crucial in our corrected proof of
Theorem 2 and in our work to prove Theorem 3.

For the proof of Theorem 3, we first point out that the techniques used to prove the
orientable version in [18] incur an overhead of O(g) in the number of crossings of the resulting
curves (see [17, Theorem 4.3.9]). Instead, our proof of Theorem 3 builds on important recent
work of Schaefer and Štefankovič [25]. The foundational idea behind this work, which takes
its roots in an article of Mohar [20] on the degenerate crossing number, is to represent a graph
embedded on a non-orientable surface as a planar drawing, with a finite set of cross-caps, as
pictured in the second image of Figure 1. Schaefer and Štefankovič showed that any graph
embedded on a non-orientable surface can be represented with a cross-cap drawing so that
each edge uses each cross-cap at most twice. Our main technical contribution is to upgrade
their construction so that the cross-caps can be connected to each other so as to yield a
non-orientable canonical system of loops (Lemma 8), so that each loop intersects each edge
of the one-vertex graph in at most 30 points (see Figure 1).

The complexity of the drawings provided by the proof of Schaefer and Štefankovič increases
too fast to directly obtain a good bound by just connecting the cross-caps. Therefore, we
modify their algorithm. First, by the aforementioned techniques, we can assume that we
always have an orienting loop, which simplifies some of the steps and provides additional
structure to the inductive argument. More importantly, we show that one can impose a
certain order in which we choose the one-sided loops, as well as the separating loops, in the
inductive argument to obtain a finer control on the resulting drawing.

The order in which we choose the loops comes from a seemingly unrelated problem in
computational biology, and more precisely genome rearrangements. Given a permutation
with signatures (a bit assigned to each letter), a signed reversal consists in choosing a subword
in w, and reversing it as well as the signatures of all its letters. The signed reversal distance

SoCG 2022

41:4 Short Topological Decompositions of Non-Orientable Surfaces

Figure 2 Left: a pictorial representation of three signed reversals bringing the signed permutation
on the left to the signed permutation of the right. Right: Attaching the two permutations to a
common basepoint yields a one-vertex graph with an embedding scheme, and the signed reversals
provide a cross-cap drawing of that scheme where each loop enters each cross-cap at most once.

between two signed permutations is the minimum number of signed reversals needed to
go from one permutation to the other one. This distance, and in particular algorithms to
compute it has been intensively studied in the computational biology literature due to its
relevance for phylogenetic reconstruction (see for example [14]). A cornerstone of the theory
is the breakthrough of Hannenhalli and Pevzner [12] who provided an algorithm to compute
the signed reversal distance between two signed permutations in polynomial time (see also
the reformulation by Bergeron [2]). Now, as we illustrate in Figure 2, there is a very strong
similarity between computing the signed reversal distance between two permutations and
embedding a one-vertex graph built from these two permutations with a minimum number
of cross-caps (see also [3, 16]). Surprisingly the algorithms of Hannenhalli and Pevzner on
one side and of Schaefer and Štefankovič on the other also have strong similarities, which
we leverage for example in Lemma 22. We hope that further cross-pollination between
computational genomics and computational topology will lead to new surprises.

Due to space limitations, many proofs are omitted but can be found in the full version [9].

2 Preliminaries

We refer the reader to standard references such as Hatcher [13] and Stillwell [28] for topological
background, the book of Mohar and Thomassen for graphs on surfaces [21] and the survey of
Colin de Verdière [5] for topological algorithms for embedded graphs.

Surfaces, curves and embedded graphs. We assume working knowledge with the classifi-
cation of surfaces. By the genus of a surface, we mean the orientable genus for an orientable
surface, which we denote by M , and the non-orientable genus for a non-orientable surface,
which we denote by N . The Euler genus is twice the orientable genus for orientable surfaces
eg(M) = 2g(M), and equals the non-orientable genus for non-orientable ones eg(N) = g(N).

We call a closed curve on a surface two-sided if it has a neighborhood of it homeomorphic
to the annulus. Otherwise, it is called one-sided and it has a neighborhood homeomorphic
to the Möbius band. Given a closed curve ν on a surface S, cutting S along ν gives a
(possibly disconnected) surface with one or two boundary components depending on whether
ν is one-sided or two-sided. A curve δ on a surface S is non-separating if the surface we
obtain by cutting along δ is connected; otherwise δ is separating. An orienting curve on
a non-orientable surface N is a curve γ such that by cutting along γ, we get a connected
orientable surface. We recall the following lemma from [19, Lemma 5.3].

N. Fuladi, A. Hubard, and A. de Mesmay 41:5

▶ Lemma 4. Let N be a non-orientable surface of genus g with h boundary components and
let γ be an orienting closed curve. Let gγ be the (orientable) genus and hγ be the number of
boundary components in N after cutting along γ.

If g is odd, then γ is one-sided, gγ = g−1
2 , and hγ = h + 1

If g is even, then γ is two-sided, gγ = g−2
2 , and hγ = h + 2.

On a surface with boundary, by an essential proper arc, we mean an arc with endpoints on a
boundary component that does not cut off a disk from the surface.

An embedding of a graph G on a surface S is a continuous injective map from G into S.
A graph embedding is called cellular if its faces are homeomorphic to open disks.

Discrete Metrics on Surfaces. A cellularly embedded graph G on a surface S induces a
discrete metric in two different ways. In the combinatorial model, the metric is defined on
walks in G, and the length of a curve C is the number of edges of G traversed by C. In the
cross-metric model [6], the metric is defined on curves transverse to G (i.e., that intersect
G only at edges and in a non-tangent way), and their lengths is the number of crossings
with G. Both models are naturally connected via graph duality. We mostly work in the
cross-metric model and we refer to the embedded graph G of a cross metric surface S as the
primal graph on S. The multiplicity of a curve (or a system of curves) at some edge e of G

is the number of times e is crossed by the curve (curves). The multiplicity of a curve (or a
system of curves) is the maximal multiplicity of the curve (curves) at any edge e of G.

Embedding schemes. For v a vertex of an embedded graph G, by a rotation ρv at v,
we mean the cyclic permutation of the ends of edges incident to v. A rotation system,
ρ, of a graph assigns a rotation to each vertex. and a signature to each edge, which is a
number from {1, −1}. A rotation system ρ and a signature λ for the edges determine a
cellular embedding for the graph up to homeomorphism i.e. we can compute the faces of
the embedding purely combinatorially (see [21, Section 3.2] for further details). The pair
(ρ, λ) is called an embedding scheme for the graph G, we simply use scheme throughout this
work. Since a first step in all of our arguments is to contract a spanning tree, almost all the
schemes considered in this article will have a single vertex. A cycle in a scheme is one-sided
if the signature of its edges multiply to −1 and it is two-sided otherwise. The Euler genus of
a scheme is the Euler genus of the underlying surface. A scheme is orientable if all its cycles
are two-sided, and non-orientable otherwise. A loop e in the scheme divides the half-edges
around the vertex into two parts; each part is called a wedge of e. When a loop γ has exactly
one end in each wedge of e, we say that the ends of γ alternate with those of e; otherwise
both ends of γ is in one wedge of e and we say that the ends of e enclose the ends of γ.

Following Schaefer and Štefankovič [25], we use the following model with localized cross-
caps to represent non-orientable embedded graphs. A planarizing system of disjoint one-sided
curves on a non-orientable surface, abbreviated PD1S, is a system of g disjoint one-sided
curves such that by cutting along them, we obtain a sphere with g holes (this was first
introduced by Mohar [20]). Therefore, from any graph embedded on a non-orientable surface,
we obtain a planar representation by cutting along such a system. The non-orientable surface
is recovered by gluing a Möbius band on each boundary component, which we depict using

⊗
and call a cross-cap. It is easily checked that a family of edges entering a cross-cap emerges
on the other side with a reversed order, and that the sidedness of a loop is determined by
the number of cross-caps that it crosses.

The planar drawing that we obtain by this cross-cap localization is called a cross-cap
drawing, see Figure 3 for examples. In this model, we say that a drawing realizes an
embedding scheme (G, ρ, λ) if the rotation at each vertex is as prescribed by ρ, and if

SoCG 2022

41:6 Short Topological Decompositions of Non-Orientable Surfaces

Figure 3 Different localization for the same embedding scheme gives different cross-cap drawings.

whenever a closed curve in the drawing passes through an odd (resp. even) number of
cross-caps, the multiplication of the signatures of the edges it follows is −1 (resp. 1). Note
that such a realization might not correspond to a cellularly embedded graph, and that while
a cross-cap drawing uniquely describes an embedded graph, the converse is not true, see
Figure 3. Throughout this article, by a cross-cap drawing for a graph G with an embedding
scheme (ρ, λ), we mean the planar graph with cross-caps treated as extra vertices and edges
being the sub-edges in G.

The following lemmas establish basic properties of orienting, separating loops and cross-
cap drawings.

▶ Lemma 5. A loop o in a cellularly embedded one-vertex graph G with a non-orientable
embedding scheme is orienting if and only if its ends enclose the ends of any two-sided loop
and alternate with the ends of any one-sided loop in the scheme.

▶ Lemma 6. In any cross-cap drawing of a scheme, a separating loop passes through each
cross-cap an even number of times; and an orienting loop passes through each cross-cap an
odd number of times.

▶ Lemma 7. Let G be an orientable scheme corresponding to a cellular embedding on a
surface M with a minimum number of g > 0 handles. The minimum number of cross-caps
needed in a cross-cap drawing realizing G is 2g + 1 and this can always be achieved.

Canonical System of Loops. For a non-orientable surface of genus g, a non-orientable canon-
ical system of loops is a family of one-sided loops with the cyclic ordering a1a1a2a2 . . . agag

around the base point such that cutting M along this family yields a topological disk. The
following lemma, illustrated in Figure 1 underpins our strategy to prove Theorem 3.

▶ Lemma 8. Let H be a cross-cap drawing for a graph of non-orientable genus g and let b

be a point in one face of the drawing. Let {pi} be a family of paths in the dual graph of this
drawing from each cross-cap to b. Introduce a loop ci by starting from b, passing along the
path pi, entering the corresponding cross-cap, going around the cross-cap and passing along
pi to return to b. The system of loops {ci} is a non-orientable canonical system of loops.

Short Orienting Curves. The following lemma is a restatement of [19, Proposition 5.5].

▶ Lemma 9. Let N be a non-orientable surface without boundary and with genus g and G

be a graph embedded on N . Then there exists an orienting curve of multiplicity at most 2.

By a little modification of the building process in the proof of this lemma, we can get an
orienting arc in the case with boundaries instead of an orienting cycle, see the full version.

N. Fuladi, A. Hubard, and A. de Mesmay 41:7

Figure 4 A non-orientable surface of genus 3 with an embedded system of arcs. The dents in the
picture indicate the segments of the boundary component.

3 Correcting the proof of Negami

Negami proved in [22, Theorem 1] that if we have two graphs embeddable on a closed surface,
we can reembed them simultaneously such that their edges cross few times.

▶ Theorem 10. Let G1 and G2 be two connected graphs embeddable on a closed surface of
genus g, orientable or non-orientable. We can embed them simultaneously such that they
intersect transversely in their edges at most 4gβ(G1)β(G2) times, where β(G) = |E(G)| −
|V (G)| + 1 is the Betti number for a connected graph G.

Negami’s proof in the non-orientable case is reduced to showing the following two lemmas
(with slightly different constants). However, his proof of Lemma 12 is flawed.

▶ Lemma 11. For two orientable surfaces Mi of genus g ≥ 1, with one boundary component
and βi disjoint essential proper arcs (i = 1, 2) where βi ≤ β(Gi), there are homeomorphisms
ϕi : Mi → M , where M is an orientable surface of genus g and one boundary component, so
that the image of the arcs in M1 and M2 on M intersect at most 4(g − 1)β1β2 times.

▶ Lemma 12. For two non-orientable surfaces Ni of genus g ≥ 1 with one boundary
component and βi disjoint essential proper arcs (i = 1, 2) where βi ≤ β(Gi), there are
homeomorphisms ϕi : Ni → N , where N is a non-orientable surface of genus g and one
boundary component, so that the image of the arcs in N1 and N2 on N intersect at most
18(g − 1)β1β2 times when g is odd and 72(g − 2)β1β2 when it is even.

In the proof of Lemma 12, Negami uses induction on the genus of the non-orientable
surface. Assuming that the lemma is true for genus g − 1, to prove it for genus g, he claims
that there is an essential proper arc α that runs along the center line of a Möbius band (a
one-sided arc). The idea is then to cut along α to get a non-orientable surface of genus g − 1
to use the induction hypothesis. The problem lies in the fact that cutting along such an arc,
we might not end up with a non-orientable surface.

▶ Lemma 13. Consider the non-orientable surface of genus 3 with one boundary component
and embedded essential arcs shown in Figure 4. Any one-sided arc disjoint from the embedded
arcs cut the surface into an orientable surface.

SoCG 2022

41:8 Short Topological Decompositions of Non-Orientable Surfaces

A Correction. To prove Theorem 2, we provide a different proof of Lemma 12. Our approach
is to cut both surfaces along an orienting arc guaranteed by Lemma 9, this has the effect of
multiplying the number of arcs by at most three. Depending on the parity of the genus we
obtain an orientable surface with one or two boundary components. In the odd case, we apply
Lemma 11 and then carefully modify one of the maps near the boundary controlling the
multiplicity so that we can reconstruct the surface. In the even case, we have two boundaries.
In that case, we connect them using a path of controlled multiplicity. Then we argue like in
the odd case.2.

4 Non-orientable Canonical System of Loops

4.1 The Schaefer-Štefankovič Algorithm
Schaefer and Štefankovič proved the following theorem [25, Lemma 9].

▶ Theorem 14. If G is a one-vertex non-orientable (respectively orientable) scheme (ρ, λ),
then it admits a cross-cap drawing with eg(G) (respectively eg(G) + 1) cross-caps in which
every edge passes through every cross-cap at most twice.

Schaefer and Štefankovič gave an inductive algorithm computing the cross-cap drawing
claimed by this theorem. We first introduce the different moves that they use to deal with
different types of loops.

For an embedding scheme around a vertex v, by flipping a wedge of a one-sided loop e in
a one-vertex scheme, we mean reversing the order of the edges in the wedge and changing
the signature of the loops that have exactly one end in the wedge. We call an empty wedge
between two consecutive half-edges around v a root wedge.

Contractible loop move. Let c be a contractible loop with consecutive ends in the scheme
G. Remove c. The new scheme can be drawn using the same number of cross-caps. Having
a drawing for the new scheme, we can draw the loop c without passing through any of the
cross-caps.

Gluing move. Let s be a non-contractible separating loop in the scheme G. We divide
the scheme to G1 and G2 by cutting along s and splitting the vertex into two vertices (the
embedding schemes of G1 and G2 are induced by the embedding scheme of G). Denote by
f1

o and f2
o the root wedges in G1 and G2 in which s was formerly placed. Let H1 and H2 be

drawings for G1 and G2 respectively. We glue the drawings by identifying the root wedges
f1

o and f2
o to get the drawing H

′ for G \ {s}.
Note that removing s does not change the genus and we have eg(G) = eg(G1) + eg(G2).

If G1 and G2 are both non-orientable, then H
′ can be extended to a cross-cap drawing for G

by adding s without using any of the cross-caps; see Figure 5. When at least one of G1 or
G2 is orientable, say G2, H

′ uses one extra cross-cap (G2 needs eg(G2) + 1 cross-caps to be
drawn). To deal with this case, we need the following lemma and the dragging move which
allows us to reduce one cross-cap from the drawing.

▶ Lemma 15. Let (ρ, λ) be an orientable embedding scheme for the one vertex graph G.
Adding a one-sided loop o with consecutive ends to the scheme (anywhere in the rotation
around the vertex) increases the Euler genus by 1. Thus, the new scheme needs as many
cross-caps as G to embed. Furthermore, the loop o is orienting.

2 Our Theorem 2 is stated with respect to the numbers of edges |E(Gi)| for simplicity, but the proof also
provides a bound in terms of the Betti numbers β(Gi), as in Theorem 10.

N. Fuladi, A. Hubard, and A. de Mesmay 41:9

Figure 5 The gluing move on two cross-cap drawings when G1 and G2 are both non-orientable.

Dragging move. Let us assume that G2 is orientable. By Lemma 15, we can add a one-sided
loop o with consecutive ends in the root wedge f2

o without increasing the number of cross-caps
that we need to draw G2. The loop o is orienting and the new scheme needs eg(G2) + 1
cross-caps to be drawn. Having a drawing for the new scheme, we can draw the loop s in the
drawing for G2 + {o} as follows: we start the loop from one of the root wedges between o

and another loop of G2, we draw s by following o through all the cross-caps, except that
after coming out of the last cross-cap, we go back to the first one entered, and traverse all
of the cross-caps again. At the end, we follow o back to the vertex; see Figure 6, left. We
denote this drawing of G2 + {o} + {s} by H

′

2.
By gluing H1 to H

′

2, we get a drawing H
′ for G + {o} + {s} but the drawing is not using

the minimum number of cross-caps. We eliminate one of the cross-caps in H
′ as follows.

Let i1 be the rightmost half-edge in G1 that follows immediately the separating loop in
G. Denote by c the first cross-cap that i1 passes through. Let us assume that there are 2k

half-edges passing through c. Let us denote by (i1, f1, . . . , i2k, f1
o) the alternating sequence

of half-edges and faces adjacent to c in the cross-cap drawing by moving clockwise around it.
Now, we disconnect the edges that enter c and remove the cross-cap c. We drag i1, . . . , ik

through all the cross-caps in G2 along the loop o. After exiting the last cross-cap in G2, we
remove o and we attach the half edges to their other ends (ik+1, . . . , i2k). Since G2 uses an
odd number of cross-caps (Lemma 7), the half edges will have the correct orientability and
order to get attached to their other ends; see Figure 6. If only one of G1 and G2 is orientable,
the drawing we get uses eg(G) cross-caps and if both are orientable, we get a drawing with
eg(G) + 1 cross-cap, that is, the minimum cross-cap needed to draw the scheme in this case.

One-sided loop move. Let r be a one-sided loop in the scheme G. We remove r and flip
one of its wedges. One can check that the new scheme G

′ has Euler genus eg(G) − 1. Let us
assume that H

′ is a drawing for G
′ . We add r to this drawing by adding a cross-cap near the

vertex and the flipped wedge and dragging r and every edge in the flipped wedge in it; see
Figure 7. Note that flipping different wedges of r leads to two different cross-cap drawings.
This freedom in choosing the wedge will be used later.

If we apply a one-sided loop move on an orienting loop, the drawing we get does not use
the minimum amount of cross-caps, hence we need the following different move.

SoCG 2022

41:10 Short Topological Decompositions of Non-Orientable Surfaces

Figure 6 Left: the gluing move. Right: the dragging move when G2 is orientable: the top right
crosscap is removed and the corresponding curves are dragged through the bottom component.

Figure 7 The one-sided loop move on the loop r.

Concatenation move. Let o be an orienting loop in the scheme G such that one of its
ends is immediately followed by an end of a two-sided non-separating loop t in the rotation.
By Lemma 5, since t is non-separating, the concatenation of o and t which we denote by
o

′ , is not orienting. Denote by G
′ the scheme in which we replace o by o

′ (we need eg(G)
cross-caps to draw both G and G

′). If H
′ is a drawing for G

′ , one can obtain from H
′ a

drawing of G by replacing the drawing o
′ by its concatenation with t. Depending on the

wedge of o
′ that we choose to flip, we slide o

′ along t in the drawing:
If we flipped the wedge that does not encompass the loop t, we detach the end of o

′ next
to t and slide it along t and we attach it to the vertex. This way, it ends up where the end
of o was placed originally; see Figure 8.

If we flipped the wedge that encompasses the loop t, we draw o as follows: note that o
′

passes trough only one cross-cap. We draw o next to the end of o
′ that is not slid along t,

but instead of following o
′ into the cross-cap, we follow t. We can do this because the loop

o
′ is next to the loop t in the rotation around this cross-cap; see Figure 9.

N. Fuladi, A. Hubard, and A. de Mesmay 41:11

Figure 8 The concatenation move when the flipped wedge does not encompass the ends of t.

The Schaefer-Štefankovič algorithm also uses an additional move which we will not need,
so we do not introduce it here. Each of these moves provides a way to draw a loop assuming
that some simpler one-vertex graph without that loop has already been drawn. The algorithm
behind Theorem 14 works by applying these moves in a specific order, we refer to the full
version for details. Note that by Lemma 6, in a drawing that is obtained by Theorem 14,
every orienting loop passes through each cross-cap exactly once and if a separating loop
enters a cross-cap, it passes through that cross-cap exactly twice.

4.2 Our Modification to the Schaefer-Štefankovič algorithm

Our modification to the Schaefer-Štefankovič is to add two preprocessing steps, and then
enforce more specific rules as to how to apply the moves described in the previous section.
The first preprocessing is to add an orienting curve (via Lemma 9) and contract a spanning
tree. In doing so, each edge in G is subdivided in at most 3 edges. This is summarized in
the following lemma.

▶ Lemma 16. Given a graph G embedded on a non-orientable surface N , there exists a
one-vertex scheme Ĝ such that Ĝ has an orienting loop, and if Ĝ has a non-orientable
canonical system of loops of multiplicity at most k, then G has a non-orientable canonical
system of loops of multiplicity at most 3k.

For the second prepossessing move we need a definition that is inspired by a similar notion
from the literature on sorting signed permutations by reversals [12]. Given an embedding
scheme G, the interleaving graph IG has as vertex set the set of loops of G, and two vertices
are connected if their corresponding loops have interleaving ends. When we talk about the
sidedness of a vertex, we mean the sidedness of the loop it is associated to. A connected
component in the interleaving graph is called non-orientable if it has a one-sided vertex,
and orientable otherwise. A component with only one vertex is a trivial component, and
non-trivial otherwise. Separating loops correspond to trivial orientable components.

SoCG 2022

41:12 Short Topological Decompositions of Non-Orientable Surfaces

Figure 9 The concatenation move when the flipped wedge encompasses the ends of t.

Figure 10 Left: a saturated one-vertex scheme in which the drawn loops are the separating loops;
Right: the component tree of the left scheme. Note that the component G4 is an empty sub-scheme.

Our second preprocessing step aims at subdividing G into subschemes Gi such that
each IGi

has only one non-trivial component. To achieve this, we saturate the scheme with
auxiliary separating loops, i.e., we add a separating loop for any non-trivial component that
is not divided from the rest of the graph by some separating loops. Since adding a separating
loop does not interfere with the genus, then eg(G) = eg(Ḡ) and we can later remove the
added separating loops. Given a non-orientable scheme G saturated with separating loops
and any cellular embedding of G on a surface N , cutting G along the separating loops yields
subsurfaces Ni of N , each containing (possibly empty) components of G, which we denote by
Gi (see Figure 10). The component tree of G has a vertex for every such sub-graph Gi, and
two vertices are connected if their corresponding components are separated by a separating
loop. See Figure 10 for an example of a component tree.

We now describe our algorithm. Throughout the main loop of our algorithm, if we have
homotopic loops we remove all of them except one and after drawing this one, we re-introduce
them parallel to the one drawn.

A difference of our modified version with the original one is that it is not clear at first
sight that we cover all cases. This is justified by the following lemmas.

▶ Lemma 17. A scheme with an orienting loop is non-orientable.

N. Fuladi, A. Hubard, and A. de Mesmay 41:13

Algorithm 1 The modified algorithm.

Pre-processing steps:
Step A: If there is no orienting loop, we add an orienting loop and contract a spanning
tree using Lemma 16.
Step B: If G is not saturated by separating curves, we saturate it.

Main loop:
Step 1: If there is a contractible loop. We recurse on the scheme without the loop
and apply the contractible loop move.
Step 2: If there exists a separating (non-contractible) loop. We pick a separating
loop that separates a non-root leaf from the component tree, recurse on the subschemes
and apply a gluing and a dragging move.
Step 3.1: If there exists a one-sided non-orienting loop. We pick a one-sided
non-orienting loop such that the scheme G

′ that we obtain when removing it and flipping
its wedge maximizes the number of one-sided loops. We recurse on G′ and apply the
one-sided loop move on this loop.
Step 3.2.a: If all one-sided loops are orienting and there are two-sided loops.
We pick an orienting loop adjacent to a two-sided loop, recurse on the drawing H ′

described in the concatenation move and apply the concatenation move on these loops.
Step 3.2.b: If all one-sided loops are orienting and there are no two-sided
loops. In this case one cross-cap is sufficient to draw all the loops.

Post-processing steps:
Step B’: Erase the extra separating loops added in step B.
Step A’: Uncontract the spanning tree and remove the loop added in step A.

As a corollary, a scheme G that has an orienting loop needs eg(G) cross-caps to be drawn.

▶ Lemma 18. Let G be a scheme with an orienting loop o and a non-contractible separating
loop s. Then s separates the graph into an orientable and a non-orientable sub-graph.

Then the following lemma shows that there is always an orienting curve throughout the
recursive calls of the algorithm. We state it as a corollary since it is a direct corollary of
three technical lemmas that are featured in the full version.

▶ Corollary 19. Let G be a one-vertex scheme with an orienting loop. Let G′ be the graph on
which the modified algorithm recurses when applying a contractible loop move, a one-sided loop
move or a concatenation move. Then G′ has an orienting loop. Likewise, when the modified
algorithm applies a gluing and dragging move on a separating loop s, the two subgraphs G1
and G2 on which it recurses have an orienting loop.

We now analyze the cross-cap drawing provided by the modified algorithm.

▶ Lemma 20. Let G be a graph cellularly embedded on a non-orientable surface. If G has
an orienting loop, applying the modified algorithm, we obtain a cross-cap drawing of G with
eg(G) cross-caps such that each loop of G enters each cross-cap at most twice. Otherwise,
we obtain a cross-cap drawing of G with eg(G) cross-caps such that each loop of G enters
each cross-cap at most 6 times.

SoCG 2022

41:14 Short Topological Decompositions of Non-Orientable Surfaces

Sketch of proof. After the preprocessing steps, we obtain a saturated scheme with an
orienting loop and by Lemma 16 we can work with this scheme to prove the lemma. We
follow the recursive steps of the modified algorithm, and thus provide a proof by induction
on eg(G) + |E(G)|. By Corollary 19, there is an orienting loop throughout the recursive calls
of the algorithm. Based on the description of each move, it can be seen that at each step we
obtain a drawing with a minimum number of cross-caps. It is easy to see that the induction
carries over after Step 1. Then, by Lemma 18, we know that a separating loop divides the
scheme into a non-orientable and an orientable subscheme. This case is handled by Step 2 of
the algorithm. One can see that in the dragging move and drawing the separating loop, each
edge follows the auxiliary orienting loop o added to G2 at most twice. Since o passes through
every crosscap in the drawing of G2 exactly once, we get the right multiplicity for every edge.
For Step 3.1, let G

′ be the scheme that we recurse on. By the recursion of the algorithm we
obtain a drawing for G

′ in which each edge uses each cross-cap at most twice. In adding the
last cross-cap in the one-sided loop move, only the half-edges in the flipped wedge enter the
last cross-cap and therefore each edge enters this cross-cap at most twice. For Step 3.2.a, let
o

′ be the concatenation of the loops o and t. The loop o
′ is the only one-sided non-orienting

loop in G
′ . By applying a one-sided loop move on o

′ and then recursing, we obtain a drawing
for G

′ in which o
′ and t pass through a disjoint set of cross-caps and at most twice through

each. Then it can be shown that sliding o
′ back along t, o

′ enters every cross-cap at most
twice. Step 3.2.b is a base case for the induction satisfying the requirements of the lemma.
Finally, since there is always an orienting loop, by Lemma 17 there is always at least one
one-sided loop, and thus we are never in a case not covered by the previous steps. This
concludes this sketch. ◀

The following two lemmas ensure further properties guaranteed by our algorithm and
explain our choice for the rule in Step 3.1. The proof of the second lemma mirrors proofs in
the signed reversal distance theory [2, Theorem 1].

▶ Lemma 21. If there exists an orienting loop o in the embedding scheme G, the connected
component that has the vertex o is the only non-orientable component in IG.

▶ Lemma 22. Let G be a one-vertex scheme with an orienting loop and no non-contractible
separating loop such that IG has only one non-trivial component. Then G can be drawn by
exclusively applying a sequence of contractible, concatenation one-sided loop moves.

4.3 The Non-orientable Canonical System of Loops

Our algorithm has the following key advantage compared to the algorithm of Schaefer and
Štefankovič: due to the order in which we choose the loops in Steps 2 and 3.1, we know that
dragging moves and the other moves do not intermingle during the recursive calls of the
algorithm. Indeed, first, by Lemma 22, when it draws a scheme with a single non-trivial
component, it only relies on contractible, concatenation and one-sided loop moves. Second,
due to the order in which we choose the loops in Steps 2 and 3.1 and Lemma 21, we know
that whenever a dragging move is applied, the orientable sub-scheme on which we recurse
has only one non-trivial component. In this section, we leverage these two key advantages to
find a non-orientable canonical system of loops of small multiplicity.

A root face in a cross-cap drawing is a face adjacent to the vertex. The strategy to
prove Theorem 3 is to show that the modified algorithm outputs a cross-cap drawing where
cross-caps are not too far from the vertex.

N. Fuladi, A. Hubard, and A. de Mesmay 41:15

▶ Lemma 23. For any saturated one-vertex scheme G with an orienting loop o, the cross-cap
drawing H output by the modified algorithm has eg(G) cross-caps, and there is a path from
every cross-cap to a root face (not necessarily fixed) with multiplicity at most two.

This lemma is the crux of the paper. We refer to the full version for the proof, and only
outline some ideas. The difficulty lies in the fact that long dual paths are added to the
cross-cap drawings when doing one-sided loop moves and dragging moves, making it hard to
control the diameter of the graph dual to the cross-cap drawings throughout the recursive
calls. This is solved by tracking specific paths, whose lengths are controlled using two different
strategies for the one-sided loop moves and for the dragging moves. The inductive property
that we maintain throughout one-sided loop moves is that there is a short path that does not
cross the orienting curve from every crosscap to a fixed root face. The choice of a fixed root
face ensures that, if one chooses carefully the wedge when applying a one-sided loop move,
the lengths of the paths stay controlled. The property of not crossing the orienting curve is
key because, when we subsequently apply dragging moves, edges dual to the orienting curves
might get replaced with long dual paths (see Figure 6). However, dragging moves naturally
lead to paths that connect different root faces. Fortunately, at this stage, this is not an issue
since all the one-sided moves have already been applied. Therefore, for this proof strategy to
succeed, our modifications are crucial, in particular to ensure that one-sided loop moves and
dragging moves do not alternate during recursive calls.

Finally, we now have all the tools to prove Theorem 3.

Sketch of proof of Theorem 3. The modified algorithm on G constructs a cross-cap drawing
of a saturated scheme with an orienting loop. By Lemma 20, the loops enter each cross-cap
at most twice. By Lemma 23, we furthermore have paths {pj} of multiplicity two from a face
incident to each cross-cap to a root face in this cross-cap drawing. We follow these paths to
construct loops surrounding each of the cross caps. By Lemma 8, the system of loops we
obtain is canonical. Adding the different bounds on the multiplicity, we obtain that each
loop in the system has multiplicity 10. ◀

References
1 Dan Archdeacon and C Paul Bonnington. Two maps on one surface. Journal of Graph Theory,

36(4):198–216, 2001.
2 Anne Bergeron. A very elementary presentation of the Hannenhalli-Pevzner theory. In Annual

Symposium on Combinatorial Pattern Matching, pages 106–117. Springer, 2001.
3 Andrei C Bura, Ricky XF Chen, and Christian M Reidys. On a lower bound for sorting signed

permutations by reversals. arXiv preprint, 2016. arXiv:1602.00778.
4 Éric Colin de Verdière. Topological algorithms for graphs on surfaces. Habilitation thesis,

http://www.di.ens.fr/~colin/, 2012.
5 Éric Colin de Verdière. Computational topology of graphs on surfaces. In Jacob E. Goodman,

Joseph O’Rourke, and Csaba Toth, editors, Handbook of Discrete and Computational Geometry,
chapter 23, pages 605–636. CRC Press LLC, third edition, 2018.

6 Éric Colin De Verdière and Jeff Erickson. Tightening nonsimple paths and cycles on surfaces.
SIAM Journal on Computing, 39(8):3784–3813, 2010.

7 Jeff Erickson and Sariel Har-Peled. Optimally cutting a surface into a disk. Discrete &
Computational Geometry, 31(1):37–59, 2004.

8 Jeff Erickson and Kim Whittlesey. Greedy optimal homotopy and homology generators. In
SODA, volume 5, pages 1038–1046, 2005.

9 Niloufar Fuladi, Alfredo Hubard, and Arnaud de Mesmay. Short topological decompositions
of non-orientable surfaces, 2022. arXiv:2203.06659.

SoCG 2022

http://arxiv.org/abs/1602.00778
http://www.di.ens.fr/~colin/
http://arxiv.org/abs/2203.06659

41:16 Short Topological Decompositions of Non-Orientable Surfaces

10 Jim Geelen, Tony Huynh, and R Bruce Richter. Explicit bounds for graph minors. Journal of
Combinatorial Theory, Series B, 132:80–106, 2018.

11 Robert Ghrist. Barcodes: the persistent topology of data. Bulletin of the American Mathe-
matical Society, 45(1):61–75, 2008.

12 Sridhar Hannenhalli and Pavel A Pevzner. Transforming cabbage into turnip: polynomial
algorithm for sorting signed permutations by reversals. Journal of the ACM (JACM), 46(1):1–
27, 1999.

13 Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.
14 Brian Hayes. Computing science: Sorting out the genome. American Scientist, 95(5):386–391,

2007.
15 Petr Hliněnỳ and Gelasio Salazar. On hardness of the joint crossing number. In International

Symposium on Algorithms and Computation, pages 603–613. Springer, 2015.
16 Fenix WD Huang and Christian M Reidys. A topological framework for signed permutations.

Discrete Mathematics, 340(9):2161–2182, 2017.
17 Francis Lazarus. Combinatorial graphs and surfaces from the computational and topological

viewpoint followed by some notes on the isometric embedding of the square flat torus. Mémoire
d’HDR, 2014. Available at http://www.gipsa-lab.grenoble-inp.fr/~francis.lazarus/
Documents/hdr-Lazarus.pdf.

18 Francis Lazarus, Michel Pocchiola, Gert Vegter, and Anne Verroust. Computing a canonical
polygonal schema of an orientable triangulated surface. In Proceedings of the seventeenth
annual symposium on Computational geometry, pages 80–89, 2001.

19 Jiří Matoušek, Eric Sedgwick, Martin Tancer, and Uli Wagner. Untangling two systems of
noncrossing curves. In International Symposium on Graph Drawing, pages 472–483. Springer,
2013.

20 Bojan Mohar. The genus crossing number. ARS Mathematica Contemporanea, 2(2):157–162,
2009.

21 Bojan Mohar and Carsten Thomassen. Graphs on surfaces, volume 10. JHU press, 2001.
22 Seiya Negami. Crossing numbers of graph embedding pairs on closed surfaces. Journal of

Graph Theory, 36(1):8–23, 2001.
23 R Bruce Richter and Gelasio Salazar. Two maps with large representativity on one surface.

Journal of Graph Theory, 50(3):234–245, 2005.
24 Marcus Schaefer and Daniel Štefankovič. Block additivity of Z2-embeddings. In International

Symposium on Graph Drawing, pages 185–195. Springer, 2013.
25 Marcus Schaefer and Daniel Štefankovič. The degenerate crossing number and higher-genus

embeddings. Journal of Graph Algorithms and Applications, 26(1):35–58, 2022. doi:10.7155/
jgaa.00580.

26 James P Sethna. Order parameters, broken symmetry, and topology. In 1991 Lectures in
Complex Systems. Addison-Wesley, 1992.

27 Alla Sheffer, K Hormann, B Levy, M Desbrun, K Zhou, E Praun, and H Hoppe. Mesh param-
eterization: Theory and practice. ACM SIGGRAPPH, course notes, 10(1281500.1281510),
2007.

28 John Stillwell. Classical topology and combinatorial group theory, volume 72. Springer Science
& Business Media, 1993.

http://www.gipsa-lab.grenoble-inp. fr/~francis.lazarus/Documents/hdr-Lazarus.pdf
http://www.gipsa-lab.grenoble-inp. fr/~francis.lazarus/Documents/hdr-Lazarus.pdf
https://doi.org/10.7155/jgaa.00580
https://doi.org/10.7155/jgaa.00580

	1 Introduction
	2 Preliminaries
	3 Correcting the proof of Negami
	4 Non-orientable Canonical System of Loops
	4.1 The Schaefer-Štefankovič Algorithm
	4.2 Our Modification to the Schaefer-Štefankovič algorithm
	4.3 The Non-orientable Canonical System of Loops

