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Abstract
Recursive sequences of laws of random variables (and random vectors) are considered where an
independence assumption which is usually made within the setting of the contraction method
is dropped. This restricts the study to sequences which after normalization lead to asymptotic
normality. We provide a general univariate central limit theorem which can directly be applied to
problems from the analysis of algorithms and random recursive structures without further knowledge
of the contraction method. Also multivariate central limit theorems are shown and bounds on rates
of convergence are provided. Examples include some previously shown central limit analogues as
well as new applications on Fibonacci matchings.
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1 Introduction

Sequences (Yn)n≥0 of random vectors in Rd, d ∈ N, are considered which satisfy a distribu-
tional recursion

Yn
d=

K∑
r=1

Ar(n)Y (r)
I

(n)
r

+ bn, n ≥ n0, (1)

where d= denotes equality in distribution, n0 ∈ N, the coefficients A1(n), . . . , AK(n) are
random (d × d)-matrices and bn is a d-dimensional random vector. Such recurrences often
arise in the context of divide and conquer methods. Underlying such a recursion is a problem
of size n that can be divided into K smaller subproblems of sizes I

(n)
1 , . . . , I

(n)
K , the toll

term bn measuring the “cost” of this division and the merger. Concerning the number of
subproblems and the subproblem sizes, we will always make the following assumptions:
⋄ The number K of subproblems is a fixed integer K ≥ 1. However, extensions to K being

random and depending on n are possible.
⋄ The vector I(n) = (I(n)

1 , . . . , I
(n)
K ) of the subproblem sizes is a random vector in {0, . . . , n}K .

Another integral part of this setting is the assumption that the subproblems are of the same
nature as the original problem, or formally:

(Y (r)
n )n≥0

d= (Yn)n≥0 for r = 1, . . . , K. (2)

Since this assumption guarantees the self-similarity between the initial structure and the parts
into which the structure is decomposed, we will use the term self-similarity condition when
referring to condition (2). Furthermore, we need some conditional independence condition
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14:2 On the Contraction Method with Reduced Independence Assumptions

ensuring that given the subproblem sizes, the subproblems behave independently. To be
more precise, within the contraction method, which is sketched below, usually it is assumed
that

(A1(n), . . . , AK(n), bn, I(n)), (Y (1)
n )n≥0, . . . , (Y (K)

n )n≥0 are independent. (3)

Note, however, that dependencies between the coefficients A1(n), . . . , AK(n), bn and the
subproblem sizes I

(n)
1 , . . . , I

(n)
K are allowed.

Recurrences of the form (1) come up in various fields, see [11, 7] for many concrete
examples ranging from complexity measures of recursive algorithms (e.g., the number of
key comparisons used by Quicksort, Mergesort or Quickselect) to parameters of random
trees (e.g., the size of tries and m-ary search trees, path lengths in digital search trees,
(PATRICIA) tries and m-ary search trees or the number of leaves in quadtrees) to quantities
of stochastic geometry (e.g., the number of maxima in right triangles). For all these examples,
the contraction method can be used to derive limit laws, i.e., convergence in distribution
of the normalized versions of the Yn towards a limit distribution being either the normal
distribution or some other distribution.

In recent years a couple of problems appeared which seemed to fall within the framework
above, however, the conditional independence condition (3) was violated. Examples are
central limit analogues for the complexity of Quicksort, the composition of cyclic (and other)
urns and the number of leaves of random point quadtrees, see [6, 5, 4, 3]. Such applications,
and new applications discussed below, can be covered under a weakened independence
condition that

(A1(n), . . . , AK(n), I(n)), (Y (1)
n )n≥0, . . . , (Y (K)

n )n≥0 are independent. (4)

Note that, in contrast to the conditional independence condition (3), we allow dependencies
between bn and (Y (1)

n )n≥0, . . . , (Y (K)
n )n≥0 here. Thus, condition (4) is slightly weaker than

condition (3) and will be referred to as partial conditional independence condition in the
following.

To observe a first implication of the partial conditional independence condition (4) on the
setting of the contraction method we sketch the usual approach. We define the normalized
sequence (Xn)n≥0 by

Xn := C−1/2
n (Yn − Mn), n ≥ 0, (5)

where Mn is a d-dimensional vector and Cn a positive definite (d × d)-matrix. Essentially, we
choose Mn as the mean vector and Cn as the covariance matrix of Yn if they exist (assuming
Cov(Yn) being positive definite for all sufficiently large n) or as the leading order terms in
expansions of these moments as n → ∞. The normalized quantities satisfy the following
modified recursion:

Xn
d=

K∑
r=1

A(n)
r X

(r)
I

(n)
r

+ b(n), n ≥ n0, (6)

with

A(n)
r := C−1/2

n Ar(n)C1/2
I

(n)
r

, b(n) := C−1/2
n

(
bn − Mn +

K∑
r=1

Ar(n)M
I

(n)
r

)
(7)

and self-similarity and independence conditions as above. Then, limits

A(n)
r → Ar, b(n) → b (8)
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are identified (in an appropriate sense) and a potential limit X of (Xn)n≥0 in distribution is
identified by satisfying the recursive distributional equation

X
d=

K∑
r=1

ArXr + b, (9)

where X1, . . . , XK are independent and identically distributed as X. Under the conditional
independence condition (3) it is now justified to require on the right hand side of (9) that
moreover X1, . . . , XK and (A1, . . . , AK , b) are independent. Hence, the distribution of the
right hand side of (9) is then fully specified, see [7] for details. However, under the partial
conditional independence condition (4) dependencies between b and the X1, . . . , XK have to
be taken into account, where it is not clear in general how to define the right hand side of (9).
For this reason, in the current extended abstract we restrict to the case b = 0, and require
X1, . . . , XK and (A1, . . . , AK) to be independent regaining a well-defined right hand side
of (9). The assumption b = 0 essentially restricts the framework to central limit theorems,
although other limit laws, such a stable laws, are still possible as fixed-points, but not covered
by our techniques.

Since most applications of the contraction method in the analysis of algorithms are for
univariate Yn, i.e., dimension d = 1, and with A

(n)
r = 1 for all r = 1, . . . , K and all n ≥ 0

we provide a theorem convenient for applications. Note that the identification of the limits
in (8) usually requires control on the expansions of moments related to the Mn and Cn.
These expansions are already built into the subsequent theorem so that one does not need to
have any knowledge about the underlying contraction method to apply it. For the reader’s
convenience we also recall the previous conditions (1), (2) and (4) for this frequently occurring
univariate case: In dimension d = 1 consider the special case of (1) where Yn satisfies the
distributional recursion

Yn
d=

K∑
r=1

Y
(r)

I
(n)
r

+ bn, n ≥ n0, (10)

where I(n), (Y (1)
n )n≥0, . . . , (Y (K)

n )n≥0 are independent (this is the partial conditional inde-
pendence condition), Y

(r)
j has the same distribution as Yj for j ≥ 0 and r = 1, . . . , K, the

subproblem sizes I
(n)
r are in {0, 1, . . . , n} and satisfy P(I(n)

r = n) → 0 as n → ∞ and all
appearing quantities are L3-integrable. Then, we have the following theorem:

▶ Theorem 1. Let (Yn)n≥0 be a sequence of random variables in R that satisfies recursion
(10). Suppose that, for some positive functions f and g and as n → ∞,

E[Yn] = f(n) + o(g1/2(n)), Var(Yn) = g(n) + o(g(n)). (11)

Further assume that for all r = 1, . . . , K and as n → ∞, we have the L3-convergences

g1/2(I(n)
r )

g1/2(n)
→ A∗

r ,
1

g1/2(n)

(
bn − f(n) +

K∑
r=1

f(I(n)
r )

)
→ 0 (12)

with (A∗
1)2 + · · · + (A∗

K)2 = 1 almost surely and P(∃ r : A∗
r = 1) < 1. If the technical condition

P(I(n)
r < ℓ)

g3/2(n)
→ 0 (n → ∞) (13)

is satisfied for any ℓ ∈ N and r = 1, . . . , K, then we have
Yn − f(n)

g1/2(n)
d−→ N (0, 1) (n → ∞).

AofA 2022



14:4 On the Contraction Method with Reduced Independence Assumptions

▶ Remark 2. Theorem 1 generalizes the central limit theorem in [7, Corollary 5.2], where the
toll function bn and (Y (1)

n )n≥0, . . . , (Y (K)
n )n≥0 are additionally assumed to be independent.

In the current extended abstract we also consider the multivariate case of (1). We provide
a multivariate central limit theorem under the partial conditional independence condition (4)
and study bounds on the rates of convergence, see Theorem 3, in the Zolotarev metric ζ3,
which is the main tool underlying the proofs of the convergence theorems in this extended
abstract, see Section 2. In Section 3 a sketch of the proof of Theorem 1 is given. Applications
of Theorems 1 and 3 to the analysis of algorithms are given in Section 4.

2 A multivariate CLT including rates of convergence

In this section, we consider a sequence (Yn)n≥0 of d-dimensional random vectors satisfying
the distributional recursion

Yn
d=

K∑
r=1

Ar(n)Y (r)
I

(n)
r

+ bn, n ≥ n0, (14)

where n0 ∈ N, the coefficients A1(n), . . . , AK(n) are random (d × d)-matrices, bn is a d-
dimensional random vector, I(n) = (I(n)

1 , . . . , I
(n)
K ) is a random vector in {0, . . . , n}K and

all appearing quantities have finite third absolute moments. Furthermore, we assume that
the self-similarity condition (2) and the partial conditional independence condition (4) are
satisfied.

We assume that there exists some n1 ∈ N0 such that the covariance matrix of Yn is
positive definite for n ≥ n1 and define the normalized sequence (Xn)n≥0 by

Xn := C−1/2
n (Yn − Mn), n ≥ 0, (15)

where Mn is chosen as the mean vector of Yn and Cn as the covariance matrix of Yn for
n ≥ n1 (and Cn = Idd for n < n1, where Idd denotes the d × d identity matrix). The
normalized quantities satisfy the following modified recursion:

Xn
d=

K∑
r=1

A(n)
r X

(r)
I

(n)
r

+ b(n), n ≥ n0, (16)

with A
(n)
r and b(n) given in (7) and self-similarity and independence relations as in (14).

To obtain a convergence result Xn → N (0, Idd), we assume that the coefficients appearing
in (7) converge appropriately, i.e., that there exist L3-integrable random variables A∗

1, . . . , A∗
K

such that, as n → ∞,

(A(n)
1 , . . . , A

(n)
K , b(n)) L3−→ (A∗

1, . . . , A∗
K , 0), (17)

with A∗
1(A∗

1)T + · · · + A∗
K(A∗

K)T = Idd almost surely. Then, from (16), we expect a limit X

of Xn to satisfy the distributional fixed-point equation

X
d=

K∑
r=1

A∗
r X(r), (18)

where (A∗
1, . . . , A∗

K), X(1), . . . , X(K) are independent and X(r) d= X for r = 1, . . . , K. Under
the additional assumption

∑K
r=1 E[∥A∗

r∥3
op] < 1, the multivariate standard normal distribution

N (0, Idd) is the unique solution of equation (18) in the space Pd
3 (0, Idd) of L3-integrable

probability distributions with mean vector 0 and covariance matrix Idd, see, e.g., [7].
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As a tool to derive convergence in distribution of (Xn) in (15) towards N (0, Idd) we use
the Zolotarev metric ζ3, which we only need and only define on the space Pd

3 (0, Idd). For
L(X), L(Y ) ∈ Pd

3 (0, Idd) we set

ζ3(X, Y ) := ζ3(L(X), L(Y )) := sup
f∈F3

|E[f(X) − f(Y )]| (19)

where

F3 := {f ∈ C2(Rd,R) : ∥f (2)(x) − f (2)(y)∥ ≤ ∥x − y∥}, (20)

with C2(Rd,R) denoting the space of twice continuously differentiable functions from Rd to
R and f (2) denoting the second derivative of f ∈ C2(Rd,R).

In order to obtain such convergence, including a bound on the rate of convergence in ζ3
we need a quantified version of the convergences in (17). In particular, we assume that∥∥∥∥ K∑

r=1
E[A(n)

r (A(n)
r )T] − Idd

∥∥∥∥
op

+
∥∥∥ K∑

r=1
A(n)

r (A(n)
r )T − Idd

∥∥∥3/2

3/2
+
∥∥b(n)∥∥

3 = O(R(n)) (21)

for some monotonically decreasing sequence R(n) > 0 with R(n) → 0. Furthermore, we
assume the technical conditions∥∥1{I

(n)
r <ℓ}A(n)

r

∥∥2
2 +

∥∥1{I
(n)
r <ℓ}A(n)

r

∥∥3
3 = O(R(n)), n → ∞, (22)

for all ℓ ∈ N and r = 1, . . . , K and∥∥1{I
(n)
r =n}A(n)

r

∥∥
3 → 0, n → ∞, (23)

for all r = 1, . . . , K. Under these assumptions, with the partial conditional independence
condition (4) we have:

▶ Theorem 3. Let (Xn)n≥0 be given as in (15) with (Yn)n≥0 satisfying the distributional
recurrence (14) with the self-similarity condition (2) and the partial conditional independence
condition (4). Furthermore, assume that the coefficients (A(n)

1 , . . . , A
(n)
K , b(n)) defined in (7)

converge to (A∗
1, . . . , A∗

K , 0) in the L3 norm as n → ∞ with
∑

A∗
r(A∗

r)T = Idd almost surely.
If conditions (21), (22) and (23) are satisfied and if

lim sup
n→∞

K∑
r=1

E
[

R(I(n)
r )

R(n)
∥∥A(n)

r

∥∥3
op

]
< 1, (24)

then we have, as n → ∞,

ζ3(Xn, N (0, Idd)) = O(R(n)).

▶ Remark 4. Condition (21) in Theorem 3 should be compared to a similar result under the
stronger conditional independence condition (3) which is stated in Theorem 3 of [8], see the
corresponding condition (12) there where only ∥b(n)∥3

3 = O(R(n)) is required. In (21) in the
present Theorem 3 no additional factor 3 in the exponent appears which is caused by the
additional dependencies. However, it is not clear whether Theorem 3 is tight in this respect
or if this factor 3 may be regained by some other argument.

AofA 2022



14:6 On the Contraction Method with Reduced Independence Assumptions

▶ Remark 5. In some applications, we are only interested in showing (weak) convergence
rather than estimating the rate of convergence. In this case, the formulation of Theorem 3
is more complex than necessary. More specifically, if no rates are needed, we can replace
condition (24) by the assumption that

K∑
r=1

E[∥A∗
r∥3

op] < 1.

Furthermore, condition (21) can be dropped and instead of condition (22), it is enough to
assume that∥∥1{I

(n)
r <ℓ}A(n)

r

∥∥
3 → 0

as n → ∞ for any ℓ ∈ N and r = 1, . . . , K. With these modified conditions, similar arguments
as in the proof of Theorem 3 can be used to show that ζ3(Xn, N (0, Idd)) converges to zero
as n → ∞ and hence, Xn converges in distribution to N (0, Idd).

A proof of Theorem 3 is given in the full paper version of this extended abstract.

3 Sketch of the proof of Theorem 1

We assume that all quantities are as in the formulation of Theorem 1.

Sketch of the proof of Theorem 1. Since we have Var(Yn) = g(n) + o(g(n)) for some pos-
itive function g, we can find some constant n1 ∈ N0 such that Var(Yn) is positive for n ≥ n1.
As before, we define the standardized quantities by

Xn := Yn − µ(n)
σ(n) , n ≥ 0,

where µ(n) := E[Yn], σ2(n) := Var(Yn) for n ≥ n1 and σ(n) = 1 for n < n1. The statement
of the theorem follows directly from the asymptotic expansions in (11) and Slutsky’s theorem
if we show that the normalized quantities Xn converge in distribution to the standard normal
distribution. Thus, it is sufficient to show that the Zolotarev distance ∆(n) := ζ3(Xn, N (0, 1))
converges to zero as n → ∞. The sequence (Xn)n≥0 satisfies the modified recursion

Xn
d=

K∑
r=1

A(n)
r X

(r)
I

(n)
r

+ b(n), n ≥ n0, (25)

with I(n), (X(1)
n )n≥0, . . . , (X(K)

n )n≥0 independent, X
(r)
j identically distributed as Xj for j ≥ 0

and r = 1, . . . , K and

A(n)
r = σ(I(n)

r )
σ(n) , b(n) = 1

σ(n)

(
bn − µ(n) +

K∑
r=1

µ(I(n)
r )

)
.

By conditions (11), (12) and (13), we have A
(n)
r → A∗

r and b(n) → 0 in L3 for r = 1, . . . , K.
We define

Zn :=
K∑

r=1
A(n)

r τ
I

(n)
r

N (r),
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where I(n), N (1), . . . , N (K) are independent, the deterministic non-negative sequence (τn)n≥0
is defined by τ2

n = Var(Xn) for n ≥ 0 and N (r) has the standard normal distribution for
r = 1, . . . , K. Then, Zn is centered and has variance

Var(Zn) =
K∑

r=1
E
[
(A(n)

r )2τ2
I

(n)
r

]
=

K∑
r=1

(
E
[
(A(n)

r )2]+ E
[
1{I

(n)
r <n1}(A(n)

r )2(τ2
I

(n)
r

− 1
)])

.

We now observe that for any r = 1, . . . , K, the latter summand in the above sum con-
verges to zero by condition (13), since this condition and Jensen’s inequality imply that
E
[
1{I

(n)
r <n1}(A(n)

r )2] → 0. Together with the fact that A
(n)
r converges in the L3 norm (and

thus also in L2) to A∗
r with (A∗

1)2 + · · · + (A∗
K)2 = 1 almost surely, we obtain that Var(Zn)

converges to 1. Hence, we can choose a deterministic sequence (κn)n≥0 with κn → 0 such
that

Z∗
n := (1 + κn)Zn

has variance 1 for n ≥ n1 (where n1 may need to be enlarged). As a consequence, the
distributions of Xn, Z∗

n and N (0, 1) are all in P1
3 (0, Id1) for n ≥ n1 and we can apply the

triangle inequality to obtain

∆(n) = ζ3(Xn, N (0, 1)) ≤ ζ3(Xn, Z∗
n) + ζ3(Z∗

n, N (0, 1)), n ≥ n1.

With Qn := A
(n)
1 X

(1)
I

(n)
1

+ · · · + A
(n)
K X

(K)
I

(n)
K

and Lemma 3.4 in [5] we find

ζ3(Xn, Z∗
n) ≤ ζ3(Qn, Zn) + ∥Qn∥2

3∥b(n)∥3 + 1
2∥Qn∥3∥b(n)∥2

3 + 1
2∥b(n)∥3

3

+
(

|κn| + 1
2 |κn|2 + 1

2 |κn|3
)

∥Zn∥3
3

= ζ3(Qn, Zn) + o(1),

since b(n) converges to zero in the L3 norm, κn converges to zero and ∥Zn∥3 and ∥Qn∥3 are
bounded in n, the latter by Lemma 6 (note that we have

∑
E[(A∗

r)3] < 1 by the assumptions∑
(A∗

r)2 = 1 almost surely and P(∃ r : A∗
r = 1) < 1 and that the technical condition (23) is

satisfied since we assumed P(I(n)
r = n) → 0 for r = 1, . . . , K, thus Lemma 6 is applicable).

Conditioning on I(n) implies that, for n ≥ n1,

ζ3(Qn, Zn) ≤

(
K∑

r=1
P(I(n)

r = n)
)

∆(n) + E

[
K∑

r=1
1{n1≤I

(n)
r <n}(A(n)

r )3∆(I(n)
r )

]

+ E

[
K∑

r=1
1{I

(n)
r <n1}(A(n)

r )3 sup
k<n1

ζ3(Xk, τkN (r))
]

= o(1)∆(n) + E

[
K∑

r=1
1{n1≤I

(n)
r <n}(A(n)

r )3∆(I(n)
r )

]
+ o(1),

where we used the assumption P(I(n)
r = n) → 0 for r = 1, . . . , K and the technical condition

(13) in the last step. Furthermore, we have ζ3(Z∗
n, N (0, 1)) → 0. This can be seen by showing

that ℓ3(Z∗
n, N (0, 1)) → 0 and that ∥Z∗

n∥3 is bounded in n, where ℓ3 denotes the minimal
L3-metric. Collecting all estimates, we obtain that

∆(n) ≤ o(1)∆(n) + E

[
K∑

r=1
1{n1≤I

(n)
r <n}(A(n)

r )3∆(I(n)
r )

]
+ o(1). (26)

From this, the statement follows by a standard argument (see, e.g., [7, pp. 390–391]). ◀

AofA 2022
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▶ Lemma 6. Let (Xn)n≥0 be given as in (15) with (Yn)n≥0 satisfying the distributional
recurrence (14). Furthermore, assume that the coefficients (A(n)

1 , . . . , A
(n)
K , b(n)) defined in

(7) converge to (A∗
1, . . . , A∗

K , 0) in the L3 norm as n → ∞ with
∑

A∗
r(A∗

r)T = Idd almost
surely and

∑
E[∥A∗

r∥3
op] < 1 and that the technical condition (23) is satisfied. Then we have,

as n → ∞, ∥Xn∥3 = O(1).

The proof of Lemma 6 follows along the same lines as the proof of Lemma 2.3 in [6],
generalizing to a more general setting with multivariate quantities and an arbitrary number
K of subproblems here. However, in the sketch of the proof of Theorem 1 only the case d = 1
is needed. Further details can also be found in Straub [12].

4 Applications

As mentioned in the introduction, possible examples of distributional recurrences with
dependent toll function, where our results apply can be found in [6, 5, 4, 3]. Since the central
limit analogue for the complexity of Quicksort in [6] only contains a convergence result for
the Zolotarev metric without a rate of convergence, we take up this example in section 4.1
and use Theorem 3 to rederive this central limit analogue and add a bound on the rate of
convergence. Furthermore, in section 4.2, we present another application of Theorems 3
and 1 concerning recent work of Diaconis and Kolesnik [2] on Fibonacci permutations.

4.1 Refined Quicksort asymptotics
We consider the Quicksort algorithm where we set K0 = 0 and denote by Kn, n ≥ 1, the
number of key comparisons needed by Quicksort to sort the list (U1, . . . , Un), where (Ui)i≥1
is a sequence of independent and uniformly on the unit interval distributed random variables.
With the normalization

Cn := Kn − E[Kn]
n + 1 , n ≥ 0,

Régnier [9] showed for a suitable version that the sequence (Cn)n≥0 is a martingale converging
almost surely (and in Lp) to some non-degenerate limit C. Rösler [10] showed that C satisfies
the distributional fixed-point equation

C
d= UC(1) + (1 − U)C(2) + φ(U)

with U , C(1), C(2) independent, U uniform on the unit interval, C(1) and C(2) having the
same distribution as C and φ(u) := 2u log u + 2(1 − u) log(1 − u) + 1 for u ∈ [0, 1] .

The aim of this section is to further quantify the almost sure convergence Cn → C by
analyzing the residual Cn − C. Bindjeme and Fill [1, Theorem 1.4] found the L2-norm of
this residual explicitly which implies that∥∥Cn − C

∥∥2
2 = 2 log n

n
+ O

( 1
n

)
(27)

and in [6, Theorem 1.1] it is shown that√
n

2 log n
(Cn − C) d−→ N (0, 1)

as n → ∞. We now show that the application of Theorem 3 provides a rate of convergence in
the Zolotarev metric ζ3 for the latter convergence without much effort. For this, we need some
of the results deduced in [1] and [6]. First of all, we use the notation Yn := Cn − C, n ≥ 0,



R. Neininger and J. Straub 14:9

for the residuals. Note that we chose this notation, although differing from the notation used
in [1] and [6], to guarantee that the notation is in accordance with the formulation of our
theorems. We then observe that the residuals Yn can be decomposed recursively. Equation
(12) in [6] states a sample-pointwise recurrence for the error term Yn (see also equation (2.6)
in [1]), from which we obtain that Yn satisfies the distributional recursion

Yn
d= In + 1

n + 1 Y
(1)

In
+ n − In

n + 1 Y
(2)

n−1−In
+ bn, n ≥ 1, (28)

with In, (Y (1)
n )n≥0, (Y (2)

n )n≥0 independent, In uniformly distributed on {0, . . . , n − 1}, Y
(r)

j

distributed as Yj for j ≥ 0 and r = 1, 2 and some toll function bn which is not independent
of (Y (1)

n )n≥0 and (Y (2)
n )n≥0. Since the concrete representation of bn is not needed in the

following, we omit the details here and refer to [1] and [6]. Certainly, recurrence (28) is
an instance of recursion (14) with n0 = 1, K = 2, I

(n)
1 = In, I

(n)
2 = n − 1 − In and

Ar(n) = (I(n)
r + 1)/(n + 1) for r = 1, 2.

We denote the normalized residuals by

Xn := Yn

σ(n) , n ≥ 0,

where σ2(n) := Var(Yn) > 0 for n ≥ 0. Note that σ2(n) = 2 log n/n + O(1/n) by (27) and
the fact that both components Cn and C of Yn are centered. The normalized quantities
satisfy recursion (16) with the same parameters as above and

A
(n)
1 = (In + 1) σ(In)

(n + 1) σ(n) , A
(n)
2 = (n − In) σ(n − 1 − In)

(n + 1) σ(n) , b(n) = bn

σ(n) .

For these coefficients, we obtain the L3-convergences (see [6])

A
(n)
1 →

√
U1 =: A∗

1, A
(n)
2 →

√
1 − U1 =: A∗

2, b(n) → 0.

Thus, we are in the situation of Section 2 and now check the conditions of Theorem 3 with
R(n) = log−1/2(n). First of all, Lemma 2.2 in [6] states that, as n → ∞,

∥b(n)∥3 = O
( 1√

log n

)
= O(R(n)).

The order of ∥(A(n)
1 )2 + (A(n)

2 )2 − 1∥3/2 can be bound, using [8, Lemma 7], by∥∥∥∥∥
2∑

r=1
(A(n)

r )2 − 1
∥∥∥∥

3/2

≤ 1
n log n

∥∥∥In log
(In

n

)
+ (n − 1 − In) log

(n − 1 − In

n

)∥∥∥
3/2

+ O
( 1

log n

)
= O

( 1
log n

)
.

From this, we also obtain∣∣∣∣ 2∑
r=1

E[(A(n)
r )2] − 1

∣∣∣∣ ≤
∥∥∥∥ 2∑

r=1
(A(n)

r )2 − 1
∥∥∥∥

1
≤
∥∥∥∥ 2∑

r=1
(A(n)

r )2 − 1
∥∥∥∥

3/2
= O

( 1
log n

)
.

AofA 2022
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Thus, condition (21) is satisfied. Since A
(n)
1 and A

(n)
2 are uniformly bounded and In is uniform

on {0, . . . , n − 1}, the technical conditions (22) and (23) are clearly satisfied. Furthermore,
we can use arguments of [8, Lemma 7], the fact that In/n converges almost surely to U1 and
the dominated convergence theorem to show that

lim sup
n→∞

2∑
r=1

E
[

R(I(n)
r )

R(n)
(
A(n)

r

)3
]

= 2E[U3/2
1 ] = 4

5 < 1,

such that all assumptions of Theorem 3 are satisfied and we obtain the following result.

▶ Theorem 7. For the number Kn of key comparisons used by Quicksort to sort the list
(U1, . . . , Un) with (Ui)i≥1 independent and uniformly distributed on the unit interval and the
almost sure limit C of Cn = (Kn − E[Kn])/(n + 1), we have, as n → ∞,

ζ3

( Cn − C√
Var(Cn − C)

, N (0, 1)
)

= O
( 1√

log n

)
.

▶ Remark 8. In view of Remark 4 we are not sure whether the bound O(log(n)−1/2) in
Theorem 7 is tight or if O(log(n)−3/2) may be the correct order.

4.2 Importance sampling for estimating the number of Fibonacci
matchings

In this section we refer to the paper [2] by Diaconis and Kolesnik from which we adopt the
notation and some of their results. The set Fn of Fibonacci matchings of size n is defined by

Fn = {π ∈ Sn : |π(i) − i| ≤ 1 for 1 ≤ i ≤ n},

where Sn denotes the set of permutations of {1, . . . , n} (note that Diaconis and Kolesnik
use the notation Fn,1 instead of Fn). The set F4 of Fibonacci matchings of size n = 4 is
displayed in Figure 1.

Figure 1 The 5 Fibonacci matchings of size n = 4.

Note that the cardinality of the set Fn is easily computed by considering whether π(1) = 1
or π(1) = 2 and coincides with the (n + 1)-th Fibonacci number (which explains the name).
Although the number of Fibonacci matchings is known, Diaconis and Kolesnik [2] present
different importance sampling algorithms for estimating the size of Fn. These algorithms in
each step match the current index with an index chosen uniformly at random among the
remaining allowed indices. To be more precise, Diaconis and Kolesnik present three such
algorithms differing in the order the indices are matched (see [2] for details):

The random algorithm Ar matches the indices in uniformly random order,
the fixed-order algorithm Af matches them in fixed order from top to bottom and
the greedy algorithm Ag matches them in a certain greedy order. More precisely, Ag
always matches the smallest unmatched index among those indices with the maximal
number of remaining choices. This means that algorithm Ag always starts by matching
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index 2 uniformly at random with one of 1, 2, 3. If π(2) ∈ {1, 2} (i.e., either π(2) = 1
and consequently π(1) = 2 or vice versa), then the next index to be matched is index 4
(uniformly among 3, 4, 5), since this is the smallest index with 3 remaining choices.
Otherwise, i.e., if π(2) = 3, then the assignments π(1) = 1 and π(3) = 2 are forced and
the next index to be matched is index 5 (uniformly among 4, 5, 6).

We summarize some of the results given in [2]: For any Fibonacci matching π ∈ Fn, we
denote by Pr(π), Pf(π) and Pg(π) the probability of π under the algorithm Ar, Af and Ag,
respectively. For Πn chosen uniformly at random from the set Fn of Fibonacci matchings,
we have

E[− log(Pχ(Πn))] = µχn + O(1), Var(− log(Pχ(Πn))) = σ2
χn + O(1), (29)

for χ = r, f, g, where µχ ∈ (0.49, 0.51) and σ2
χ > 0 can be computed exactly (we refer to [2]

for the concrete values). Furthermore, for χ = r, f, g and as n → ∞, we have the central
limit theorem [2, Theorem 1.1]

− log(Pχ(Πn)) − µχn

σχ
√

n

d−→ N (0, 1). (30)

While this statement can be obtained with [7, Corollary 5.2] for the first two algorithms
(see [2, Theorems 3.2 and 3.4]), there is no obvious way of applying [7, Corollary 5.2] in the
greedy case due to arising dependencies. Instead, Diaconis and Kolesnik use arguments from
renewal theory to show (30) for the greedy algorithm Ag. Using the results of the current
extended abstract, one can also handle these additional dependencies arising in the greedy
case. For this reason we focus on algorithm Ag from now on and define the random variable

Yn = − log(Pg(Πn)),

where, as before, Πn is uniformly distributed on Fn and Pg(π) denotes the probability of
π under the greedy algorithm Ag for any π ∈ Fn. Recall that algorithm Ag always starts
by matching index 2 uniformly at random with one of 1, 2, 3. Consequently, for a fixed
Fibonacci permutation π, the probability that index 2 is matched correctly with π(2) by Ag
equals 1/3. Depending on the value of π(2), the resulting number of indices that are neither
matched nor forced is n − 2 or n − 3 afterwards. Thus, we obtain that

Yn
d= Y

I
(n)
1

+ log 3,

where I
(n)
1 takes the values n − 2 and n − 3 with probabilities 2|Fn−2|/|Fn| and |Fn−3|/|Fn|,

respectively, and is independent of (Yj)j≥0. However, using this recursion, our theorems do
not apply, since there is only one subproblem of almost the same size as the original problem
(i.e., A∗

1 = 1).
Instead, to obtain a recursion to which our framework applies, we now divide the

permutation at the middle, more precisely at index kn = ⌊n/2⌋, instead of dividing it at the
top. Now, consider whether π(kn) = kn − 1, π(kn) = kn or π(kn) = kn + 1. In the first case,
the resulting subproblem sizes are kn − 2 and n − kn, whereas they are kn − 1 and n − kn in
the second case and kn − 1 and n − kn − 1 in the third case. Hence, we obtain the recursive
decomposition

Yn
d= Y

(1)
I

(n)
1

+ Y
(2)

I
(n)
2

+ bn, (31)

AofA 2022
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where the vector I(n) = (I(n)
1 , I

(n)
2 ) contains the subproblem sizes and has distribution

P(I(n)
1 = i1, I

(n)
2 = i2) = 1

|Fn|


|Fkn−2| · |Fn−kn |, i1 = kn − 2, i2 = n − kn,

|Fkn−1| · |Fn−kn
|, i1 = kn − 1, i2 = n − kn,

|Fkn−1| · |Fn−kn−1|, i1 = kn − 1, i2 = n − kn − 1,

I(n), (Y (1)
j )j≥0 and (Y (2)

j )j≥0 are independent, Y
(r)

j has the same distribution as Yj for j ≥ 0
and r = 1, 2 and bn is a random variable taking values between 0 and log(9/2). However, note
that bn is not independent of (Y (1)

j )j≥0 and (Y (2)
j )j≥0, which is the reason why Corollary 5.2

of [7] does not apply. However, we can use Theorem 1 instead: The sequence (Yn)n≥0 satisfies
recursion (10) as well as condition (11) with f(n) = µgn and g(n) = σ2

gn. Furthermore,
conditions (12) and (13) are obviously satisfied with A∗

1 = A∗
2 = 1/

√
2. Thus, Theorem 1

implies

Yn − µgn

σg
√

n

d−→ N (0, 1),

giving another proof of (30) for the greedy case. Note that we can also apply Theorem 3
to derive a bound on the rate of convergence in the limit theorem (30) in the Zolotarev ζ3
metric. While in the following Theorem 9 we cover algorithm Ag, corresponding results can
also be derived for the other two algorithms via [8, Theorem 3].

▶ Theorem 9. Let P (π) be the probability of π under the random algorithm Ag for any
Fibonacci permutation π. Further set Yn = − log(P (Πn)), where Πn is uniformly distributed
on the set Fn of Fibonacci matchings of length n. Then, for any ε > 0, as n → ∞, we have

ζ3

(Yn − E[Yn]√
Var(Yn)

, N (0, 1)
)

= O(n−1/2+ε).

The proof of Theorem 9 follows easily from Theorem 3 using recurrence (31), R(n) =
n−1/2+ε and noting that∥∥∥ 2∑

r=1
(A(n)

r )2 − 1
∥∥∥3/2

3/2
+
∥∥b(n)∥∥

3 = O(n−1/2).
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