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Abstract
We apply state-of-the-art computational geometry methods to the problem of reconstructing a
time-varying sea surface from tide gauge records. Our work builds on a recent article by Nitzke et
al. (Computers & Geosciences, 157:104920, 2021) who have suggested to learn a triangulation D of
a given set of tide gauge stations. The objective is to minimize the misfit of the piecewise linear
surface induced by D to a reference surface that has been acquired with satellite altimetry. The
authors restricted their search to k-order Delaunay (k-OD) triangulations and used an integer linear
program in order to solve the resulting optimization problem.

In geometric terms, the input to our problem consists of two sets of points in R2 with elevations:
a set S that is to be triangulated, and a set R of reference points. Intuitively, we define the
error of a triangulation as the average vertical distance of a point in R to the triangulated surface
that is obtained by interpolating elevations of S linearly in each triangle. Our goal is to find the
triangulation of S that has minimum error with respect to R.

In our work, we prove that the minimum-error triangulation problem is NP-hard and cannot be
approximated within any multiplicative factor in polynomial time unless P = NP . At the same
time we show that the problem instances that occur in our application (considering sea level data
from several hundreds of tide gauge stations worldwide) can be solved relatively fast using dynamic
programming when restricted to k-OD triangulations for k ≤ 7. In particular, instances for which
the number of connected components of the so-called k-OD fixed-edge graph is small can be solved
within few seconds.
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Figure 1 Left: A minimum-error triangulation of the North Sea data (June 2010) with 34 tide
gauge stations computed with the approach in [24]. Right: Locations of all tide gauge stations in
the PSMSL database (www.psmsl.org/products/data_coverage).
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1 Introduction

Reconstructing the sea level for the past is of paramount importance for understanding the
influences of climate change. Two types of observational data are often used for this task:
(1) data from tide gauge stations, which are usually located at the sea shore, and (2) gridded
altimeter data acquired from satellites. The tide gauge data is available from the 18th century
from stations that are sparsely distributed globally (e.g., the RLR database given by the
PSMSL contains 1 548 stations). The gridded altimeter data, which has been acquired since
1993, admits much more accurate reconstructions of the sea surface for the last 29 years.
We build on the work by Nitzke et al. [24], who suggested an approach for combining these
two types of data using integer linear programming techniques. The approach is to learn a
plausible triangulation of the tide gauge stations for an epoch E for which the altimeter data
is available, and then use that triangulation to reconstruct the sea surface in another epoch,
where gauge data is available, but no altimeter data. Given the gauge and altimeter data for
E, the task is to compute a minimum-error triangulation of the gauge stations, that is, a
triangulation that minimizes the sum of squared differences between the reference (altimeter)
data and the piecewise linear surface defined with the triangulation.

For piecewise linear surfaces, Delaunay triangulations are often chosen, since they have
many desirable properties. However, they are unique and so they do not have potential
for optimization. On the other hand, computing a minimum-error triangulation among
the set of all triangulations can lead to badly shaped triangles, which can cause large
interpolation errors for epochs other than the training epoch. Therefore, Nitzke et al. [24]
suggested computing a triangulation of minimum error among all k-order Delaunay (k-OD)
triangulations [16]. A k-OD triangulation consists of triangles with up to k points inside
each triangle’s circumcircle (k = 0 corresponds to Delaunay triangles). This creates room for
optimization while ensuring (reasonably) well-shaped triangles. Moreover, restricting the
solution to the set of k-order Delaunay triangulations has computational advantages. Nitzke
et al. [24] modeled their approach as an integer linear program (ILP) and evaluated it on the
North Sea dataset with up to 40 stations and k ≤ 3, whose locations are projected on the

www.psmsl.org/products/data_coverage
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plane; see Figure 1. The evaluation showed that the k-OD minimum-error triangulation is
substantially more effective than the method based on the Delaunay triangulation suggested
in [25] for Sea Surface Anomaly reconstructions of up to 19 years back in time.

The aim of our work is to speed up the above approach using computational geometry in
order to apply it to areas of global extent (instances with up to 800 tide gauge stations).

Our contribution.
We first show that the minimum-error triangulation problem is NP-hard and that it is
even NP-hard to approximate an optimal solution.
We discuss an alternative optimization approach to the ILP-based one by Nitzke et al. [24].
Our approach is based on the dynamic programming (DP) algorithm by Silveira and Van
Krefeld [28]. The runtime of the DP algorithm depends on the Delaunay order k; since
we are only interested in small orders, we are able to calculate minimum-error order-k
Delaunay triangulations for the datasets given by the sea surface reconstruction problem.
The algorithm’s runtime depends on a subgraph of the Delaunay triangulation, which we
call the order-k fixed-edge graph. It is known that for order 1 the fixed-edge graph is
connected [16]. We investigate the fixed-edge graph for orders k = 2, 3. We show that for
k = 2 no vertex can be isolated and give an example where the fixed-edge graph is not
connected. For k ≥ 3 we give an example where ⌊ n

6 ⌋ connected components are inside a
face of the fixed-edge graph, which implies exponential runtime for the algorithm. This
complements the observations by Silveira et al. given in [28].
We perform experiments with different projections of the tide gauge dataset to analyze
the structure of the fixed-edge graphs for a real-world dataset. Our experiments confirm
the assumption by Silveira and Van Krefeld [28] that the DP algorithm can be used to
solve practical problems for medium-sized datasets, if the order is small (k ≤ 7).
Lastly, we perform the reconstruction task that was given in [24] for the global dataset.
Our evaluation shows that on the used global dataset with up to 800 stations the quality
improves with growing k, which contrasts with the findings in [24] on the local North Sea
dataset with about 40 stations, where k = 2 consistently delivered the best reconstructions.

The paper is organized as follows. First, we outline the formal definitions of the triangu-
lation problem in Section 2. After that, we discuss related works in Section 3. In Section 4
we present our NP-hardness proof for the minimum-error triangulation problem. Section 5
presents the DP algorithm by Silveira et al. [28] and discusses our findings regarding the
fixed-edge graphs. In Section 6 we provide the application of the DP algorithm to the sea
surface reconstruction problem. Finally, we give our conclusion in Section 7.

2 The triangulation problem

Let S ⊂ R2 be a set of n points and f : S → R. We call S the set of triangulation points
and f(s) the measurement value of s ∈ S. Additionally, we are given a set R ⊂ conv(S) of
m points and a function h : R → R. We refer to R as the set of reference points and to h(r)
as the reference value of r ∈ R.

A triangulation D of S is given by a maximal set of non-crossing straight-line edges between
points in S. We can extend the function f on the points in conv(S) by linearly interpolating
f in every triangle. In this way we obtain a piece-wise linear function sD : conv(S) → R.
The minimum-error triangulation problem asks for a triangulation D of S that minimizes
the squared error between the reference values and the interpolation, i.e.,

ErrD(R) =
∑
r∈R

(sD(r) − h(r))2.

SoCG 2022
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For the dynamic programming algorithm used in our approach and discussed in Section 5,
we transform the minimum-error triangulation problem to the minimum triangle-weighted
triangulation problem. Let T be the set of all O(n3) possible triangles that may be used in
any triangulation of S. Then we can assign the weight

wT (R) =
∑
r∈T

(sT (r) − h(r))2

to every triangle T ∈ T, where sT is the linear interpolation given by the triangle T . If we
assume that no reference point lies on any triangulation edge, we get

ErrD(R) =
∑
r∈R

(sD(r) − h(r))2 =
∑
T ∈D

∑
r∈T

(sT (r) − h(r))2 =
∑
T ∈D

wT (R).

To get rid of the previous assumption we assign points that lie on an edge uv only to the
triangles left of −→uv. Points coinciding with triangulation points can be ignored.

Using these weights our cost function becomes a decomposable measure as discussed by
Bern and Eppstein in [6]. Broadly speaking, decomposable measures are all measures that
easily allow computation using dynamic programming approaches for triangulations.

3 Related works

Sea level reconstruction. Conventional methods for sea level reconstruction use global base
functions (empirical orthogonal base functions) which are learned within the altimeter decades
[10]. Olivieri and Spada suggested the first triangulation-based reconstruction approach [25].
However, this approach does not use the altimeter data in any way and generates a Delaunay
triangulation of the station data. Nevertheless, the resulting reconstruction of the sea surface
was quite promising. The approach suggested by Nitzke et al. [24] marries the conventional
thinking and the triangulation method. The authors proposed the use of data-dependent
triangulations which were introduced in [12] by Dyn, Levin and Rippa. The particular focus
of Nitzke et al. were the minimum-error triangulations. Since they also want to reconstruct
the sea level in the pre-altimetry era, they formulate the reconstruction as a learning task
and use higher-order Delaunay constraints, which were introduced in [16] by Gudmundsson,
Hammar and van Kreveld, as regularizer.

Triangulating point sets. Triangulating point sets in the plane is a fundamental task of
computational geometry. It is of high relevance for data interpolation and surface modeling
tasks, where for every data point a data value (or height) is given in addition to the point’s two
coordinates. The Delaunay triangulation is most often applied as it optimizes several criteria
and can be computed efficiently. In particular, it maximizes the minimum angle among all
the angles of all the triangles. Data-dependent triangulations have been defined in [12] as
triangulations that are computed under consideration of the data values. As optimization
criteria the authors have considered (1) smoothness criteria, (2) criteria based on three-
dimensional properties of the triangles, (3) variational criteria, and (4) the minimum-error
criterion, which is optimized by the previously defined minimum-error triangulation.

There are many heuristics for computing data-dependent triangulations [3, 8, 12, 29],
which are usually based on Lawson’s edge flip algorithm [21]. For small instances, the
problem can be solved to optimality based on integer linear programming [24]. There are
multiple fixed-parameter-tractable algorithms using dynamic programming for the minimum-
weight triangulation (MWT) problem [19, 9, 7, 4, 15] that can be adapted for decomposable
measures [6]. Using problem specific structural properties the MWT problem has been solved
for instances with up to 30 million points [17, 14].
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v1 v2 v3 v4

v1 ∨ v2 ∨ v4

v1 ∨ v2 ∨ v3

v1 ∨ v3 ∨ v4

Figure 2 Embedding of the 3SAT formula (v1 ∨ v2 ∨ v4) ∧ (v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v3 ∨ v4).

In [11, 27] heuristics and higher-order Delaunay constraints were used for terrain approxi-
mation. Using established techniques, exact polynomial-time algorithms can be obtained
for restricted cases with higher-order Delaunay constraints [16, 28]. However, prior to our
work, little was known about the complexity of computing or approximating minimum-error
triangulations in the general case. For related problems some hardness results exist [2, 23].

4 Minimum-error triangulation is NP-hard

The zero-error triangulation problem asks for a triangulation D of S with sD(r) = h(r) for
all r ∈ R, or equivalently ErrD(R) = 0. We prove that this problem is NP-hard.

▶ Theorem 1. The zero-error triangulation problem is NP-hard. Thus the minimum-error
triangulation problem cannot be approximated within any multiplicative factor in polynomial
time unless P=NP.

We prove this by a reduction from the planar 3SAT problem, which is NP-complete [22]. An
instance of this problem can be embedded into the plane, where every clause is represented
by a vertex and every variable by a box placed on the horizontal axis. A box is connected to
a vertex via a rectilinear edge if the respective variable is contained in the clause. For an
example, see Figure 2. Such an embedding is also used, for example, in [20].

For every instance of the planar 3SAT problem we construct an instance for the zero-error
triangulation problem by replacing the boxes, vertices and edges of its rectilinear embedding
in the plane by a set of triangulation points and reference points. For this purpose we handle
each component of the 3SAT embedding individually. We construct the variable gadgets
which replace the boxes, the wire gadgets, which replace the rectilinear edges and finally the
clause gadgets and the negation gadgets, where the first replace the vertices and the second
can be attached to variable gadgets to handle negated variables in a clause. The combination
of these gadgets then constitutes an instance to the zero-error triangulation problem.

We ensure that there are two possible zero-error triangulations on the points belonging
to a variable gadget and the attached negation gadgets and wire gadgets as follows. Points
from S together with their measurement value can be seen as points in R3. We ensure that
they lie on a paraboloid in R3 and exploit the properties of the paraboloid (its convexity and
the correspondence of planes in R3 to circles in R2) to limit possible zero-error triangulations.
Any such triangulation then corresponds to the assignment of value 0 (negative) or 1 (positive)
to any variable. We claim that the instance can be triangulated with zero error if and only if
the 3SAT instance is solvable.

SoCG 2022
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Figure 3 Example of a reference point r with coupled circle Cr and its positive/negative edges
crossing at r. Lifting the red and blue points to R3, with their measurement values as third
coordinate, we see that these points lie on both the paraboloid and the plane containing (r, hCr (r)).

4.1 Notation and local properties
Our triangulation instance consists of a set of triangulation points with integral coordinates
S ⊂ Z2 and a set R ⊂ conv(S) of reference points. The measurement value of a point
p = (p1, p2) ∈ S is given by f(p) = p2

1 + p2
2. In contrast, reference values are not determined

by one single function. Instead we define a set of functions, one for every circle in R2, and
choose for every reference point one of these functions which determines the reference value
of this point. Concretely, let C be a circle around a point x = (x1, x2) with radius ρ. We
denote with IC = {y ∈ R2 | ∥x − y∥2 < ρ} the interior of C and with OC = R2\(C ∪ IC) the
exterior of C. Here ∥·∥2 denotes the Euclidean norm. For a reference point r = (r1, r2) ∈ R
we define the function

hC(r) = 2x1r1 + 2x2r2 − x2
1 − x2

2 + ρ2.

The function graph of f is the unit paraboloid {(p1, p2, p2
1 + p2

2) | (p1, p2) ∈ R2} and the
function graph of hC is the plane containing the lifting of C onto the paraboloid (Figure 3).

Every point r ∈ R is then coupled to a circle, which we denote by Cr. It will be defined
during the construction of the gadgets and determines the reference value h(r) = hCr (r). Let
an edge e = st denote the convex hull of two points (its vertices) s, t ∈ R2. For each r ∈ R
we define a positive edge e+

r and a negative edge e−
r both having triangulation points lying

on Cr as endpoints and intersecting each other at r (i.e., e+
r ∩ e−

r = {r}). Figure 3 shows the
whole construction. We say for a triangulation D that the signal at r ∈ R is positive if D

contains edge e+
r and negative if it contains e−

r , otherwise we call it ambiguous. Similarly for
every set M ⊂ R we call D positive on M if the signal at all r ∈ M is positive and negative
on M if the signal at all r ∈ M is negative. The error incurred by D on M is given by

ErrD(M) =
∑
r∈M

(sD(r) − h(r))2.

A triangle T is the convex hull of three points s, t, u ∈ R2, which we call the vertices of T .
We say that a triangle T is in D if all of its edges st, tu, us are in D and T does not contain
further points from S, i.e., T ∩ S = {s, t, u}. We say that r ∈ R is represented with zero
error by T if r ∈ T and the value at r of the linear interpolation of f on T equals h(r).
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▶ Lemma 2. Let r be a point of R and let T ⊂ R2 be a triangle with vertices s, t, u and
r ∈ conv({s, t, u} ∩ Cr). Then r is represented with zero error by T .

If the 3SAT instance is satisfiable, we argue that there is a triangulation containing one of
e±

r for every reference point r. Lemma 2 states that such a triangulation has in fact zero
error (see also Figure 3). To represent r with zero error in any other way, we need at least
one triangulation point inside and one outside Cr. This follows from the convexity of f .

▶ Lemma 3. Let T ⊂ R2 be a triangle with vertices s, t, u representing r ∈ R with zero error.
If r /∈ conv({s, t, u} ∩ Cr), then {s, t, u} has a non-empty intersection with ICr

and OCr
.

We guarantee during the construction that only few triangulation points lie in ICr
for each

reference point r. With a concise case analysis we rule out that any of them can be used
together with a point in OCr

to form a triangle that represents r with zero error, which limits
the choice to triangles containing one of e±

r . This ensures that every zero-error triangulation
yields a solution to the 3SAT instance.

Our triangulation instance contains a set of mandatory edges that we require to be part of
any feasible triangulation of S. Mandatory edges are not part of the zero-error triangulation
problem as defined in Section 2, but they can be eliminated by an additional construction.

4.2 The gadgets
At the core of our reduction lies the design of the gadgets that constitute the triangulation
instance. Before we dedicate ourselves to the more complicated gadgets we construct smaller
elements called bits and segments which then are combined into the larger gadgets.

A bit at r ∈ Z2 occupies a small construction around the central point r, which is also
the only reference point of this bit, and can be oriented either horizontally or vertically. We
describe the horizontal bit. Point r is coupled to a circle Cr which is centered on r and
has radius

√
2. The integer grid points on this circle, that is, the points r + (±1, ±1), are

triangulation points. Moreover r + (0, 1) and r + (0, −1) are triangulation points, whereas
r + (−2, 0), r + (−1, 0), r + (1, 0) and r + (2, 0) are not. Therefore, we call the latter points
forbidden. Furthermore we define the positive and negative edge as

e+
r = conv(r + (−1, −1), r + (1, 1)), e−

r = conv(r + (−1, 1), r + (1, −1)).

As r + (±1, ±1) ∈ Cr, any triangle containing either e+
r or e−

r represents r with zero error by
Lemma 2. For the vertical bit we switch the definition of the positive and negative edge and
rotate the whole construction by π

2 . Figure 4 illustrates both constructions.

▶ Lemma 4. Suppose the instance contains a bit at r. If S ⊂ Z2 and S does not contain
forbidden points of the bit, any triangulation D of S with ErrD(r) = 0 contains one of e±

r .

The next larger components are the wire segment and the multiplier segment, which we
build from bits. They can be combined at specified reference points, which we call anchor
points. These points are always reference points of bits.

A wire segment connects two points x, y ∈ Z2 lying on the same horizontal or vertical
line. We place a horizontal or vertical bit on x, y and all integral points lying between these
on the line connecting x and y. The anchor points of this segment are x, y.

A multiplier segment at a point x ∈ Z2 consist of two horizontal bits at x ± (2, 0) and two
vertical bits at x ± (0, 2). These four points are simultaneously anchor points. Furthermore
we add four inner reference points x ± (0, 1), x ± (1, 0) whose coupled circle is of radius

√
5

and centered around x. So the circle contains the points x + (±2, ±1), x + (±1, ±2). Figure 5

SoCG 2022
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r

Cr

r

Cr

e+r

e−r

e+r

e−r

Figure 4 The (horizontal/vertical) bit at r with the positive edge in red and the negative edge in
blue. The black points are triangulation points and the white points are forbidden.

x y x

Figure 5 Example of a horizontal wire segment on the left and a multiplier segment with
mandatory edges on the right. The red or blue edges indicate the positive or negative edges of the
crossing points, respectively. All white points and all reference points are forbidden. The green
points are anchor points.

shows the wire segment and the multiplier segment including mandatory edges and the
positive/negative edges of the inner reference points. To obtain the larger variable gadget
and wire gadget we combine wire segments with multiplier segments. Two segments can be
combined if they share a common anchor point. By the combination of two segments we
mean the union of their reference points and triangulation points. A point is forbidden in
the combination if it is forbidden in at least one of the segments. Thus it is not allowed to
combine two segments if a triangulation point of one is forbidden in the other. The set of
anchor points of the combination is defined as the symmetric difference of anchor point sets
of both segments. This way we can combine arbitrarily many segments.

Remember that the wire gadget replaces the rectilinear edges of the 3SAT embedding,
so it has to connect two points x = (x1, x2), y = (y1, y2) ∈ Z2. It consists of a multiplier
segment placed on either (x1, y2) or (y1, x2) to form a corner, which is connected on two of
its anchor points via two wire segments to both x and y. A variable gadget at v ∈ Z2 consists
of ℓ multiplier segments at sufficiently large distance α ∈ Z, which we do not specify further.
Here ℓ denotes the number of clauses. Concretely, we place a multiplier segment on each of
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rc

a1

a3

T3

T1

T2

a2

Figure 6 The clause gadget, where the red/blue edges indicate the positive/negative edges of the
crossing points. The triangles T1, T2, T3 are orange and the anchor points a1, a2, a3 green.

the points v + (kα, 0) with 0 ≤ k ≤ ℓ − 1 and connect them via horizontal wire segments at
their anchor points. The multiplier segments ensure that the gadget can later be connected
at its anchor points to multiple clause gadgets. We observe that the described combinations
of segments for both gadgets are allowed and that they have the following crucial property.

▶ Lemma 5. Suppose the instance contains a wire/variable gadget and let R̃ be the reference
points of this gadget. If S ⊂ Z2 and S does not contain forbidden points of the gadget, any
triangulation D of S with ErrD(R̃) = 0 is either positive or negative on R̃.

Now we define the clause gadget at a point c ∈ Z2, which combines three signals. To this
end we add a reference point rc = c + (0, 11). Instead of a positive/negative edge it comes
with three triangles T1, T2, T3 whose vertices lie on Crc

, each triangulating rc with zero error.
The clause gadget can be connected to other gadgets at three anchor points a1, a2, a3. With
an additional construction we block the triangle Ti if the signal at ai is positive for i = 1, 2
and T3 if the signal at a3 is negative. For the construction we refer to Figure 6 and [5].

▶ Lemma 6. Suppose the instance contains a clause gadget and let R̃ be its reference points.
If S ⊂ Z2 and S does not contain forbidden points of the gadget, any triangulation D of S
with ErrD(R̃) = 0 must be negative on one of the anchor points a1, a2 or positive on a3.

The last gadget, the negation gadget, is discussed in the full version [5]. It is constructed out
of wires, multipliers and simplified clause gadgets. Finally, we replace the mandatory edges
by an additional construction and argue that all gadgets keep their crucial properties. Using
them we construct the zero-error triangulation instance and prove Theorem 1 in [5].

5 Higher-order Delaunay optimization

In the previous section we established that finding a minimum-error triangulation is NP-hard.
Moreover, the experiments in [24] by Nitzke et al. suggest, that general minimum-error
triangulations do not yield the most promising reconstructions of the sea surface. In their
paper they used higher-order Delaunay (HOD) triangulations which allow a trade-off between
a well shaped triangulation and a good approximation of the training dataset.

SoCG 2022
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Figure 7 A 2-OD triangulation; in blue the 1-OD and
in red the 2-OD triangles; e1 is a useful 2-OD edge and e2

is a useful 1-OD edge.

Figure 8 In black a (degenerate) poly-
gon with connected components; in red
one set H of connections.

In this section we summarize the algorithm given by Silveira et al. in [28]. Additionally,
we extend upon their work by investigating the fixed-edge graphs in more detail.

We only consider point sets S in general position, i.e., no four points lie on a circle and
we denote the circle defined by three vertices u, v, w ∈ S by C(u, v, w). A triangle Tu,v,w is
called an order-k Delaunay (k-OD) triangle, if C(u, v, w) contains at most k points from S in
the interior. A triangulation is called k-OD triangulation, if all of its triangles have order k

and an edge is called useful k-OD edge, if some k-OD triangulation of S uses it; see Figure 7.
The minimum-error measure ErrD(R) can be optimized using dynamic programming,

since it is decomposable after pre-processing the triangle weights; see [6] for a formal definition.
The well known DP algorithm that was independently proposed by Klincsek in [19] and
Gilbert in [15] can be used to optimize polygon triangulations for decomposable measures in
O(n3) time. In [28] the runtime of the DP algorithm is improved to O(nk2), if the algorithm
only considers pre-processed k-OD edges and triangles instead of all possible ones.

Furthermore, Silveira et al. [28] extend the algorithm to the class of polygons P containing
h connected components C1, . . . , Ch; see Figure 8. The algorithm performs an exhaustive
search on a collection H of sets of edges H, such that the planar graph

⋃
i Ci ∪ P ∪ H is

connected for each H ∈ H and at least one H is used in the optimal triangulation. One of
the main results in [28] is the existence of such a collection with size O(k)h.

▶ Theorem 7 (from [28]). An optimal k-OD triangulation with respect to ErrD(R) of a
(degenerate) polygon with n boundary vertices and h ≥ 1 components inside can be computed
in O(kn log n) + O(k)h+2n expected time.

We can apply this algorithm to point sets by finding subgraphs F of the optimal triangulation
[9, 28] and applying the DP algorithm to the faces of F .

5.1 The order-k fixed-edge graph
A subgraph that is naturally given by HOD constraints is the fixed-edge graph which was
first discussed in [28]. The order-k Delaunay (k-OD) fixed-edge graph Fk of a pointset S is
given by all useful k-OD edges that are not intersected by any other useful k-OD edge.

▶ Observation 8. Let S be a set of n points. Let DT denote the Delaunay triangulation.
We have DT = F0 ⊃ F1 ⊃ F2 ⊃ ... ⊃ Fm = ... = Fn ⊃ conv(S) for some m ≤ n.

In Figure 9 a sequence of fixed-edge graphs is illustrated. Fk decomposes the pointset
into degenerate polygons P1, . . . , Pm that may contain some connected components. An
example is given in Figure 10. We can compute optimal solutions Di for all Pi with the DP
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Figure 9 A sequence of fixed-edge graphs F1, . . . , F7 for an example point set.

algorithm. Since ErrD(R) is decomposable, the optimal triangulation of S is given by
⋃

i Di.
Therefore, the runtime of the algorithm is dominated by the polygon with the maximum
number of connected components cmax. The application of Theorem 7 results in:

▶ Corollary 9. An optimal k-OD triangulation of a point set S with respect to ErrD(R) can
be computed in O(kn log n) + O(k)cmax+2n expected time.

Next, we give some theoretical results with respect to the structure of F2 and F3.
Let v ∈ S be a triangulation point. We call the graph N given by all edges of its incident

Delaunay triangles its Delaunay neighbourhood, all of its incident edges in N its connecting
edges and all other edges of N its boundary edges. A useful 2-OD edge that intersects a
connecting edge is called separation edge; see Figure 11.

▶ Theorem 10. Let S be a set of points. Then every vertex in F2 is adjacent to at least one
other vertex of S.

Proof. (Sketch; the complete proof is given in the full version of the paper [5]) It is sufficient
to prove that for every vertex v ∈ S at least one connecting edge cannot be intersected by
a separation edge. For the sake of contradiction we assume that there exists a set E of
separation edges such that every connecting edge is intersected by at least one e ∈ E.

Figure 10 The decomposition of a fixed-edge graph into polygons. We have c1 = 4, c2 = 0, c3 = 1
and c4 = 1 for the number of components in each polygon. Thus, we have cmax = 4. Note that the
component inside P4 is not counted towards c3, but to c4.

SoCG 2022
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Figure 11 The Delaunay Neighbourhood of a point v and a cycle of separation edges given in red.

In a first step we can prove that at least one endpoint of any e ∈ E must be part of the
Delaunay neighbourhood of v. Additionally, we can show that no boundary edge uw can be
intersected by a separation edge for vu and a separation edge for vw. These observations
imply that we can order the edges in E, such that for all i the separation edge ei intersects
ei−1 and ei+1, i.e., the separation edges form a cycle as depicted in Figure 11.

Next, we show that every pair of consecutive separation edges (uivi, ui+1vi+1) must satisfy
a special property, i.e., it must hold that ui+1 ∈ C(ui, vi, vi+1) and vi+1 ∈ C(ui, vi, ui+1).
Finally, we show that this is not possible which leads to a contradiction. ◀

It is well known [28, 16] that F1 is connected (cmax = 0). Silveira et al. stated in [28] that
for k > 1 the value cmax can be larger than 0. But their experiments do not yield any
example for which F2 is not connected. We complement the discussion by such an example.
Additionally, we show for all k ≥ 3 there are examples with cmax ∈ Ω(n).

▶ Observation 11.
There exist point sets with cmax > 0 for F2; see Figure 12.
For every n and k ≥ 3 there are point sets of size n with cmax = ⌊ n

6 ⌋ for Fk; see Figure 13.

Open question. Is there a constant d, such that F2 has cmax ≤ d for every point set?

Practical implications. Our results are interesting from a theoretical point of view, but the
experiments in [28] with random point sets by Silveira et al. and also our own preliminary
experiments indicate that for practical datasets cmax is small for k ≤ 7. Next, we confirm
this assumption for the tide gauge dataset which is used for the sea surface reconstruction.

6 Experiments

We start this section by discussing the datasets. Next, we discuss the fixed-edge graphs of the
tide gauge dataset. Afterwards, we provide the reconstruction process and our experimental
setup. Finally, we present our results regarding the runtime and quality.

Figure 12 An example with disconnected F2. Figure 13 An example with cmax = n
6 for F3.
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6.1 The datasets
The triangulation points for the minimum-error triangulation problem are given by the
monthly tide-gauge time series from the Permanent Service for Mean Sea Level (PSMSL) [26],
which is further discussed in [18]. We use the revised local reference (RLR) datasets.
Furthermore, we remove some stations which do not have any values in our time-frame. This
results in a dataset with 1502 stations, but not all of them record monthly. Thus, we only
use between 513 and 804 different stations at once for a reconstruction.

As reference data R we use the satellite altimeter datasets provided by the ESA Sea
Level Climate Change Initiative (SLCCI), which are given in [13] and are further discussed
in [1]. They are given as monthly gridded sea level anomalies with a spatial resolution of
0.25 degrees and are available for the timespan January 1993 to December 2015.

We assume that both datasets are given in radial coordinates. Since we focus on planar
triangulations, we need to use a global map projection. We chose the Lambert azimuthal
projection (LAP) which unfolds the sphere onto the plane starting at an anchor point (λ0, ϕ0).
For our experiments the LAP has one advantage: The projection results in significantly
different distributions of the stations for sufficiently different anchor points (λ0, ϕ0). This
allows us to perform the fixed-edge graph experiments for a wide variety of point distributions.

It is important to note that the experiments in this paper focus on the runtime of the
DP algorithm for a real world application. Thus, we only de-mean the tide gauge data as
discussed in [24] and do not apply any additional corrections.

6.2 The fixed-edge graphs of the tide gauge set
For our experiments with respect to the fixed-edge graphs we use the complete RLR dataset,
i.e., all 1502 stations. We use the LAP with anchors (λ0, ϕ0) on an uniform 2-D 20 × 20 grid
to generate 400 distributions of the dataset. In Table 1 the experiments are summarized. The
values avgcmax are given by the average value of cmax over all samples. Additionally, we have
min and max that depict the minimal and maximal value of cmax for all samples. The results
roughly coincide with the experiments performed on random point sets by Silveira et al.
in [28] and our own preliminary experiments. The experiments suggest, that we can expect
the DP algorithm to compute optimal solutions for k ≤ 7 in reasonable time. Since Nitzke et
al. suggest very small k for the reconstruction in [24], these experiments are promising.

6.3 Sea surface reconstruction
The reconstruction process can be summarized as follows: We learn a minimum-error
triangulation D in some epoch i and then use it to reconstruct the sea surface at some other
point in time j, by using the triangulation D with the height values of epoch j. Since not all
tide gauge stations provide data for every epoch i, we need to consider the set Gij which is
given by all stations that have reasonable values for epoch i as well as for j. We denote the
optimal triangulation using Gij and the reference points Ai by Dij

M . For comparison we use
the Delaunay triangulation Dij

D of the set Gij which has already been successfully used for

Table 1 The average of cmax and the min/max value of cmax for the projections of the RLR data.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9
avgcmax 0.00 0.00 0.45 1.20 2.05 3.68 7.11 15.88 33.16

min/max 0/0 0/0 0/2 0/3 1/5 2/12 3/18 6/38 11/82
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Figure 14 Averaged q(∆d) of our approach w.r.t. the epoch difference ∆d for different order k.

the sea surface reconstruction task in [25]. If we have altimeter data available for epoch j,
we can evaluate the quality of our approximation. Overall the reconstruction for epoch j

using i and order k can be performed as follows:

1. Compute the set Gij and the k-OD triangles Tij as described in [28].
2. Compute the weights wT (Ai) of all T ∈ Tij with respect to Ai as discussed in Section 2.
3. Compute the optimal k-OD triangulation Dij

M with the DP algorithm given in Section 5
and also compute the Delaunay triangulation Dij

D.
4. Evaluate the quality of the triangulations with respect to Aj .
For the evaluation we compute the empirical variance of a triangulation

σ2
ij(D) = 1

n − 1
∑
T ∈D

∑
a∈Aj ,a∈T

(sT (a) − hj(a))2,

where n is the number of altimeter points in conv(D). Note that this is exactly the average
minimum error. Additionally, we define the variance reduction of a reconstruction by

∆σ2
ij = σ2

ij(Dij
M ) − σ2

ij(Dij
D).

Next, we can group together reconstructions for epochs i, j and i′, j′ where |i − j| = |i′ − j′|.
This allows us to define the average variance reduction of a temporal difference ∆d by

q(∆d) = 1
|D(∆d)|

∑
(i,j)∈D(∆d)

∆σ2
ij .

The set D(∆d) is given by all tuples (i, j) with |i−j| = ∆d. Using the temporal difference, we
can investigate how far back in time our optimized triangulation outperforms the Delaunay
triangulation (DT). Nitzke et al.[24] noticed that q has a seasonal behaviour, i.e., q has local
maxima every 12 month. Thus, we only use datasets with j = i ± 12l with l ∈ N for the
reconstruction. A more in depth discussion of the evaluation methods can be found in [24].

Reconstruction quality. For all of the experiments we choose an LAP anchored in the
Atlantic Ocean, namely (−40, 16). We compute all possible reconstructions for epochs i and j

with i ≥ j for the orders k ≤ 7, i.e., we use every epoch i for training and validate the learned
triangulation on all possible epochs j with j = i − 12l. Next, we group them with respect to
∆d. In Figure 14 the q(∆d) values are depicted. Recall that our approach performs better
than the DT, if q(∆d) < 0. It should be mentioned, however, that for ∆d ≥ 18 the quality of
the experiments deteriorates, since only few samples span this epoch difference.
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Figure 15 Optimization time depending on
the order.

Figure 16 Optimization time depending on
cmax.

Note that the variance reductions for ∆d = 0 are far better than for larger ∆d, since the
reconstruction epoch is the same as the training epoch. The variance reductions for order 1
and order 2 are smoother, but also worse than the ones for higher orders. For ∆d > 10
the variance reductions for the orders 3–6 are very similar and even order 7 is comparable.
The aforementioned orders also share local extrema at ∆d = 10, 11, 18, 20. For order 7 the
extrema become more pronounced which leads to better minima but also to worse maxima.
Note that calculating the empirical variances σ2

ij(Dij
D) for all epochs yields values between

80cm2 and 120cm2. Hence, for example, an absolute variance reduction of 2cm2 roughly
coincides with a relative variance reduction of 2%.

The overall variance reduction gets better for higher orders. This is contrary to the results
by Nitzke et al. [24], who suggested k = 1, 2 for the reconstruction. This difference may have
geometric reasons, i.e., the points in the North Sea dataset used in [24] more or less trace
a polygon without inner points and our global datasets have a more arbitrary distribution.
Moreover, the LAP distorts distances as well as angles which may also contribute to the
different results for the local and global datasets.

Runtime. For the experiments we used a machine with an AMD Ryzen 5 3600 6-Core
Processor clocked at 4.4 GHz and 16 GB RAM. We did not implement the geometric pre-
processing as discussed in [16]. Our pre-processing has roughly cubic runtime (3–4 seconds
per reconstruction). For larger orders k we expect the optimization to dominate the runtime.

The optimization time with respect to the order is given in Figure 15. Note that the
optimization time for k ≤ 5 is at most 30ms. For k = 6 the average runtime is still low with
roughly 50ms. For k = 7 most datasets can be optimized in a few seconds, but some need
around 20 minutes for the optimization and five datasets reach a cut-off time of one hour.

The box-plot in Figure 16 depicts the runtime with respect to the number of connected
components cmax. The logarithmic scaling nicely illustrates the exponential increase. If we
also consider the distribution of cmax for the different datasets and orders, we can easily
connect the two box-plots. For k ≤ 4 all of the datasets have cmax ≤ 2. Thus, the maximal
runtime for orders k ≤ 4 matches the worst runtime for cmax ≤ 2. For orders k = 5, 6, 7 the
cmax distributions are illustrated in Figure 17. Note that for k = 5 and k = 6 most datasets
still have cmax ≤ 2 which results in the very low average runtime. For k = 7 the distribution
starts to shift towards higher cmax which results in the higher average runtime.

In summary, our experiments show that for our datasets we can compute k-OD min-error
triangulations for k ≤ 6 and also for k = 7 except for a few samples in reasonable time.
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Figure 17 The cmax distribution of the reconstruction datasets for orders k = 5, 6, 7.

7 Conclusion

We prove that it is NP-hard to approximate an optimal solution to the minimum-error
triangulation problem. Our results also imply the inapproximability of the following general-
ization: minimizing the distance between sD and h on R for any metric on Rm, especially the
Lp-metric

( ∑
r∈R |sD(r)−h(r)|p

)1/p for p ∈ [1, ∞) and the L∞-metric maxr∈R |sD(r)−h(r)|.
Additionally, we apply the dynamic programming algorithm by Silveira et al. [28] to minimum-
error triangulations and extend their experiments, regarding the fixed edges to a real world
dataset. We further investigate the fixed-edge graphs for order k = 2 and give a worst-case
example for k = 3. Finally, we perform the dynamic sea surface reconstruction similar to
Nitzke et al. in [24] for significantly larger datasets using a new algorithmic approach.

A future line of research is the extension of the dynamic programming algorithm to
datasets on the sphere, i.e., spherical triangulations. This would allow a more realistic
reconstruction of the global dynamic sea surface. A combination with ILP techniques will be
a further step [14]. It would also be interesting to include multiple datasets for the learning
of the reconstruction triangulation. We believe that our work will open the door for the
application of optimal triangulation approaches to the problem of multi-decadal global sea
level reconstructions from tide gauge data. In addition, with the growing amount of satellite
and in-situ ocean sensors (buoys, Argo floats, ...) we see potential for a more widespread
application of triangulation methods in generating gridded ocean data products.
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