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Abstract
We study the fragmentation process obtained by deleting randomly chosen edges from a critical
Galton-Watson tree tn conditioned on having n vertices, whose offspring distribution belongs to the
domain of attraction of a stable law of index α ∈ (1, 2]. This fragmentation process is analogous to
that introduced in the works of Aldous, Evans and Pitman (1998), who considered the case of Cayley
trees. Our main result establishes that, after rescaling, the fragmentation process of tn converges as
n → ∞ to the fragmentation process obtained by cutting-down proportional to the length on the
skeleton of an α-stable Lévy tree of index α ∈ (1, 2]. We further establish that the latter can be
constructed by considering the partitions of the unit interval induced by the normalized α-stable
Lévy excursion with a deterministic drift studied by Miermont (2001). In particular, this extends
the result of Bertoin (2000) on the fragmentation process of the Brownian CRT.
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1 Introduction and main results

Aldous, Evans and Pitman [3, 19, 28] (see also [13, 24]) considered a fragmentation process
of a uniform random tree tn on n ∈ N labelled vertices (or Cayley tree with n vertices)
by deleting the edges of tn one by one in uniform random order. More precisely, as time
passes, the deletion of edges creates more and more subtrees of tn (connected components)
such that the evolution of the ranked vector of sizes (number of vertices) of these subtrees
(in decreasing order) evolves as a fragmentation process. It turns out that the asymptotic
behavior of this fragmentation process, in reverse time, is related to the so-called standard
additive coalescent [3, 19]. Moreover, this leads to a continuous representation of the standard
additive coalescent in terms of the time-reversal of an analogue fragmentation process of
the Brownian continuum random tree (Brownian CRT). Evans and Pitman [19, Theorem 2]
showed that an additive coalescent is a Feller Markov process with values in the infinite
ordered set

S :=
{

x = (x1, x2, . . . ) : x1 ≥ x2 ≥ · · · ≥ 0 and
∞∑

i=1
xi < ∞

}
,
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3:2 Fragmentation Processes Derived from Conditioned Stable Galton-Watson Trees

endowed with the ℓ1-norm, ∥x∥1 =
∑∞

i=1 |xi| for x ∈ S, whose evolution is described formally
by: given that the current state is x, two terms xi and xj , i < j, of x are chosen and merged
into a single term xi + xj (which implies some reordering of the resulting sequence) at rate
equal to xi + xj .

In this extended abstract, we study the situation where one wants to cut-down critical
Galton–Watson trees conditioned on having a fixed number of vertices, but whose offspring
distribution belongs to the domain of attraction of a stable law. More precisely, consider
a critical offspring distribution µ = (µ(k), k ≥ 0), i.e., a probability distribution on the
nonnegative integers satisfying

∑∞
k=0 kµ(k) = 1. In addition, we always implicitly assume

that µ(0) > 0 and µ(0) + µ(1) < 1 to avoid degenerate cases, and that µ is aperiodic1. We
say that µ belongs to the domain of attraction of a stable law of index α ∈ (1, 2] if either
the variance of µ is finite, or if µ([k, ∞)) = k−αL(k) as k → ∞, where L : R+ → R+ is a
function such that L(x) > 0 for x ∈ R+ large enough and limx→∞ L(tx)/L(x) = 1 for all
t > 0 (such function is called slowly varying function). In other terms, if (Yi)i≥1 is a sequence
of i.i.d. random variables with distribution µ, then there exists a sequence of positive real
numbers (Bn)n≥1 such that

Bn → ∞ and Y1 + Y2 + · · · + Yn − n

Bn

d−→ Yα, in distribution as n → ∞ (1)

where the Laplace exponent of Yα is given by E[exp(−λYα)] = exp(−λα) whenever α ∈ (1, 2),
and E[exp(−λY2)] = exp(−λ2/2) if α = 2, for every λ > 0 ([20, Section XVII.5] guarantees
its existence). In particular, for α = 2, we have that Y2 is distributed as a standard Gaussian
random variable. The factor Bn is of order n1/α (more precisely, Bn/n1/α is a slowly varying
function), and one may take Bn = σn1/2 when µ has finite variance σ2.

We henceforth let tn denote a critical Galton-Watson tree whose offspring distribution
µ belongs to the domain of attraction of a stable law of index α ∈ (1, 2] and refer to it as
an α-stable GW-tree, for simplicity. Following Aldous, Evans and Pitman [3, 19], we are
interested in the evolution of the ranked vector of sizes (in decreasing order) of the subtrees
created by deleting randomly chosen edges from tn. Indeed, we will consider a continuous-
time version of this cutting-down process. Equip each of the edges of tn with i.i.d. uniform
random variables (or weights) on [0, 1] and independently of the tree tn. For u ∈ [0, 1], we
then keep the edges of tn with weight smaller than u and discard the others. Therefore, one
obtains a (fragmentation) forest fn(u) conformed by the connected components (or subtrees
of tn) created by the above procedure. In particular, the forest fn(u) has the same set of
vertices as tn but clearly it has a different set of edges. Let Fn = (Fn(u), u ∈ [0, 1]) be the
process given by

Fn(u) = (Fn,1(1 − u), Fn,2(1 − u), . . . ), for u ∈ [0, 1],

the sequence of sizes (number of vertices) of the connected components of the forest fn(1 − u),
ranked in decreasing order. We have strategically viewed the sequence of sizes of the
components of fn(1 − u) as an infinite sequence, by completing with an infinite number
of zero terms. Plainly as time passes more and more subtrees are created, and thus, the
process Fn evolves as a fragmentation process. Note also that Fn(0) = (n, 0, 0, . . . ) and that
Fn(1) = (1, 1, . . . , 1, 0, 0, . . . ) where the first n terms Fn(1) are ones and the remaining terms
are zeros. Since we are interested in studying the asymptotic behaviour of Fn, we consider
the (rescaled in time and space) fragmentation process F(α)

n = (F(α)
n (t), t ≥ 0) given by

F(α)
n (t) = 1

n
Fn

(
Bn

n
t

)
, for 0 ≤ t ≤ n/Bn, and F(α)

n (t) = 1
n

Fn(1) for t > n/Bn, (2)

1 In the sense that the additive subgroup of the integers Z spanned by {i ≥ 0 : µ(i) ̸= 0} is Z.
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where (Bn)n≥1 is a sequence satisfying (1). The process F(α)
n takes values on the set S.

The aim of this extended abstract is to establish a convergence result for the fragmentation
process F(α)

n . To state the precise statement (Theorem 1), it will be convenient to first
introduce the limiting object.

Bertoin [6] showed that the fragmentation process of the Brownian CRT in [3] can be
constructed by considering the partitions of the unit interval induced by a standard Brownian
excursion with drift. This latter is sometimes called the Brownian fragmentation. In a similar
vein, Miermont [25] built other fragmentation processes from Lévy processes with no positive
jumps. Specifically, let Xexc

α = (Xexc
α (s), s ∈ [0, 1]) be the normalized excursion (with unit

length) of an α-stable spectrally positive Lévy process of index α ∈ (1, 2]; see e.g., [5]. In
particular, Xexc

2 is the normalized standard Brownian excursion. For every t ≥ 0, define the
processes Y

(t)
α = (Y (t)

α (s), s ∈ [0, 1]) and I
(t)
α = (I(t)

α (s), s ∈ [0, 1]) by letting

Y (t)
α (s) = Xexc

α (s) − ts and I(t)
α (s) = inf

u∈[0,s]
Y (t)

α (u), for s ∈ [0, 1]. (3)

For t ≥ 0, we introduce

F(α)(t) = (F (α)
1 (t), F

(α)
2 (t), . . . ) (4)

as the random element of S defined by the ranked sequence (in decreasing order) of the
lengths of the intervals components of the complement of the support of the Stieltjes measure
d(−I

(t)
α ); note that s 7→ −I

(t)
α (s) = supu∈[0,s] −Y

(t)
α (u) is an increasing process. More

precisely, the support of d(−I
(t)
α ) is defined as the set of times when the process Y

(t)
α reaches

a new infimum. On the other hand, it can be shown that the support of d(−I
(t)
α ) coincides

with the so-called ladder time set of −Y
(t)

α which is given by the closure of the set of times
when Y

(t)
α is equal to its infimum, i.e.,

Lα(t) :=
{

s ∈ [0, 1] : Y
(t)

α (s) = I
(t)
α (s)

}
;

see e.g., [5, Proposition 1, Chapter VI] and the discussion after that. Then F(α)(t) is the
lengths of the open intervals in the canonical decomposition of [0, 1] \ Lα(t) arranged in the
decreasing order. It is well-known that Lα(t) is a.s. a random closed set with zero Lebesgue
measure which implies that F(α)(t) ∈ S1 a.s., where S1 ⊂ S is the space of the elements of
S with sum 1; see [5, Corollary 5, Chapter VII]. Observe that for every fixed 0 ≤ t < t′,
the process s 7→ Y

(t)
α (s) − Y

(t′)
α (s) = (t′ − t)s is monotone increasing which entails that

Lα(t) ⊆ Lα(t′). Then the partition of [0, 1] induced by Lα(t′) is finer than that induced
by Lα(t). As a consequence, it has been shown by Miermont [25, Proposition 2] (see also
[6, Theorem 1] for α = 2) that F(α) = (F(α)(t), t ≥ 0) is a fragmentation process issued
from F(α)(0) = (1, 0, 0, . . . ). A precise description of its transition kernel is given in [25,
Definition 4]. From now on, we will refer to F(α) as the α-stable fragmentation of index
α ∈ (1, 2].

We are now able to state our first main result. Let D(I,M) be the space of càdlàg
functions from an interval I ⊆ R to the separable, complete metric space (M, d) equipped
with the Skorohod topology; (see e.g. [12, Chapter 3] or [21, Chapter VI] for details on this
space). We write d−→ to denote convergence in distribution.

▶ Theorem 1. Let tn be an α-stable GW-tree of index α ∈ (1, 2]. Then, we have that

(F(α)
n (t), t ≥ 0) d−→ (F(α)(t), t ≥ 0), as n → ∞, in the space D(R+,S).

AofA 2022



3:4 Fragmentation Processes Derived from Conditioned Stable Galton-Watson Trees

As mentioned earlier, F(2) is exactly the Brownian fragmentation studied by Bertoin [6],
that is to say, it corresponds to the fragmentation process derived from the Brownian CRT
of Aldous and Pitman [3]; see also [1]. In view of this, the second goal of this paper is to
show that indeed F(α) is the fragmentation process obtained by cutting-down the “edges” of
the α-stable Lévy tree.

The α-stable Lévy tree of index α ∈ (1, 2] is the continuum random tree analogue of
(discrete) α-stable GW-trees. They were introduced by Duquesne and Le Gall [18], and in
particular, they also appear as scaling limits of α-stable GW-trees. In brief, the α-stable Lévy
tree Tα = (Tα, dα, ρα) is a random compact metric space (Tα, dα) with one distinguished
element ρ ∈ Tα called the root such that (Tα, dα) is a tree-like space in that for v, w ∈ Tα,
there is a unique non-self-crossing path [v, w] from v to w in Tα, whose length equals dα(v, w).
The leaves Lf(Tα) of Tα are those points that do not belong to the interior of any path leading
from one point to another, and the skeleton of the tree is the set Sk(Tα) = Tα \ Lf(Tα) of
non-leaf points. The α-stable Lévy tree Tα is naturally endowed with a uniform probability
measure µα (the mass measure) that is supported on Lf(Tα), and a unique σ-finite measure
λα (the length measure) carried by Sk(Tα) that assigns measure d(v, w) to the geodesic path
between v and w in Tα.

Following Aldous-Pitman’s fragmentation [3] of the Brownian CRT, the analogue of
deleting randomly chosen edges in tn is to cut the skeleton of Tα by a Poisson point process
of cuts with intensity dt ⊗ λα(dv) on [0, ∞) × Tα. For all t ≥ 0, define an equivalence relation
∼t on Tα by saying that v ∼t w, for v, w ∈ Tα, if and only if, no atom of the Poisson process
that has appeared before time t belongs to the path [v, w]. These cuts split the α-stable Lévy
tree into a (continuum) forest, that is a countably infinite set of smaller subtrees (connected
components) of Tα. Let T (t)

α,1, T (t)
α,2, . . . be the distinct equivalence classes for ∼t (connected

components of Tα), ranked according to the decreasing order of their µα-masses. The subtrees
(T (t)

α,i , i ≥ 1) are nested as t varies, that is, for every 0 ≤ t < t′ and i ≥ 1, there exits j ≥ 1
such that T (t′)

α,i ⊂ T (t)
α,j . Let FTα = (FTα(t), t ≥ 0) be the process given by

FTα
(t) = (µα(T (t)

α,1), µα(T (t)
α,2), . . . ), t ≥ 0,

where FTα(0) = (1, 0, 0, . . . ). Indeed, FTα is a fragmentation process in the sense that FTα(t′)
is obtained by splitting at random the elements of FTα

(t), for 0 ≤ t < t′. We call FTα
the

fragmentation process of the α-stable Lévy tree. In particular, FT2 is the fragmentation
process of the Brownian CRT introduced in [3, Section 2.2]. Note that FTα

takes values in S,
and that [11, Lemma 7] shows that FTα

(t) ∈ S1 a.s., for every t ≥ 0. We can now state our
second main result.

▶ Proposition 2. We have that (F(α)(t), t ≥ 0) d= (FTα
(t), t ≥ 0), where d= means equal in

distribution (in the sense of finite-dimensional distributions).

Theorem 3 in [3] shows that the time-reversed fragmentation process of the Brownian
CRT, i.e. (FT2(e−t), t ∈ R), is a version of the standard additive coalescent providing an
explicit construction of this last process. In general, Miermont [25, Section 6] has shown
that the time-reversed α-stable fragmentation process, i.e. (F(α)(e−t), t ∈ R), is an eternal
additive coalescent as described by Evans and Pitman [19]. More precisely, it is a mixing of
so-called extremal coalescents of Aldous and Pitman [4] (see also [7]) which exact law is given
in [25, Proposition 3]. Thus, Proposition 2 implies that this eternal additive coalescent can
also be constructed from the α-stable Lévy tree by Poisson splitting along its skeleton. On the
other hand, Theorem 1 and Proposition 2 clearly generalize Bertoin’s work [6] and moreover,
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complete Miermont’s [25] one by identifying the distribution of the α-stable fragmentation
with that of the fragmentation process of the α-stable Lévy tree. In particular, Bertoin [8]
proved that F(2) (or equivalently, FT2) is a so-called self-simlar fragmentation process of
index 1/2. However, Miermont [26] has already pointed out that F(α) (and therefore FTα),
for α ∈ (1, 2), is not a self-similar fragmentation due to the existence of points in Tα with
infinite degree.

The proof of Theorem 1 uses some of the ideas developed in [13] where only the case
of Cayley tree was treated. However, in our more general framework, there are technical
challenges that do not appear in [13], mostly due to the lack of some properties that only
the Cayley tree satisfies. Informally, we use the so-called Prim’s algorithm [29] to obtain a
consistent ordering on the vertices of the forest created by deleting randomly chosen edges
from tn that we refer to as the Prim order; see Section 3. This will allow us to precisely
encode this forest (and in particular, the sizes of connected components) using a discrete
analogue of the process Y

(t)
α defined in (3) that we refer to as the Prim path. We then

show that this (properly rescaled) Prim path indeed converges to its continuous version.
Finally, we use a general approach developed in the complete version [11, Section 6] for the
convergence of fragmentation processes encoded by functions in D([0, 1],R) to conclude our
proof.

The proof of Proposition 2 follows along the lines of that of Theorem 3 in [3] for the
Brownian CRT (see also the proof of Proposition 13 in [4]). Informally, one uses the
convergence of rescaled α-stable GW-trees toward the α-stable Lévy tree Tα in order to
approximate the fragmentation process of Tα. The detailed proof of Proposition 2 is given in
the complete version [11].

The rest of the manuscript is organized as follows. In Section 2, we discuss some
connections with some combinatorial and probabilistic models: additive coalescents, parking
schemes, laminations and Bernoulli bond-percolation. Section 3 is devoted to the introduction
of Galton-Watson trees as well as the formal definition of the exploration process (the Prim
path) associated with the fragmentation forest. Finally, in Section 4 and 5, we provide a fair
enough guideline of the proof of Theorem 1.

2 Further remarks

In this section, we highlight some connections with previous works.

Additive coalescents

A Cayley tree of size n can be viewed as a Galton-Watson tree with Poissonian offspring
distribution of parameter 1 and conditioned to have n vertices, where the labels are assigned
to the vertices uniformly at random. In particular, Aldous, Evans and Pitman fragmentation
process [3, 19, 28], say F+

n = (F+
n (t), t ≥ 0), corresponds precisely to F(α)

n in (2), with
α = 2 and Bn = n1/2. The fragmentation process F+

n leads to a representation of an
additive coalescent by an appropriate time reversal, that is, the exponential time-change
t → e−t. Specifically, (F+

n (e−t), t ≥ −(1/2) ln n) is an additive coalescent starting at time
−(1/2) ln n from the state (1/n, 1/n, . . . , 1/n, 0, 0, . . . ) ∈ S. Evans and Pitman [19] (see also
[3, Proposition 2]) showed that this time-reversed version of F+

n converges in distribution to
the standard additive coalescent, i.e., (FT2(e−t), t ∈ R).

Aldous and Pitman [4] (see also [19, Construction 5]) also studied the fragmentation
process derived by cutting-down birthday trees. They are a family of trees that generalizes
the Cayley tree in allowing “weights” on the vertices. Aldous and Pitman showed that this

AofA 2022



3:6 Fragmentation Processes Derived from Conditioned Stable Galton-Watson Trees

fragmentation process, suitable rescaled, converges to the fragmentation process associated
to the continuum counterpart of birthday trees, the inhomogeneous continuum random trees
(ICRT). Moreover, the time-reversed version of the fragmentation process of the ICRT can
be viewed as version of an eternal additive coalescent. On the other hand, Bertoin [7] has
proved that the fragmentation process of the ICRT can also be constructed by considering
the partitions of the unit interval induced by certain bridges with exchangeable increments.

Parking schemes

Chassaing and Louchard [14] provided another representation of the standard additive
coalescent as parking schemes related to the Knuth’s parking problem; see also [15, 24].
Bertoin and Miermont [10] extended the work [14] and relate the Knuth’s parking problem
for caravans to different versions of eternal additive coalescent. On the other hand, the
Knuth’s parking problem bear some similarities with the dynamics of an aggregating server
studied by Bertoin [7].

Lamination process

In [30], Thévenin has provided a geometric representation of the fragmentation process FTα

by introducing a new lamination-valued process. In particular, Theorem 1.1 in [30] combined
with Proposition 1 allows us to deduce the exact distribution of the ranked sequence (in
decreasing order) of the masses of the faces of this lamination-valued process.

Bernoulli bond-percolation

Bernoulli bond-percolation on finite connected graphs is perhaps the simplest example of
a percolation model. In this model, each edge in the connected graph is removed with
probability 1 − p ∈ (0, 1), and it is kept with probability p, independently of the other edges.
This induces a partition of the set of vertices of the graph into connected components usually
referred to as clusters. It should be intuitively clear that there is a link between Bernoulli
bond-percolation on α-stable GW-trees and their associated fragmentation processes. More
precisely, let tn be an α-stable GW-tree. For u ∈ [0, 1], recall that the continuous-time
cutting-down procedure of tn described in the introduction results in a random forest of
connected components. Indeed, the probability that a given edge of tn has not yet been
removed at time u is exactly u. Thus, the configuration of the connected components at
time u is precisely that resulting from Bernoulli bond-percolation on tn with parameter u. A
natural problem in this setting is then to investigate the asymptotic behavior of the sizes of
the largest clusters for appropriate percolation regimes. In this direction, let (Bn)n≥1 be a
sequence of positive real numbers satisfying (1). An application of Theorem 1 shows that for
the percolation parameter 1 − (Bn/n)t with a fixed t ≥ 0, the sequence of sizes of the clusters
ranked in decreasing order and renormalized by a factor of 1/n (i.e. F(α)

n (t)) converges in
distribution, as n → ∞, to F(α)(t). Theorem 2 in [25] allows us to describe explicitly the
distribution of F(α) at fixed times. Let (ps(z), z ∈ R, s ≥ 0) be the family of densities of the
distribution of a strictly stable spectrally positive Lévy process with index α ∈ (1, 2].

▶ Corollary 3. For t > 0, let a(α)
1 (t) > a(α)

2 (t) > · · · be the atoms of a Poisson measure on
(0, ∞) with intensity Λ(t)

α (dz) := z−1pz(−tz)1{z>0}dz, ranked in decreasing order. Then

F(α)(t) d=
(

(a(α)
1 (t), a(α)

2 (t), . . . )
∣∣∣∣ ∞∑

i=1
a(α)

i (t) = 1
)

.
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Following Bertoin’s [9] work about Bernoulli bond-percolation on random trees. The
percolation regime 1−(Bn/n)t on tn corresponds to the so-called supercritical regime. Indeed,
the result in Corollary 3 has already been proved by Pitman [28] for Cayley trees.

3 The coding of Galton-Watson trees and their fragmentation

In this section, we formally introduce the family of critical Galton-Watson trees and explain
how they can be coded by different functions, namely the so-called Łukasiewicz path and a
similar path derived by the Prim’s algorithm.

Plane trees

We follow the formalism of Neveu [27]. Let N = {1, 2, . . . } be the set of positive integers,
set N0 = {∅} and consider the set of labels U =

⋃
n≥0 Nn. For u = (u1, . . . , un) ∈ U, we

denote by |u| = n the length (or generation, or height) of u; if v = (v1, . . . , vm) ∈ U, we
let uv = (u1, . . . , un, v1, . . . , vm) ∈ U be the concatenation of u and v. A plane tree is a
nonempty, finite subset τ ⊂ U such that: (i) ∅ ∈ τ ; (ii) if v ∈ τ and v = uj for some j ∈ N,
then u ∈ τ ; (iii) if u ∈ τ , then there exists an integer c(u) ≥ 0 such that ui ∈ τ if and only if
1 ≤ i ≤ c(u). We will view each vertex u of a tree τ as an individual of a population whose τ

is the genealogical tree. The vertex ∅ is called the root of the tree and for every u ∈ τ , c(u)
is the number of children of u (if c(u) = 0, then u is called a leaf, otherwise, u is called an
internal vertex). The total progeny (or size) of τ will be denoted by ζ(τ) = Card(τ) (i.e.,
the number of vertices of τ). We denote by T the set of plane trees and for each n ∈ N, by
Tn the set of plane trees with n vertices, or equivalently n − 1 edges.

Galton-Watson trees

Let µ be a probability measure on Z+ which satisfies µ(0) > 0, expectation
∑∞

k=0 kµ(k) = 1
and such that µ(0) + µ(1) < 1. The law of a critical Galton–Watson tree with offspring
distribution µ is the unique probability measure Pµ on T satisfying: (i) Pµ(c(∅) = k) = µ(k)
for every k ≥ 0; (ii) For every k ≥ 1 such that µ(k) > 0, conditioned on the event {c(∅) = k},
the subtrees that stem from the children of the root {u ∈ U : 1u ∈ τ}, . . . , {u ∈ U : ku ∈ τ}
are independent and distributed as Pµ. A random tree whose distribution is Pµ will be called
a Galton–Watson tree with offspring distribution µ. We also denote by P(n)

µ the law on Tn of
a Galton-Watson tree with offspring distribution µ conditioned to have n vertices, providing
that this conditioning makes sense.

Coding planar trees by discrete paths

We will use two different orderings of the vertices of a tree τ ∈ T:
(i) Lexicographical ordering. Given v, w ∈ τ , we write v ≺lex w if there exits z ∈ τ

such that v = z(v1, . . . , vn), w = z(w1, . . . , wm) and v1 < w1.
(ii) Prim ordering. Let edge(τ) be the set of edges of τ and consider a sequence of

distinct and positive weights w = (we : e ∈ edge(τ)) (i.e., each edge e of τ is marked
with a different and positive weight we). Given two distinct vertices u, v ∈ τ , we write
{u, v} for the edge connecting u and v in τ . Let us describe the Prim order ≺prim of
the vertices in τ , that is, ∅ = u(0) ≺prim u(1) ≺prim · · · ≺prim u(ζ(τ) − 1). We will use
the notation Vi for the set {u(0), . . . , u(i − 1)}, for 1 ≤ i ≤ ζ(τ). First set u(0) = ∅ and
V0 = {u(0)}. Suppose that for some 1 ≤ i ≤ ζ(τ)−1, the vertices u(0), . . . , u(i−1) have
been defined. Consider the weights {w{u,v} : u ∈ Vi, v ̸∈ Vi} of edges between a vertex
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3:8 Fragmentation Processes Derived from Conditioned Stable Galton-Watson Trees

of Vi and another outside of Vi. Since all the weights are distinct, the minimum weight
in {w{u,v} : u ∈ Vi, v ̸∈ Vi} is reached at an edge {ũ, ṽ} where ũ ∈ Vi and ṽ ̸∈ Vi. Then
set u(i) = ṽ. This iterative procedure completely determines the Prim order ≺prim.

For ∗ ∈ {lex, prim}, we associate to every ordering ∅ = u(0) ≺∗ u(1) ≺∗ · · · ≺∗ u(ζ(τ) − 1)
of the vertices of τ a path W ∗ = (W ∗(k), 0 ≤ k ≤ ζ(τ)), by letting W ∗(0) = 0 and for
0 ≤ k ≤ ζ(τ) − 1, W ∗(k + 1) = W ∗(k) + c(u(k)) − 1, where we recall that c(u(k)) denotes the
number of children of the vertex u(k) ∈ τ . Observe that W ∗(k+1)−W ∗(k) = c(u(k))−1 ≥ −1
for every 0 ≤ k ≤ ζ(τ) − 1, with equality if and only if u(k) is a leaf of τ . Note also that
W ∗(k) ≥ 0, for every 0 ≤ k ≤ ζ(τ) − 1, but W ∗(ζ(τ)) = −1. We shall think of such a path
as the step function on [0, ζ(τ)] given s 7→ W ∗(⌊s⌋). The path W lex is commonly called
Łukasiewicz path of τ , and from now on we refer to W prim as the Prim path; see [23] for
more details and properties on the Łukasiewicz path.

The procedure just described to obtain the Prim ordering is known as Prim’s algorithm
(or Prim-Jarník algorithm); see [29]. This algorithm associates to any properly weighted
graph its unique minimum spanning tree. In practice, one could also consider that w is a
sequence of i.i.d. positive random variables such that they are all distinct a.s. and independent
of the tree.

Define the probability measure µ̂ on {−1, 0, 1, . . . } by µ̂(k) = µ(k + 1) for every k ≥ −1.
Let X = (X(k), k ≥ 0) be a random walk which starts at 0 with jump distribution µ̂ and
define also the time ζ1 = inf{k ≥ 0 : X(k) = −1}. In the Prim ordering, consider that the
weights w is a sequence of i.i.d. positive random variables such that they are distinct a.s.
and independent of the tree.

▶ Proposition 4. For every ∗ ∈ {lex, prim}, if we sample a plane tree t according to Pµ,
then W ∗ is distributed as (X(0), X(1), . . . , X(ζ1)). In particular, the total progeny of the
sample plane tree has the same distribution as ζ1.

Proof. The proof for the Łukasiewicz path can be found in [23, Proposition 1.5]. For the
Prim path the proof follows from a simple adaptation of that of [23, Proposition 1.5]; see
also [13, Lemmas 15 and 16] for an alternative approach. ◀

Fragmentation of a plane tree

Consider τ ∈ T and let edge(τ) denote its set of edges. Equip the edges of τ with i.i.d. uniform
random variables (or weights) w = (we : e ∈ edge(τ)) on [0, 1] and independently of the tree
τ . In particular, for a vertex v ∈ τ with c(v) ≥ 1 children, we write (wv,k, 1 ≤ k ≤ c(v)) for
the weights of the edges connecting v with its children. For t ∈ [0, 1], we then keep the edges
of τ with weight smaller than t and discard the others. This gives rise to a forest fτ (t) with the
same set of vertices as τ but with set of edges given by edge(fτ (t)) = {e ∈ edge(τ) : we ≤ t}.
Furthermore, each vertex v ∈ fτ (t) has ct(v) =

∑c(v)
k=1 1{wv,k≤t} children if c(v) ≥ 1; otherwise,

ct(v) = 0 whenever c(v) = 0. In what follows, we refer to the forest fτ (t) associated to a
plane tree τ and uniform weights w as the fragmentation forest. In this manuscript we
restrict ourselves to the case uniform i.i.d. weights, but certainly some of the forthcoming
results can be extended for more general sequences of weights.

Prim exploration of the fragmentation forest

For a plane tree τ ∈ T and sequence of i.i.d. uniform random weights w on [0, 1], let fτ (t) be
the fragmentation forest of τ at time t ∈ [0, 1]. Let us now explain how to explore the subtree
components of the forest fτ (t) by using the approach outlined in [13, page 532] (see also [2]).
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For t ∈ [0, 1], denote by Neight(v) := {u ∈ fτ (t) : {u, v} ∈ edge(fτ (t))} the set of neighbours
of v ∈ fτ (t). For a set of vertices V of fτ (t), let also Neight(V ) := (

⋃
v∈V Neight(v)) \ V ,

the set of neighbours of vertices in V but not in V . We associate to the prim ordering
∅ = u(0) ≺prim u(1) ≺prim · · · ≺prim u(ζ(τ) − 1) of the vertices of τ the following exploration
process of fτ (t) (recall that fτ (t) and τ have the same set of vertices). The first visited vertex
is vt(0) = u(0). Suppose that we have explored the vertices Vk = {vt(0), . . . , vt(k − 1)} at
some time 1 ≤ k ≤ ζ(τ). If k = ζ(τ), we have finished the exploration, and otherwise, one
has two possibilities:

(i) if Neight(Vk) ̸= ∅, then vt(k) is the next vertex according to the order ≺prim that
belongs to Neight(Vk), or

(ii) if Neight(Vk) = ∅, then vt(k) is the next vertex according to the order ≺prim that
belongs to τ \ Vk.

This exploration process results in an order for the vertices of fτ (t) (equivalently, to the
vertices of τ) that we denote by <prim (i.e. ∅ = vt(0) <prim vt(1) <prim · · · <prim vt(ζ(τ)−1))
and call Prim exploration. An important feature of the Prim exploration of fτ (t) is that the
Prim ordering <prim of its vertices is preserved for all values of t ∈ [0, 1]. More precisely, for
t1, t2 ∈ [0, 1], vt1(k) = vt2(k), for all 0 ≤ k ≤ ζ(τ) − 1. This is a consequence of the algorithm
to obtain the Prim ordering of the vertices in τ which associates to any properly weighted graph
its unique minimum spanning tree. We henceforth write ≺prim instead of <prim and remove the
subindex t from our notation, i.e., we write ∅ = v(0) ≺prim v(1) ≺prim · · · ≺prim v(ζ(τ) − 1)
for the vertices of fτ (t) in Prim order, which is the same as the Prim ordering of the vertices
of the tree τ , ∅ = u(0) ≺prim u(1) ≺prim · · · ≺prim u(ζ(τ) − 1) presented earlier.

Following the presentation of [13, pages 532-533], one can associate to the Prim ordering
of the vertices of fτ (t), an exploration path Zt = (Zt(k), 0 ≤ k ≤ ζ(τ) + 1) by letting
Zt(0) = Z(ζ(τ) + 1) = 0, and for 1 ≤ k ≤ ζ(τ), Zt(k) = Card(Neight(Vk)). Furthermore,
let CC(fτ (t)) be the set of connected components of fτ (t). Then [13, Lemma 14] shows that

Card({k ∈ {1, . . . , ζ(τ)} : Zt(k) = 0}) = Card(CC(fτ (t))),

and that the successive sizes of the connected components ordered by the exploration coincide
with the distances between successive 0’s in the sequence Zt = (Zt(k), 0 ≤ k ≤ ζ(τ) + 1).

In this manuscript, and in analogy with the coding paths of τ introduced earlier, we will
consider a slight modification of the exploration path Zt. More precisely, define the Prim
path W prim

t = (W prim
t (k), 0 ≤ k ≤ ζ(τ)) by letting W prim

t (0) = 0, and for 0 ≤ k ≤ ζ(τ) − 1,
W prim

t (k + 1) = W prim
t (k) + ct(vt(k)) − 1, where ct(v) denotes the number of children of

v ∈ fτ (t). We shall also think of such a path as the step function on [0, ζ(τ)] given by
s 7→ W prim

t (⌊s⌋).

▶ Lemma 5. Let τ ∈ T and w be a sequence of i.i.d. uniform random weights on [0, 1] which
is also independent of τ . For any time t ∈ [0, 1],

Card
({

k ∈ {1, . . . , ζ(τ)} : W prim
t (k) = min

0≤m≤k
W prim

t (m)
})

= Card(CC(fτ (t))),

Moreover, the successive sizes of the connected components of fτ (t) ordered by the explora-
tion process coincide with the distances between successive new minimums in the sequence
(W prim

t (k), 0 ≤ k ≤ ζ(τ)).

Proof. The result is an immediate consequence of the previous discussion. ◀

Indeed, the sizes of the connected components of fτ (t) coincides with the length of the
excursions of the walk W prim

t above its minimum.
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Following Proposition 4, the Prim path of the fragmentation forest associated to a critical
Galton-Watson tree with offspring distribution µ can also be related to a random walk. Recall
that X = (X(k), k ≥ 0) denotes a random walk that starts at 0 and has jump distribution
µ̂ on {−1, 0, 1, . . . }. Recall also that ζ1 = inf{k ≥ 0 : X(k) = −1}. Denote by (ξ(k), k ≥ 1)
the increments of X, i.e. ξ(k) = X(k) − X(k − 1), for k ≥ 1. Let (Uk(j))k,j≥1 be a sequence
of i.i.d. uniform random variables on [0, 1]. For t ∈ [0, 1], define (ξt(k), k ≥ 1) by letting

ξt(k) =
ξ(k)+1∑

j=1
1{Uk(j)≤t}, for t ∈ [0, 1], k ≥ 1,

with the convention
∑0

j=1 1{Uk(j)≤t} = 0. Hence, ξ0(k) = 0, ξ1(k) = ξ(k) + 1 and for any
k ≥ 1, the mapping t 7→ ξt(k) is non-decreasing. Let Xt = (Xt(k), k ≥ 0) be the process
defined by

Xt(0) = 0 and Xt(k) =
k∑

i=1
(ξt(i) − 1), for t ∈ [0, 1], k ≥ 1. (5)

▶ Proposition 6. Sample a plane tree t according to Pµ, i.e., consider a critical Galton-
Watson tree t with offspring µ. Let w = (we : e ∈ edge(t)) be a sequence of i.i.d. uniform
random weights on [0, 1] which is also independent of t. Then, the Prim path W prim

t satisfies

(W prim
t (0), W prim

t (1), . . . , W prim
t (ζ(t)))t∈[0,1]

d= (Xt(0), Xt(1), . . . , Xt(ζ1))t∈[0,1],

where d= means equal in distribution (in the sense of finite-dimensional distributions).

Proof. The proof of can be found in the complete version [11]. ◀

4 Convergence of the exploration processes

Recall that P(n)
µ denotes the law of a critical Galton-Watson tree with offspring distribution µ

conditioned to have n ∈ N vertices. For every n ∈ N, for which P(n)
µ is well-defined, sample a

plane tree on Tn, say tn, according to P(n)
µ , i.e., tn is a critical Galton-Watson tree conditioned

to have n vertices. Through this section we assume that µ belongs to the domain of attraction
of a stable law of index α ∈ (1, 2], and refer to tn as an α-stable GW-tree. We will always let
w = (we : e ∈ edge(tn)) be a sequence of i.i.d. uniform random weights on [0, 1] which is also
independent of tn. We write W lex

n = (W lex
n (⌊nu⌋), u ∈ [0, 1]) for the associated time-scaled

Łukasiewicz path of tn. We also write W prim
n = (W prim

n (⌊nu⌋), u ∈ [0, 1]) for the time-scaled
Prim path of tn with respect to the weights w.

The asymptotic behavior of large α-stable GW-trees is well understood, in particular
through scaling limits of their associated Łukasiewicz paths; see, e.g., [17]. In this section, we
first show that the Prim path of tn has the same asymptotic behavior as its Łukasiewicz path.
This will serve as a stepping stone to study the Prim path of the fragmentation forest of tn

associated to the weights w. Recall that Xexc
α = (Xexc

α (u), u ∈ [0, 1]) denotes the α-stable
excursion of index α.

▶ Theorem 7. Let tn be an α-stable GW-tree, and let (Bn)n≥1 be a sequence of positive real
numbers satisfying (1). For ∗ ∈ {lex, prim}, we have that(

1
Bn

W ∗
n(⌊nu⌋), u ∈ [0, 1]

)
d−→ (Xexc

α (u), u ∈ [0, 1]), as n → ∞, in the space D([0, 1],R).

Proof. It follows from [17, Theorem 3.1] and Proposition 4. ◀
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For s ∈ [0, 1], let fn(s) be the fragmentation forest of tn at time s. Denote by W prim
n,s =

(W prim
n,s (⌊nu⌋), u ∈ [0, 1]) the time-scaled Prim path of fn(s). In particular, W prim

n,1 is exactly
W prim

n . For fixed t ≥ 0, consider the sequence (sn(t))n≥1 of positive times given by sn(t) =
1 − (Bn/n)t, where (Bn)n≥1 is a sequence of positive real numbers satisfying (1). Define the
process W

(t)
n = (W (t)

n (u), u ∈ [0, 1]) by letting

W (t)
n (u) = 1

Bn
W prim

n,sn(t)(⌊nu⌋), for u ∈ [0, 1]. (6)

Later, we refer to W
(t)
n as the (normalized and time-scaled) Prim path of the fragmentation

forest at time sn(t), i.e., f(sn(t)). We set Wn = (W (t)
n , t ≥ 0). From the previous section, the

mapping t 7→ W
(t)
n (u) is non-increasing in t which implies that Wn has càdlàg paths. Thus, we

will view (t, u) 7→ W
(t)
n (u) as a random variable taking values in the space D(R+,D([0, 1],R))

of D([0, 1],R)-valued càdlàg functions on R equipped with the Skorokhod topology. In other
words, for fixed t ≥ 0, W

(t)
n is a random variable in D([0, 1],R).

We introduce the continuous counterpart of the process Wn. For every t ≥ 0, let
Y

(t)
α = (Y (t)

α (u), u ∈ [0, 1]) be defined by Y
(t)

α (u) = Xexc
α (u) − tu, for u ∈ [0, 1]. In particular,

for t = 0, Y
(0)

α = Xexc
α . Then, define the process Yα = (Y (t)

α , t ≥ 0).
The following theorem is the main result of this section.

▶ Theorem 8. We have the convergence

(W (t)
n , t ≥ 0) d−→ (Y (t)

α , t ≥ 0), as n → ∞, in the space D(R+,D([0, 1],R)).

Theorem 8 generalizes [13, Theorem 10]. Specifically, in [13], the authors only consider the
case when tn is a GW-tree with µ being the law of a Poisson random variable of parameter 1
(i.e., tn is a Cayley tree) while our setting is clearly more general.

As in most proofs for convergence of stochastic processes, the proof of Theorem 8 consists
in two steps: convergence of the finite-dimensional distributions and tightness of the sequence
of processes (Wn)n≥1. To accomplish the above, one uses the random walk connected to the
Prim path of the fragmentation forest of the α-stable GW-tree tn in Proposition 6. More
precisely, for s ∈ [0, 1], let Xs = (Xs(k), k ≥ 0) be the stochastic process defined in (5). For
n ∈ N and t ≥ 0, define the process Y

(t)
n = (Y (t)

n (u), u ∈ [0, 1]) by letting

Y (t)
n (u) = 1

Bn
Xsn(t)(⌊nu⌋), for u ∈ [0, 1],

and set Yn = (Y (t)
n , t ≥ 0). From Proposition 6, we see that Wn has the same finite-

dimensional distribution as Yn under the conditional probability distribution Pn(·) := P(·|ζ1 =
n). Therefore, the proof of Theorem 8 boils down to establishing the convergence for Yn

instead of Wn. Although it is simpler to work with Yn than with Wn, the proof of the
convergence is rather technical and it is given in the complete version [11, Section 5].

5 Proof of Theorem 1

In this section, we prove Theorem 1. The final ingredient is the general approach developed
in the complete version for the convergence of fragmentation processes encoded by functions
in D([0, 1],R); see [11, Section 6]. Before that, we need to introduce some notation. For an
increasing function h = (h(s), s ∈ [0, 1]) ∈ D([0, 1],R), write F(h) := (F1(h), F2(h), . . . ) ∈ S,
for the sequence of the lengths of the intervals components of the complement of the support
of the Stieltjes measure dh, arranged in decreasing order; we tacitly understand F(h) as an
infinite sequence, by completing with an infinite number of zero terms.
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Proof of Theorem 1. Let tn be an α-stable GW-tree of index α ∈ (1, 2]. Recall that
(Bn)n≥1 denotes a sequence of positive real numbers satisfying (1). For t ≥ 0, let W

(t)
n be the

(normalized and time-scaled) Prim path defined in (6) of the fragmentation forest at time
sn(t) = 1 − (Bn/n)t, i.e. f(sn(t)), associated to tn and the i.i.d. uniform random weights w.
Define the process I

(t)
n = (I(t)

n (u), u ∈ [0, 1]) by letting

I(t)
n (u) = inf

s∈[0,u]
W (t)

n (s), for s ∈ [0, 1].

Recall that F(α)
n = (F(α)

n (t), t ≥ 0) stands for the fragmentation process of tn defined in (2).
From Lemma 5 and the preceding discussion, it is clear that F(α)

n (t) = F(−I
(t)
n ), for t ≥ 0.

Let Y
(t)

α and I
(t)
α be the processes defined in (3), and recall that the α-stable fragmentation

process, F(α) = (F(α)(t), t ≥ 0), is given by F(α)(t) = F(−I
(t)
α ), for t ≥ 0. Note that for all

t ≥ 0, W
(t)
n (0) = Y

(t)
α (0) = 0. Then, to prove Theorem 1, one only needs to check that the

processes Wn = (W (t)
n , t ≥ 0) and Yα = (Y (t)

α , t ≥ 0) satisfy the conditions of [11, Lemma 5].
We start by verifying that Yα fulfills (i), (ii) and (iii) of [11, Lemma 5]. Indeed, (i) has

been proven in Theorem 8. Recall that Xexc
α can be defined as the Vervaat transform of

the so-called stable Lévy bridge; see [16]. Since the stable Lévy bridge has exchangeable
increments (see e.g., [22, Chapters 11 and 16]), (ii) follows along the lines of the proof of
Lemma 7 (i) in [7] thanks to [16, Theorem 4]. To prove that Y

(t)
α fulfills condition (iii) for

every t ≥ 0, recall that the support of the Stieltjes measure d(−I
(t)
α ) coincides with the

ladder time set Lα(t) of Y
(t)

α , which is a random closed set with zero Lebesgue measure.
The latter follows from [5, Corollary 5, Chapter VII] but alternatively, it can be deduced
from [16, Theorem 4] by following the same argument as in [7, Proof of Lemma 7]. Since
F(−I

(t)
α ) is defined as the ranked sequence of the lengths of the open intervals in the canonical

decomposition of [0, 1]/Lα(t), condition (iii) follows.
We now check that the sequence (Wn)n≥1 fulfills [11, (17)]. Note that, for every t ≥ 0,

∥F(−I
(t)
n )∥1 = 1. Fix t⋆, t⋆ such that 0 ≤ t⋆ ≤ t⋆ < ∞. For every t ∈ [t⋆, t⋆] and m ∈ N,

∥F(−I(t)
n )∥1 −

m∑
i=1

Fi(−I(t)
n ) =

∑
i>m

Fi(−I(t)
n )

reaches its maximum at t = t⋆. Then for [11, (17)] to be satisfied, it suffices that for any
ε > 0, there exists m ∈ N and n ∈ N such that

m∑
i=1

Fi(−I(t⋆)
n ) ≥ lim

r→∞

r∑
i=1

Fi(−I(t⋆)
n ) − ε = 1 − ε. (7)

This would imply that for any t ∈ [t⋆, t⋆], we have that
∑m

i=1 Fi(−I
(t)
n ) ≥ 1 − ε, which shows

that (Wn)n≥1 satisfies [11, (17)].
Theorem 8 implies that (W (t)

n , t ∈ [t⋆, t⋆]) → (Y (t)
α , t ∈ [t⋆, t⋆]), in distribution, as n → ∞,

in the space D([t⋆, t⋆],D([0, 1],R)). By the Skorokhod representation theorem, we can and
we will work on a probability space on which this convergence holds almost surely. Since we
have proven that the process Y

(t⋆)
α fulfills (iii) of [11, Lemma 5], for any ε > 0, there exists an

m ∈ N such that
∑m

i=1 Fi(−I
(t⋆)
α ) ≥ 1 − ε/2. On the other hand, recall that Y

(t⋆)
α fulfills (ii)

of [11, Lemma 5]. Then [7, Lemma 4] implies that a.s., F(−I
(t⋆)
n ) → F(−I

(t⋆)
α ), as n → ∞ in

the space S with the ℓ1-norm. Hence, a.s. for all n large enough,
∑m

i=1 Fi(−I
(t⋆)
n ) ≥ 1 − ε,

which proves (7). ◀
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