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Abstract
A polynomial is called self-reciprocal (or palindromic) if the sequence of its coefficients is palindromic.
In this paper we obtain improved error bounds for the number of irreducible polynomials and self-
reciprocal irreducible monic polynomials with prescribed coefficients over a finite field. The improved
bounds imply that self-reciprocal irreducible monic polynomials with degree 2d and prescribed ℓ

leading coefficients always exist provided that ℓ is slightly less than d/2.
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1 Introduction

The existence of irreducible polynomials over finite fields with restricted coefficients play
important roles in coding theory and information theory (see, e.g., [13, 10]). The main
objective of this paper is to improve some well-known error bounds on the number of
irreducible polynomials and self-reciprocal irreducible monic polynomials with prescribed
coefficients. Asymptotic formulas with good error bounds played essential roles in proving
the existence of irreducible polynomials and self-reciprocal irreducible monic polynomials
with prescribed coefficients. For example, the famous Hansen-Mullen conjecture on the
existence of irreducible polynomials with one prescribed coefficient was proved asymptotically
by Wan [14] using the Weil bound on character sums. Practical error bounds allow Ham and
Mullen [7] to confirm the conjecture for small degrees and finite fields. Panario and Tzanakis
[11] used Wan’s approach to study the extended Hansen-Mullen conjecture by considering
several prescribed coefficients. Garefalakis and Kapetanakis [5] used Wan’s approach to
prove the existence of self-reciprocal irreducible monic polynomials with one prescribed
coefficient. Ha and Pollack [6, 12] obtained bounds for several prescribed coefficients using
a different approach based on the circle method. Our approach uses generating functions
whose coefficients are from the group algebra defined in terms of the prescribed coefficients.

Throughout the paper, we shall use the following notations.
Fq denotes the finite field with q elements and F∗

q = Fq \ {0}.
Mq denotes the set of monic polynomials over Fq and Mq(d) = {f : f ∈ Mq, deg(f) = d}.
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9:2 Number of Self-Reciprocal Irreducible Monic Polynomials

For a polynomial f , deg(f) denotes the degree of f , and f∗(x) = xdeg(f)f(1/x) is the
reciprocal of f . If f∗ = f , then f is called self-reciprocal or palindromic.
Iq ⊆ Mq denotes the set of irreducible monic polynomials and Iq(d) = Iq ∩ Mq(d).
Sq ⊆ Iq denotes the set of self-reciprocal irreducible monic polynomials. Since every
odd-degree self-reciprocal polynomial contains the factor x + 1, we only need to consider
Sq(d) = {f : f ∈ Sq, deg(f) = 2d}.
For a generating function F , [ ]F extracts the relevant coefficient from F .

Given non-negative integers ℓ, t, we say that two polynomials f, g ∈ Mq are equivalent with
respect to ℓ, t if[

xdeg(f)−j
]

f(x) =
[
xdeg(g)−j

]
g(x), 1 ≤ j ≤ ℓ,[

xj
]

f(x) =
[
xj
]

g(x), 0 ≤ j ≤ t − 1.

Let ⟨f⟩ denote the equivalence class represented by f . It is known [15, 8, 9] that the set
Eℓ,t of all equivalence classes forms an abelian group under the multiplication ⟨f⟩⟨g⟩ = ⟨fg⟩.
(When t > 0, it is assumed that the constant term is nonzero.)

Given ε ∈ Eℓ,t and δ ∈ Eℓ,0, define

Iq(d; ε) = |{f ∈ Iq(d) : ⟨f⟩ = ε}| , Sq(d; δ) = |{f ∈ Sq(d) : ⟨f⟩ = δ}| .

The rest of the paper is organized as follows. In Section 2 we state our main results about
the bounds for Iq(d; ε) and Sq(d; ε). In Section 3 we sketch the proofs of our main results.
Section 4 gives some examples to demonstrate the improvement of our bounds over those in
[2, 9]. Section 5 concludes the paper.

2 Main results

In the rest of the paper, we shall use the Iverson bracket JP K which has value 1 if the
predicate P is true and value 0 otherwise. It is easy to see [15, 9] that∣∣Eℓ,t

∣∣ = (q − Jt > 0K)qℓ+t−1.

For typographical convenience, we shall use Eℓ to denote Eℓ,0. For any given q, the following
observation [9, Lemma 1.1] will be useful:

Eℓ,t ∼= Eℓ × Et−1 × F∗
q , t ≥ 1. (1)

Thus we may focus on the group Eℓ. When t > 0 and ε ∈ Eℓ,t, we also write ε = (ε1, γm, ε2)
with ε1 ∈ Eℓ, ε2 ∈ Et−1, and 1 ≤ m ≤ q − 1.

Since Eℓ is abelian, it is isomorphic to a direct product of cyclic groups. Let ξℓ,1, . . . , ξℓ,uℓ

be a fixed minimal set of generators of Eℓ, and denote their orders by rℓ,1, . . . , rℓ,uℓ
, respect-

ively. In the rest of the paper, γ denotes a fixed generator of the multiplicative group F∗
q . By

(1), each ε ∈ Eℓ,t can be written uniquely as

ε = γe0(ε)
uℓ∏

h=1

ξ
eℓ,h(ε)
ℓ,h

ut−1∏
i=1

ξ
et−1,i(ε)
t−1,i , 1 ≤ e0(ε) ≤ q − 1, 1 ≤ eℓ,h(ε) ≤ rℓ,uℓ , 1 ≤ et−1,i(ε) ≤ rℓ,ut−1 .

Thus each ε ∈ Eℓ,t can be represented uniquely by either a monic polynomial of degree ℓ + t

or the exponent vector e⃗(ε) = (e0(ε), eℓ,1(ε), . . . , eℓ.uℓ
, et−1,1, . . . , et−1,ut−1). When t = 0, it

is understood that e0 is ignored.
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Let ωr = exp(2πi/r) and ε, ε′ ∈ Eℓ,t. Define

{ε1/k} = {δ ∈ Eℓ,t : δk = ε}, (2)
Eℓ,t(d) = {⟨f⟩ : f ∈ Mq(d)},

a(ε, ε′) = ω
e0(ε)e0(ε′)
q−1

uℓ∏
h=1

ω
eℓ,h(ε)eℓ,h(ε′)
rℓ,h

ut−1∏
i=1

ωet−1,i(ε)et−1,i(ε′)
rt−1,i

, (3)

c(d; ε) =
∑

ε′∈Eℓ,t(d)

a(ε, ε′), (4)

P (z; ε) = 1 +
ℓ+t−1∑

d=1
c(d; ε)zd, (5)

D =
∑

ε ̸=⟨1⟩

deg(P (z; ε)). (6)

Define

D′ =
∑

δ∈Eℓ\{⟨1⟩}

deg(P (z; δ, 1, δ)).

Since deg(P (z; ε)) ≤ ℓ + t − 1 and deg(P (z; δ, 1, δ)) ≤ 2ℓ, we have

D ≤ (ℓ + t − 1)(
∣∣Eℓ,t

∣∣− 1), (7)
D′ ≤ 2ℓ

(
qℓ − 1

)
. (8)

With the above notations, we now state our main results.

▶ Theorem 1. Let E denote the group Eℓ,t and ε ∈ E.
(a) We have the following upper bounds:

Iq(d; ε) ≤ 1
|E|

qd − Jt > 0K
d

+ D

|E|
qd/2

d
(9)

≤ 1
|E|

qd

d
+ (|E| − 1)(ℓ + t − 1)

|E|
qd/2

d
. (10)

(b) Assume ℓ + t ≤ ⌈d/2⌉ − 1 and let e1(q, d) = min
{

3.4q−d/6, 0.8
}

. We have the following
lower bounds:

Iq(d; ε) ≥ 1
|E|

qd − Jt > 0K
d

−

(
D +

∣∣{ε1/2}
∣∣ J2 | dK

|E|
+ e1(q, d)

)
qd/2

d
(11)

≥ 1
|E|

qd

d
− (ℓ + t + 1)qd/2

d
. (12)

▶ Remark.
The upper bound (10) is given in [9, Theorem 2.4], which follows immediately from (9)
and (7). The lower bound (12) is given in [2, Theorem 2.1], which follows immediately
from (11), (7) and |{ε1/2}| ≤ |E|.
We also note that the upper bound given in [2, Theorem 2.1] is slightly weaker than (10),
and the lower bound in [9, Theorem 2.4] is slightly weaker than (12).
Recall |E| = (q − Jt > 0K)qℓ+t−1. When 2 ∤ q, we also have

∣∣{ε1/2}
∣∣ ≤ 1 + Jt > 0K.

AofA 2022



9:4 Number of Self-Reciprocal Irreducible Monic Polynomials

By (7) and (8), our next theorem improves the error bound in [4, Theorem 3] by a factor
of qℓ. This improvement enables us to essentially extend the range of ℓ from d/4 to d/2.

▶ Theorem 2. Let ε ∈ Eℓ and e2(q, d) = min
{

7q−d/6, 2
}

. Assume ℓ ≤ ⌈d/2⌉ − 1.
(a) We have the following upper bounds:

Sq(d; ε) ≤ 1
2d

qd−ℓ +
(

D′ + 2D + 3J2 | dK
∣∣{ε1/2}

∣∣
2qℓ

+ e2(q, d)
)

qd/2

d
(13)

≤ 1
2d

qd−ℓ + (2ℓ + 2.5)qd/2

d
. (14)

(b) We have the following lower bounds:

Sq(d; ε) ≥ 1
2d

qd−ℓ −

(
D′ + 2D

2qℓ
+ J2 | dK

∣∣{⟨1⟩1/2}
∣∣

qℓ
+ e2(q, d)

)
qd/2

d
(15)

≥ 1
2d

qd−ℓ − (2ℓ + 2)qd/2

d
. (16)

Consequently Sq(d; ε) > 0 whenever

ℓ ≤ min
{⌈

d

2

⌉
− 1,

d

2 − logq(2d + 2)
}

.

3 Outline of proofs

Fix ℓ, t and consider the group E := Eℓ,t. In the following, when t > 0 and f(0) = 0, it is
understood that ⟨f⟩ = 0. Define

F (z) =
∑

f∈Mq

⟨f⟩zdeg(f) = ⟨1⟩ +
∑
d≥1

∑
f∈Mq(d)

⟨f⟩zd,

Fq(d; ε) = d
[
zdε
]

ln F (z), ε ∈ E ,

where

ln F (z) =
∑
k≥1

(−1)k−1

k

∑
d≥1

∑
f∈Mq(d)

⟨f⟩zd

k

.

We note that F (z) is a generating function with coefficients from the group algebra C[E ].
Using the fact that every polynomial is uniquely factored into irreducible polynomials and
⟨f⟩⟨g⟩ = ⟨fg⟩, one can obtain [15, Proposition 2] the following equations:

Fq(d; ε) =
∑
k|d

d

k

∑
ε1∈{ε1/k}

Iq(d/k; ε1), (17)

Iq (d; ε) = 1
d

∑
k|d

µ(k)
∑

ε1∈{ε1/k}

Fq(d/k; ε1). (18)

We need a few more notations before stating a formula for Fq(d; ε) derived in [15]. If
{ε1/k} ̸= ∅, we let ε1/k denote any particular element in {ε1/k}. The following simple
observations are immediate from (2) and (3).
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{
ε1/k

}
= ε1/k

{
⟨1⟩1/k

}
,∣∣∣{ε1/k

}∣∣∣ =
∣∣∣{⟨1⟩1/k

}∣∣∣r{ε1/k
}

̸= ∅
z

,

a(ε−1, δ) = a(ε, δ−1), (19)
a(δ, ε1ε2) = a(δ, ε1)a(δ, ε2). (20)

Set

ρd(g) :=
∑

ρ

ρ−d,

where the sum is over all the nonzero roots (with multiplicity) of the polynomial g ∈ C[z].
Theorem 3 in [15] gives the following formula (written in slightly different notation).

▶ Proposition 3. Let E denote the group Eℓ,t and let ε ∈ E. We have

Fq(d; ε) = qd − Jt > 0K
|E|

− 1
|E|

∑
δ∈E\{⟨1⟩}

a
(
δ, ε−1) ρd(P (z; δ)). (21)

The following lemma simplifies sums involving Fq(d; ε) over some subgroups of Eℓ,t, which
play a crucial role in the proofs of Theorems 1 and 2.

▶ Lemma 4. Let E denote the group Eℓ,t.
(a) For each ε ∈ E, we have∑

ε1∈{ε1/k}

Fq (d/k; ε1)

=
∣∣{ε1/k}

∣∣
|E|

(
qd/k − Jt > 0K

)
−
∣∣{ε1/k}

∣∣
|E|

∑
δ∈E\{⟨1⟩}

r
{δ1/k} ≠ ∅

z
a
(

δ, ε−1/k
)

ρd/k(P (z; δ)) (22)

≤
∣∣{ε1/k}

∣∣
|E|

(
qd/k − Jt > 0K

)
+ (ℓ + t − 1)qd/2k. (23)

(b) Fix a generator γ of F∗
q and recall that Eℓ denotes the group Eℓ,0. For each ε ∈ Eℓ, we

have
q−1∑
m=1

∑
δ∈Eℓ

Fq

(
d; εδ−1, γm, δ

)
= qd − 1

qℓ
− 1

qℓ

∑
δ ̸=⟨1⟩

a
(

δ, ε−1/k
)

ρd (P (z; δ, 1, δ)) , (24)

∑
ε1∈{ε1/k}

q−1∑
m=1

∑
δ∈Eℓ

Fq

(
d/k; ε1δ−1, γm, δ

)

=
∣∣{ε1/k}

∣∣
qℓ

qd/k − 1 −
∑

δ ̸=⟨1⟩,{δ1/k}̸=∅

a
(

δ, ε−1/k
)

ρd/k (P (z; δ, 1, δ))

 . (25)

AofA 2022



9:6 Number of Self-Reciprocal Irreducible Monic Polynomials

Proof. (a) The well-known identity

r−1∑
s=0

ωsj
r = rJr | jK

immediately leads to∑
δ∈E

a(δ, ε) = |E|Jε = ⟨1⟩K, (26)

∑
ε1∈{ε1/k}

a(ε1, δ) =
∣∣∣{ε1/k

}∣∣∣ a(ε1/k, δ)J{δ1/k} ≠ ∅K. (27)

where a(ε1/k, δ) is interpreted as 0 if {ε1/k} = ∅. It follows from (21) and (27) that∑
ε1∈{ε1/k}

Fq (d/k; ε1)

=
∣∣{ε1/k}

∣∣
|E|

(
qd/k − Jt > 0K

)
− 1

|E|
∑

δ∈E\{⟨1⟩}

∑
ε1∈{ε1/k}

a(ε1, δ−1)ρd/k(P (z; δ))

=
∣∣{ε1/k}

∣∣
|E|

(
qd/k − Jt > 0K

)
−
∣∣{ε1/k}

∣∣
|E|

∑
δ∈E\{⟨1⟩}

r
{δ1/k} ≠ ∅

z
a
(

δ, ε−1/k
)

ρd/k(P (z; δ)),

which is (22). Now (23) follows by noting∑
δ∈E\{⟨1⟩}

r
{δ1/k} ≠ ∅

z
= |E|∣∣{⟨1⟩1/k}

∣∣ − 1. (28)

To prove part (b), we use (19), (20), (21), and (26) to obtain

q−1∑
m=1

∑
δ∈Eℓ

Fq

(
d; εδ−1, γm, δ

)
= (q − 1)qℓ

|Eℓ,ℓ+1|
(
qd − 1

)
− 1

|Eℓ,ℓ+1|
∑

(ε1,γn,ε2 )̸=⟨1⟩

a
(
ε, ε−1

1
)

ρd (P (z; ε1, γn, ε2))
q−1∑
m=1

ω−nm
q−1

∑
δ∈Eℓ

a
(
δ, ε1ε−1

2
)

= 1
qℓ

(
qd − 1

)
− 1

qℓ

∑
δ ̸=⟨1⟩

a(ε−1, δ)ρd (P (z; δ, 1, δ)) .

Now (25) follows from (27). ◀

Proof of Theorem 1. Hsu [9, Theoem 1.3] showed that each (complex) root ρ of P (z; δ)
satisfies

|ρ| ≥ q−1/2.
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It follows from (21) that∣∣∣∣Fq(d; ε) − 1
|E|
(
qd − Jt > 0K

)∣∣∣∣ ≤ D

|E|
qd/2. (29)

By (17), we have

Iq(d; ε) ≤ 1
d

Fq(d; ε).

It follows from (29) that

Iq(d; ε) ≤ 1
d|E|

(
qd − Jt > 0K

)
+ D

d|E|
qd/2,

which establishes the desired upper bound.
To prove the lower bound, we define

Lq(d, ℓ, t) =
∑
k≥3

Jk | d, µ(k) = −1K

∣∣{⟨1⟩1/k}
∣∣

|E|
qd/k−d/2 (30)

+ (ℓ + t − 1)
∑
k≥2

Jk | d, µ(k) = −1K

(
1 −

∣∣{⟨1⟩1/k}
∣∣

|E|

)
qd/2k−d/2.

Using (18), (23), and (29), we obtain

Iq(d; ε) ≥ 1
d

Fq(d; ε) − 1
d

∑
k|d

Jµ(k) = −1K
∑

δ∈{ε1/k}

Fq(d/k; δ)

≥ qd − Jt > 0K
d|E|

−

(
D +

∣∣{ε1/2}
∣∣ J2 | dK

|E|
+ Lq(d, ℓ, t)

)
qd/2

d
.

We now estimate Lq(d, ℓ, t) by truncating the sums in (30) and bounding the remainders
by geometric sums. For our purpose, we use

Lq(d; ℓ, t) ≤
29∑

k=3
Jk | d, µ(k) = −1K

∣∣{⟨1⟩1/k}
∣∣

|E|
qd/k−d/2

+ (ℓ + t − 1)
(

1 − 1
|E|

) 29∑
k=2

Jk | d, µ(k) = −1Kqd/2k−d/2 (31)

+ Jd ≥ 30Kq−d/2
∑

1≤j≤d/30

(
qj + (ℓ + t − 1)

(
1 − 1

|E|

)
qj/2

)
.

Using (31), ℓ + t ≤ ⌈d/2⌉ − 1, and

1 − 1
|E|

< 1,
1

|E|
≤
∣∣{⟨1⟩1/k}

∣∣
|E|

≤ 1,
∑

1≤j≤d/30

qj ≤ q

q − 1

(
qd/30 − 1

)
,

we obtain (with the help of Maple) Lq(d, ℓ, t) ≤ min{2.8q−d/6, 0.6} when q ≥ 3.
The case q = 2 can be treated similarly by observing |E| = 2ℓ+t−1 and |{⟨1⟩1/k}| = 1

when k is not a powe of 2. ◀

AofA 2022
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The following bijection ϕd from Eℓ to itself is used to express Sq(d; ε) in terms of Iq(d; ε)
[1, 3, 4].

Set g0 = 1. For each positive integer d, let ϕd : (g1, . . . , gℓ) 7→ (f1, . . . , fℓ) be defined by

fk =
∑

j≤k/2

(
d + 2j − k

j

)
gk−2j , 1 ≤ k ≤ ℓ.

The following is [4, Theorem 1], rewritten in more compact notation.

▶ Proposition 5. Suppose d > 1 and ε ∈ Eℓ. Then

Sq (d; ε) = 1
2

∑
ε1∈{ε1/2}

Sq(d/2; ε1)

+ Iq(d; ϕ−1
d (ε)) − 1

2

q−2∑
n=0

∑
δ∈Eℓ

Iq

(
d; εδ−1, γn, δ

)
.

Proof of Theorem 2. We first use Theorem 3 and (28) to simplify the following sum:

q−1∑
m=1

∑
δ∈E

Iq(d; εδ−1, γm, δ)

=
∑
k|d

µ(k)
d

∑
m,δ

∑
m1,δ1,ε1

Fq(d/k; ε1δ−1
1 , γm1 , δ1)Jγkm1 = γm, δk

1 = δ, εk
1 = εK

=
∑
k|d

µ(k)
d

∑
ε1∈{ε1/k}

q−1∑
m1=1

∑
δ1∈E

Fq(d/k; ε1δ−1
1 , γm1 , δ1). (32)

Applying Theorem 5, (32), and noting

Sq(d/2; δ) ≤ Iq(d/2; δ) ≤ 2
d

Fq(d/2; δ),

we obtain

Sq(d; ε) ≤ 1
d

∑
ε1∈{ε1/2}

Fq(d/2; ε1) + Iq(d; ϕ−1
d (ε))

− 1
2d

q−1∑
m=1

∑
δ∈E

Fq(d; εδ−1, γm, δ)

+
∑
k≥2

Jk | d, µ(k) = −1K
2d

∑
ε1∈{ε1/k}

q−1∑
m=1

∑
δ∈E

Fq(d/k; ε1δ−1, γm, δ).
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It follows from (9), (25), and (27) that

Sq(d; ε) ≤ J2 | dK

∣∣{ε1/2}
∣∣

qℓ

qd/2

d
+ J2 | dK(ℓ − 1)

(
1 − 1

qℓ

)
qd/4

d

+ 1
dqℓ

(
qd + Dqd/2

)
− 1

2dqℓ

(
qd − 1

)
+ D′

2dqℓ
qd/2

+ J2 | dK

∣∣{ε1/2}
∣∣

2qℓ

qd/2

d
+ J2 | dKℓ

(
1 − 1

qℓ

)
qd/4

d

+ 1
2dqℓ

∑
k≥3

Jk | d, µ(k) = −1K
∣∣∣{ε1/k}

∣∣∣ qd/k

+ ℓ

d

∑
k≥3

Jk | d, µ(k) = −1K
(

1 − 1
qℓ

)
qd/2k

≤ 1
d

qd−ℓ +
(

D′ + 2D + 3J2 | dK
∣∣{ε1/2}

∣∣
2qℓ

+ Uq(d; ℓ)
)

qd/2

d
,

where

Uq(d; ℓ) = 1
2q−ℓ−d/2 + J2 | dK(2ℓ − 1)

(
1 − 1

qℓ

)
q−d/4

+ 1
2qℓ

∑
k≥3

Jk | d, µ(k) = −1K
∣∣∣{ε1/k}

∣∣∣ qd/k−d/2

+ ℓ

(
1 − 1

qℓ

)∑
k≥3

Jk | d, µ(k) = −1Kqd/2k−d/2.

Simple calculations as in the proof of Theorem 1 give Uq(d; ℓ) ≤ min{6.6q−d/6, 1.5}. This
establishes (13). The bound (14) follows immediately from (13) and (7).

For the lower bound, we use Proposition 5 and (32) to obtain

Sq(d; ε) ≥ Iq(d; ϕ−1
d (ε))

−
∑
k|d

Jk | dK
2d

∑
ε1∈{ε1/k}

q−1∑
m=1

∑
δ∈Eℓ

Fq(d/k; ε1δ−1, γm, δ)

≥ 1
d

qd−ℓ −

(
D +

∣∣{⟨1⟩1/2}
∣∣ J2 | dK

qℓ
+ Lq(d; ℓ, 0)

)
qd/2

d

− 1
2d

q−1∑
m=1

∑
δ∈E

Fq(d; εδ−1, γm, δ)

− 1
2d

∑
k≥3

Jk | d, µ(k) = 1K
∑

ε1∈{ε1/k}

q−1∑
m=1

∑
δ∈E

Fq(d/k; ε1δ−1, γm, δ).
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Applying (24) and (28) again, we obtain

Sq(d; ε) ≥ 1
d

qd−ℓ −

(
D +

∣∣{⟨1⟩1/2}
∣∣ J2 | dK

qℓ
+ Lq(d; ℓ, 0)

)
qd/2

d

− 1
2dqℓ

(
qd − 1 + D′qd/2

)
− 1

2d

∑
k≥6

Jk | d, µ(k) = 1K

∣∣{⟨1⟩1/k}
∣∣

qℓ
qd/k

− ℓ

d

(
1 − 1

qℓ

)∑
k≥6

Jk | d, µ(k) = 1Kqd/2k.

Define

L′
q(d; ℓ) = Lq(d; ℓ, 0) + 1

2
∑
k≥6

Jk | d, µ(k) = 1K

∣∣{⟨1⟩1/k}
∣∣

qℓ
qd/k−d/2

+ ℓ

(
1 − 1

qℓ

)∑
k≥6

Jk | d, µ(k) = 1Kqd/2k−d/2.

We then have

Sq(d; ε) ≥ 1
2d

qd−ℓ −

(
D′

2qℓ
+

D +
∣∣{⟨1⟩1/2}

∣∣ J2 | dK
qℓ

+ L′
q(d; ℓ)

)
qd/2

d
. (33)

Similar calculations give

L′
q(d; ℓ) ≤ min{7q−d/6, 2}.

Now (15) follows from (33). The bound (16) follows immediately from (15), (7), (8), and∣∣∣{⟨1⟩1/2}
∣∣∣ ≤ qℓ.

Hence Sq(d; ε) > 0 when

qd/2 > 2(2ℓ + 2)qℓ.

Using 2ℓ ≤ d − 1 and taking logq on both sides, we complete the proof. ◀

4 Examples

In this section, we use some examples to demonstrate that D
|Eℓ|−1 is smaller than ℓ − 1. For

P (z; ε) defined in (5), let

dj = |{ε ∈ Eℓ \ {⟨1⟩} : deg(P (z; ε)) = j}|, d⃗ = (d1, d2, . . . dℓ−1).

We note

D =
ℓ−1∑
j=1

jdj .
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▶ Example 6. Consider q = 2 and ℓ = 4. From [15, Example 4], we have

d⃗ = (2, 4, 8),
D = 2 + 2 × 4 + 3 × 8 = 34,

D

|E4| − 1 = 34
24 − 1 < 2.3.

▶ Example 7. Consider q = 2 and ℓ = 5. From [15, Example 6], we have

d⃗ = (2, 4, 8, 16),
D = 2 + 2 × 4 + 3 × 8 + 4 × 16 = 98,

D

|E5| − 1 = 98
25 − 1 < 3.2.

▶ Example 8. Consider q = 3 and ℓ = 3. From [15, Example 5], we have

d⃗ = (6, 18),
D = 6 + 2 × 18 = 42,

D

|E3| − 1 = 42
33 − 1 < 1.62.

We use the following result from [15, Lemma 1] to produce a few more examples.

▶ Lemma 9. Let q = p be a prime number. The generators of Eℓ are{
⟨xj + 1⟩ : gcd(p, j) = 1, 1 ≤ j ≤ ℓ

}
,

and the order of ⟨xj + 1⟩ is equal to psj , where sj is the smallest positive integer such that
jpsj > ℓ.

The degree sequence d⃗ in the following examples are calculated using (3)–(6) with the
help of the computer algebra system Maple.

▶ Example 10. Consider q = 2 and ℓ = 6. By Lemma 9, the group E6 is generated by
⟨x + 1⟩, ⟨x3 + 1⟩, ⟨x5 + 1⟩, of orders 8,4,2, respectively. Hence

d⃗ = (2, 4, 8, 16, 32),
D = 2 + 2 × 4 + 3 × 8 + 4 × 16 + 5 × 32 = 258,

D

|E6| − 1 = 258
26 − 1 < 4.1.

▶ Example 11. Consider q = 2 and ℓ = 7. By Lemma 9, the group E7 is generated by
⟨x + 1⟩, ⟨x3 + 1⟩, ⟨x5 + 1⟩, ⟨x7 + 1⟩, of orders 8,4,2,2, respectively. Hence

d⃗ = (2, 4, 8, 16, 32, 64),
D = 2 + 2 × 4 + 3 × 8 + 4 × 16 + 5 × 32 + 6 × 64 = 642,

D

|E7| − 1 = 642
27 − 1 < 5.1.

▶ Example 12. Consider q = 3 and ℓ = 4. By Lemma 9, the group E4 is generated by
⟨x + 1⟩, ⟨x2 + 1⟩, ⟨x4 + 1⟩, of orders 9,3,3, respectively. Hence

d⃗ = (6, 18, 54),
D = 6 + 2 × 18 + 3 × 54 = 204,

D

|E4| − 1 = 204
34 − 1 < 2.6.
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▶ Example 13. Consider q = 3 and ℓ = 5. By Lemma 9, the group E5 is generated by
⟨x + 1⟩, ⟨x2 + 1⟩, ⟨x4 + 1⟩, ⟨x5 + 1⟩, of orders 9,3,3,3, respectively. Hence

d⃗ = (6, 18, 54, 162),
D = 6 + 2 × 18 + 3 × 54 + 4 × 162 = 852,

D

|E5| − 1 = 852
35 − 1 < 3.6.

▶ Example 14. Consider q = 3 and ℓ = 6. By Lemma 9, the group E6 is generated by
⟨x + 1⟩, ⟨x2 + 1⟩, ⟨x4 + 1⟩, ⟨x5 + 1⟩, of orders 9,9,3,3, respectively. Hence

d⃗ = (6, 18, 54, 162, 486),
D = 6 + 2 × 18 + 3 × 54 + 4 × 162 + 5 × 486 = 3282,

D

|E6| − 1 = 3282
36 − 1 < 4.51.

▶ Observation. The above examples suggest that the degree sequence d⃗ for the group Eℓ

satisfies

dj = (q − 1)qj .

5 Conclusion

We derived new error bounds for the number of irreducible monic polynomials with prescribed
leading and ending coefficients. These bounds improve the bounds in [2, 9]. The new bounds
are then used to obtain bounds for the number Sq(d; ε) of self-reciprocal irreducible monic
polynomials of degree 2d with ℓ prescribed leading coefficients. The new lower bound for
Sq(d; ε) significantly improves the one obtained in [4] and it implies Sq(d; ε) > 0 when

ℓ ≤ min
{⌈

d

2

⌉
− 1,

d

2 − logq(2d + 2)
}

.

Some examples are given to demonstrate the improvement of our bounds in Theorem 1 over
those in [2, 9]. Our examples show a pattern about the degree sequence d⃗, which can be used
to calculate D exactly.
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