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Abstract
We study the size of the automorphism group of two different types of random trees: Galton–Watson
trees and Pólya trees. In both cases, we prove that it asymptotically follows a log-normal distribution.
While the proof for Galton–Watson trees mainly relies on probabilistic arguments and a general
result on additive tree functionals, generating functions are used in the case of Pólya trees.
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1 Introduction

The automorphism group is a fundamental object associated with a graph as it encodes
information about its symmetries. Furthermore, counting mathematical objects up to
symmetry is a classical subject in combinatorics which naturally relates to the automorphism
group. An example is the case of graphs, where the number of different labelings of a graph
G of order n is given by n!

| Aut G| . In this paper we study properties of the automorphism
groups associated with random trees, in particular Galton–Watson trees and Pólya trees.
We show that the size of the automorphism group follows a log-normal distribution with
parameters depending on tree type. The size of the automorphism group has previously
been studied in special cases of Galton–Watson trees: binary trees (expected values and
limiting distribution: [2]), labeled trees (limiting distribution: [6] and expected value: [16]),
binary and ternary trees (expected values: [11] and [12]). It has also been studied for some
other types of trees than those considered here: specifically, random recursive trees (expected
value: [10]), and d-ary increasing trees (limiting distribution and moments: [13]).

For any rooted tree T , we have a recursive formula for the size of its automorphism group.
Let T1, T2, . . . , Tk be root branches with multiplicities m1, m2, . . . , mk. Then we have

| Aut T | =
k∏

i=1
mi!| Aut Ti|mi ,

derived from the fact that the automorphism group of a rooted tree is obtained from
symmetric groups by iterated direct and wreath products (see [1], Proposition 1.15). In other
words, the tree is invariant under the automorphisms of each of the root branches as well as
under permutation of isomorphic branches. By taking logarithms, we find that log | Aut T | is
an additive functional of the tree, which is a real-valued function F (T ) that satisfies

F (T ) = f(T ) +
r∑

i=1
F (Ti),
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16:2 Automorphisms of Random Trees

where we sum over the r root branches and f(T ) is another function called the toll of the
additive functional. In our case, the toll function is

∑
log(mi!). We note that we can rewrite

the definition as

F (T ) = f(T ) +
k∑

i=1
miF (Ti),

where we are now summing over unique root branches T1, T2, . . . , Tk with multiplicities
m1, m2, . . . , mk. We will show asymptotic normality of log | Aut Tn|, which implies asymptotic
log-normality of | Aut Tn|, where Tn denotes a random tree on n vertices. Limit theorems
for additive functionals have been proven for various classes of random trees under different
conditions, see [4, 5, 8, 13–15]. We will specifically make use of a general result due to
Ralaivaosaona, Šileikis and the second author [14] that is based on earlier work by Janson [8].

Recall now that a Galton–Watson tree is a growth model where we start with one vertex,
the root, and the number of children it has is given by a (discrete) random variable ξ,
supported on some subset of the non-negative integers that includes at least zero and some
number greater than one. The tree grows by letting each of the vertices have children
of their own according to the offspring distribution ξ, independently of all other vertices.
Different distributions for ξ give rise to different types of Galton–Watson trees. We are
especially interested in the case of critical Galton–Watson trees, for which E ξ = 1, as well
as conditioned Galton–Watson trees where we condition on the size of the tree, i.e., we
pick one of all possible Galton–Watson trees on n vertices at random. A related notion is
that of the size-biased Galton–Watson tree, which has two different types of vertices. The
normal vertices have the same offspring distribution ξ as before, while the special vertices get
offspring according to the size-biased distribution ξ̂ defined by P(ξ̂ = k) = k P(ξ = k). We
start the growth process with the root being special, and for each special vertex we choose
exactly one of its children, uniformly at random, to be special as well. This means that
the size-biased Galton–Watson tree has an infinite spine of special vertices, with non-biased
unconditioned Galton–Watson trees attached to it. Conditioned Galton–Watson trees are
closely connected to, and a special case of, simply generated families of trees (indeed, we
can see them as two sides of the same coin, one being probabilistic and the other being
combinatorial, see [3, Section 1.2.7]). Examples of Galton–Watson (and simply generated)
trees are plane trees, labeled trees, d-ary trees, etc. The book [3] gives a general introduction
to different types of random trees.

Pólya trees are rooted, unordered, unlabeled trees. They are not Galton–Watson trees,
even though they have many similar properties, and cannot be interpreted as growth processes
so we will need other methods to deal with them. The trees can be characterized by their
generating function P (x) =

∑
T ∈P x|T |, which satisfies

P (x) = x exp
( ∞∑

k=1

P (xk)
k

)
. (1)

We use T to denote Galton–Watson trees, Tn to denote conditioned Galton–Watson trees
on n vertices and T̂ to denote size-biased trees. Similarly, we use T ,Tn and T̂ to denote
specific realizations of the respective trees. Furthermore, we will use P and Pn to denote
Pólya trees and Pólya trees of size n, respectively.

1.1 Results
In this paper, we prove the following theorem on the automorphism group of Galton–Watson
trees.
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▶ Theorem 1. Let Tn be a conditioned Galton–Watson tree of order n with offspring
distribution ξ, where E ξ = 1, 0 < Var ξ < ∞ and E ξ5 < ∞. Then there exist constants µ

and σ2 ≥ 0, depending on T , such that

log | Aut Tn| − µn√
n

d−→ N(0, σ2).

The condition on E ξ5 is needed for technical purposes and is valid for combinatorially
significant examples such as labeled trees, plane trees and d-ary trees. The exponent 5 is
probably not best possible, but required to apply the general result on additive functionals
that our proof is based on.

The mean constant µ and even more so the variance constant σ2 do not seem easy to
compute numerically in general. In the appendix, we show how to derive the numerical
values µ = 0.0522901 . . . and σ2 = 0.0394984 . . . in the special case of labeled trees, where a
connection to Pólya trees can be exploited.

We can also prove the following, similar result, for the class of Pólya trees.

▶ Theorem 2. Let Pn be a Pólya tree of order n. Then, E(log | Aut Pn|) = µn + O(1) and
Var(log | Aut Pn|) = σ2n+O(1), with µ = 0.1373423 . . . and σ2 = 0.1967696 . . .. Furthermore,
we have

log | Aut Pn| − µn√
n

d−→ N(0, σ2).

Even though both proofs rely, at their cores, on the same idea of approximating the
additive functionals by simpler ones, they are fairly different at a glance. We prove Theorem
1 in Section 2 and Theorem 2 in Section 3.

2 The automorphism group of Galton–Watson trees

To prove asymptotic normality of log | Aut Tn|, we will show that it is in fact an almost local
additive functional, as defined in [14]. Intuitively, “almost local” means that looking at the
first M levels of the tree gives us substantial (albeit not perfect) information about the value
of the toll function at the root. We will let T (M) denote the restriction of a Galton–Watson
tree to its first M levels, where the root is at level 0, with similar definitions for the other
classes of trees. The theorem we will use is the following.

▶ Theorem 3 ([14]). Let Tn be a conditioned Galton–Watson tree of order n with offspring
distribution ξ, with E ξ = 1 and 0 < σ2 := Var ξ < ∞. Assume further that E ξ2α+1 < ∞ for
some integer α ≥ 0. Consider a functional F of finite rooted ordered trees with the property
that

f(T ) = O(deg(T )α),

where f is the toll function associated with the functional.
Furthermore, assume that there exists a sequence (pM )M≥1 of positive numbers with

pM → 0 as M → ∞, such that
for every integer M ≥ 1,

E
∣∣∣f(T̂ (M)) − E

(
f(T̂ (N))|T̂ (M)

)∣∣∣ ≤ pM ,

for all N ≥ M ,

AofA 2022
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there is a sequence of positive integers (Mn)n≥1 such that for large enough n,

E |f(Tn) − f(T (M)
n )| ≤ pMn .

If an = n−1/2(nmax{α,1}pMn + M2
n) satisfies

lim
n→∞

an = 0, and
∞∑

n=1

an

n
< ∞,

then
F (Tn) − µn√

n

d−→ N(0, γ2),

where µ = E f(T ) and 0 ≤ γ2 < ∞.

The proof shows that the result still holds if we replace (F (Tn) − µn)/
√

n by (F (Tn) −
EF (Tn))/

√
n.

2.1 Galton–Watson trees isomorphic up to a certain level
In applying Theorem 3, we are led to consider the probability that two Galton–Watson
trees are of height ≥ M and isomorphic. We use C to denote the set of isomorphism classes
of Galton–Watson trees as well as CM to denote the set of isomorphism classes of trees of
height M (i.e., trees that have M + 1 generations). The definitions extend to conditioned
Galton–Watson trees as Cn and CM

n , respectively. We start with the following lemma.

▶ Lemma 4. There exists some constant 0 < c < 1 such that

P(T (M) belongs to C) ≤ cM ,

uniformly for all isomorphism classes C ∈ CM .

Proof. We say that a level L of a tree T agrees with C if it has the right number of
vertices and the offsprings ξ1, ξ2, . . . , ξl agree with the offsprings of the same level in C, up
to permutation. Let L1, L2, . . . denote the levels of the Galton–Watson tree T . Then the
probability is bounded by

P(T (M) belongs to C) ≤
M−1∏
i=0

P(Li agrees with C|L1, L2, . . . , Li−1), (2)

where we note that, by truncation, the M -th level will always agree with C, as long as the
previous ones do. We can bound each factor in (2) by the probability of the level having the
correct number of leaves, conditioned on the previous levels. This random variable follows
a binomial distribution with probability p = P(ξ = 0). It is therefore sufficient to prove
a bound 0 < c < 1 (uniform in both l and k) on the probability that a binomial variable
Xl ∼ Bin(l, p) takes a specific value k.

We can in fact bound Xl in terms of p, since if we write Xl as a sum of Bernoulli variables
Xl = Y1 + Y2 + . . . + Yl we have

P(Y1 + Y2 + . . . + Yl = k) =
∑

r

P(Y1 + Y2 + . . . + Yl−1 = r)P(Yl = k − r)

≤
∑

r

P(Y1 + Y2 + . . . + Yl−1 = r) max
y

P(Yl = y) = max
y

P(Yl = y) = max{p, 1 − p}.

We can thus take c = max{p, 1 − p} as a uniform bound for all levels, and now (2) gives the
result. ◀
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We now see that for two independent trees T1, T2 we have

P(T (M)
1 , T (M)

2 isomorphic and of height ≥ M) =
∑

C∈CM

P(T (M) belongs to C)2 (3)

≤ max
C∈CM

{P(T (M) belongs to C)}
∑

C∈CM

P(T (M) belongs to C) (4)

= max
C∈CM

{P(T (M) belongs to C)}. (5)

Combining this with Lemma 4, we get the following corollary.

▶ Corollary 5. Let T1, T2 be two independent Galton–Watson trees. There exists some
constant 0 < c < 1 such that

P(T (M)
1 , T (M)

2 isomorphic and of height ≥ M) ≤ cM .

In fact, the argument in (3) also works when one of the trees is the size-biased tree T̂ ,
which lets us bound the probability that a Galton–Watson tree and the size-biased tree are
isomorphic up to level M in terms of the maximum probability that the Galton–Watson tree
belongs to a specific isomorphism class. This gives another corollary, which we will need
later on.

▶ Corollary 6. Let T be a Galton–Watson tree and T̂ be the size-biased tree, assumed to be
independent of T . There exists some constant 0 < c < 1 such that

P(T (M), T̂ (M) isomorphic and of height ≥ M) ≤ cM .

We can obtain similar bounds on the probability that two conditioned Galton–Watson
trees are isomorphic up to level M . We start by extending Lemma 4 to the conditioned case.

▶ Lemma 7. Let Tn be a conditioned Galton–Watson tree of size n. There exists some
constant 0 < c < 1 such that

P(T (M)
n belongs to C) = O

(
n

5
2 cM

)
,

uniformly for all isomorphism classes C ∈ CM
n .

The proof uses breadth-first exploration and the cycle lemma, a standard trick in the
field, and is deferred to the appendix. Furthermore, using calculations similar to (3), we
obtain the following corollary.

▶ Corollary 8. Let Tn1 , Tn2 be two independent conditioned Galton–Watson trees. There
exists some constant 0 < c < 1 such that

P(T (M)
n1

, T (M)
n2

isomorphic and of height ≥ M) = O
(

n
5
2 cM

)
.

We are now ready to apply the central limit theorem for additive functionals.

2.2 Applying the CLT for almost local additive functionals
By Stirling’s approximation, we can bound f(T ) ≤ log deg(T )! = O(deg(T )1+ϵ) for any ϵ > 0
so that the functional satisfies the degree condition of Theorem 3 with α = 2. For the
expectations, there are two conditions to check, one for the size-biased Galton–Watson tree
and one for the conditioned Galton–Watson tree, and in each case the difference inside the

AofA 2022
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expectation can only be non-zero if (at least) two branches are isomorphic up to level M but
non-isomorphic when we take all levels into account. We can therefore reduce the problem
to studying trees that are isomorphic up to the M -th level.

We note that if l root branches are isomorphic up to level M , this contributes at most
log(l!) ≤

(
l
2
)

to the difference inside the expectation. Therefore, the contribution of a random
tree can be bounded by the sum of indicators∑

Ti,Tj root branches
I(T (M)

i , T
(M)
j isomorphic and of height ≥ M),

where we sum over distinct branches. We can thus bound the expectation for the conditioned
Galton–Watson tree in the following way.

E |f(Tn) − f(T (M)
n )| ≤ E

 ∑
Ti,Tj

root branches

I(T (M)
i , T (M)

j are iso. with height ≥ M)


=
∑
k≥2

P(deg(Tn) = k)
∑

n1,n2≥1
P(|Ti| = n1|deg(Tn) = k)P(|Tj | = n2|deg(Tn) = k)

·
(

k

2

)
E
(

I(T (M)
i , T (M)

j are iso. with height ≥ M)
∣∣∣∣|Ti| = n1, |Tj | = n2

)

= O

∑
k≥2

P(deg(Tn) = k)
(

k

2

)
n

5
2 cM

 = O

n
5
2 cM

∑
k≥2

k P(ξ = k)
(

k

2

) = O(n 5
2 cM )

where we use the law of total expectation, the fact that P(deg(Tn) = k) ≤ ck P(ξ = k) for
all k and n, where c is constant [7, (2.7)], and the assumption on moments of the offspring
distribution.

The difference |f(T̂ (M)) − E(f(T̂ (N))|T̂ (M))| must also be zero unless some branches are
isomorphic up to level M , and reasoning similar to above lets us bound its expectation in
the following way.

E
∣∣∣f(T̂ (M)) − E

(
f(T̂ (N))|T̂ (M)

)∣∣∣
=
∑
k≥2

kP (ξ = k) ·

(
E
( ∑

Ti,Tj non-special
root branches

I(T (M)
i , T (M)

j are iso. with height ≥ M)
)

+ E
( ∑

T non-special root branch
T̂ special root branch

I(T (M), T̂ (M) are iso. with height ≥ M)
))

.

Furthermore, this is equal to

∑
k≥3

kP (ξ = k)
(

k − 1
2

)
P(T (M)

1 , T (M)
2 isomorphic and of height ≥ M)

+
∑
k≥2

kP (ξ = k)(k − 1)P(T (M), T̂ (M) isomorphic and of height ≥ M) = O(cM ),

by Corollaries 5 and 6 (the constant c is the same for both of these corollaries since they
both rely on Lemma 4) as well as assumptions on moments of the offspring distribution.
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We now set pM = KcM
1 , for c < c1 < 1 and some suitable constant K, as well as

Mn = A log n, for some positive constant A that is large enough to make n5/2cMn ≤ cMn
1 for

all n and A log c1 < −3/2. Then, the expectations mentioned in Theorem 3 are bounded by
pM and pMn , respectively. Furthermore, the sequence an goes to 0 and satisfies

∑
an/n < ∞.

Thus, we can apply Theorem 3 to show that log | Aut Tn| is asymptotically normal, which
completes the proof of Theorem 1.

3 The automorphism group of Pólya trees

Since Theorem 3 is not available for Pólya trees, we want to prove asymptotic normality by
using generating functions and singularity analysis. Thus, we define the generating function
of F (Pn) = log | Aut Pn| to be

P (x, t) =
∑
T ∈P

et log | Aut T |x|T |. (6)

Note that P (x, 0) = P (x), as defined in the introduction. We will use ρ = 0.33832 . . .

to denote the dominant singularity of the generating function and recall that P (ρ) = 1
(see [3, Remark 3.9]). We now let B(T ) denote the set of root branches of a particular tree,
and BI(T ) denote the set of unique root branches up to isomorphism. Furthermore, we let
mult(B) be the number of occurrences as root branches of a particular tree B. Observe that
for Pólya trees there is exactly one tree in every isomorphism class so it will not be necessary
to introduce separate notation for such classes.

By considering only the terms corresponding to the star on n vertices, for each n, we
obtain∑

n

(n − 1)!txn.

This is not analytic for any choice of t > 0 and, thus, neither is the original generating
function. This is the main obstacle in proving asymptotic normality. To circumvent this
problem, we will introduce a cut-off, ignoring the contribution of highly symmetric vertices.
This is similar to the proof, in [14], of Theorem 3, but there the cut-off is in terms of the
size of the tree instead of symmetric vertices. We can then use the following approximation
result to extend the result from the cut-off random variables to the full additive functional.

▶ Lemma 9. Let (Xn)n≥1 and (Wn,N )n,N≥1 be sequences of centered random variables. If
we have
1. Wn,N

d−→n WN and WN
d−→ W for some random variables W, W1, W2, . . ., and

2. Var(Xn − Wn,N ) −→
N

0 uniformly in n,

then Xn
d−→ W .

This result follows e.g. from [9], Theorem 4.28. We will apply Lemma 9 to variables Xn

defined by

log | Aut Pn| − E(log | Aut Pn|)√
n

,

and Wn,N being the, similarly normalized, random variable for the additive functional
F ≤N (T ), defined by having the toll function:

f≤N (T ) =
∑

B∈BI (T )

I(mult(B) ≤ N) log(mult(B)!).

AofA 2022
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We note that F (T ) − F ≤N (T ) = F >N (T ) for an additive functional defined by

f>N (T ) =
∑

B∈BI (T )

I(mult(B) > N) log(mult(B)!),

so that we will, in fact, be interested in Var(F >N (Tn)) for the second condition of Lemma 9.
By straightforward modifications of (6), we can define generating functions P ≤N (x, t) and
P >N (x, t) for the corresponding cut-off functionals.

3.1 Mean and variance
We can now derive moments for the additive functionals F, F ≤N , F >N with the help of
generating functions and singularity analysis. The calculations are essentially the same in all
cases so, to simplify the exposition, we perform them only for F and indicate in the end how
the results differ.

Due to general principles of generating functions, studying the mean and variance
corresponds to studying Pt(x, 0) and Ptt(x, 0). According to calculations for general additive
functionals from [15], we can write

Pt(x, 0) = xPx(x, 0)
∑

T f(T )x|T | + P (x, 0)
∑

k≥2 Pt(xk, 0)
P (x, 0)(1 +

∑
k≥2 xkPx(xk, 0)) , (7)

Ptt(x, 0) = xPx(x, 0)
P (x, 0)(1 +

∑
k≥2 xkPx(xk, 0))

(
P (x, 0)

(
Pt(x, 0) +

∑
k≥2

Pt(xk, 0)
k

)2
(8)

+ P (x, 0)
∑
k≥2

Ptt(xk, 0)
k

+
∑

T

x|T |f(T )(2F (T ) − f(T ))
)

, (9)

for the first and second derivative. To perform singularity analysis, we must first find singular
expansions for these expressions. To this end, we study the sums involved in them separately.

The derivatives involving higher powers of x are analytic in a larger region than P (x, 0),
since ρ < 1 so that ρm < ρ for m ≥ 2. Now, note that we can rewrite

2F (T ) − f(T ) = 2
∑

B∈B(T )

F (B) + f(T ),

so that we can study
∑

x|T |f(T )
∑

F (B) and
∑

x|T |f(T )2, as well as
∑

x|T |f(T ). It turns
out that we can factor each of these expressions as P (x, 0) times some function that is
analytic in a larger radius than ρ. For the sum in the expression for the mean, we have∑

T

x|T |f(T ) =
∑

T

x|T |
∑

B∈BI (T )

log(mult(B)!)

=
∑
B∈P

∞∑
m=1

log(m!)
∑

T :mult(B)=m

x|T | =
∑
B∈P

∞∑
m=1

log(m!)xm|B|(P (x, 0) − x|B|P (x, 0))

= P (x)
∑
B∈P

∞∑
m=1

log(m!)xm|B|(1 − x|B|) = P (x)
∑

B

∞∑
m=2

log(m)xm|B|,

where we note that P (x, 0) − x|B|P (x, 0) equals the generating function for Pólya trees
without B as a root branch. For real positive x with x ≤ 1 − ϵ for fixed ϵ > 0, we can bound∑

B

∞∑
m=2

log(m)xm|B| = O(
∑

B

x2|B|).
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The extra power of 2 means that the sum converges for x <
√

ρ, so by the Weierstrass M -test,
we have analyticity in a larger region than for the original generating function P (x).

For the sum involving
∑

F (B), we have

∑
T

x|T |

 ∑
B∈BI (T )

log(mult(B)!)

 ∑
B∈BI (T )

mult(B)F (B)


=
∑
B∈P

F (B)
∞∑

m=1
m log(m!)

∑
T :mult(B)=m

x|T |

+
∑

B1,B2∈P:
B1 ̸=B2

∑
m1,m2≥1

log(m1!)m2F (B2)
∑

T :mult(B1)=m1
mult(B2)=m2

x|T |.

Using the fact that
∑

B F (B)xm|B| = Pt(xm, 0) and performing calculations similar to above,
the first sum can be seen to be

P (x, 0)
∞∑

m=2
log(m!mm−1)Pt(xm, 0),

where the sum is analytic in a larger region than the original function. To deal with the
other sum, we first rewrite∑

T :mult(B1)=m1
mult(B2)=m2

x|T | = P (x, 0)xm1|B1|(1 − x|B1|)xm2|B2|(1 − x|B2|).

Then, we note that

∑
B1:

B1 ̸=B2

F (B1)
∞∑

m1=1
m1xm1|B1|(1 − x|B1|)

=
∞∑

m1=1

∑
B1:

B1 ̸=B2

F (B1)xm1|B1| =
∞∑

j=1
Pt(xj , 0) −

∞∑
j=1

F (B2)xj|B2|.

These observations let us rewrite the larger sum as

P (x, 0)

 ∞∑
j=1

Pt(xj , 0)

 ∞∑
m=1

log(m!)xm|B|(1 − x|B|)

− P (x, 0)
∑

B

F (B)
∞∑

m=1
log(m!)xm|B|(1 − x|B|)

∞∑
j=1

xj|B|.

The first of these two sums can now be dealt with using calculations identical to those
performed earlier, and further simplifications for the second sum let us rewrite the whole
expression as

P (x, 0)
((

Pt(x, 0) +
∞∑

m=2
Pt(xm, 0)

)∑
B

∞∑
m=2

log(m)xm|B| −
∑
m

log(m!)Pt(xm+1, 0)
)

.
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The sum
∑

x|T |f(T )2 can be dealt with using similar techniques and we conclude that we
can rewrite (7) as

Pt(x, 0) = xPx(x, 0)
H(x) +

∑
k≥2 Pt(xk, 0)

(1 +
∑

k≥2 xkPx(xk, 0)) ,

Ptt(x, 0) = xPx(x, 0)
(1 +

∑
k≥2 xkPx(xk, 0))

((
Pt(x, 0) +

∑
k≥2

Pt(xk, 0)
k

)2

+
∑
k≥2

Ptt(xk, 0)
k

+ 2(Pt(x, 0)H(x) + K(x)) + L(x)
)

, (10)

for functions H(x), K(x) and L(x) that are analytic in a larger region than P (x, 0). This puts
us in a situation where we can perform singularity analysis to find the moments. Numerical
computations yield µ = 0.1373423 . . . and σ2 = 0.1967696 . . ..

If we instead consider F ≤N (T ) or F >N (T ), the extra indicator function introduced in the
expression will carry trough the calculations and affect the indices in the sums. In the sums
with index m above, we will sum up to m = N in the first case and sum from m = N + 1
to infinity in the second. In particular, for F >N (T ), the corresponding analytic functions
H>N (x),K>N (x) and L>N (x) will converge to zero within their region of convergence, if we
let N → ∞.

3.2 Asymptotic normality for log | Aut Pn|
For Pólya trees we have the symbolic decomposition

P = • ×
⊗
T ∈P

(∅ ⊎ {T} ⊎ {T, T} ⊎ . . .),

reflecting the fact that a Pólya tree consists of a tree and a multiset of branches. Taking
automorphisms into account, this translates to

P (x, t) = x
∏

T ∈P

( ∞∑
n=0

xn|T |n!t| Aut T |nt

)
,

by general principles for generating functions. For the case of the cut-off functional F ≤N (T ),
which is the case we will be interested in, we have

P ≤N (x, t) = x
∏

T ∈P

( ∞∑
n=0

xn|T |n!tI(n≤N)entF ≤N (T )

)
.

We can manipulate this as follows:

P ≤N (x, t) = x exp
(∑

T ∈P
log
( ∞∑

n=0
xn|T |n!tI(n≤N)entF ≤N (T )

))

= x exp

∑
T ∈P

∞∑
k=1

(−1)k−1

k

( ∞∑
n=1

xn|T |n!tI(n≤N)entF ≤N (T )

)k


= x exp
( ∑

T ∈P

∞∑
k=1

(−1)k−1

k

∑
λ1+λ2
+...=k

(
k

λ1, λ2, . . .

) ∞∏
n=1

(
xn|T |n!tI(n≤N)entF ≤N (T ))λn

)
. (11)
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We now write integer partitions as sequences λ = (λ1, λ2, . . .), where λi is the number of i’s
in the partition. The total number of summands is denoted by |λ| = λ1 + λ2 + . . ., and we
write λ ⊢ j to denote that λ is a partition of j, i.e. j = λ1 + 2λ2 + 3λ3 + . . .. We can now
rearrange the terms in the exponent of (11) to get

x exp
(∑

T ∈P

∞∑
k=1

(−1)k−1

k

∞∑
j=1

∑
λ1+λ2+...=k
λ1+2λ2+...=j

(
k

λ1, λ2, . . .

)
xj|T |ejtF ≤N (T )

∞∏
n=1

n!λntI(n≤N)

)

= x exp
( ∞∑

j=1

∑
λ⊢j

(−1)|λ|−1

|λ|

(
|λ|

λ1, λ2, . . .

)( N∏
n=1

n!λnt

)∑
T ∈P

xj|T |ejtF ≤N (T )

)

= x exp
( ∞∑

j=1

∑
λ⊢j

(−1)|λ|−1

|λ|

(
|λ|

λ1, λ2, . . .

)( N∏
n=1

n!λnt

)
P ≤N (xj , jt)

)
.

For convenience, we can define

cN (j, t) = j
∑
λ⊢j

(−1)|λ|−1

|λ|

(
|λ|

λ1, λ2, . . .

)( N∏
n=1

n!λnt

)
,

and arrive at the functional equation

P ≤N (x, t) = x exp

P ≤N (x, t) +
∞∑

j=2

cN (j, t)
j

P ≤N (xj , jt)

 . (12)

Note that cN (j, 0) = 1, so that we recover the functional equation (1) from the introduction
if we set t = 0. We can make completely analogous calculations for P (x, t) to obtain a
functional equation for the original functional log | Aut Pn|, as well, but recall that P (x, t) is
not analytic for t > 0.

As a crude upper bound, each of the n vertices contributes at most log N ! to the total
value of the additive functional. Therefore, we see that F ≤N (T ) = O(n) and, if we restrict
to |t| < δ for some suitable δ > 0,

G(x, y, t) := x exp

y +
∞∑

j=2

c(j, t)
j

T (xj , jt)


is analytic in a region containing x = ρ, y = τ . Theorem 2.23 in [3] now gives asymptotic
normality for F ≤N (T ), i.e. WN ∼ N(0, σ2

N ) for some constant σ2
N .

Note that

Var(Xn − Wn,N ) = Var(F (Pn) − F ≤N (Pn))
n

.

Since F (T )−F ≤N (T ) = F >N (T ), we want to show that Var(F >N (Tn))/n → 0 when N → ∞
which leads us to study P >N

tt (x, t). The reasoning from the last section shows that coefficients
in Taylor expansions of H>N (x), K>N (x) and L>N (x) around x = ρ go to zero as N → ∞.
By dominated convergence, the same is true for the expressions∑ Pt(xk, 0)

k
and

∑ Ptt(xk, 0)
k

,
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16:12 Automorphisms of Random Trees

since all terms of Pt and Ptt involve powers of F >N (T ) and this goes to zero for any fixed
tree as N → ∞. By studying (10) (except with P >N

tt (x, t) instead of Ptt(x, t)) we see that all
the coefficients in the singular expansion of P >N

tt (x, t) depend on these quantities. Therefore,
the expansion must be of the type

aN

(
1 − x

ρ

)−3/2
+ bN

(
1 − x

ρ

)−1
+ cN

(
1 − x

ρ

)−1/2
+ ON (1),

where each coefficient, as well as the error, goes to zero with N .
Performing singularity analysis, where we also subtract E(F >N (Pn))2 to get the variance,

and dividing by n, gives us that

Var(Xn − Wn,N ) = γ2
N + ON

(
1
n

)
,

for some constant γN that goes to 0 as N → ∞. Moreover, the O-term is uniform in
N . This implies that the variance of Xn − Wn,N goes to zero, uniformly in n so that the
approximation lemma applies. Thus, we can conclude asymptotic normality for log | Aut Pn|
from the asymptotic normality of F ≤N (Pn) and finish the proof.
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A Omitted proofs and calculations

A.1 Proof of Lemma 7
Order the offsprings ξ1, ξ2, . . . of Tn in breadth-first order and consider the sums

Sm =
m∑

i=1
(ξi − 1) for 1 ≤ m ≤ n.

In each step, 1 ≤ i ≤ m, we are deleting 1 for the current vertex while adding the number of
children it has. For a conditioned Galton–Watson tree of size n, we necessarily have

Sm > − 1 for 1 ≤ m < n,

Sn = − 1,

since we are adding 1 for all vertices except the root, but deleting 1 for all vertices including
the root. Using this, we can formulate the probability we seek to bound in the following way.

P(T (M)
n belongs to C) = P({T ′ belongs to C} ∩ {S1, S2, . . . , Sn−1 > −1, Sn = −1})

P(S1, S2, . . . , Sn−1 > −1, Sn = −1) ,

where T ′ is a Galton–Watson tree with offsprings ξ1, ξ2, . . . , ξk, and k is the number of
vertices of each tree in C excluding the last level (since we truncate at level M the number
of children on this level is of no interest to us). Since the trees in C are isomorphic they will
all have the same number of vertices.

Let lM be the number of vertices at the last level of each tree in C (again, equal due to
isomorphism). Then we have

n∑
i=1

(ξi − 1) =
k∑

i=1
(ξi − 1) +

n∑
i=k+1

(ξi − 1) = lM − 1 +
n∑

i=k+1
(ξi − 1).

By the conditions set on Sm, we draw the conclusion that

S′
m :=

k+m∑
i=k+1

(ξi − 1) > −lM for 1 ≤ m < n − k,

S′
n−k :=

n∑
i=k+1

(ξi − 1) = −lM .

By independence, we now have

P({T ′ belongs to C} ∩ {S1, S2, . . . , Sn−1 > −1, Sn = −1})
P(S1, S2, . . . , Sn−1 > −1, Sn = −1)

=
P(T ′ belongs to C)P(S′

1, S′
2, . . . , S′

n−k−1 > −lM , S′
n−k = −lM )

P(S1, S2, . . . , Sn−1 > −1, Sn = −1) ,
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and using the cycle lemma we find that this equals
lM

n−k P(S′
n−k = −lM )

1
n P(Sn = −1)

P(T ′ belongs to C).

The probability P(S′
n−k = −lM ) is bounded by 1, and Sn satisfies a local limit theorem. If

we also bound lM ≤ n as well as n − k ≥ 1 (k is the number of vertices up to level M − 1,
and by definition there must be at least one vertex at level M) and use Lemma 4 (note that
Cn,M is a subset of CM ), we arrive at

P(T (M)
n belongs to C) = O

(
n

5
2 cM

)
,

which is what we wanted to prove.

A.2 Mean and variance for labeled trees
In this appendix, we show how the constants µ and σ2 in Theorem 1 can be computed for
labeled trees with fairly good accuracy. To this end, we use the generating function approach
from Section 3. Recall that the bivariate generating function

P (x, t) =
∑
T ∈P

et log | Aut T |x|T | =
∑
T ∈P

| Aut T |tx|T |

satisfies (letting N → ∞ in (12))

P (x, t) = x exp

 ∞∑
j=1

c(j, t)
j

P (xj , jt)


with

c(j, t) = j
∑
λ⊢j

(−1)|λ|−1

|λ|

(
|λ|

λ1, λ2, . . .

)( ∞∏
n=1

n!λnt

)
.

We can rewrite this in terms of an analogously defined exponential generating function for
rooted labeled trees. Set

R(x, t) =
∑
T ∈R

| Aut T |t x|T |

|T |! ,

the sum now being over the set R of all rooted labeled trees. Since the number of distinct
ways to label a Pólya tree T is |T |!/| Aut T |, we have the relation

R(x, t) = P (x, t − 1),

so the functional equation for Pólya trees immediately translates to a functional equation for
labeled trees:

R(x, t) = x exp

 ∞∑
j=1

c(j, t − 1)
j

R(xj , jt − j + 1)

 . (13)

When t = 0, one verifies easily (compare the calculations below for the derivative with respect
to t) that c(j, −1) = 0 for j > 1 and c(1, −1) = 1, so the functional equation reduces to
R(x, 0) = x exp(R(x, 0)) as expected.
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In order to determine the desired moments, we need to consider the derivatives with
respect to t. To this end, note first that

∑
j≥0

yj
∑
λ⊢j

∏
k≥1

xλk

k

λk!k!λk
=
∏
k≥1

∑
λk≥0

xλk

k ykλk

λk!k!λk
=
∏
k≥1

exp
(xkyk

k!

)
= exp

(∑
k≥1

xkyk

k!

)
.

Differentiating with respect to xm and plugging in x1 = x2 = · · · = x yields∑
j≥0

yj
∑
λ⊢j

x|λ|−1λm

∏
k≥1

1
λk!k!λk

= ym

m! exp
(∑

k≥1

xyk

k!

)
= ym

m! exp(x(ey − 1)).

Consequently,∑
λ⊢j

|λ|=r

λm

∏
k≥1

1
λk!k!λk

= [xr−1yj ]y
m

m! exp(x(ey − 1)) = [yj−m] (e
y − 1)r−1

(r − 1)!m! .

By definition, we have

d

dt

c(j, t)
j

=
∑
λ⊢j

(−1)|λ|−1

|λ|

(
|λ|

λ1, λ2, . . .

)( ∞∏
n=1

n!λnt

) ∞∑
m=1

λm log(m!),

which therefore becomes

d

dt

c(j, t)
j

∣∣∣
t=−1

=
∞∑

r=1

∞∑
m=1

(−1)r−1(r − 1)!
∑
λ⊢j

|λ|=r

λm log(m!)
∏
k≥1

1
λk!k!λk

=
∞∑

r=1

∞∑
m=1

(−1)r−1(r − 1)! log(m!)[yj−m] (e
y − 1)r−1

(r − 1)!m!

=
∞∑

m=1

log(m!)
m! [yj−m]e−y =

j∑
m=1

log(m!)
m!

(−1)j−m

(j − m)!

= 1
j!

j∑
m=1

(−1)j−m

(
j

m

)
log(m!) = 1

j!

j∑
m=1

(−1)j−m−1
(

j − 1
m − 1

)
log(m).

Let us write d(j) for this expression. Differentiating (13) with respect to t and setting
t = 0, we get

Rt(x, 0) = x exp

 ∞∑
j=1

c(j, −1)
j

R(xj , 1 − j)


×

∞∑
j=1

(
c(j, −1)Rt(xj , 1 − j) + d

dt

c(j, t)
j

∣∣∣
t=−1

R(xj , 1 − j)
)

= R(x, 0)
(

Rt(x, 0) +
∞∑

j=1
d(j)R(xj , 1 − j)

)
.

This can be solved for Rt(x, 0):

Rt(x, 0) = R(x, 0)
1 − R(x, 0)

∞∑
j=2

d(j)R(xj , 1 − j).
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Here, we are using the fact that d(1) = 0. Now note that d(j) rapidly goes to 0 and that
the functions R(xj , 1 − j) are all analytic in a larger region than R(x, 0). Therefore, we can
directly apply singularity analysis, based on the well-known singular expansion

R(x, 0) = 1 −
√

2(1 − ex) + · · ·

of R(x, 0) at its singularity 1
e , which yields

Rt(x, 0) ∼ 1√
2(1 − ex)

∞∑
j=2

d(j)R(e−j , 1 − j).

The infinite series converges rapidly, allowing for a fairly accurate numerical computation.
The mean constant µ in this special case is found to be µ = 0.0522901 . . ., and similar
calculations for the second derivative yield the variance constant σ2 = 0.0394984 . . ..
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