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Abstract
For a positive integer n and a real number p ∈ (0, 1), a random directed acyclic digraph Dac(n, p) is
obtained from the binomial random digraph model D(n, p) conditioned to be acyclic, i.e., directed
cycles are forbidden. In the binomial random digraph model D(n, p), every possible directed edge
(excluding loops) occurs independently with probability p. Sources and sinks are among the most
natural characteristics of directed acyclic graphs. We investigate the distribution of the number
of sources in Dac(n, p) when p is of the form λ/n, where λ is a fixed positive constant. Because
of symmetry, the number of sinks will have the same distribution as the number of sources. Our
main motivation is to understand how this distribution changes as we pass through the critical point
p = 1/n. Since we are in the sparse regime, it makes sense to include the number of isolated vertices
as well. In a directed graph an isolated vertex can be regarded as a vertex that is both a source and
a sink. We prove asymptotic normality for each of these parameters when p = λ/n. Our method is
based on the analysis of a multivariate generating function from a work of Gessel.
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1 Introduction

For a positive integer n we consider directed graphs (digraphs) on the vertex set [n] =
{1, 2, . . . , n} where loops and multi-edges are forbidden. In a digraph, a vertex v is called a
source if it has an in-degree zero and a sink if it has an out-degree zero. If we only consider
directed acyclic graphs (DAGs), it is well known that a non-empty acyclic digraph has at
least one source and one sink. So, we would like to investigate the distributions of the number
of these vertices in random DAGs.

The distribution of the number of isolated vertices and its generalisation, the number
of vertices of a given degree, in the random (undirected) graphs are well-covered topics in
the literature, see for example [1, 2, 6, 18]. It makes sense to extend these results to other
graph-like structures. Investigating the number of isolated vertices, sources, and sinks should
be the starting point for the case of random DAGs.

The model that we consider in this paper is constructed in the following way: for p ∈ (0, 1),
we first consider the binomial random digraph model D(n, p), where each of the n(n − 1)
possible directed edges occurs independently with probability p. Then, the random acyclic
digraph Dac(n, p) is simply D(n, p) conditioned to be acyclic. Due to limited space, in this
paper, we restrict ourselves to the sparse case where p = λ/n, for which λ > 0 is fixed. It is
known that the model D(n, p) exhibits a phase transition around the critical point p = 1/n.
This phase transition has also been analysed in the literature, see for example [7, 10, 11].
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17:2 Sources and Isolated Vertices in Random DAGs

For p = λ
n an asymptotic formula for the probability that D(n, p) is acyclic is given in [3]

following the approach in [14]: if λ > 0 is a constant, then

P(D(n, p) acyclic) ∼


(1 − λ)eλ if λ < 1
C1n−1/3 if λ = 1
C2(λ)n−1/3e−a(λ)n+b(λ)n1/3 if λ > 1,

(1)

where C1 is a positive constant, and C2(λ), a(λ), and b(λ) are positive numbers depending
only on λ ≥ 1. These terms are explicitly defined in [3, Sec. 6].

There are a few different random digraph models. For instance, the model considered
in [14] is obtained from the random binomial undirected graph G(n, 2p) where a direction
is given to each existing edge independently with probability 1

2 . Although, it would also
be possible to study such a model with our method, the model in the present paper, when
conditioned to be a DAG, gives a more natural generalisation to the uniform random DAG
model where a digraph is chosen uniformly at random from the set of all DAGs on the vertex
set [n]. With our notation the latter model is equivalent to Dac(n, 1

2 ).
The number of sources in the random acyclic digraph model Dac(n, 1

2 ) was already studied
by Liskovets [9]. It was shown that the number of sources in Dac(n, 1

2 ) has a discrete limiting
distribution as n → ∞. More precisely, if denote by p(n, k) the probability that a uniform
random DAG on [n] has exactly k sources, then as n → ∞ we have

p(n, k) ∼ ϱkϕ(2−kϱ)
k!2(k

2)
, where ϕ(x) =

∞∑
n=0

(−x)n

n!2(n
2) , (2)

and ϱ ≈ 1.4880785 . . . is the smallest positive solution of the equation ϕ(x) = 0. The function
ϕ(x) and its zero ϱ already appeared in earlier results on the enumeration of DAGs, see
the work of Robinson [15], Liskovets [8], and Stanley [16]. Returning to the structure of
the uniform random DAG Dac(n, 1

2 ), McKay [12] showed that the height is asymptotically
normally distributed with mean and variance asymptotically equal to Cn and C ′n respectively,
where C ≈ 0.764334 and C ′ ≈ 0.145210. It is reasonable to expect that similar results would
hold for the number of sources and the height of Dac(n, p) for fixed p ∈ (0, 1). However, it is
not clear how these parameters behave when p tends to zero. Let us now state our result for
the number of sources when p is of the form λ/n.

▶ Theorem 1. Let S(D) denote the number of sources in an acyclic digraph D. Define

µ(λ) =

e−λ if λ < 1
1
eλ

if λ ≥ 1,
and σ2(λ) =

e−λ(1 − e−λ) if λ < 1
e − 1
e2λ

if λ ≥ 1.

Then, for a fixed λ > 0, the expectation of the number of sources in a random acyclic
digraph Dac(n, λ/n) satisfies the asymptotic estimate E(S(Dac(n, λ/n))) ∼ µ(λ)n as n → ∞.
Moreover, we have

S(Dac(n, λ/n)) − µ(λ)n√
σ2(λ)n

d−→ N (0, 1).

Since we are interested in the structure of Dac(n, p) in the sparse regime, it makes sense
to look at the number of isolated vertices. We obtain the following theorem.
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▶ Theorem 2. Let I(D) denote the number of isolated vertices in an acyclic digraph D.
Define

µ∗(λ) =
{

e−2λ if λ < 1,
e−(λ+1)

λ if λ ≥ 1,

and

σ∗(λ)2 =

e−2λ(1 + (2λ − 1)e−2λ) if λ < 1

λ−1e−(λ+1)(1 + e−(λ+1)) if λ ≥ 1.

Then, for a fixed λ > 0, the expectation of the number of isolated vertices in a random acyclic
digraph Dac(n, λ/n) satisfies the asymptotic estimate E(I(Dac(n, λ/n))) ∼ µ∗(λ)n as n → ∞.
Moreover, we have

I(Dac(n, λ/n)) − µ∗(λ)n√
σ∗(λ)2n

d−→ N (0, 1).

It is not difficult to show that main terms in asymptotic expansions of the expectations
E(S(D(n, λ/n))) and E(I(D(n, λ/n))), for the unconditioned random digraph D(n, λ/n), are
e−λn and e−2λn, respectively for any fixed λ ≥ 0. So, it appears that conditioning on the
event that the random digraph is acyclic does not affect these expectations for λ ∈ (0, 1],
at least asymptotically. This is, however, not surprising because we know as we see in (1)
that D(n, λ/n) is acyclic with positive probability for λ < 1, and we expect that the random
variables S(D(n, λ/n)) and I(D(n, λ/n)) are concentrated around their expectations. For
λ > 1 these expectations are higher in the random acyclic digraph model. It would be
interesting to know what happens when we allow λ → ∞ as n → ∞. Extending the above
results to such a case seems to be possible but it requires more work; it would certainly be
too long for this extended abstract.

Throughout this paper, we adopt the notations and abbreviations of [14] since most of
the asymptotic analysis that we need to prove Theorem 1 and Theorem 2 are based on the
analytic method developed in that paper. This paper is organised as follows: in Section 2
we present and prove a result of Gessel [4] about a multivariate generating function that
includes the number of sources, sinks, and isolated vertices. Section 3 consists of collections
of asymptotic results from [14] and some of their consequences. The proofs of Theorem 1
and Theorem 2 are presented in Section 4 and Section 5 respectively.

2 Generating functions

We use the so-called graphic generating function for the enumeration of acyclic digraphs. If
we denote by e(D) the number of (directed) edges in a digraph D, then we define

An(y) =
∑
D

ye(D),

where the sum is taken over all acyclic digraphs on [n]. The corresponding graphic generating
function is

A(x, y) =
∞∑

n=0

An(y)xn

n!(1 + y)(
n
2) .

AofA 2022



17:4 Sources and Isolated Vertices in Random DAGs

It turns out that this bivariate generating can be written in the following way:

A(x, y) = 1
ϕ(x, y) , where ϕ(x, y) =

∞∑
n=0

(−x)n

n!(1 + y)(
n
2) , (3)

see [15]. Observe, that for y > 0, the power series in the definition of ϕ(x, y) converges for
x ∈ C. Hence, ϕ(x, y) can be regarded as an entire function of x for any y > 0.

To include counts on the number of sources, sinks, and isolated vertices, we have to define
two related parameters. For an acyclic digraph D, let So(D) and Si(D), respectively, be
the number of sources in D that are not isolated vertices and the number of sinks that are
not isolated vertices. Furthermore, let I(D) be the number of isolated vertices of D. Then,
consider the generating function

An(y, u1, u2, u3) =
∑
D

ye(D)u
So(D)
1 u

Si(D)
2 u

I(D)
3 ,

where the sum is taken over all acyclic digraphs on the vertex set [n]. The corresponding
graphic generating function is given by

A(x, y, u1, u2, u3) =
∞∑

n=0

xn

n!(1 + y)(
n
2) An(y, u1, u2, u3)xn.

If we denote by an,m(k1, k1, k3) the number of acyclic digraphs D on the vertex set [n] with
e(D) = m , So(D) = k1 , Si(D) = k2 and I(D) = k3, then the polynomial An(y, u1, u2, u3)
can be written as follows:

An(y, u1, u2, u3) =
∑

m,k1,k2,k3

an,m(k1, k2, k3)uk1
1 uk2

2 uk3
3 ym. (4)

The next lemma allows us to obtain the joint probability generating function for our
parameters in terms of An(y, u1, u2, u3).

▶ Lemma 3. We have

E
(

u
So(Dac(n,p))
1 u

Si(Dac(n,p))
2 u

I(Dac(n,p))
3

)
=

An

(
p

1−p , u1, u2, u3

)
An

(
p

1−p

) .

The proof of this lemma is straightforward, so we leave it as an exercise to the reader.
We need to express A(x, y, u1, u2, u3) in more a manageable form in order to obtain any

useful estimate of An(y, u1, u2, u3) as n → ∞. Fortunately for us, this was already done by
Gessel in [4]. Since this result is our main ingredient and some part of the proof was omitted
in [4], we give a full proof here for completeness. Before we begin let us state a general
property of graphic generating functions. Given infinite sequences (a(i)

n )n, for i ∈ {1, 2, 3}, if
fi(x) denotes the graphic generating function associated with the sequence (a(i)

n )n, that is

fi(x) =
∞∑

n=0

a
(i)
n

n!(1 + y)(
n
2) xn,

and if cn = n!(1 + y)(
n
2) × [xn]

(
f1(x)f2(x)f3(x)

)
, then the three-term convolution formula is

cn =
∑

j+k+l=n

(1 + y)jk+jl+kl

(
n

k, l, j

)
a

(1)
j a

(2)
k a

(3)
l . (5)
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▶ Lemma 4 (Theorem 2 in Gessel [4]). We have

∞∑
n=0

An(y, u1, u2, u1 + u2 − 1) xn

(1 + y)(
n
2)n!

= ϕ((1 − u1)x, y)ϕ((1 − u2)x, y)
ϕ(x, y) ,

and
∞∑

n=0
An(y, u1, u2, u3)xn

n! = e(u3−u1−u2+1)x
∞∑

n=0
An(y, u1, u2, u1 + u2 − 1)xn

n! .

Proof. Consider the set of quadruples (S1, S2, D, E) where S1 and S2 are disjoint subsets of
[n], D is an acyclic digraph on [n] \ (S1 ∪ S2) and E a set of directed edges consisting only
of edges from S1 to V (D) ∪ S2, or from V (D) to S2. Such a quadruple can be interpreted
as an acyclic digraph where every vertex in S1 is a source, and every vertex in S2 is a sink.
If each quadruple is weighted by y|E|+e(D)u

|S1|
1 u

|S2|
2 , then the total weight over all possible

quadruples is∑
j+k+l=n

(1 + y)jk+jl+kl

(
n

k, l, j

)
uj

1uk
2Al(y).

On the other hand, consider the set of acyclic digraphs D′ on [n] with four distinguished
subsets of [n]: the first is a subset of the strictly sources of D′ (no isolated vertices), a
subset of the strictly sinks, and a pair of disjoint subsets of the isolated vertices. There is a
correspondence between such a set with the set of quadruples (S1, S2, D, E): the subset of
the strictly sources and the first subset of the isolated vertices of D′ form the set S1, while
the subset of the strictly sinks together with the second subset of the isolated vertices form
the set S2, and E is the set edges of D′ that go from S1 to S2, S1 to [n] \ (S1 ∪ S2), or from
[n] \ (S1 ∪ S2) to S2. By taking this correspondence into consideration when calculating the
total weight formula above, we deduce that

An(y, 1 + u1, 1 + u2, 1 + u1 + u2) =
∑

j+k+l=n

(1 + y)jk+jl+kl

(
n

k, l, j

)
uj

1uk
2Al(y).

This is a three-term convolution formula, as defined in (5). Therefore, we deduce that

A(x, y, 1 + u1, 1 + u2, 1 + u1 + u2) = ϕ(−u1x)ϕ(−u2x)A(x, y).

The first equation in the lemma follows by using (3) and by shifting the variables u1 and u2
by −1.

For the second equation, by removing all isolated vertices, each acyclic digraph D on [n]
can be associated with a pair (S, D′) where S is a subset of [n] (the set of isolated vertices of
D) and D′ is an acyclic digraph on [n] \ S which has no isolated vertices. Thus, we obtain

An(y, u1, u2, u3) =
n∑

j=0

(
n

j

)
uj

3An−j(y, u1, u2, 0).

This is the standard two-term convolution formula for the product of two exponential
generating functions. So, we obtain

∞∑
n=0

An(y, u1, u2, u3)xn

n! = eu3x
∞∑

n=0
An(y, u1, u2, 0)xn

n! .

AofA 2022



17:6 Sources and Isolated Vertices in Random DAGs

In particular, we have
∞∑

n=0
An(y, u1, u2, u1 + u2 − 1)xn

n! = e(u1+u2−1)x
∞∑

n=0
An(y, u1, u2, 0)xn

n! .

Eliminating the series involving An(y, u1, u2, 0) gives the formula in the lemma. ◀

3 Asymptotic analysis

The results in this section are mainly drawn from [14] or are consequences of the results
in [14]. So, let us first summarise the notations and abbreviations that we used in [14].
Throughout, y is a positive number that tends to zero as n → ∞. In our case, in view of
Lemma 3, y = p/(1 − p) where p = λ/n. Moreover, it is convenient to use the abbreviation
α = log(1 + y) and β =

√
1 + y. So, y ∼ α as n → ∞. In particular, α → 0+ as n → ∞.

In addition, for a complex number x, we define w = w(x) = W0(−xαβ), where W0 is
the principal branch of the Lambert W function. It is useful to keep these notations and
abbreviations in mind when reading the rest of this paper.

3.1 Estimates of ϕ(x, y)
We begin by providing asymptotic estimates for ϕ(x, y) where y → 0+ and x is complex. We
obtain the next lemma with a minor modification of a similar result in [14], the reader can
also consult [3] which contains more details.

▶ Lemma 5. The function ϕ(x, y) satisfies the following asymptotic formulas as y → 0+,
both estimates are uniform in x:

If x = o(α−1), then

ϕ(x, y) ∼ e
1

2α (w2+2w). (6)

If x = O(α−1) and w = w(x) is bounded away from −1, then

ϕ(x, y) ∼ 25/6π1/2w−1/3α−1/6Ai(R)e 2
3 R3/2+ 1

2α (w2+2w), (7)

where R = 2−2/3(1 + w)2w−4/3α−2/3, and Ai(z) is the Airy function.

3.2 Coefficient extraction
We are going to need estimates of Am(y) for a certain range of values of m close to n. For
our purposes, it suffices to consider m to be of the form n + o(n2/3). By the Cauchy integral
formula, we have

Am(y)
m!(1 + y)(

m
2 ) = 1

2πi

∮
|x|=ρ

1
ϕ(x, y)xm+1 dx. (8)

The value of ρ > 0 will be chosen depending on the sign of λ − 1.

▶ Lemma 6. Let λ be a fixed value in the interval (0, 1). If m = n+O(n2/3−ϵ) for a constant
ϵ > 0, then as n → ∞,

Am(y) ∼ m!(1 + y)(
m
2 ) 1 − αm√

2πm
ρ−me− 1

2α (α2m2−2αm),

where ρ = m
β e−αm.
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Proof. With the abbreviation w(x) = W0(−xαβ), let

h(t) = − 1
2α

(
w2(ρeit) + 2w(ρeit)

)
.

Hence, if αρ is bounded away from e−1, then by the second part of Lemma 5, the Equation (8)
yields

Am(y)
m!(1 + y)(

m
2 ) = (1 + o(1))ρ−m

∫ π

−π

P (α, w(ρeit))eh(t)−imt dt,

where P (α, w(ρeit)) = 2−11/6π−3/2w1/3α1/6Ai(R)−1e− 2
3 R3/2 and R = 2−2/3(1 +

w)2w−4/3α−2/3. Since, in our case ρ = O(ne−λ), w(ρeit) is bounded away from −1. Hence,
|R| → ∞ as α → 0+ for t ∈ [−π, π]. Recall the following well known asymptotic formula for
the Airy function: for any ε > 0,

Ai(z) ∼ e− 2
3 z3/2

2
√

πz1/4 as |z| → ∞, and |Arg(z)| ≤ π − ε, (9)

see [13, (9.7.5)]. We can prove from this that P (α, w(ρeit)) is bounded uniformly for
t ∈ [−π, π]. In fact, skipping the details, the estimate of P (α, w(ρeit)) simplifies to

P (α, w(ρeit)) ∼ 1
2π

(1 + w(ρeit))1/2,

uniformly for t ∈ [−π, π].
In order to apply the saddle point method, we need to evaluate the first few derivatives

of h. We have

h′(t) = − i

α
w(ρet), h′′(t) = 1

α

w(ρet)
1 + w(ρet) , and h(3)(t) = i

α

w(ρet)
(1 + w(ρet))3 .

The saddle point equation is h′(0)−im = 0 which is equivalent to w(ρ) = −αm or ρ = m
β e−αm.

Moreover, h′′(0) = −m
1−αm which is of order α−1 under our assumptions, and h(3)(t) = O(α−1).

The standard saddle point method applies in this case: the integral on the right-hand side of
is divided into two parts∫ αc

−α−c

P (α, w(ρeit))eh(t)−imt dt +
∫

|t|≥αc

P (α, w(ρeit))eh(t)−imtdt

where c is a fixed number in the interval (1/3, 1/2). When we apply the saddle point method,
we call the first integral the local integral and the rest the tail. By Taylor expanding h(t)−imt

and P (α, w(ρeit)) for |t| ≤ αc, we deduce the following estimate for the local integral:∫ αc

−α−c

P (α, w(ρeit))eh(t)−imt dt = (1 + o(1))P (α, w(ρ))eh(0)
∫ αc

−α−c

e
1
2 h′′(0)t2

dt. (10)

The integral on the right-hand side can be approximated by a Gaussian integral, by extending
its range to (−∞, ∞), with an error term smaller than any power of α. Hence, we deduce
that∫ αc

−α−c

P (α, w(ρeit))eh(t)−imt dt = (1 + o(1))P (α, w(ρ))eh(0)

√
2π

−h′′(0) .

AofA 2022



17:8 Sources and Isolated Vertices in Random DAGs

On the other hand, it is not difficult to show that Re(h(t) − h(0)) is negative for
αc ≤ |t| ≤ π (for small enough α). In fact, we can show that there exists a positive constant
C > 0 (independent of α and t) such that Re(h(t) − h(0)) ≤ −Cα2c−1 for αc ≤ |t| ≤ π. This
is enough to prove that the tail integral is much smaller than the local integral, and therefore,
it can be neglected. Thus, we we obtain

Am(y)
m!(1 + y)(

m
2 ) ∼ P (α, w(ρ))eh(0)

√
2π

−h′′(0) .

Expressing everything in terms of m gives us the estimate in the statement of the lemma. ◀

Next, we consider the critical case.

▶ Lemma 7. If λ = 1 and m = n + O(n2/3−ϵ) for some constant ϵ > 0, then as n → ∞ we
have

Am(y) ∼ m!(1 + y)(
m
2 ) α2/3Ai(0)

2πϕ(ρ, y)ρm

∫ ∞

−∞

1
Ai(−21/3it)

dt,

where ρ = 1
eαβ .

Proof. This is a direct application of [14, Lemma 9, Eq. (27)]. Since p = 1
n , y = p

1−p and
α = log(1 + y). We can show that if m = n + O(n2/3−ϵ), then m = α−1 + o(α−2/3). So, [14,
Lemma 9, Eq. (27)] applies with b = 0. ◀

Finally, for the super-critical case, we have the following result:

▶ Lemma 8. If λ > 1 and m = n + O(n2/3−ϵ) for some constant ϵ > 0 then as n → ∞ we
have

Am(y) = −m!(1 + y)(
m
2 ) 1

ϱ1(y)m+1ϕx(ϱ1(y), y) + O

(
α2/3

|ϕ(ρ, y)|ρm

)
.

where ϱ1(y) is the smallest x-solution of the equation ϕ(x, y) = 0, ϕx(ϱ1(y), y) is
∂xϕ(x, y)|x=ϱ1(y), and ρ is of the form

ρ = 1
e

y−1 − b

21/3e
y−1/3.

The constant b can be any fixed number in the interval (a2, a1), where aj is the zero of the
Airy function Ai(z) that is j-th closest to 0.

Proof. Once again m is of the form m = α−1 + o(α−2/3), so the argument in [14, Sec. 3.2.3]
remains valid. Recall from [14, Theorem 1] that the j-th zero of ϕ(x, y) satisfies the asymptotic
formula

ϱj(y) = 1
e

y−1 − aj

21/3e
y−1/3 − 1

6e
+ O(y1/3), as y → 0+, (11)

where aj is the zero of the Airy function Ai(z) that is j-th closest to 0. So, the choice of ρ

guarantees that the circle |x| = ρ contains only one pole of A(x, y). ◀

4 The number of sources

We are now ready to prove Theorem 1. This section consists entirely of the proof of Theorem 1.
We shall begin with the estimate of the average.
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4.1 Estimate of the average
When considering the number of sources, the corresponding generating function is
A(x, y, u, 1, u), where the variable u indicates the number of sources. By Lemma 4,

A(x, y, u, 1, u) = ϕ((1 − u)x, y)
ϕ(x, y) .

Differentiating this once with respect to u, yields

∂uA(x, y, u, 1, u)|u=1 = x

ϕ(x, y) = xA(x, y).

Using the formula in Lemma 3, the coefficient of xn in ∂uA(x, y, u, 1, u)|u=1 is

∂uAn(y, u, 1, u)|u=1

n!(1 + y)(
n
2) = E(S(Dac(n, p)))An(y).

We know that the coefficient [xn](xA(x, y)) = An−1(y)

n!(1+y)(
n
2) . Hence, we obtain the following

exact formula for E(S(Dac(n, p))):

E(S(Dac(n, p))) = n(1 + y)n−1 An−1(y)
An(y) . (12)

This formula has a simple combinatorial explanation; the term (1 + y)n−1An−1(y) is the
generating function for the acyclic digraphs on [n] with one marked source. Lemmas 6–8
can then be used to estimate An−1(y) and An(y) for y = p

1−p = λ
n−λ , and the estimate of

E(S(Dac(n, p))) in Theorem 1 follows easily. The calculations were done in SageMath [17].

4.2 Asymptotic normality
For the rest of this section we shall slightly abuse notation and simply abbreviate An(y, u, 1, u)
by An(y, u). This should not create confusion as this notation does not appear anywhere
else in the paper. To prove the central limit theorem, we need to estimate An(y, u) when u

is a complex number of the form 1 + O(n−1/2). It is convenient to write v = u − 1. So, by
definition, we have

An(y, u)
n!(1 + y)(

n
2) = 1

2πi

∮
|x|=ρ

ϕ(−vx, y)
ϕ(x, y)xm+1 dx.

We can then apply the saddle point method to estimate the integral on the right-hand side
just as we did in Section 3 but with the extra term ϕ(−vx, y) in the integrand. Again the
three cases λ < 1, λ = 1, and λ > 1 must be separated. The result is given in the next
lemma.

▶ Lemma 9. We have

An(y, u)
An(y) ∼ eg(n,λ,v) as n → ∞

uniformly v = O(n−1/2), where

g(n, λ, v) =

ne−λ(v − 1
2 e−λv2) if λ < 1

n
eλ (v − 1

2e v2) if λ ≥ 1.
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Proof (Sketch). We sketch a proof which relies heavily on methods in [14]. However, the
approach is very similar to the estimate of the integral in Equation (8). We will be using
the same choices of ρ as in Subsection 3.2, depending on the sign of λ − 1. Hence, in all the
cases, if x = vρeit where t ∈ [−π, π], then w(−vx) = W0(vαβ) = o(1) for v = O(

√
α). Thus,

we may use (6) of Lemma 5 to estimate ϕ(−vx, y). By Taylor approximation

w(−vρeit)2 + 2w(−vρeit) = 2αvρβeit − v2α2βρ2e2it + O(α3/2).

Recalling that β = eα/2, we can substitute β in the above estimate by 1 + O(α). Therefore,
we obtain the following estimate of ϕ(−vx, y):

ϕ(−vx, y) ∼ evρeit− 1
2 v2αρ2e2it

(13)

uniformly v = O(
√

α). Noting that the second term in the exponent is a bounded term, it
does not have much effect on the application of the method. However, the first term does
affect the local integrals. Skipping the details, the results are summarised as follows:

For λ < 1 we choose ρ = n
β e−αn. When calculating the local integral in the current case,

instead of the Gaussian integral (10), we have

P (α, w(ρ))evρ− 1
2 v2αρ2

eh(0)
∫ αc

−αc

evρit+ 1
2 h′′(0)t2

dt,

where P and h are as defined in the proof of Lemma 6. The range of the integral can be
extended to (−∞, ∞) with an error term smaller than any power of α. This leads to

An(y, u) ∼ An(y)evρ− 1
2 v2ρ2 α

λ .

For λ = 1, we choose ρ = 1
eαβ . The estimate of the integral is based on [14, Lemma 9,

Eq. (27)]. There, the length of the range of the local integral is much shorter, O(αc),
where c ∈ (1/2, 2/3). For t in that range, the estimate in (13) simplifies further to

ϕ(−vρeit, y) ∼ evρ− 1
2 v2αρ2

.

Therefore, we get

An(y, u) ∼ An(y)evρ− 1
2 v2αρ2

For λ > 1 we choose ρ = 1
e y−1 − b

21/3e
y−1/3 exactly as in Lemma 8. The Cauchy integral

formula is used to obtain the main term, and [14, Lemma 9] to estimate the error. We get

An(y, u) ∼ An(y)evϱ1(y)− 1
2 v2αϱ1(y)2

Expressing everything in terms n and v gives the estimate in the lemma. ◀

The central limit theorem in Theorem 1 follows directly from Lemma 9 using Hwang’s
quasi-power theorem [5].

5 The number of isolated vertices

5.1 Estimate of the average
The generating function in this case is A(x, y, 1, 1, u), i.e., the variable u indicates the number
of isolated vertices. Let us abbreviate An(y, 1, 1, u) by A∗

n(y, u). Hence, we have
∞∑

n=0
A∗

n(y, u)xn

n! = e(u−1)x
∞∑

n=0
An(y)xn

n! (14)
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Differentiating once with respect to u and substituting u = 1, we get ∂uA∗
n(y, u)|u=1 =

nAn−1(y). Therefore, we get

E(I(Dac(n, p))) = n
An−1(y)
An(y) .

Comparing the latter with the expression of E(S(Dac(n, p))) that we obtained in the previous
section, we see that the only difference is the term (1+y)n−1. The combinatorial interpretation
is that the term An−1(y) is the generating function for the acyclic digraphs on [n] with one
marked isolated vertex. The estimate of the mean in Theorem 2 follows from easily the above
formula.

5.2 Asymptotic normality
We estimate the quotient A∗

n(y,u)
An(y) when u is a complex number of the form 1 + O(n−1/2).

Again, we write v = u − 1. We begin with the follow observation:

▶ Lemma 10. Let a ̸= 0 be a fixed real constant, then the following estimate holds uniformly
for v = O(n−1/2) as n → ∞:

(1 − avµ∗(λ))−n/a ∼
∑

0≤j<n3/5

(
n

j

)
(vµ∗(λ))je(a+1) j2

2n , (15)

and

envµ∗(λ) ∼
∑

0≤j<n3/5

(
n

j

)
(vµ∗(λ))je

j2
2n .

Proof. First we take the binomial expansion of the term on the left-hand side of (15), we
obtain

(1 − avµ∗(λ))−n/a =
∞∑

j=0

(
− n

a

j

)
(−a)j(vµ∗(λ))j . (16)

Then, we simplify the summand of the above series as follows:(
− n

a

j

)
(−a)j = n(n + a)(n + 2a) · · · (n + a(j − 1))

j!

=
(

n

j

) (1 + a
n )(1 + 2a

n ) · · · (1 + (j−1)a
n )

(1 − 1
n )(1 − 2

n ) · · · (1 − (j−1)
n )

=
(

n

j

)
e(a+1) j2

2n +O( j
n ).

Thus, the series on the right-hand side of (16) is asymptotically equal to∑
0≤j<n3/5

(
n

j

)
(vµ∗(λ))je(a+1) j2

2n +
∑

j≥n3/5

(
− n

a

j

)
(−a)j(vµ∗(λ))j .

We need to show that the contribution from the second term is significantly smaller. To that
end, observe that

(1 − avµ∗(λ))−n/a = evµ∗(λ)n+O(1),

AofA 2022
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for v = O(n−1/2), which gives us the order magnitude of the main term. On the other hand,
the bound v = O(n−1/2) and the Stirling’s formula yield

∑
j≥n3/5

(
− n

a

j

)
(−a)j(vµ∗(λ))j = O

(
e−( 1

10 +o(1))n3/5 log(n)
)

which is asymptotically much smaller than the main term (1 − avµ∗(λ))−n/a.
The second estimate is done in a similar manner. Notice that(

n

j

)
(vµ∗(λ))je

j2
2n = (1 + o(1)) (nvµ∗(λ))j

j!

uniformly for j < n3/5. Summing over j < n3/5 and using the truncation argument above
completes the proof of the lemma. ◀

▶ Lemma 11. We have

A∗
n(y, u)
An(y) = (1 + o(1))eµ∗(λ)vn+ 1

2 a(λ)µ∗(λ)2v2n,

as n → ∞, uniformly for v = O(n−1/2), where

a(λ) =
{

2λ − 1 if λ < 1
λ if λ ≥ 1.

Proof. If we extract the coefficient of xn from the left and right sides of Equation (14) and
dividing both by An(y), we obtain

A∗
n(y, u)
An(y) =

n∑
j=0

(
n

j

)
vj An−j(y)

An(y) .

It is easy to show that An−j(y) ≤ An(y) for y ≥ 0 from that fact that any acyclic digraph
on n − j vertices can be extended to an acyclic digraph on n vertices with same number of
edges by simply adding j isolated vertices. This implies that the quotient An−j(y)

An(y) is bounded
above by 1, and the same argument we used in the proof of the previous lemma yields

A∗
n(y, u)
An(y) ∼

∑
0≤j<n3/5

(
n

j

)
vj An−j(y)

An(y) ,

as n → ∞ uniformly for v = O(n−1/2). By making use of Lemmas 6–8, we obtain

An−j(y)
An(y) = (1 + o(1))µ∗(λ)j ×

eλj2/n if λ < 1

e
1
2 (λ+1)j2/n if λ ≥ 1

uniformly for 0 ≤ j ≤ n3/5. Putting two latter estimates together and applying Lemma 10
for the appropriate values of a complete the proof the lemma. ◀

The central limit theorem in Theorem 2 follows easily from Lemma 11.
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6 Conclusion

We consider a random DAG model Dac(n, p) on the vertex set [n] = {1, 2, . . . , n} which
naturally generalises the uniform random DAG model on [n]. We established that if p is of
the form λ/n, where λ > 0 is fixed, then the number of sources, sinks and isolated vertices
are all asymptotically normal with means proportional to n. For further investigation, it
would be interesting to know the typical shape of such a random DAG. We could look at the
distribution of the height, which was considered by McKay [12] for the case p = 1

2 . We expect
the height to be much smaller than n for p = λ/n, but it seems that even an estimate of
the expectation of this parameter would require a significant amount of work. Alternatively,
we could also investigate the number of vertices at a given level (the level of a vertex v in a
DAG is the length of the longest directed path from a source to v). McKay also considered
this parameter for p = 1

2 in [12]. The case where p is tending to zero seems to be more
challenging. It is not even clear if the graphic generating functions for these parameters can
be written in forms that we can analyse. Hence, these problems are left for future work.
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