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Abstract
In this paper, we disprove the long-standing conjecture that any complete geometric graph on 2n

vertices can be partitioned into n plane spanning trees. Our construction is based on so-called
bumpy wheel sets. We fully characterize which bumpy wheels can and in particular which cannot be
partitioned into plane spanning trees (or even into arbitrary plane subgraphs).

Furthermore, we show a sufficient condition for generalized wheels to not admit a partition into
plane spanning trees, and give a complete characterization when they admit a partition into plane
spanning double stars.

Finally, we initiate the study of partitions into beyond planar subgraphs, namely into k-planar and
k-quasi-planar subgraphs and obtain first bounds on the number of subgraphs required in this setting.
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6:2 Edge Partitions of Complete Geometric Graphs

1 Introduction

A geometric graph G = G(P, E) is a drawing of a graph in the plane where the vertex set is
drawn as a point set P in general position (that is, no three points are collinear) and each
edge of E is drawn as a straight-line segment between its vertices. A geometric graph G is
plane if no two of its edges cross (that is, share a point in their relative interior). A partition
(also called edge partition) of a graph G is a set of edge-disjoint subgraphs of G whose union
is G. A subgraph of (a connected graph) G is spanning if it is connected and its vertex set is
the same as the one of G. In 2003, Ferran Hurtado shared the following long-standing open
question, which has commonly been conjectured to have a positive answer (see [9, 6]):

▶ Question 1 ([6]). Can every complete geometric graph on 2n vertices be partitioned into n

plane spanning trees?

Note that with 2n > 0 vertices, the complete graph has exactly the right number of edges
to admit a partition into n spanning trees, while this is not the case for 2n + 1 vertices.
In the following, we consider complete geometric graphs to have 2n vertices unless stated
otherwise. Further, we denote the complete geometric graph on a point set P as K(P ).

Related work. Several approaches have been made to answer Question 1. When P is
in convex position it follows from a result of Bernhart and Kainen [4] that K(P ) can be
partitioned into plane spanning paths, implying a positive answer. Further, Bose et al. [6]
gave a complete characterization of all possible partitions into plane spanning trees for convex
point sets. Similarly, when P = W2n is a regular wheel set (the vertex set of a regular
(2n − 1)-gon plus its center), Aichholzer et al. [2] showed how to partition K(P ) into plane
spanning double stars (trees with at most two vertices of degree ≥ 2), and Trao et al. [14]
recently characterized all possible partitions (into arbitrary plane spanning trees). Further,
Aichholzer et al. [2] provide a positive answer to Question 1 for all point sets of (even)
cardinality at most 10, obtained by exhaustive computations.

Relaxing the requirement that the trees must be spanning, Bose et al. [6] showed that if
for a general point set P , there exists an arrangement of k lines in which every cell contains
at least one point from P , then the complete geometric graph on P admits a partition into
2n − k plane trees, k of which are plane double stars. This result implies that Question 1
has a positive answer if P contains n pairwise crossing segments, which is the case if and
only if P has exactly n halving lines [10] (a line through two points of P is called halving
line if it has exactly n − 1 points of P on either side and the corresponding edge is called
halving edge).

For the related packing problem where not all edges of the underlying graphs must
be covered, Biniaz and García [5] showed that ⌊n/3⌋ plane spanning trees can be packed
in any complete geometric graph on n vertices, which is currently the best lower bound.
Further, in [1] and [2], packing plane spanning graphs with short edges and spanning paths,
respectively, have been considered.

Contribution. In this work, we provide a negative answer to Question 1 (refuting the
prevalent conjecture). We even provide a negative answer to the following weaker question:

▶ Question 2. Can every complete geometric graph on 2n vertices be partitioned into n

plane subgraphs?
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Figure 1 Left: A partition of W8 into n = 4 plane spanning trees. Right: The bumpy wheel BW5,3.

Note that the problem of partitioning a geometric graph into plane subgraphs is equivalent
to a classic edge coloring problem, where each edge should be assigned a color in such a way
that no two edges of the same color cross (of course using as few colors as possible). This
problem received considerable attention from a variety of perspectives (see for example [11]
and references therein) and is also the topic of the CG:SHOP challenge 2022 [7].

The point sets in our construction, so-called bumpy wheel sets, have been introduced
in [12, 13]. For positive odd1 integers k and ℓ, the bumpy wheel BWk,ℓ is derived from the
regular wheel Wk+1 by replacing each of the k hull vertices by a group of ℓ vertices as follows.
All vertices (except the center) lie on the convex hull and the vertices within each group are
ε-close for some (small enough) ε > 0. In particular, the convex hull of any k+1

2 consecutive
groups does not contain the center vertex (see Figure 1 for an illustration). Slightly abusing
notation, BWk,ℓ refers to the underlying point set as well as the complete geometric graph
interchangeably. Note that for ℓ = 1 we obtain a regular wheel set and for k = 1 a point set
in convex position and hence we assume k, ℓ ≥ 3 in the following.

Our motivation to study bumpy wheels stemmed from the fact that Schnider [12] showed
that BW3,3 cannot be partitioned into plane double stars. In contrast, this is always possible
for complete geometric graphs on regular wheel sets [2], as well as complete geometric graphs
on point sets admitting n pairwise crossing edges [6] (which also includes convex point sets).

Our first main contribution in this work is to fully characterize for which (odd) parameters
k and ℓ, the bumpy wheel BWk,ℓ can and in particular cannot be partitioned into plane
spanning trees or plane subgraphs (note that also in the setting of partitioning into plane
subgraphs we are only interested in partitions into n subgraphs). Surprisingly, allowing
arbitrary subgraphs instead of spanning trees does not help much, as it turns out that BW3,5
is the only bumpy wheel that can be partitioned into plane subgraphs but not into plane
spanning trees.

▶ Theorem 3. For odd parameters k, ℓ ≥ 3, the edges of BWk,ℓ cannot be partitioned into
n = kℓ+1

2 plane spanning trees if and only if ℓ > 3.

▶ Theorem 4. For odd parameters k, ℓ ≥ 3, the edges of BWk,ℓ cannot be partitioned into
n = kℓ+1

2 plane subgraphs if and only if ℓ > 5 or (ℓ = 5 and k > 3).

1 We require k and ℓ to be odd for an even number of vertices in total (k has to be odd anyway, since
otherwise Wk+1 would not be in general position).

SoCG 2022

https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2022/#problem-description
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We further consider the more general case of complete geometric graphs on point sets
with exactly one point inside the convex hull. In this generalized setting, we show a sufficient
condition for the non-existence of a partition into plane spanning trees (Theorem 16), and
give a complete characterization for partitions into plane double stars (Theorem 17). As
both results need more notation, their statements are deferred to their section (the same
holds for the remaining results).

Given the negative answers to Questions 1 and 2, a natural generalization is to study
partitions into beyond planar subgraphs, that is, subgraphs in which certain restricted
crossing patterns are allowed. We initiate this study for two important classes of beyond
planar graphs, namely, k-planar subgraphs (where every edge is crossed by at most k other
edges) and k-quasi-planar subgraphs (in which no k edges pairwise cross). For the former, we
show bounds on the number of subgraphs required for partitioning K(P ) for P in convex
position (Proposition 19 and Theorem 20). For the latter, we show that a partition into
3-quasi-planar spanning trees is possible for any P with |P | even (Lemma 23). This is best
possible, as 2-quasi-planar graphs are plane. We further present bounds on the partition of
any K(P ) into k-quasi-planar subgraphs for general k (Theorem 25).

We remark that it is straightforward to model the problem of partitioning into (plane)
subgraphs as an integer linear program (ILP), which easily computes solutions for point sets
up to roughly 25 points. None of the proofs in this paper rely on the computer assisted ILP,
but it served as a great source of inspiration (see the full version [8] for further details).

Organization of the paper. In Section 2, we prove Theorem 3 and Theorem 4, where we
focus on the part showing the non-existence of partitions. In Section 3, we generalize our
ideas from Section 2 about regular bumpy wheels to general wheel sets, proving Theorem 16
and Theorem 17. Finally, Sections 4 and 5 are dedicated to the more general setting of
partitioning into k-planar and k-quasi-planar subgraphs, respectively.

2 Bumpy wheels

For a graph in (bumpy) wheel configuration we denote the center vertex by v0 and the
remaining vertices by v1, . . . , v2n−1 in clockwise order. We also enumerate the groups in
clockwise order: for i ∈ {1, . . . , k}, Gi denotes the i’th group (G1 contains v1, Gk contains
v2n−1)2. An edge having v0 as an endpoint is called a radial edge, an edge on the convex
hull is called a boundary edge and all other edges are called diagonal edges. For a non-radial
edge e, we define e− to be the open halfplane defined by (the supporting line through) e and
not containing v0, and similarly e+ to be the open halfplane containing v0.

Additionally, we define a partial order <c on the set of non-radial edges, where e <c f if
(the relative interior of) e completely lies in f− (that is, f is “closer” to the center vertex v0
than e). Two non-radial edges e, f are incomparable with respect to <c, if neither e <c f nor
f <c e holds (we omit “with respect to <c” if it is clear from the context). In the following,
when speaking of an edge e lying in f− or in f+ for another edge f , we always refer to the
relative interior of e (that is, an endpoint of e may lie on the line through f – which actually
means to coincide with an endpoint of f). A non-radial edge e is maximal in some set of
edges E, if there is no other edge e′ ∈ E such that e <c e′ (in the following we often consider
maximal diagonal edges of plane spanning trees). Minimal edges are defined similarly. See
Figure 2 for an illustration. Let us emphasize that we never use <c for radial edges.

2 We will consider the index of a group Gx always modulo k, but tacitly mean ((x − 1) mod k) + 1 (since
our indexing starts with 1). The same holds for any other objects, e.g., the vertices on the convex hull.
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Figure 2 Example of a plane spanning tree on the bumpy wheel set BW5,5. The diagonal edges f

and f ′ are maximal. The edges e and e′ are boundary edges (they are also the only minimal edges).

2.1 Partition into plane spanning trees
In this section, we prove Theorem 3. We remark that the non-existence direction almost
follows from Theorem 4 (not even a partition into plane subgraphs is possible). The only case
that is not covered is BW3,5, which one can easily verify using computer assistance. However,
since the proof of Theorem 3 is more instructive and intuitive, we decided to present it
anyway and limit the proof of Theorem 4 to the essentials. We start with the non-existence:

▶ Theorem 5. For any odd parameters k ≥ 3 and ℓ ≥ 5, the edges of BWk,ℓ cannot be
partitioned into n = kℓ+1

2 plane spanning trees.

Towards the proof of Theorem 5, we will first prove several structural results concerning
the number and arrangement of radial and diagonal edges in the spanning trees of a potential
partition (some of which have a similar flavor as those by Trao et al. [14]). We show that
radial edges must lie between maximal diagonal edges and those maximal diagonal edges
need to fulfill certain distance constraints. We will show that this cannot be satisfied if ℓ ≥ 5.
Due to space constraints, we postpone the proofs of most preliminary results to the full
version of this paper [8].

The following observation follows immediately from the construction of bumpy wheel sets
and the definition of the partial order <c.

▶ Observation 6. For two non-radial, non-crossing, incomparable edges e, f the vertices in
e− and f− are disjoint and neither e− nor f− contains an endpoint of the other edge.

Note that e and f in the above observation may share an endpoint. Furthermore, for any
set of edges E, two maximal edges e, e′ ∈ E are always incomparable.

▶ Lemma 7. Let T be a plane spanning tree of BWk,ℓ. Then the following properties hold:
(i) for any diagonal edge e ∈ E(T ), T contains at least one boundary edge in e−,
(ii) for any pair of incomparable diagonal edges e, f ∈ E(T ), the boundary edges of T in e−

and f− are distinct, and
(iii) if T contains exactly one maximal diagonal edge, T contains at least (k−1

2 ℓ + 1)
consecutive radial edges (in particular, all radial edges of k−1

2 consecutive groups).

SoCG 2022
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Note that any spanning tree in a partition of BWk,ℓ contains a maximal diagonal edge,
since the star around v0 clearly cannot be used in such a partition.

▶ Proposition 8. Let T0, . . . , Tn−1 be a partition of BWk,ℓ into plane spanning trees (if it
exists). Then exactly one of those trees, say T0, contains a single boundary edge and a single
maximal diagonal edge and all other n − 1 trees contain exactly two boundary edges and
exactly two maximal diagonal edges each. In particular, any diagonal edge e ∈ E(Ti) contains
exactly one boundary edge of Ti in e−.

From now on, T0 always denotes the spanning tree with exactly one boundary edge (when
considering a partition into plane spanning trees). Further, we let all radial edges {v0, vi}
for i ∈ {1, 2, . . . , k−1

2 ℓ + 1} be part of T0 (which we can assume without loss of generality
due to symmetry).

For two non-radial, non-crossing edges e, f , define the span of e and f to be the (closed)
area between the two edges, that is,

span(e, f) =
{

cl(e+ ∩ f+) if e and f are incomparable
cl(e+ ∩ f−) if e <c f,

where cl(·) denotes the closure. The shaded area in Figure 3 for instance defines the span of
two incomparable edges e and f .

Note, however, that we are more interested in the vertices and edges contained in the
span, rather than the area itself. If we want to emphasize this, we may use the notation
V (span(e, f)) or E(span(e, f)). In the following we are mostly interested in the span of
maximal diagonal edges of some plane spanning tree.

▶ Lemma 9. Let T0, . . . , Tn−1 be a partition of BWk,ℓ into plane spanning trees (if it exists)
and e, f be the maximal diagonal edges of some Ti (i ̸= 0). Then, all edges of Ti in the span
of e and f are radial (except e and f).

Define the distance dist(e) of a non-radial edge e to be the number of vertices in e− plus one
(or in other words, the number of boundary edges in cl(e−)). Clearly, 1 ≤ dist(e) ≤ k+1

2 ℓ − 1
holds for any non-radial edge e and dist(f) < dist(e) holds for any edge f ⊆ e−. It will be
convenient to define, for i ∈ {1, . . . , k+1

2 ℓ − 1}:

di = k + 1
2 ℓ − i. (1)

We define it in this (slightly counter-intuitive) way, d1 being the largest distance, since we
mostly deal with edges of large distances and thereby aim to improve the readability.

▶ Lemma 10. Consider a plane spanning tree T of a partition of BWk,ℓ and let e be a
diagonal edge in T of distance d = dist(e) > 1. Then T also contains exactly one of the edges
of distance d − 1 in e−.

We need a little more preparation towards the proof of Theorem 5. We call the first and
last vertex of each group outmost vertices (and the corresponding radial edges outmost radial
edges). Note that there are exactly 2k outmost radial edges in BWk,ℓ. Every hull vertex or
radial edge that is not outmost, is called an inside vertex or an inside radial edge.

Furthermore, define two groups Gi, Gj to be opposite if |i − j| = k−1
2 or |i − j| = k+1

2 . In
particular, each group has two opposite groups and two consecutive groups have exactly one
opposite group in common (we call that group the opposite group of a pair of consecutive
groups).
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v0

vj`

vj`+1

e

f

Figure 3 All outmost radial edges are depicted in gray. The maximal diagonal edges e and f

(connecting opposite groups) form a special wedge. Their span is shaded blue.

Let e, f be two maximal (non-crossing) diagonal edges which have an endpoint in a
common group. Then the set of vertices of span(e, f) in the common group is called apex.
Note that any apex contains at least one vertex (and this lower bound is attained if the
endpoints of e and f coincide).

Moreover, two maximal (non-crossing) diagonal edges e = {u, v} and f = {u′, v′} form a
special wedge if two endpoints (say u and u′) are consecutive outmost vertices of different
groups (that is, u = vjℓ and u′ = vjℓ+1 for some j) and v and v′ are inside vertices lying in
the opposite group of Gj and Gj+1. See Figure 3 for an illustration of these terms.

▶ Proposition 11. Let T0, . . . , Tn−1 be a partition of BWk,ℓ into plane spanning trees (if it
exists) and let Ti (i ̸= 0) be a spanning tree that does not use any outmost radial edge. Then
the two maximal diagonal edges e, f of Ti form a special wedge and Ti has to use all radial
edges incident to the apex of this wedge.

Proof. We first argue that all but exactly two radial edges in span(e, f) must be part
of Ti. The subgraph of Ti induced by V (span(e, f)) needs to form a tree. Moreover,
span(e, f) contains |V (span(e, f))| − 1 radial edges. Since Ti uses the two diagonal edges
e, f ∈ E(span(e, f)) and all other edges in the span need to be radial (Lemma 9), it has to
use exactly all but two radial edges.

Furthermore, since we cannot have two maximal diagonal edges between the same pair of
groups, the span of e and f contains at least two outmost vertices, namely in two different
groups which contain an endpoint of e and f , respectively. On the other hand, span(e, f) can
neither contain a third outmost vertex nor an outmost vertex in its interior, since otherwise
Ti has to use an outmost radial edge (by Lemma 9 and above argument). In particular, e

and f share a common group and the apex does not contain any outmost vertex (hence, e

and f form a special wedge, as depicted in Figure 3).
Moreover, since Ti has to use all but two radial edges in the span, it clearly has to use all

radial edges incident to the apex. ◀

Note that for two spanning trees Ti, Tj (i ≠ j) not using an outmost radial edge, their
apexes must be disjoint.

SoCG 2022
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▶ Proposition 12. Let T0, . . . , Tn−1 be a partition of BWk,ℓ into plane spanning trees (if it
exists). Then for each pair G, G′ of opposite groups and each j ∈ {1, . . . , ℓ} there is a unique
diagonal edge (connecting G and G′) of distance dj (recall Equation (1)) that is maximal in
its tree.

Proof. Observe first that for any j ∈ {1, . . . , ℓ} there are exactly j edges of distance dj

(between G and G′) and all edges of the same distance (between G and G′) pairwise cross.
Also note, for any two edges e, e′ (between G and G′) with dist(e) > dist(e′), either e′ ⊆ e−

holds or they cross. In particular, if they do not cross and belong to the same tree, the
shorter is not a maximal edge.

Consider now for some j ∈ {2, . . . , ℓ} the distance dj and let c1, . . . , cj be the colors3 used
for all edges of this distance. By Lemma 10, there are j − 1 edges of (the larger) distance
dj−1 using the same color as an edge of distance dj , w.l.o.g. c1, . . . , cj−1. By the above
arguments the corresponding edges of distance dj cannot be maximal.

On the other hand, the color cj cannot be used by any edge of larger distance, since again
by Lemma 10 this color would have to appear in dj−1 as well. Hence, indeed the only edge
of distance dj that is maximal in its tree is the one of color cj .

Lastly, for j = 1 observe that the single edge of distance d1 is clearly maximal. ◀

Finally, we are ready to prove Theorem 5, which we restate here for the ease of readability:

▶ Theorem 5. For any odd parameters k ≥ 3 and ℓ ≥ 5, the edges of BWk,ℓ cannot be
partitioned into n = kℓ+1

2 plane spanning trees.

Proof. Assume to the contrary that there is such a partition T0, . . . , Tn−1. There are 2k

outmost radial edges and T0 uses (at least) k of them (see the remark after Proposition 8).
Hence, there are at most k + 1 spanning trees (including T0) containing an outmost radial
edge.

Next, let us count how many spanning trees not containing an outmost radial edge we can
have. Since, by Proposition 11, the apex of such a tree cannot use any outmost vertex nor
any vertex already incident to a radial edge in T0, there remain k+1

2 (ℓ − 2) possible vertices
(to be used by apexes), namely the inside vertices of the last k+1

2 groups G k+1
2

, . . . , Gk (which
are not fully connected to v0 by radial edges in T0). Also recall that each apex contains at
least one vertex.

It is crucial to emphasize that among those last k+1
2 groups, group G k+1

2
and group Gk

are opposite (the only opposite pair). Therefore, by Proposition 11, two spanning trees with
an apex in group G k+1

2
and group Gk respectively, must each have a maximal diagonal edge

between these two groups. Hence, by Proposition 12, we can have at most (ℓ − 2) spanning
trees with apex in one of these two groups (instead of 2(ℓ − 2)); see Figure 4.

So, in total there can be at most k−1
2 (ℓ − 2) spanning trees which do not use an outmost

radial edge. Hence, whenever

k + 1 + k − 1
2 (ℓ − 2) <

kℓ + 1
2

holds, we cannot find enough spanning trees. Rearranging terms, this inequality is equivalent
to ℓ > 3. ◀

3 Instead of always spelling out that an edge belongs to a plane subgraph, we associate edges with colors.
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v1

v`
v2n−1

vk−1
2 `+1

T0

v0

Figure 4 In the black stripes (the darker one is the crucial one) the maximal diagonal edges (of
those trees without outmost radial edge) need to have distinct distances. That allows ℓ − 2 many for
each stripe. Two spanning trees (red and orange) with apex in group G k+1

2
and group Gk both need

to have a maximal diagonal edge in the dark stripe.

Next, we prove the other direction of Theorem 3:

▶ Theorem 13. For any odd parameter k ≥ 3, the edges of BWk,3 can be partitioned into
plane spanning trees.

We only sketch the construction very briefly (the details can be found in the full version [8]).

Proof sketch. Our construction consists of three steps. In the first step, we give an explicit
construction of a partial partition that covers all radial edges, each (partial) tree in the
partition covers exactly its span, and between any pair of opposite groups exactly one
diagonal edge of each distance d1, d2, d3 is covered.

After that we extend this partial partition in two steps (these extensions actually work
for arbitrary ℓ, but we stick to ℓ = 3 for now). First we show that there is a unique way
to extend the partial partition to one that covers all diagonal edges of distance d1, . . . , d3.
Roughly speaking, whenever we want to include some edge of distance di (between a certain
pair of groups) we have two choices to which tree we can join it (see Lemma 10). However,
since by construction exactly one edge of each distance is already covered, this determines
the orientation how we can include the other edges of the same distance.

Once we covered all edges down to distance d3, there are precisely 2n − 1 edges of each
following distance and no edge of any smaller distance is already covered. Therefore, in each
iteration (considering some distance dj < d3) we have the choice to fix some orientation
(“left” or “right”) which determines how we need to extend all edges of distance dj . Hence,
in this second extension step there are 2

3(k−1)
2 −1 possible extensions. ◀

SoCG 2022
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2.2 Partition into plane subgraphs
In the previous section, we gave a classification of which bumpy wheels can be partitioned
into plane spanning trees and which cannot. Surprisingly it turns out that allowing arbitrary
plane subgraphs does not help much. The only bumpy wheel that can be partitioned into
plane subgraphs but not into plane spanning trees is BW3,5.

Note that before we also heavily exploited the structure enforced by spanning trees. This
is not possible anymore for the case of arbitrary plane subgraphs. We cannot make any
assumptions on the number of edges, not even about connectedness. The only property we
can (and will) exploit is the fact that we still have maximal diagonal edges and radial edges
may only be contained in their span.

We split the proof of Theorem 4 into two parts, first focusing on the case ℓ > 5.

▶ Theorem 14. For any odd parameters k ≥ 3 and ℓ > 5, the edges of BWk,ℓ cannot be
partitioned into n = kℓ+1

2 plane subgraphs.

The proof is more technical than for spanning trees. We give a detailed overview of the
main ideas and postpone the full proof to the full version [8].

Proof sketch. Assume D0, . . . , Dn−1 is a partition into plane subgraphs. Then, a crucial
insight is that between any pair of opposite groups and any distance di = k+1

2 ℓ − i (for
1 ≤ i ≤ ℓ) there have to be at least i diagonal edges of distance at least di which are maximal
in their subgraph. This follows from the fact that all edges of distance di between a fixed
pair of opposite groups G, G′ form a crossing family. In particular, all of them get a different
color and are either maximal or have another (larger) maximal edge between G and G′.

Further, this enables us to define a set Eforced of exactly k ·ℓ forced diagonal edges fulfilling
the just mentioned distance constraints. In particular,

∑
e∈Eforced

dist(e) ≥ k

ℓ∑
i=1

(
k + 1

2 ℓ − i

)
holds. Our goal will be to argue that we cannot accommodate all these forced diagonal edges
and all radial edges at the same time.

To this end, note that we cannot have too many pairwise incomparable edges in a plane
subgraph, more precisely their distance sums to at most 2n − 2. In fact, it turns out that
again we have one subgraph, say D0, containing exactly one forced diagonal edge, while all
other n − 1 subgraphs contain exactly two of them.

Now the pairs of forced diagonal edges in our subgraphs again form a span (similar as in
the spanning tree setting). Furthermore, radial edges may only be contained in this span
(be careful, we are not assuming that there are radial edges in the span, but if the subgraph
wants to use a radial edge it has to be in the span). We noted above that the distances of
forced diagonal edges in the subgraph Di sum up to at most 2n − 2, say they sum up to
2n − 2 − xi for some xi (and dist(e) = d1 − x0 for the single forced diagonal edge e of D0).
Then these xi’s allow some additional margin to accommodate radial edges in the spans (or
additional vertices as we call them). However, and this is the second crucial insight, we show
that this additional margin is at most

n−1∑
i=0

xi ≤ ℓ − 1
2 .
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G1

G k−1
2

G k+1
2

G k+3
2

Gk

G2 Gk−1

e

Figure 5 High level overview of the proof of Theorem 15. We have at most 5−1
2 = 2 additional

vertices in total and the blue stripe (which contains the single forced diagonal edge e of D0) has
to use both of them. Then, in the grey stripes we must use all forced diagonal edges of distances
d2, d3, d4. Finally, since the two red stripes intersect (k ≥ 5), there will not be enough forced diagonal
edges left to pair all 6 forced diagonal edges of distances d2, d3, d4 from the red stripes.

Finally, we consider only the 2ℓ − 4 inside radial edges of the opposite pair of groups G, G′

containing the endpoints of e (the single forced diagonal edge of D0). Any subgraph with
an apex in one of the two groups also has a forced diagonal edge between them. Putting
everything together, this implies that we can cover at most

(ℓ − 1) + ℓ − 1
2 = 3

2(ℓ − 1)

of these 2ℓ − 4 inside radial edges. In other words, whenever 3
2 (ℓ − 1) < 2ℓ − 4 holds, we

cannot cover all edges. This inequality is equivalent to ℓ > 5. ◀

For the case ℓ = 5, we need to go even deeper into the structure of our plane subgraphs.

▶ Theorem 15. For any odd parameter k ≥ 5, the edges of BWk,5 cannot be partitioned into
n = 5k+1

2 plane subgraphs.

Figure 5 gives a brief sketch of the proof from a high level view. The full proof can also
be found in the full version [8].

Finally, using Theorem 3, it only remains to show that there is a partition for BW3,5,
which is easy to compute (using computer assistance), and can be found in the full version [8].

3 Generalized wheels

In this section we generalize our construction to non-regular wheel sets. We give a sufficient
condition in the setting of plane spanning trees and a full characterization for partitioning into
plane double stars. For N = [n1, . . . , nk] and integers ni ≥ 1, GWN denotes the generalized
wheel with group sizes ni (in the given circular order). As before, the arrangement of the k

groups resembles a regular k-gon around the center vertex, the vertices within each group are
ε-close, and k is odd (see Figure 6). And for our purpose we also require

∑
i ni to be odd.

SoCG 2022
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Figure 6 Illustration of a generalized wheel (GW[2,3,3,4,5]).

Note that the geometric regularity of generalized wheels is not strictly required (but
eases the proofs). In fact, one can show that for any point set P (in general position) with
exactly one point inside its convex hull, there is a generalized wheel with the exact same set
of crossing edge pairs (further details can be found in the full version [8]).

▶ Theorem 16. Let GWN be a generalized wheel with k groups and 2n vertices. Then GWN

cannot be partitioned into plane spanning trees if each family of k−1
2 consecutive groups

contains (strictly) less than n − 2 vertices.

The proof, which is similar to the one of Theorem 5, can be found in the full version [8].

Plane double stars. Considering the other side of the story, it turns out that many
generalized wheels can already be partitioned into plane double stars4:

▶ Theorem 17. Let GWN be a generalized wheel with k groups and 2n vertices. Then GWN

cannot be partitioned into plane spanning double stars if and only if there are three families
of k−1

2 consecutive groups, each of which contains at most n − 2 vertices, such that each
group is in at least one family.

The proof requires several tools introduced by Schnider [13]. In a first step we identify
conditions under which a point set admits a so-called spine matching – the collection of spine
edges from a partition into double stars. Using these conditions we show that a generalized
wheel GWN cannot be partitioned into plane double stars if and only if GWN has three bad
halfplanes whose intersection is empty (for a non-radial halving edge e, the closure of e−

defines a bad halfplane). All details can be found in the full version [8].
We phrased Theorem 17 this way to make it consistent with Theorem 16; however, let us

rephrase it in a way that better indicates the gap between the two theorems. Let Fi denote
the family of k−1

2 consecutive groups starting at Gi in clockwise order (whenever speaking
of a family without further specification, we refer to such a family of k−1

2 groups for the
remainder of this section). Two families Fi and Fi+1 are called consecutive and |Fi| denotes
the number of vertices in Fi. If |Fi| ≤ n − 2 holds, we call Fi small, and otherwise large.

▶ Corollary 18. Let GWN be a generalized wheel with k groups and 2n vertices. Then GWN

can be partitioned into plane spanning double stars if and only if there are k−1
2 consecutive

families each containing (strictly) more than n − 2 vertices.

4 All double stars in this section are spanning (which we may not always spell out for readability).
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Proof. If, for the one direction, there are k−1
2 large consecutive families, then there is a

group G⋆ (namely the one that is contained in all these k−1
2 families) such that any family

containing G⋆ is large. In particular, there cannot be three small families covering all groups.
Hence, by Theorem 17, there is a partition into plane double stars.

On the other hand, if there are no k−1
2 large consecutive families, we can find three small

families as follows. Note first that every group is contained in some small family. Pick a small
family F arbitrarily and let G be the first group after F (in clockwise order). Among all
small families containing G, pick the one that is “furthest” from F , that is, has least overlap
with F , and call it F ′. Let G′ again be the first group after F ′ and among all small families
containing G′ pick the one furthest from F ′ and call it F ′′. Since F ′′ cannot contain G, we
conclude that the three small families F, F ′, F ′′ cover all groups. ◀

4 Partitions into k-planar subgraphs

In this section, we consider a generalization to partitioning into k-planar subgraphs (for
k = 0 this amounts to the previous partitioning into plane subgraphs). We focus on the
special case where the input point set is in convex position. Our first result fully resolves
this problem for k = 1. Note that we do not require even sized point sets.

▶ Proposition 19. For a point set P in convex position with |P | = n ≥ 5, K(P ) can be
partitioned into

⌈
n
3

⌉
1-planar subgraphs and

⌈
n
3

⌉
subgraphs are required in every 1-planar

partition.

The proof can be found in the full version [3]. More generally, we show the following
bounds:

▶ Theorem 20. For an n-point set P in convex position and every k ∈ N, K(P ) admits a
partition into at most n√

2k
k-planar subgraphs. More precisely, for every integer s ≥ 2, K(P )

admits a (s−1)(s−2)
2 -planar partition into ⌈ n

s ⌉ subgraphs.
Conversely, for every k ∈ N, at least n−1

4.93
√

k
subgraphs are required in any k-planar

partition of K(P ).

For the proofs of Proposition 19 and Theorem 20 (in particular for the lower bounds) it
will be necessary to understand how many edges a single color class, or in other words, how
many edges a k-planar subgraph of a convex geometric Kn, can maximally have. Once such
bounds are established, we will be able to lower-bound the number of colors required in any
k-planar partition of a convex geometric Kn by considering the “largest” color class.

We postpone this analysis, which also includes an improvement of the well-known crossing
lemma for convex geometric graphs, to the full version [3] and only state the main ingredient
that we need for the proof of Theorem 20:

▶ Theorem 21. For every k ≥ 5, every convex k-plane graph G on n vertices has at most√
243
40 k · n edges.

Proof of Theorem 20. Let us first prove the upper bound. To this end, suppose that s ≥ 2
is such that (s−1)(s−2)

2 ≤ k, and let us show that K(P ) can be partitioned into ⌈ n
s ⌉ k-planar

subgraphs. W.l.o.g. assume that the points in P form a regular n-gon. Consider all possible
n slopes of segments and sort those in circular order. Next, partition this list of slope values
into ⌈ n

s ⌉ (contiguous) intervals of size at most s. Then, define a color class for all edges
whose slopes fall into a common interval of this partition, see Figure 7(a).
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(a) (b) (c) (d) (e)

Figure 7 (a) Partition into 1-planar subgraphs by composing groups of (at most) 3 consecutive
slopes each. (b)-(e) Edges with slope distance 1/2/3/4 intersect at most 0/1/2/3 times.

We show that all these subgraphs are (s−1)(s−2)
2 -planar. To this end, define the slope

distance to be the distance between two slope values in the circularly sorted list of slopes.
Note that edges cannot be crossed by other edges of the same slope or slope distance 1;
by at most one edge of slope distance 2, by at most two edges of slope distance 3, etc.
(see Figure 7(b)-(e)). Hence, if an edge e has color i, and if the slope of e is the j-th slope
(j ∈ {1, . . . , s}) in its circular interval of slopes, then e can cross with at most the following
amount of edges of color i:∑

1≤k<j−1
(j − k − 1) +

∑
j+1<k≤s

(k − j − 1) = (j − 1)(j − 2)
2 + (s − j)(s − j − 1)

2 =

= (s − 1)(s − 2)
2 − (s − j)(j − 1) ≤ (s − 1)(s − 2)

2 .

For the lower bound, note that K(P ) has n(n−1)
2 edges, and that in every k-planar

partition of K(P ), every color class induces a convex k-plane subgraph on n vertices. Hence,
by Theorem 21, every color class has size at most

√
243
40 k · n. So, the number of colors

required in any k-planar partition is at least(
n(n−1)

2

)
√

243
40 k · n

≥ n − 1
4.93

√
k

.

This concludes the proof. ◀

The following intriguing question is left open by our study.

▶ Question 22. Is the upper bound in Theorem 20 tight up to lower-order terms?

More generally, it would be interesting to shed some more light on the “in-between-cases”
coming out of the upper bound in Theorem 20, where the term (s−1)(s−2)

2 covers only the
values 0, 1, 3, 6, 10, . . .. For instance, can we partition convex complete geometric graphs
with fewer colors into 2-planar subgraphs than we need for the 1-planar partition? More
generally, for (s−1)(s−2)

2 < k < s(s−1)
2 , can we improve upon the ⌈ n

s ⌉ bound from Theorem 20
for k-planar partitions? This question is surprisingly difficult (even for k = 2)5 and we do
not know of any improvements of the bounds for these “in-between-cases”.

5 Using computer assistance, we can show that 3n
10 colors are required for any 2-planar partition (almost

matching the n
3 bound from the 1-planar partition). We omit this computer assisted result as it is a very

special case and not even answering the question whether or not the bound can be improved for k = 2.
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5 Partitions into k-quasi-planar subgraphs and spanning trees

In this section, we develop bounds on the number of colors required in a k-quasi-planar
partition for point sets in general position (for k = 2 this again amounts to the setting of
plane subgraphs, hence we assume k ≥ 3 in the following). The setting of spanning trees is
easily resolved by the following lemma (whose proof can be found in the full version [3]).

▶ Lemma 23. Let P be a point set of size 2n, then the complete geometric graph K(P ) can
be partitioned into n 3-quasi-planar spanning trees.

So, we turn our attention to the subgraph setting. The main ingredient towards the
proof of Theorem 25 is the following lemma concerning point sets admitting a perfect cross-
matching, that is, a crossing family of size |P |/2. Note that in this case any edge in the
crossing family determines a halving line [10].

▶ Lemma 24. Let P be a point set of size 2n, with a crossing family of size n, then ⌈ n
k−1 ⌉

colors are required and sufficient to partition K(P ) into k-quasi-planar subgraphs.

Again, due to space constraints, we postpone the proof to the full version [3].

▶ Theorem 25. Let P be a set of n points in general position and denote the size of a
largest crossing family on P by m. Also let k ≥ 3 s.t. k ≤ m (otherwise one color is always
sufficient). Then, at least ⌈ m

k−1 ⌉ colors are required and at most ⌈ m
k−1 ⌉ + ⌈ n−2m

k−1 ⌉ colors are
needed to partition the complete geometric graph K(P ) into k-quasi-planar subgraphs.

Proof. Let P ′ ⊆ P be the subset of endpoints induced by a largest crossing family of size m.
Then, the lower bound follows immediately from Lemma 24 applied on P ′.
For the upper bound, divide the point set P \ P ′ into disjoint subsets Q1, . . . , Qc of

size k − 1, where c = ⌈ n−2m
k−1 ⌉. For each edge with an endpoint in some Qi assign it the

color i (for edges that have two choices, pick one arbitrarily). Certainly, each color class is
k-quasi-planar, since it consists of (at most) the union of k − 1 stars. Together with K(P ′),
which we can clearly partition by using ⌈ m

k−1 ⌉ colors, the upper bound follows. ◀

6 Conclusion

We showed that there are complete geometric graphs that cannot be partitioned into plane
spanning trees and gave a full characterization of partitionability for bumpy wheels (even in
the much broader setting of partitioning into plane subgraphs). Also, for generalized wheels
we gave sufficient and necessary conditions. There are two natural directions for further
research in this setting. On the one hand, one could try to further classify which point sets can
be partitioned and which cannot (this might also be a useful approach towards the question
concerning the complexity of the decision problem whether a given complete geometric graphs
admits a partition into plane spanning trees). On the other hand, we initiated the study of
partitions into broader classes of subgraphs, namely k-planar and k-quasi-planar.

The intriguing question to determine how far we may get from the |P |
2 bound is still open:

▶ Question 26 ([6]). Can any complete geometric graph on n vertices be partitioned into n
c

plane subgraphs for some constant c > 1?

SoCG 2022



6:16 Edge Partitions of Complete Geometric Graphs

References
1 Oswin Aichholzer, Thomas Hackl, Matias Korman, Alexander Pilz, André van Renssen, Marcel

Roeloffzen, Günter Rote, and Birgit Vogtenhuber. Packing plane spanning graphs with short
edges in complete geometric graphs. Comput. Geom., 82:1–15, 2019. doi:10.1016/j.comgeo
.2019.04.001.

2 Oswin Aichholzer, Thomas Hackl, Matias Korman, Marc Van Kreveld, Maarten Löffler,
Alexander Pilz, Bettina Speckmann, and Emo Welzl. Packing plane spanning trees and paths
in complete geometric graphs. Information Processing Letters, 124:35–41, 2017.

3 Oswin Aichholzer, Johannes Obenaus, Joachim Orthaber, Rosna Paul, Patrick Schnider,
Raphael Steiner, Tim Taubner, and Birgit Vogtenhuber. Edge Partitions of Complete Geometric
Graphs (Part 2), 2021. arXiv:2112.08456.

4 Frank Bernhart and Paul C Kainen. The book thickness of a graph. Journal of Combinatorial
Theory, Series B, 27(3):320–331, 1979. doi:10.1016/0095-8956(79)90021-2.

5 Ahmad Biniaz and Alfredo García. Packing plane spanning trees into a point set. Comput.
Geom., 90:101653, 2020. doi:10.1016/j.comgeo.2020.101653.

6 Prosenjit Bose, Ferran Hurtado, Eduardo Rivera-Campo, and David R. Wood. Partitions
of complete geometric graphs into plane trees. Comput. Geom., 34(2):116–125, 2006. doi:
10.1016/j.comgeo.2005.08.006.

7 https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2022/#problem-description.
8 Johannes Obenaus and Joachim Orthaber. Edge partitions of complete geometric graphs

(part 1), 2021. arXiv:2108.05159.
9 http://www.openproblemgarden.org/op/partition_of_complete_geometric_graph_into_

plane_trees.
10 János Pach and József Solymosi. Halving lines and perfect cross-matchings. Contemporary

Mathematics, 223:245–250, 1999.
11 Arkadiusz Pawlik, Jakub Kozik, Tomasz Krawczyk, Michal Lason, Piotr Micek, William T.

Trotter, and Bartosz Walczak. Triangle-free intersection graphs of line segments with large
chromatic number. J. Comb. Theory, Ser. B, 105:6–10, 2014. doi:10.1016/j.jctb.2013.11
.001.

12 Patrick Schnider. Partitions and packings of complete geometric graphs with plane spanning
double stars and paths. Master’s thesis, ETH Zürich, 2015.

13 Patrick Schnider. Packing plane spanning double stars into complete geometric graphs. In
Proc. 32nd European Workshop on Computational Geometry (EuroCG’16), pages 91–94, 2016.

14 Hazim Michman Trao, Gek L Chia, Niran Abbas Ali, and Adem Kilicman. On edge-partitioning
of complete geometric graphs into plane trees. arXiv preprint arXiv:1906.05598, 2019.

https://doi.org/10.1016/j.comgeo.2019.04.001
https://doi.org/10.1016/j.comgeo.2019.04.001
http://arxiv.org/abs/2112.08456
https://doi.org/10.1016/0095-8956(79)90021-2
https://doi.org/10.1016/j.comgeo.2020.101653
https://doi.org/10.1016/j.comgeo.2005.08.006
https://doi.org/10.1016/j.comgeo.2005.08.006
https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2022/#problem-description
http://arxiv.org/abs/2108.05159
http://www.openproblemgarden.org/op/partition_of_complete_geometric_graph_into_plane_trees
http://www.openproblemgarden.org/op/partition_of_complete_geometric_graph_into_plane_trees
https://doi.org/10.1016/j.jctb.2013.11.001
https://doi.org/10.1016/j.jctb.2013.11.001

	1 Introduction
	2 Bumpy wheels
	2.1 Partition into plane spanning trees
	2.2 Partition into plane subgraphs

	3 Generalized wheels
	4 Partitions into k-planar subgraphs
	5 Partitions into k-quasi-planar subgraphs and spanning trees
	6 Conclusion

