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Abstract
You provide us with a matroid and an initial base. We say that a subset of the bases “belongs
to us” if we can visit each one via a sequence of base exchanges starting from the initial base. It
is well-known that “All your base are belong to us”. We refine this classic result by showing that
it can be done by a simple greedy algorithm. For example, the spanning trees of a graph can be
generated by edge exchanges using the following greedy rule: Minimize the larger label of an edge
that enters or exits the current spanning tree and which creates a spanning tree that is new (i.e.,
hasn’t been visited already). Amazingly, this works for any graph, for any labeling of its edges,
for any initial spanning tree, and regardless of how you choose the edge with the smaller label in
each exchange. Furthermore, by maintaining a small amount of information, we can generate each
successive spanning tree without storing the previous trees.

In general, for any matroid, we can greedily compute a listing of all its bases matroid such that
consecutive bases differ by a base exchange. Our base exchange Gray codes apply a prefix-exchange
on a prefix-minor of the matroid, and we can generate these orders using “history-free” iterative
algorithms. More specifically, we store O(m) bits of data, and use O(m) time per base assuming
O(1) time independence and coindependence oracles.

Our work generalizes and extends a number of previous results. For example, the bases of the
uniform matroid are combinations, and they belong to us using homogeneous transpositions via an
Eades-McKay style order. Similarly, the spanning trees of fan graphs belong to us via face pivot
Gray codes, which extends recent results of Cameron, Grubb, and Sawada [Pivot Gray Codes for
the Spanning Trees of a Graph ft. the Fan, COCOON 2021].
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1 Introduction

Every graph theorist knows that a maximal spanning forest of a graph can be constructed
greedily: Add an edge so long as it doesn’t create a cycle with some previously added edges.
Similarly, every linear algebraist knows that a base for the column space of a matrix can
be constructed greedily: Add a column so long as it isn’t linearly dependent with some
previously added columns. In both cases, the approach works regardless of how the elements
(i.e., edges or columns) are ordered. Or put another way, if there are multiple elements
that can be added during the next step, then ties can be broken arbitrarily. This property
motivated Whitney’s [40] generalization to matroids, where bases can be constructed in a
similar manner: Add an element so long as it doesn’t create a circuit with some previously
added elements. Again, this approach works regardless of how ties are broken. Furthermore,
it can be used to generate any base.

This greedy algorithm is so powerful, it brings to mind the enemy CATS in the side-
scrolling arcade shooter Zero Wing (1989) by the Japanese developer Toaplan [42]. In the
year 2101, the alien overlord CATS breaks his peace treaty with the United Nations and
attacks Earth. This backstory was expanded upon in the opening cutscene of the European
port of Zero Wing to the SEGA Mega Drive in 1991, where CATS exclaims “ALL YOUR BASE
ARE BELONG TO US”. This poor translation [17] birthed one of the first widespread internet
memes [41, 14]. Besides providing comic relief, the poor grammar can also cause confusion
for game players. Is CATS saying that the player has one base, and all of that one base
belongs to him? Or is CATS saying that the player has multiple bases, and all of them
belong to him?1 In this paper, we hope to create similar confusion with greedy algorithms
and matroids, as shown by Figure 1.

(a) Cutscene from Zero Wing
(Mega Drive, 1991).

(b) Generating one base of a
matroid.

(c) Generating all bases of a
matroid.

Figure 1 An internet meme in (a), along with (b) classic and (c) new results involving greedily
generating the bases of a matroid.

To fully appreciate our results, we recommend that the reader is familiar with the basic
properties of spanning trees, as analogous concepts involving matroids will be introduced. For
additional background reading on matroids, we suggest Oxley [23], while Mütze [21] provides
a new survey on Gray codes. We also encourage the reader to (re)familiarize themselves with
the All Your Base Are Belong To Us meme, including the video by Bad_CRC et al. that was
originally posted as a Flash animation on Newgrounds in 2001 [2].

1 The latter is correct according to fandom.com: “[CATS] breaks the treaty and takes over all of Japan’s
space colonies” [8].
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1.1 New results
1.1.1 Matroid bases including spanning trees
We prove that an exhaustive listing of all the bases of a matroid can be generated greedily.
Specifically, if you provide us with a matroid and an initial base, then we can list the matroid’s
bases one at a time as follows: From the current base perform an exchange that creates
a new base and minimizes the larger element involved in the exchange. By repeating this
simple greedy rule, every base will be generated exactly once. This works for any matroid,
for any ordering of its elements, for any initial base, and regardless of how ties are broken
to choose the second element in the exchange. In the case of graphic matroids, this greedy
rule translates to the following: From the current spanning tree, exchange one edge with
another edge in such a way that a new spanning tree is generated and the larger edge in the
pair is minimized. We refer to the resulting order as an edge-exchange Gray code, or simply
an exchange Gray code, in reference to the eponymous minimal-change order known as the
binary reflected Gray code (see Section 1.3). Figure 2 provides an illustration.
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−3−2
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Figure 2 Listing the spanning trees of our favorite graph on the left. The list is an exchange
Gray code, i.e., successive spanning trees differ in adding one edge and removing another edge. For
example, the first spanning tree is transformed into the second by adding edge 2 and removing
edge 1. The list is constructed greedily by always minimizing the larger edge label involved in the
exchange. Ties can be broken arbitrarily; here the smaller edge in the exchange is maximized.

1.1.2 Weighted matroids including maximum spanning trees
A weighted matroid is a matroid with some weight associated with each element. The weight
of a subset of elements is the sum of the weights of the elements in the subset. Edmonds [7]
showed that the standard greedy algorithm can be modified to build a maximum weight
base: Consider the elements by monotonically decreasing weight and add an element so long
as it doesn’t create a circuit with some previously added elements. By instead sorting the
elements in monotonically increasing order, the standard greedy algorithm will instead build
a minimum weight base. These and similar ideas support the well-known algorithms by
Kruskal and Prim for finding optimal spanning trees.

The optimization problem on a matroid M = (E, I) with weights w : E → R can also be
modeled by an unweighted matroid M ′ = (E, I ′): If S ⊆ E is a subset of a maximum weight
base M , then S ∈ I ′. In particular, the bases of M ′ are precisely the maximum weight bases
of M . For this reason, our greedy algorithms also allow generating the maximum weight
bases in weighted matroids. Furthermore, by replacing the weight function w with −w we
are also able to generate minimum weight bases in weighted matroid.

1.2 Efficiency and meta-algorithms
Our greedy algorithm is not efficient as stated – it requires exponential space to ‘remember’
the bases that have previously been created. Fortunately, we are able to completely remove
this dependency, and to make our algorithm history-free, meaning that the history of previous
objects is not stored. In other words, we can determine the next “new” base without storing
the “old” bases that have been listed. Specifically, for a matroid M = (E, I) with m = |E|
elements, we can generate the bases using just O(m) bits of storage. Furthermore, each
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successive base can be determined using O(m) calls to the matroid’s independence and
coindependence oracle (see Section 2.1.5 for a discussion on oracles). Again, these results do
not depend on the matroid, the initial base, or the specific manner in which ties are broken
(so long as the associated computations do not dominate the time or memory requirements).

Our new greedy algorithm should be also viewed as a meta-algorithm that can be
specialized into specific algorithms that can be optimized in a variety of ways. For example,
by specializing to certain uniform matroids, we provide a new algorithm for generating
(2n, n)-combinations that runs in constant amortized time per generated combination. The
algorithm produces an interesting new order of (2n, n)-combinations that shares similar
properties to the well-known listing by Eades and McKay [6].

1.3 Relationship to previous work

1.3.1 Sublist Gray codes
The most well-known minimal-change orders, or Gray codes, involve listing the set B(n) of
n-bit binary strings so that successive strings differ in one bit. In other words, they trace a
Hamilton path in the n-dimensional hypercube. In particular, many readers will be familiar
with the eponymous binary reflected Gray code (BRGC ) attributed to Frank Gray [9]. This
order can be defined recursively as Cn = 0Cn−1, 1 rev(Cn−1), where rev denotes reversal.
The n = 4 order is below.

C4 = 0000, 0001, 0011, 0010, 0110, 0111, 0101, 1101, 1111, 1110, 1010, 1011, 1001, 1000.

The BRGC has been the source of many additional minimal-change orders. For example,
the k-subsets of the set [n] := {1, 2, ..., n} are often referred to as combinations, and their
characteristic vectors form the set Bk(n), which contains the n-bit binary strings with
weight k (i.e., exactly k many 1-bits). If the BRGC is restricted or filtered to only include
Bk(n), then successive bitstrings differ by an exchange of a 0 and a 1 [33]. Such an exchange
is often referred to as a transposition, and this particular transposition Gray code is known
as the revolving door Gray code for combinations, since one element leaves the k-set and one
element enters the k-set at each step. More broadly, various classes of sublist Gray codes of
the BRGC have been studied in the literature [37, 27]. This is also true for the well-known
Steinhaus-Johnson-Trotter or plain change order of permutations [15] for sublists with a
continuous range of inversions [38] or avoiding certain factors or patterns [26] Similarly, the
cool-lex Gray code for binary strings [30, 31] can be filtered into a prefix-shift Gray code
for combinations [25] or more broadly, a shift Gray code for any bubble language [24], with
similar results holding for the cool-lex order of multiset permutations [43, 45, 28]. In contrast,
our algorithms are adaptive in the sense that they do not produce orders that are sublists of
the BRGC or any other particular order. In particular, our meta-algorithm can start at any
base. Due to this adaptivity, our algorithms are similar to Algorithm J, which is a greedy
algorithm based on “jumps” that has recently been used to generate Gray codes for a large
variety of combinatorial objects [10, 11, 12, 20, 4], based on encoding them as permutations.

1.3.2 Hamiltonicity
Previously, it was known that the bases of any matroid can be ordered by exchanges. In
graph-theoretic terms, this means that the base exchange graph of a matroid – which
contains one vertex per base, and an edge between bases that differ by an exchange – has a
Hamilton path. In fact, Holzmann and Harary [13] showed that this graph has a Hamilton
cycle including any of its edges, and excluding any of its edges. Furthermore, Naddef and



A. Merino, T. Mütze, and A. Williams 22:5

Pulleyblank [22] proved that the graph is either Hamilton-connected, i.e., it has a Hamilton
path between any two end vertices, or it is a hypercube, in which case it has a Hamilton
path between any two end vertices from distinct partition classes; see also [1]. The bases of a
matroid can also be generated in a non-Gray code manner, without using a single exchange
operation in each step. In particular, Uno [36] showed that the bases of a matroid can
be generated in O(m) space and the time is dependent on using O(m) independence and
contraction and deletion operations on the matroid. In contrast, our implementations do not
rely on contracting and deleting elements from the matroid.

1.3.3 Spanning trees and column spaces
The Hamiltonicity of the base exchange graph implies that the spanning trees of a connected
graph can be generated by edge exchanges. A specific order was generated efficiently by
Smith [29] using O(n2) space and O(1) amortized delay per tree, where n is the number of
vertices of the graph; also see Knuth’s detailed coverage in [15, Sec. 7.2.1.6]. Our combinatorial
result provides new edge-exchange Gray codes for spanning trees, and several avenues for
developing efficient algorithms by selecting specific initial spanning trees and tiebreaker rules.

The second original source for matroids is linear algebra. In this context, the Hamiltonicity
of the base exchange graph implies that the bases for the column space of a matrix can be
generated by column exchanges. One of our column-exchange Gray codes is illustrated in
Figure 3. To our knowledge, there are no previous algorithmic results in this particular case.

1 2 3 541 0 0 0 1
1 1 0 1 1
1 0 1 0 0

 1 0 0
1 1 0
1 0 1

 1 0 0
1 0 1
1 1 0

 1 0 1
1 1 1
1 0 0

 0 0 1
0 1 1
1 0 0

 0 0 1
1 0 1
0 1 0

 1 0 1
1 1 1
1 0 0


−3

+1

−4

+2

−1

+3

−3

+5

−2

+4

1 2 3 1 3 4 1 4 5 3 4 5 2 3 5 1 2 5

Figure 3 Listing the bases of the column space of the full-rank matrix over GF (2) on the left.
Notice that the even columns are identical, so they are not in a base together. Similarly, the
odd columns are linear combinations of each other, so they do not form a base. The list is a
column-exchange Gray code, i.e., successive bases differ in adding one column and removing another
column. The list is constructed greedily by always minimizing the larger column label involved in
the exchange. Ties can be broken arbitrarily; here the smaller column in the exchange is maximized.

1.4 Outline
Section 2 provides background information on matroids and Gray codes, and Section 3
introduces the prefix-exchange property. Our combinatorial and algorithmic results are
in Section 4 and 5, respectively. We sharpen our general results for specific matroids in
Section 6. Finally, we conclude with additional remarks in Section 7.

2 Preliminaries

2.1 Matroids
Matroids were introduced by Whitney in 1935 [40]. Originally conceived as a generalization
of independence in vector spaces, they capture related notions of independence in set systems.
We begin by considering the following more general notion.

▶ Definition 1. An independence system F over a finite ground set E is a pair (E, I) where
I ⊆ 2E satisfies the following two conditions:
1. ∅ ∈ I.
2. I is closed under taking subsets. Specifically, if Y ∈ I and X ⊆ Y , then X ∈ I.

FUN 2022
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The elements of I are known as the independent sets of F . The subsets of E which are not
in I will be known as dependent sets. We highlight that as E is finite, we usually think of it
as E = [m] for some m (said another way, we think of E as linearly ordered). In particular,
statements like e > f or e ≥ f make sense for e, f ∈ E. We also remark that elements of the
ground set E will usually be denoted by e or f with e > f .

Of interest are typically the maximal independent sets. Thus, a base in an independence
system F = (E, I) is an independent set which is maximal with respect to inclusion. Before
defining matroids in terms of their bases, we introduce some notation: For a set A and an
element a we use A + a and A− a as shorthands for A ∪ {a} and A− {a} respectively. We
now give the definition of a matroid.

▶ Definition 2. We say that an independence system M = (E, I) is a matroid if for every
pair T1, T2 of bases in M and e ∈ T1 − T2 there is an element f ∈ T2 − T1 such that both
T1 − e + f and T2 + e− f are bases.

This condition is known as the (strong) base exchange property, as one is always allowed to
exchange elements from bases while keeping the base property. It is not hard to see that
the base exchange property implies that all bases have the same size. Thus, if T is a base,
instead of writing “T + e− f is a base” or “T − e + f is a base” we can write the equivalent
“T∆{e, f} is a base” as it is clear that one element must be swapped in and the other out.

If B is a base of M = (E, I) we say that its complement E −B is a cobase. Furthermore,
if S ⊆ E is contained in some cobase, then we will say that S is coindependent. Note that,
by definition, a cobase is an inclusion-wise maximal coindependent set.2

2.1.1 Examples

In this subsection we formally define the example matroids mentioned in Section 1.
Let n, k ∈ N such that n ≥ k. The uniform matroid U(n, k) is the matroid with ground

set [n] and a subset S ⊆ [n] is independent if and only if its size is at most k. The bases
of U(n, k) are the subsets of [n] of size exactly k, its cobases are the subsets of [n] of size
exactly n− k and its coindependent sets are the subsets of [n] of size at most n− k. If k = n

this is also known as the free matroid of rank n.
Let G = (V, E) be a graph. The graphic matroid M(G), is the matroid with ground set E

and a subset S ⊆ E is independent if and only if it is a forest in G. The bases of M(G) are
the spanning forests of G, and its coindependent sets are subsets of edges that do not form
cuts in G. If G is connected, then the bases of M(G) are the spanning trees of G.

Consider a field F and a matrix A ∈ Fm×n. The column matroid MF(A) is the matroid
with the columns of A as the ground set and a subset of the columns of A is independent if
and only if it is linearly independent over F. The bases of MF(A) are linearly independent
subsets of the columns of A of size rank(A).

Consider a matroid M = (E, I) and a weight function w : E → R on the ground set.
We say that a base B of M is w-optimal if it maximizes

∑
e∈B w(e) among all bases of M .

The optimality matroid Mw is the matroid with E as a ground set and a subset S ⊆ E is
independent if and only if it is contained in some w-optimal base. The bases of Mw are
exactly the w-optimal bases of M .

2 It is interesting to note that the coindependent sets form another matroid called the dual matroid.
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2.1.2 Base exchange graph
We consider the base exchange graph as originally defined by Maurer [18, 19].

▶ Definition 3. Let M = (E, I) be a matroid. The base exchange graph of M is a graph
G(M) with the bases of M as vertices and two bases T, T ′ are connected by an edge if and
only if there exist e, f ∈ E such that T ′ = T ∆{e, f}. We refer to the edges in the graph G(M)
as exchanges.

Note that for e > f and the edge (T, T∆{e, f}) there are two possibilities for the directions
in which the elements are exchanged; either (1) e ∈ T and f /∈ T in which case the edge is
(T, T − e + f) or (2) e /∈ T and f ∈ T in which case the edge is (T, T + e− f).

1

2

4
3

{1,2}

{2,4}

{1,4}

{2,3}

{3,4}

{1,3}

{1,2}

{3,4}

Figure 4 (Left) A graph H with n = 3 vertices and m = 4 edges. (Right) The base exchange
graph G(M(H)). Recall that that the maximum size independent sets are the bases of M(H), which
are the spanning trees of H. These spanning trees are the vertices of G(M), and its edges join
spanning trees that differ by an exchange of two edges.

For brevity, we use the term exchange graph to refer to G(M). Observe that the edges of
the exchange graph have the form (T, T∆S) for some non-empty set S ⊆ E. In Figure 4,
each edge is labeled with its corresponding set S, and its largest element is highlighted.

As mentioned in Section 1.3, it is known that G(M) has a Hamilton cycle for all M with
at least three bases, and in fact much stronger Hamiltonicity properties are known.

2.1.3 Circuits, cocircuits, loops and coloops
A circuit is a minimal dependent set. Unlike bases, which all have the same size, the size of
circuit can vary. In particular, an element that forms a circuit by itself is a loop. Similarly,
a cocircuit is a minimal set of elements that intersect with every base. In particular, an
element that forms a cocircuit by itself is a coloop.

Note that the circuits of U(n, k) are the sets of size k + 1, similarly the cocircuits of
U(n, k) are the sets of size n − k + 1. For a graph G, the circuits of M(G) are exactly
the cycles of G. On the other hand, the cocircuits of M(G) are minimal cuts of G and,
consequently, the coloops of M(G) are the bridges of G.

The following remarks describe the circuits and cocircuits that are formed by adding or
removing an element to a base, respectively. Most readers will be familiar with these remarks
in the special case of graphic matroids. More specifically, Remark 4 implies that adding an
edge to a spanning tree creates a unique cycle, whereas Remark 5 implies that removing an
edge from a spanning tree creates a unique minimal cut.

FUN 2022
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▶ Remark 4. If M = (E, I) is a matroid and T is a base with e ∈ T , then T + e contains a
unique circuit C(T, e) called the fundamental circuit of T + e. Furthermore, T∆{e, f} is a
base, if and only if, f is in this unique circuit.
▶ Remark 5. If M = (E, I) is a matroid and T is a base with e /∈ T , then T − e contains a
unique cocircuit C∗(T, e) called the fundamental cocircuit of T − e. Furthermore, T∆{e, f}
is a base, if and only if, f is in this unique cocircuit.

2.1.4 Operations
We now define minor operation on matroids (cf. minor operations on graphs) which will be
useful to do induction on matroids.

▶ Definition 6. Let M = (E, I) be a matroid and X ⊆ E. We define the deletion of X as a
new matroid M −X = (E −X, I ′) where

I ′ = {I ⊆ E −X : I ∈ I}.

We now define a dual operation to deletion. Let T be a maximal independent set contained
in X. We define the contraction of X as a new matroid M/X = (E −X, I ′′) where

I ′′ = {I ⊆ E −X : I ∪ T ∈ I}.

It is well known that the contraction and deletion of X are matroids and the contraction of X

does not depend on the choice of maximal independent set T ⊆ X. The matroids which can
be obtained by a sequence of contractions and deletions are known as the minors of M . It is
also known that the operations of contraction and deletion are associative and commutative,
thus every minor of M can be uniquely written as M −A/B for A, B ⊆ E disjoint.

2.1.5 Algorithmic considerations for matroids
When dealing with computational aspects for arbitrary matroids, it is important to discuss
how they are given as an input to algorithms. A naive approach to the input problem is to
encode the matroid M by a list of all the elements in E and all the bases of M . This approach
is typically avoided because the number of bases can be incredibly large. Furthermore, it
does not make much sense for generation algorithms to already have access to all the bases
of the matroid, since the problem of generating all of the bases would have already been
solved. Thus, we assume only oracle-based access to the matroids, that is, given a set
S ⊆ E we can test whether it is independent, coindependent or a base with an independence,
coindependence and base oracle respectively. Furthermore, in our algorithmic results we
always make explicit which type of oracle is needed and how many calls to them we need.

2.2 Lexico and colexico trees
Figure 5a illustrates a binary tree whose leaves are the binary strings of length n = 4 in
lexicographic order. More specifically, the root has two children and the branches to these
children are labeled 0 and 1. In turn, the branches at the second level fix the second bit to 0
or 1, and so on. Then each labeled path from the root to a leaf spells out a different member
of B(4) from the first bit to the last bit. The same approach can be applied for any n, and
the resulting tree is the lexicographic tree for B(n). By reversing the children of every second
node on each level of a lexicographic tree, we obtain a twisted lexico tree. This is precisely
how the binary reflected Gray code is created, as illustrated in Figure 5b.
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(a) Lexicographic tree. The tree orders the strings
from 0000 to 1111 in lexicographic order.
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(b) Twisted lexico tree. The tree orders the strings
from 0000 to 1000 in binary reflected Gray code.

Figure 5 The strings in B(4) ordered according to (a) the lexicographic tree, and (b) the twisted
lexico tree. The large white nodes have two children with their branches labeled 0 and 1; the large
black nodes reverse the labels to 1 and 0. The consecutive pair of highlighted paths differ in all bits
in (a) and only one bit in (b).

More generally, we can construct lexicographic and twisted lexico trees for any subset
of B(n), although some internal nodes will have only one child. For example, consider the
following set of binary strings, written in lexicographic order,

Bf = {01011, 01101, 01110, 10011, 10101, 10110, 11001, 11010}. (1)

These strings are the incidence vectors of spanning tree edges in our favorite graph from Figure
2. In particular, 10110 corresponds to the edge set {1, 3, 4}, which is the first spanning tree
in 2. The lexicographic tree for Bf is in Figure 6a, and it does not provide an exchange Gray
code. More specifically, consecutive binary strings do not always differ by a transposition of
a 0 and 1, and so the corresponding spanning trees do not differ by an edge exchange.

It is often more convenient to work with colexicographic order, which orders strings from
right-to-left instead of left-to-right. For example, Bf is written below in this order,

Bf = {11010, 10110, 01110, 11001, 10101, 01101, 10011, 01011}. (2)

The advantage of colexicographic order comes from the fact that colexicographic trees fix the
value of the largest element at the top of the tree. For example, the colexicographic tree for
Bf appears in Figure 6b, and the branches from the root determine the fifth bit, or edge
number 5, in the corresponding spanning tree. This leaves3 the first four bits, or the edges
numbered 1–4, to be determined, which makes for cleaner inductive results.

While twisted lexico trees have been used to generate a variety of Gray codes – see [32]
where the lexico terminology originates – this singular approach does not create minimal
change orders for matroid bases. Instead we’ll need to consider the more broad definition of
a lexico tree from [32], or more precisely a colexico tree, in which some of the nodes have
reversed children4. For example, our exchange Gray code in Figure 2 is backed by a colexico
tree, as seen in Figure 7a. Furthermore, if we change the tiebreaker rule from closest to
furthest, then another colexico tree is obtained, as seen in Figure 7b. In fact, Remark 7
asserts that something much more general is true.
▶ Remark 7. Every order generated by our generic greedy algorithms has a colexico tree.

Remark 7 should come as somewhat of a surprise. For example, note that the root node
in a colexico tree has only two branches. As a result, Remark 7 implies that the largest
element changes only once during all of our orders. While our greedy rule always tries to

3 No pun intended!
4 Swapping the first and last child of some nodes has also been considered for larger alphabets (see [16]).
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(a) Lexicographic tree. The leaves are ordered lex-
icographically from 01011 to 11010 as in (1).
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(b) Colexicographic tree. The leaves are ordered
colexicographically from 11010 to 01011 as in (2).

Figure 6 Lexicographic and colexicographic trees for Bf , which contains the edge incidence
vectors of the spanning trees of our favorite labeled graph from Figure 2. The trees in (a) and
(b) are structurally the same due to the fact that b1b2b3b4b5 ∈ Bf ⇐⇒ b5b4b3b2b1 ∈ Bf , which
in turn is due to the labeling used. However, the root-to-leaf paths encode reversed strings with
respect to each other. In particular, (a) begins with 01011 which corresponds to the spanning tree
{2, 4, 5}, while (b) begins with 11010 which corresponds to the spanning tree {1, 2, 4}. The pairs of
highlighted paths show that these orders are not exchange Gray codes.

minimize the larger element involved in an exchange, there is no immediate reason why it
will be involved in only one exchange throughout the order. We’ll see that Remark 7 follows
from the inductive structure provided in the proof of Theorem 10.

2.2.1 Relabeling
Our main result holds regardless of how the elements are labeled. What does this mean?
Before our algorithm is run, the elements of the matroid are given a labeling that has a total
order, and then the algorithm creates an order of the bases that has a colexico tree with
respect to this labeling. As mentioned earlier, the use of colexicographic order tends to give
cleaner inductive results, but otherwise it is not “special” in any particular way.

3 Prefix minors and the prefix exchange property

In this section, we introduce the matroid property that is central to the proper functioning
of our greedy algorithm. We also discuss its implications in terms of colexico trees. The
property is based on the notion of a prefix minor, which is defined next.

3.1 Prefix minors
When the ground set of a matroid has a total order, we can consider minors in which some
number of the largest elements are deleted or contracted, or equivalently, some number of
the smallest elements remain. This leads to the following definition.

▶ Definition 8. M ′ = (E′, I ′) is an e-prefix minor of M = (E, I) if it is a minor of M and
E′ = {e ∈ E : f ≤ e}.

We say that M ′ is a prefix minor of M if M ′ is an e-prefix minor of M for some e ∈ E.

3.2 Prefix exchange property for bases
The following lemma is a specialization of the standard base exchange property of matroids.
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(a) Colexico tree arising from Algorithm Gclose. The
tree orders the strings from 10110 to 10011 in the
same exchange Gray code seen in Figures 2 and 9.
In particular, the spanning trees corresponding to
the highlighted paths are T = {1, 2, 5} and T ′ =
T ∆{e, f} = {1, 2, 4} for e = 5 and f = 4.
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(b) Colexico tree arising from Algorithm Gfar. The
tree orders the strings from 10110 to 10101 in an-
other exchange Gray code from the same initial
base. In particular, the spanning trees correspond-
ing to the highlighted paths are T = {1, 2, 4} and
T ′ = T ∆{e, f} = {2, 4, 5} for e = 5 and f = 1.

Figure 7 The incidence vectors of edges in the spanning trees of our favorite graph are found
in (1) (and also (2)). These binary strings are ordered above by two different colexico trees. The
branches at the roots determine the inclusion or exclusion of edge 5 (not edge 1). The large nodes are
as in Figure 5, and the remaining internal nodes have one child. The consecutive pair of highlighted
paths differ in only two bits are changed and the larger is e = 5. The algorithm generating (a) selects
the smaller change f = 4 to be as high up the tree as possible, whereas the algorithm generating (b)
selects f = 1 to be as low in the tree as possible.

▶ Lemma 9 (Prefix exchange property for matroid bases). Let M ′ be an e-prefix minor of M

such that e is not a loop or coloop in M ′. For every base T of M ′ there exists f < e such
that T∆{e, f} is a base of M ′.

Proof. Let M ′ = (E′, I) be an e-prefix minor of M = (E, I), and suppose that e is not a
loop or coloop in M ′. We proceed in two cases.

Case 1: T ⊆ E′ is a base of M ′ with e ∈ T . Since e is not a coloop in M ′, there is a base
T ′ ⊆ E′ of M ′ with e /∈ T ′. Since e ∈ T − T ′, the base exchange property implies that
there exists an f ∈ T ′ − T such that T∆{e, f} is a base of M ′. Since e is the largest
element in E′, we know that f < e. Hence, the result holds.
Case 2: T ⊆ E′ is a base of M ′ with e /∈ T . A similar argument proves this case. ◀

We now illustrate Lemma 9 for two matroids. In the case of a uniform matroid every
prefix minor is also a uniform matroid. Consider a specific uniform matroid M ′ = U(8, 5),
which is an 8-prefix minor of M = U(14, 7). Let T = {1, 2, 4, 5, 8} be a base of M ′. Since
e = 8, we can finish the exchange by adding any f ∈ [8]− T = {3, 6, 7}. On the other hand,
if T = {1, 2, 4, 6, 7} and e = 8 as before, we can finish the exchange by removing any f ∈ T .
For a graphic matroid, once again every prefix minor is also a graphic matroid. So, if M ′

is the graphic matroid of some graph and e is the largest labelled edge, then if e /∈ T the
exchange can be completed by removing a smaller labelled edge f from the unique cycle in
T + e, and if e ∈ T the exchange can be completed by removing a smaller labelled edge f

from the unique minimal cut in T − e; such an f exists since e is neither a loop nor coloop.

3.3 Tree interpretation
It is instructive to consider the implications of the prefix exchange property in terms of
colexico trees. The condition that e is not a loop or coloop in M ′ implies that there are two
subtrees under the node corresponding to M ′ in any colexico tree of the bases of the matroid
M . We don’t know which of these two children is first or second in the colexico tree, but we
do know that both subtrees contain at least one leaf (which corresponds to a base in M).
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The rest of the property implies the following: For every leaf in either subtree, there
is a base exchange that results in some leaf of the other subtree. This turns out to be a
very strong and helpful property in the context of our greedy algorithm. As our algorithm
is building a colexico tree, there will always be an exchange that moves from the last leaf
within the first subtree to some leaf within the second subtree; the specific details of which
subtree is first or second, and which leaf is last within the first subtree simply do not matter.
In other words, our algorithm can never get stuck; this will be formalized in Theorem 10.

This interpretation of the prefix exchange property brings to mind the ZIG ship in Zero
Wing. Regardless of how “SOMEBODY SET UP US THE BOMB” [17], there is always a ZIG that
can escape and continue the mission to catch CATS. This connection is illustrated in Figure 8.

4 Combinatorial result: Hamilton paths

We now describe our main result: the following simple greedy algorithm generates all the
bases of a matroid in a Gray code order.

Algorithm G (Greedy bases). This algorithm attempts to greedily generate the bases of
a matroid M starting from an initial base T0.
G1. [Initialize] Visit the initial base T0.
G2. [Greedy] Generate an unvisited base of M by performing any exchange whose larger

element is as small as possible. If no such exchange exists, then terminate. Otherwise
visit the resulting base and repeat G2.

We add the following four notes on Algorithm G(M, T0).
1. Efficiency. It is not efficient as presented. This is because the previously visited bases

must be maintained. In Section 5, we present several history-free implementations.
2. Tiebreakers. It can proceed in many different ways depending on the choices made for

“any exchange”. This is discussed in more detail in Section 4.1.
3. Restricted operations. In many cases, it is possible to prove that the algorithm operates

using only a small subset of the exchanges that it would use in general. Several examples
of this appear in Section 6.

4. Starting base. Even though the algorithm succeeds independently of the initial base,
choosing a particular initial base may lead to nicer and/or stronger properties for the
listings produced. Examples of this appear in Section 6.

Now we prove that the algorithm works as intended.

▶ Theorem 10. If M = (E, I) is a matroid and T is a base of M , then G(M, T ) always
provides a Hamilton path of G(M). In other words, Algorithm G creates an exchange Gray
code for the bases of M starting from any initial base T , regardless of how ties are broken.

Proof. We prove the statement of the theorem by induction on the number of elements, |E|.
If |E| = 1, then there is at most one base, and so the base case holds. Otherwise, suppose
that the statement holds for all matroids with k elements and all initial bases. Now consider
a matroid M = (E, I) with k + 1 = |E| elements, and an initial base T . Without loss of
generality, label the elements in M as E = [k + 1]. Let M1 = M/e and M2 = M − e be the
two prefix minors with respect to the largest element e = k + 1 ∈ E. Finally, let m, m1, and
m2 be the number of bases in M , M1, and M2, respectively. Note that m1 and m2 are the
number of bases of M that do and do not contain e, respectively. We proceed in two cases.
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(a) The prefix-exchange property
ensures that there is at least one
exchange from each leaf in either
subtree to a leaf in the other sub-
tree. For example, the blue arrows
are meant to indicate that there
are two different exchanges from
the blue leaf in the second subtree
to some leaves in the first subtree.
Similarly, there is one exchange
from the gold leaf that moves from
the first subtree to the second sub-
tree.
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(b) Algorithm G escapes the first
subtree via an exchange on the last
leaf in the first subtree, which is
labeled as base T . Visually, G goes
up the colexico tree to e, which is
the lowest node with an unvisited
branch. Then it switches branches
and goes down the same branches
it went up, except for switching at
f to complete the exchange. This
gives a new base T ′ = T ∆{e, f},
which becomes the first leaf in the
second subtree.

(c) No matter how many times
Zero Wing is played, there will al-
ways be a ZIG that escapes the
bomb. This ZIG continues the
pursuit of CATS. Thus, the meme
never ends – just as Algorithm G
can never get stuck.

Figure 8 The prefix exchange property for a matroid M = (E, I) with E = [m]. The red path
illustrates a sequence of contractions or deletions of m, m − 1, . . . , e + 1 that result in an e-prefix
minor M ′ in which e is neither a loop nor a co-loop. Hence, there are two non-empty subtrees below
the node labeled e: one subtree for bases that include e, and the other subtree for bases that exclude
e. An exchange can always “escape” the first subtree, just as a ZIG can always escape the exploding
ship in Zero Wing.
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Case 1: e ∈ T . Observe that T1 = T − e is a base of M1. Since M1 has only k elements,
we know by induction that G(M1, T1) creates an exchange Gray code for all m1 bases of
M1 starting at T1, regardless of how ties are broken. This also implies that G(M, T ) will
begin by generating an exchange Gray code for its bases that include e. More precisely,
G(M, T ) can begin by generating an ordered list of m1 bases of M starting from T , if
and only if, G(M1, T1) generates the same list but with e removed from each base. This
is due to the fact that algorithm G always minimizes the maximum element involved in
an exchange, and hence, G(M, T ) will not use an exchange involving e until it has no
other options (and by induction this happens only after every base including e has been
generated). If m2 = 0, then G(M, T ) has successfully generated every one of its bases,
and the induction is complete. For the remainder of the proof, we assume that m2 > 0,
and this implies that e is neither a loop nor a co-loop in M.
Let T ′

1 be an arbitrary last base generated by G(M1, T1). Hence, T ′ = T ′
1 + e is an

arbitrary last base of M that contains element e. By the prefix exchange property, there
is a base of M that differs from T ′ by an exchange involving e and a smaller element f .
That is, there exists T2 = T ′∆{e, f} with f < e. Therefore, algorithm G(M, T ) will be
able to continue generating bases by making an exchange to some such base T2.
Since T2 is a base of M that does not contain element e, we know that it is a base of M2.
Hence, by induction, G(M2, T2) creates an exchange Gray code for all m2 bases of M2
starting at T2, regardless of how ties are broken. This also implies that G(M, T ) will end
by generating an exchange Gray code for its bases that do not include e. More precisely,
G(M, T ) can end by generating an ordered list of m2 bases of M starting from T ′, if and
only if, G(M2, T2) generates the same list of bases. Again, this is due to G minimizing the
maximum element involved in an exchange.
The previous three paragraphs have shown that G(M, T ) generates an exchange Gray
code for all of its m1 bases including e, followed by an exchange to some base T ′ that
does not include e, followed by an exchange Gray code for all of its m2 bases that do not
include e. Hence, the inductive statement is true.
Case 2: e /∈ T . This case is nearly identical to the previous case by dual arguments. ◀

4.1 Tiebreaker rules
Theorem 10 proves that Algorithms G is always successful in generating minimal change
orders starting from any base. However, the specific orders that they generate will depend
on how ties are broken. These tiebreaker choices can affect how efficiently the resulting order
can be generated or ranked and unranked, and even the specific types of operations that are
used. For example, in Section 6.1 we’ll see that one tiebreaker rule causes Algorithm G to
use homogeneous transpositions, while another causes it to use consistent transpositions.

While tiebreaker rules can be quite creative, they must adhere to some basic principles.
For example, if the larger element e involved in an exchange is entering (exiting) the base,
then the smaller element f must be exiting (entering) to satisfy Theorem 10. This observation
is further refined below according to Remarks 4–5.

▶ Remark 11. If Algorithm G(M, T ) performs an exchange on base T ′ and e is the larger
element in the exchange, then its smaller element f must satisfy the following:

If e /∈ T ′, then f is in the fundamental circuit of T + e.
If e ∈ T ′, then f is in the fundamental cocircuit of T − e.

The existence of such an f is guaranteed by Lemma 9.

This leads us to the following pair of simple and fundamental tiebreaker rules in Sections
4.1.1–4.1.2. See Figures 7a–7b for an example of how they differ.
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4.1.1 Maximum/closest tiebreaker rule
The following tiebreaker rule is generic in the sense that it can be applied to any matroid
without any additional information. When applied to matroid bases, it simply maximizes
the smaller element involved in an exchange.

Algorithm Gclose (Greedy bases with maximum tiebreaker). This algorithm greedily
generates the bases of a matroid M starting from an initial base T0.
C1. [Initialize] Visit the initial base T0.
C2. [Greedy] Generate an unvisited base of M by performing the exchange whose larger

element is minimized, and then breaking ties by maximizing the smaller element. If
no such exchange exists, then terminate. Otherwise visit the resulting independent
set and repeat C2.

We note that the term “maximizing the smaller element” is in reference to the set S

in an edge of the form (T, T∆S) in the underlying exchange graph. More specifically, the
larger element of such an edge is max(S), and the smaller element is min(S). Seen another
way, the tiebreaker rule chooses the smaller element to be as close as possible to the larger
element, hence the terminology maximum/closest tiebreaker rule.

4.1.2 Minimum/furthest tiebreaker rule
The following tiebreaker rule is opposite to the previous, in the sense that it minimizes the
smaller element involved in an exchange. Since it doesn’t depend on the particular matroid,
we also refer to it as a generic tiebreaker rule.

Algorithm Gfar (Greedy bases with minimum tiebreaker). This algorithm is identical to
Algorithm Gclose, but with minimizing the smaller element.

This tiebreaker rule chooses the smaller element to be as far away as possible from the
larger element, hence the terminology minimum/furthest tiebreaker rule.

5 Algorithmic results

In this section, we provide history-free specializations of the meta-algorithm from Section 4.
In other words, we can remove the “which hasn’t appeared earlier” part of Algorithm G by
maintaining additional data structures. More specifically, we give history-free implementations
of Algorithms Gclose and Gfar. The implementations works for any matroid and initial base.

5.1 History-free implementation
We now present history-free iterative implementations of our generic greedy algorithm. To
do so, the implementations maintain an additional data structure, like an array or a stack,
that allows them to implicitly navigate the colexico tree, as in Figure 9. In particular, these
algorithms do not store minors of the matroid (cf. [36]).

5.1.1 Active array
Let M = ([m], I) be a matroid and T0 an initial base of M . In this subsection we show how
to implement Gclose(M, T0) with an active array. Let T be a base of M and recall that T

is a leaf on the colexico tree of Gclose(M, T0). We also introduce the notation P (T ) for the
path between T and the root of the colexico tree.
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1
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Figure 9 A colexico tree of our favorite graph. More specifically, it is the colexico tree generated
by algorithm Gclose, which is the specialization of greedy algorithm G using the maximum tiebreaker
rule. Observe that the bottom row provides the exchange Gray code for the spanning trees of our
favorite graph seen in Figure 2. The same tree with incidence vectors is in Figure 7a.

The main idea behind the active array approach is that whenever we generate T , we also
store A(T ) which contains i ∈ [m] if and only if the i-th edge on P (T ) (counting from T

towards the root) was the leftmost (i.e. first) branch on the colexico tree. Said another way,
A(T ) stores the potential directions we could follow when traversing the lexico tree. Note
that initially A(T0) = [m] as every edge on P (T0) was a first branch. Furthermore, if we are
given the state (T, A(T )) we can compute the next state (T ′, A(T ′)) as follows:
1. Computing T ′. Let e ∈ A(T ) be such that there exists f ≤ e and T∆{e, f} is a base.

Moreover, if there are multiple choices for f we pick the maximum possible ones due to
the tie-breaker rule. Note that T∆{e, f} is the next base as e is the minimum larger
exchange possible. This can be computed by checking whether T ∆{e, f} is a basis for all
pairs of possible e’s and f ’s.
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2. Computing A(T ′). Note that the path only changed for elements smaller than e. We
observe that e is now in its second branch, so it should not appear on A(T ′). Furthermore,
as we just moved to the second branch labelled by e, this implies that everything smaller
than e is in its first branch, so it should appear in A(T ′). This implies that

A(T ′) = [e− 1] ∪ {g ∈ A(T ) : g > e}.

These observations translate into the pseudocode in Algorithm 1.

Algorithm 1 Gclose(M, T0).
Input: A matroid M = ([m], I) and an initial base T0.

1: T ← T0
2: A← [m]
3: Visit T

4: repeat
5: visited← False
6: for e = 2, . . . , m do
7: if e ∈ A then
8: for f = e− 1, . . . , 1 do
9: if T∆{e, f} is a base and not visited then

10: T ← T∆{e, f}
11: A← [e− 1] ∪ {a ∈ A : a > e}
12: Visit T

13: visited← True
14: until not visited

We make the following observations on the pseudocode implementation.
The tiebreaker rule only comes into play in Line 8; this for loop is done in a descending
way as to prioritize the f which is closest to e. In particular, if one would like to implement
the furthest tiebreak, one only needs to do this for loop in an ascending manner. In fact,
any (computable) tiebreaker rule can be implemented by following a similar scheme.
This implementation of Gclose requires O(m2) calls to the base oracle. Additionally, we
can replace every call to the base oracle for a set S to checking if |S| = |T0| and S is
independent. Thus, this implementation of Gclose requires O(m2) calls to the independence
oracle. Moreover, we only need to keep track of the state (T, A(T )) and the counters,
obtaining an algorithm which uses O(m) space.

Further implementation details can be seen in the Appendix.

5.1.2 Stack
In this subsection we provide a stack implementation of Gfar(M, T ). The main idea behind
the stack approach is very similar to the active vector one: Whenever we generate T , we
store alongside S(T ) which contains i ∈ [m] if and only if the edge labelled i on P (T ) has
an unvisited second branch the colexico tree. Said another way S(T ) stores the unvisited
directions when traversing the lexico tree.

We now characterize when a node has two children in the colexico tree. To this end, we
define the following: (1) T ∗ is the complement of the base T ; (2) for e ∈ [m] the partial base
∂eT and cobase ∂eT ∗ are the “suffix” of size m− e of T and T ∗ respectively. More formally,

∂eT := T ∩ {e + 1, . . . , m}, ∂eT ∗ = T ∗ ∩ {e + 1, . . . , m}.
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Recall that every node on the colexico tree has a prefix minor associated to it. Furthermore, if
M ′ is an e-prefix minor whose node associated lies on P (T ) we have that M ′ = M−∂eT ∗/∂eT .
The key observation here, is that the node associated to M ′ has two children if and only if
∂eT + e is independent and ∂eT ∗ + e is coindependent. Since M ′ has two children if and
only if both taking element e and not taking e lead to bases, said another way ∂eT + e can
be extended to a base and ∂eT ∗ + e can be extended to a cobase.

With this observation, we can compute the state (T ′, S(T ′)) that follows (T, S(T )).
1. Computing T ′. Let e ∈ S(T ) be the smallest element in the stack. We now consider the

set T∆{e}, this has either a fundamental circuit or cocircuit. In particular, any f ≤ e

which lies on the fundamental circuit or cocircuit will form a possible base (this exists as
there was a branching on this node of the colexico tree). Moreover, if there are multiple
choices for f we pick the minimum possible one due to the tie-breaker rule. Note that
T∆{e, f} is the next base as e is the minimum larger exchange possible.

2. Computing S(T ′). Note that the path only changed for elements smaller that e. Thus,
the only elements which can enter the stack are smaller than e. In view of this, we update
the stack by checking if for every element f ≤ e the partial bases and cobases ∂f T ′ and
∂f T ′∗ are independent and coindependent respectively.

3. Delay. Note that if ∂f T ′ is not independent, f is forced to be out of the next base in
order to actually reach a leaf. Similarly, whenever ∂f T ′ is not coindependent, f is forced
to be inside of the next base in order to actually reach a leaf. Perhaps surprisingly,
whenever we are not forced we do not take a choice and delay the decision to complete
the exchange at a later point (See 5.1.3 for details on why this works).

These observations translate into the pseudocode in Algorithm 2.

Algorithm 2 Gfar(M, T0).
Input: A matroid M = ([m], I) and an initial base T0.

1: T ← T 0

2: S ← ∅
3: for e = m, . . . , 1 do
4: if ∂eT + e ∈ I and ∂eT ∗ + e ∈ I∗ then
5: S.push(e)
6: Visit T

7: while S ̸= ∅ do
8: e← S.pop()
9: for f = e− 1, . . . , 1 do

10: if ∂f T + f is independent and ∂f T ∗ + f is coindependent then
11: S.push(f)
12: else if ∂f T + f is independent and f /∈ T then
13: T ← T∆{f}
14: T ∗ ← T ∗∆{f}
15: else if ∂f T ∗ + f is coindependent and f ∈ T then
16: T ← T∆{f}
17: T ∗ ← T ∗∆{f}
18: Visit T

We make the following observations on the pseudocode implementation.
The tiebreaker of Gfar comes into play with the delay strategy. More specifically, we
always delay the decision of picking f until it gets forced on us. Note that it is not hard
to replace this tiebreaker with another by adding some conditions to select f .
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Figure 10 The implementation of the minimum/furthest tiebreaker rule seems dangerous: Is it
safe to delay choosing f until we are forced to do so? Don’t worry, “WE KNOW WHAT WE DOING”.

This implementation of Gfar requires O(m) calls to the independence and coindependence
oracles. Moreover, we only need to keep track of the state (T, S(T )) and the counters,
obtaining an algorithm which uses O(m) space.

Further implementation details can be seen in the Appendix.

5.1.3 Delay and the furthest tiebreaker rule
Recall that the furthest tiebreaker rule delays switching branches until it is forced to do so.
For example, the smaller change occurs at the very bottom of the colexico tree in Figure 7b.

At first, this approach to implementing the furthest tiebreaker rule may seem to be
dangerous. How do we know that there will be a smaller element f that is forced? How do we
know that the remaining smaller values can be chosen without any additional changes? This
approach works due to Remarks 4–5. More specifically, the minimum smaller element f is
precisely the smallest element on the fundamental circuit C(T, e) or cocircut C∗(T, e) created
by adding or removing the larger element e. If we have not changed the other elements
on this circuit or cocircuit, then this f will be a loop or coloop, respectively, and so the
algorithm will be forced into choosing it to be the smaller element in the exchange. In
the case of Figure 7b, the first highlighted base is the spanning tree with edges {1, 2, 4} in
the graph found in Figure 2; adding edge f = 5 at the top of the colexicotree creates the
fundamental cycle 1234 whose smallest element is e = 1 at the bottom of the colexico tree.
The spirit behind this technique is illustrated in Figure 10.

5.1.4 Example
We illustrate the execution of the iterative algorithms using the Vámos matroid. First
described in an unpublished manuscript of Peter Vámos [39], the Vámos matroid V =
([8], I) has [8] as a ground set and its bases are all subsets of size four except {1, 2, 3, 4},
{1, 2, 5, 6}, {1, 2, 7, 8}, {3, 4, 5, 6} and {3, 4, 7, 8} which are marked as faces in Figure 11. Thus,
it has

(8
4
)
− 5 = 65 bases. The remaining independent sets are all subsets of size at most

three. The Vámos matroid is a very interesting example to run our algorithms, as it is not a
column matroid for any field. We show the run of Gclose(V, {1, 2, 3, 5}) on Table 1.

5.2 Analysis
In this subsection we provide running times for specific matroids, without referencing oracle
calls. We are particularly interested in the delay of the algorithm, that is, the time it takes
to visit the next base.

We highlight that the algorithms only need to check for incremental independence and
incremental coindependence. Specifically, if we are given an independent (resp. coindependent)
set S ⊆ E, we must be able to check whether S + s is independent (resp. coindependent) for
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Figure 11 A representation of the five circuits of size four in the Vámos Matroid. Each of
{1, 2, 3, 4}, {1, 2, 5, 6}, {1, 2, 7, 8}, {3, 4, 5, 6}, {3, 4, 7, 8} appears as a face in the figure.

Table 1 Vámos matroid bases with variable traces from the array and stack implementations.

# base T Active array A(T ) Stack S(T ) # base T Active array A(T ) Stack S(T )
1 1, 2, 3, 5 1, 2, 3, 4, 5, 6, 7, 8 8, 7, 6, 4 34 3, 5, 6, 8 1, 7 7, 6, 5, 3
2 1, 2, 4, 5 1, 2, 3, 5, 6, 7, 8 8, 7, 6, 3 35 2, 5, 6, 8 1, 2, 5, 6, 7 7, 6, 5, 2
3 1, 3, 4, 5 1, 2, 5, 6, 7, 8 8, 7, 6, 2 36 1, 5, 6, 8 1, 5, 6, 7 7, 6, 5
4 2, 3, 4, 5 1, 5, 6, 7, 8 8, 7, 6 37 1, 4, 6, 8 1, 2, 3, 4, 6, 7 7, 6, 4, 3, 2
5 2, 3, 4, 6 1, 2, 3, 4, 5, 7, 8 8, 7, 5, 4, 3, 2 38 2, 4, 6, 8 1, 3, 4, 6, 7 7, 6, 4, 3
6 1, 3, 4, 6 1, 3, 4, 5, 7, 8 8, 7, 5, 4, 3 39 3, 4, 6, 8 1, 2, 4, 6, 7 7, 6, 4
7 1, 2, 4, 6 1, 2, 4, 5, 7, 8 8, 7, 5, 4 40 2, 3, 6, 8 1, 2, 3, 6, 7 7, 6, 3, 2
8 1, 2, 3, 6 1, 2, 3, 5, 7, 8 8, 7, 5 41 1, 3, 6, 8 1, 3, 6, 7 7, 6, 3
9 1, 3, 5, 6 1, 2, 3, 4, 7, 8 8, 7, 4, 2 42 1, 2, 6, 8 1, 2, 6, 7 7, 6
10 2, 3, 5, 6 1, 3, 4, 7, 8 8, 7, 4 43 1, 2, 5, 8 1, 2, 3, 4, 5, 7 7, 5, 4, 3
11 2, 4, 5, 6 1, 2, 3, 7, 8 8, 7, 2 44 1, 3, 5, 8 1, 2, 4, 5, 7 7, 5, 4, 2
12 1, 4, 5, 6 1, 3, 7, 8 8, 7 45 2, 3, 5, 8 1, 4, 5, 7 7, 5, 4
13 1, 4, 5, 7 1, 2, 3, 4, 5, 6, 8 8, 6, 5, 4, 3, 2 46 2, 4, 5, 8 1, 2, 3, 5, 7 7, 5, 3, 2
14 2, 4, 5, 7 1, 3, 4, 5, 6, 8 8, 6, 5, 4, 3 47 1, 4, 5, 8 1, 3, 5, 7 7, 5, 3
15 3, 4, 5, 7 1, 2, 4, 5, 6, 8 8, 6, 5, 4 48 3, 4, 5, 8 1, 2, 5, 7 7, 5
16 2, 3, 5, 7 1, 2, 3, 5, 6, 8 8, 6, 5, 3, 2 49 2, 3, 4, 8 1, 2, 3, 4, 7 7, 4, 3, 2
17 1, 3, 5, 7 1, 3, 5, 6, 8 8, 6, 5, 3 50 1, 3, 4, 8 1, 3, 4, 7 7, 4, 3
18 1, 2, 5, 7 1, 2, 5, 6, 8 8, 6, 5 51 1, 2, 4, 8 1, 2, 4, 7 7, 4
19 1, 2, 4, 7 1, 2, 3, 4, 6, 8 8, 6, 4, 3 52 1, 2, 3, 8 1, 2, 3, 7 7
20 1, 3, 4, 7 1, 2, 4, 6, 8 8, 6, 4, 2 53 1, 3, 7, 8 1, 2, 3, 4, 5, 6 6, 5, 4, 2
21 2, 3, 4, 7 1, 4, 6, 8 8, 6, 4 54 2, 3, 7, 8 1, 3, 4, 5, 6 6, 5, 4
22 1, 2, 3, 7 1, 2, 3, 6, 8 8, 6 55 2, 4, 7, 8 1, 2, 3, 5, 6 6, 5, 2
23 1, 2, 6, 7 1, 2, 3, 4, 5, 8 8, 5, 4, 3 56 1, 4, 7, 8 1, 3, 5, 6 6, 5
24 1, 3, 6, 7 1, 2, 4, 5, 8 8, 5, 4, 2 57 1, 5, 7, 8 1, 2, 3, 4, 6 6, 4, 3, 2
25 2, 3, 6, 7 1, 4, 5, 8 8, 5, 4 58 2, 5, 7, 8 1, 3, 4, 6 6, 4, 3
26 2, 4, 6, 7 1, 2, 3, 5, 8 8, 5, 3, 2 59 3, 5, 7, 8 1, 2, 4, 6 6, 4
27 1, 4, 6, 7 1, 3, 5, 8 8, 5, 3 60 4, 5, 7, 8 1, 2, 3, 6 6
28 3, 4, 6, 7 1, 2, 5, 8 8, 5 61 4, 6, 7, 8 1, 2, 3, 4, 5 5, 4
29 3, 5, 6, 7 1, 2, 3, 4, 8 8, 4, 3 62 3, 6, 7, 8 1, 2, 3, 5 5, 3
30 2, 5, 6, 7 1, 2, 4, 8 8, 4, 2 63 2, 6, 7, 8 1, 2, 5 5, 2
31 1, 5, 6, 7 1, 4, 8 8, 4 64 1, 6, 7, 8 1, 5 5
32 4, 5, 6, 7 1, 2, 3, 8 8 65 5, 6, 7, 8 1, 2, 3, 4
33 4, 5, 6, 8 1, 2, 3, 4, 5, 6, 7 7, 6, 5, 4
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s /∈ S. This is enough, as ∂T is independent and ∂T ∗ is coindependent, which are the only
sets checked by the oracles. Furthermore, if incremental independence can be checked in
time t1 and incremental coindependence in time t2, then this gives an O(|E|(t1 + t2))-delay
algorithm for generating bases.

Note that the space requirements for bases algorithms are the sum of the space it takes to
store one base and one cobase and any extra data structures we would maintain for testing
incremental independence/coindependence.

1. Uniform matroid: For the uniform matroid U(n, k) let S ⊆ [n] and s /∈ S, in addition to
S we also store its size. We can check incremental independence by checking if |S|+1 ≤ k.
Similarly, the coindependence oracle can be implemented by checking if |S|+ 1 ≤ n− k.
These checks and updates take O(1) time, thus we obtain a running time of O(n) per
generated base.
An interesting phenomenon occurs when we consider a fixed λ > 1 and n = λk. In
this case, the implementation of Gclose is such that the larger element e, on average, is
bounded by a constant (which depends on λ, but not on n). Since, the time actually
needed to generate a new base is O(e), we obtain a bound of Oλ(1) time on average.
Details on the exact bound are provided in Section 6.1.2.

2. Graphic matroid: Given a graph G = (V, E) such that |V | = n and |E| = m, we consider
now the graphic matroid M(G). The problem of incremental independence/coinde-
pendence has been well studied on graphic matroids, as in particular, these appear as
subproblems on algorithms like Kruskal and Reverse-Kruskal. Tarjan [34] showed that
incremental independence can be checked in time O(α(m, n)) where α is the inverse Ack-
ermann function. Thorup [35] showed that incremental coindependence can be checked
in time O(log n(log log n)3). Thus, we obtain an O(m log n(log log n)3)-delay algorithm
for the spanning trees of a graph.

3. Column matroid: Let A be an n by m matrix and consider its column matroid. Here,
we note that we can check independence/coindependence by solving an n× n system of
linear equations in time O(n3). Thus, we obtain a time of O(mn3) per generated base.

We summarize these results in Table 2 and have the following theorem as bookkeeping.

▶ Theorem 12. Run-times and memory usage for algorithms in this section are in Table 2.

Table 2 The running times and memory usage by the modified greedy algorithms.

Matroid Preprocessing Space Delay

Generic Matroid O(|E|) O(|E|) O(|E|) calls to the independence
and coindependence oracle.

Graphic M(G) O(m + n) O(m+n) O(m log n(log log n)3)
Uniform U(n, k) O(n) O(n) O(n)
Uniform U(λk, k) O(k) O(k) Oλ(1) amortized
Column MF(A) O(mn2) O(mn) O(mn3)
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6 Special cases

In this section, we specialize our results to a couple of interesting matroids. The goal is not
to cover all of the interesting cases that can be derived from our meta-algorithms, nor is it
to obtain the sharpest results in any specific case. Instead, the goal is to exemplify that our
algorithms are very versatile and can be refined in various ways. Collectively, the examples
in this section illustrate the four notes provided in Section 4.

Efficiency. We include an algorithm that runs in constant amortized time.
Tiebreakers. We illustrate that the different tiebreaker rules result in different orders.
Restricted operations. We include orders that use restricted types of exchanges, including
homogeneous transpositions and edge pivots.
Starting base. We include orders that make use of particular starting bases and obtain
stronger properties like cyclicity or homogeneity.

6.1 All your combinations: uniform matroid bases
In this subsection we consider the particular case when M is the uniform matroid U(n, k).
Recall that the bases in this case are all subsets of [n] of size k. Furthermore, in this Section
we will usually think of these base in terms of their characteristic vector. The characteristic
vector of a set S of [n] is simply a bitstring x ∈ {0, 1}n which has ones in the positions given
by S. More formally,

xi =
{

1 if i ∈ S,

0 otherwise.

Note that the characteristic vectors of bases of U(n, k) are exactly the bitstrings x ∈ {0, 1}n

with exactly k ones. We call such vectors (n, k)-combinations. In this context, a base
exchange will mean simply the transposition of a 1 and a 0 in the vector. Finally, we remark
that we will usually make no distinction between the subsets and their characteristic vectors.

The generation of (n, k)-combinations has been well studied and is covered in Section
7.2.1.3 of The Art of Computer Programming [15]. It is not hard to see that restriction
of the binary reflected Gray code for n to (n, k)-combinations gives a transposition Gray
code, but nevertheless, stronger constraints on the type of transpositions are also possible.
We mention two which are relevant for the section. Given (n, k)-combinations x, y, we say
that y is obtained by a homogeneous transposition from x if it is obtained by transposing
elements which have only zeros in between, i.e. xi and xj are transposed with i < j and
xi+1 . . . xj−1 = 0j−i−1. Due to a result by Eades and McKay [6] homogeneous transpositions
Gray codes are known to exist and moreover, they are obtained by the following recursion
for n, k > 0

EMn,k = EMn−1,k0, rev(EMn−2,k−1)01, EMn−2,k−211, EMn,0 = 0n, EMn,n = 1n

with the convention that EMn,k = ∅ for n or k negative. Note that with a homogeneous
transposition Gray code, we can play all k-note chords on an n-note piano by moving exactly
one finger at a time. We also consider the weaker notion of a consistent transposition which
only requires that the bits in between the transposed elements are the same, i.e. if xi and
xj were transposed with i < j, then xi+1 . . . xj−1 is either 0j−i−1 or 1j−i−1. In the piano
interpretation, a consistent transposition Gray code allows us to play all k-note chords on an
n-note piano by either shifting a block of contiguous fingers one note or moving exactly one
finger (across possibly many notes).
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6.1.1 A closer look into the closest tiebreaker
We already know that the greedy Algorithm allows us to generate combinations by trans-
positions, but much more can be obtained by closer examination of the listings provided
by Algorithm Gclose. A first interesting observation is that, if xi and xj are transposed for
i < j then the bits in between are either all zeros or all ones. Otherwise, there would have
been a closer transposition with the same largest element j. This directly implies that the
listings obtained by Algorithm Gclose are consistent transposition Gray codes. We analyze
this further by obtaining a recursive description of the listing obtained by Algorithm Gclose.
To this end, we introduce the prefix function p : {0, 1}n → {0, 1}n−1 as a function which
maps x1 . . . xn to its longest proper prefix x1 . . . xn−1. A simple inductive argument gives
the following recursive definition.

▶ Lemma 13. Let x be an (n, k)-combination and L(n, k, x) the Gray code computed by
Gclose(U(n, k), x). The following recursive formulas hold for n > k ≥ 1.

If xn = 1: L(n, k, x) = L(n− 1, k − 1, p(x))1, L(n− 1, k, 1k−10n−k−11)0.
If xn = 0: L(n, k, x) = L(n− 1, k, p(x))0, L(n− 1, k − 1, 0n−k−11k−10)1.

The following remark is a direct consequence of Lemma 13
▶ Remark 14. There are only two possible final bitstrings in the execution of Algorithm
Gclose for (n, k)-combinations: 1k0n−k or 0n−k1k. In particular, note that only the final bit
of the starting bitstring decides this: if it is a 1 the final (n, k)-combination will be 1k0n−k

and if it is a 0 the final one will be 0n−k1k.
By Remark 14, we know that starting Algorithm Gclose with 1k−10n−k1 will end up with

a cyclic Gray code. Furthermore, this will be a consistent transposition Gray code. We
summarize the results of this subsection in the following corollary.

▶ Corollary 15. Running Algorithm Gclose on U(n, k) starting from any (n, k)-combination
gives a consistent transposition Gray code. Moreover, this Gray code is cyclic (in the consistent
transposition sense) if and only if the starting bitstring is either 1k−10n−k1 or 0n−k−11k0.

6.1.2 Amortized analysis: Average larger label
In this subsection we state the result anticipated in Section 5.2. The proof is omitted due to
space considerations.

▶ Lemma 16. Let x be an (n, k)-combination. We denote by avg(n, k, x) the average larger
label involved in a transposition in the listing produced by G(U(n, k), x). The following holds:

avg(n, k, x) ≤ 5n2

k(n− k) + O(1).

In particular, if λ > 1 and n = λk, then

avg(λk, k, x) ≤ 5λ2

(λ− 1) + O(1) = Oλ(1).

6.1.3 Homogeneous transpositions
The reader may wonder whether Algorithm Gclose gives a homogeneous transposition Gray
code. This is not true as transpositions over contiguous blocks of ones are utilized (see
Figure 12). Interestingly, we can fulfill this stronger requirement just by choosing a suitable
tiebreaker for Algorithm G. Furthermore, the tiebreaker rule is very natural as it just adds
the homogeneous requirement to the furthest tiebreaker rule as follows.

FUN 2022



22:24 All Your Bases Are Belong to Us: Listing All Bases of a Matroid by Greedy Exchanges

(a) (b) (c)

Figure 12 Illustration of three gray codes for (10, 5)-combinations. The strings appear in
clockwise order, starting at 12 o’clock. The inner track is the leftmost bit and the outer track the
rightmost bit, where 1-bits are drawn white and 0-bits are drawn black. (a) The homogeneous
transposition Gray code for (10, 5)-combinations produced by the Eades-McKay algorithm (b) The
homogeneous transposition Gray code for (10, 5)-combinations produced by Ghom(10, 5, 1111100000) (c)
The consistent transposition Gray code for (10, 5)-combinations produced by Gclose(10, 5, 1111100000).

Algorithm Ghom (Greedy combinations w/ homogeneous transpositions). This algorithm
attempts to generate all (n, k)-combinations by homogeneous transpositions starting
from x0.
H1. [Initialize] Visit the initial (n, k)-combination x0.
H2. [Greedy] Generate an unvisited (n, k)-combination by performing a homogeneous

transposition that minimizes the larger element, and then breaks ties by minimizing
the smaller element. If no such transposition exists, then terminate. Otherwise visit
the resulting (n, k)-combination and repeat H2.

This is not the first greedy approach for homogeneous transposition Gray codes, as such
an approach was given by Williams in 2013 [44]. It is interesting to note that the greedy
approach is different to both the one by Eades-McKay (see Figure 12 for a sample comparison
with Eades-McKay’s approach). On the other hand, even though the approach by Williams
has a different description, it is not hard to see that it generates the same listings as Ghom.

We note that it is not immediate from Theorem 10 that Algorithm Ghom generates all
(n, k)-combinations, as we have restricted ourselves to only homogeneous transpositions
(instead of all possible transpositions or base exchanges). In particular, it is not true that
Algorithm Ghom generates all (n, k)-combinations independently of the starting combination,
as it fails to do so for some of them. Interestingly enough, we can ensure that Algorithm Ghom

works, whenever the starting bitstring has all of its ones consecutively. More formally, for
a ∈ {0, . . . , n−k} define sn,k,a as the (n, k)-combination which has all of its ones consecutively
and begins with a zeroes, that is 0a1k0n−k−a. We have the following theorem.

▶ Theorem 17. For every a ∈ {0, . . . , n − k}, Ghom(n, k, sn,k,a) generates all (n, k)-
combinations.

The proof is by induction and it is omitted due to space considerations.
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6.2 Your biggest fan: graphic matroid bases and pivot Gray codes
As mentioned earlier, the bases of a graphic matroid are the spanning trees of the associated
graph. Our results provide edge-exchange Gray codes, meaning that one edge is added and
another one is deleted to obtain the next spanning tree. Recently, a new type of spanning
tree Gray code was introduced by Cameron, Grubb, and Sawada [3]. A pivot Gray code
refines an exchange as follows: The two edges involved in the exchange must share a common
vertex u. In other words, the operation is u-pivot (or simply a pivot), meaning that an edge
changes its other endpoint by pivoting around u.

Besides introducing this new concept, the authors of [3] provide a specific pivot Gray
code for the family of graphs known as fans. The fan graph Fn contains n vertices and
(n− 2) + (n− 1) = 2n− 3 edges that are organized into a path of length n− 1, along with
an edge from each of these path vertices to an additional vertex known as the handle. The
name of these graphs comes from their natural planar embedding (i.e., with every vertex on
the outer face) that resembles an unfolded fan.

The Gray code in [3] is also constructed greedily, but in a vertex-centric manner. They
label the vertices of the path 2, 3, . . . , n and the handle as ∞, and then they aim to minimize
the vertex that supports a pivot to a new spanning tree. More specifically, their greedy rule
is stated as follows:

Prioritize the pivots u from smallest to largest and then for each pivot, prioritize the edges
uv that can be removed from the current tree in increasing order of the label on v, and for

each such v, prioritize the edges uw that can be added to the current tree in increasing order
of the label on w.

By starting at a specific spanning tree – the path together with edge 2∞ – an under-
standable recursive structure is obtained. From this recursive structure, the authors of [3]
are able to obtain algorithmic results including efficient generation and ranking / unranking.

At first glance, the results in [3] appear to have little in common with the general results
presented in this paper. After all, we consider exchange operations not pivots, and we
prioritize edges rather than vertices. However, that initial judgement proves to be incorrect.

By carefully setting our initial conditions, we are able to recreate the combinatorial result
in [3]. In other words, we can also create pivot Gray codes for the fan graph. In fact, we
strengthen the combinatorial result in two ways.
1. There is a face pivot Gray code of Fn’s spanning trees. This means that the pivot operation

is further refined as follows: The added and deleted edges are consecutive in one of the
faces of Fn’s natural planar embedding5.

2. There is a face pivot Gray code starting from any spanning tree of Fn.

To obtain our results, we label the edges in increasing order from left-to-right as shown
in Figure 13. Then Algorithm Gclose will generate a face pivot Gray code, regardless of the
starting spanning tree, with one such order illustrated in Figure 13.

▶ Theorem 18. Algorithm Gclose generates a face pivot Gray code for the spanning trees of
the fan graph Fn, regardless of the initial spanning tree, so long as it uses the left-to-right
labeling.

5 This stronger property is not directly mentioned in [3], but it might hold. In particular, the example
order F6 in Figure 4 only uses face pivots.
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Figure 13 A face pivot Gray code of the fan graph F4.

Proof. By Theorem 10, we know that Algorithm Gclose generates exchange Gray codes under
these conditions. Consider one such Gray code, and let T be an arbitrary spanning tree in
this order, so long as it is not the last one. Let T ′ = T∆{e, f} be the next spanning tree in
the order with f < e. To complete the proof, we simply need to show that this exchange is a
face pivot. We proceed in two cases.

Case 1: e /∈ T . Let us consider the fundamental cycle C in T + e. Observe that C must
include exactly two handle edges, say g and h, and some positive number of path edges,
say p1, p2, . . . , pk. Without loss of generality, we can assume g < p1 < p2 < · · · < pk < h

due to the left-to-right labeling. More specifically, we have the following equalities:

g = p1 − 1 p1 = p2 − 2 p2 = p3 − 2 . . . pk−1 = pk − 2 pk = h− 1 (3)

We now consider the possibilities for e in turn.
Note that e ̸= g, since otherwise e would be a loop in the e-prefix minor, and hence,
Algorithm Gclose would not use it in an exchange.
Consider e = h. In this case, the closest tiebreaker used in Algorithm Gclose will select
f = pk due to the rightmost equality in (3). Since e = h and f = pk are on the same
triangle face, this exchange is a face pivot.
Consider e = p1. In this case, the closest tiebreaker used in Algorithm Gclose will select
f = g due to the leftmost equality in (3). Since e = p1 and f = g are on the same
triangle face, this exchange is a face pivot.
Consider e = pi for some i > 1. Note that the handle edge pi − 1 /∈ T , since otherwise
there would be a cycle in T . Therefore, Algorithm Gclose cannot select f = pi− 1. The
next smallest edge is f = pi − 2 = pi−1 due to the non-edge cases of (3), so Algorithm
Gclose will select this by using the closest tiebreaker. Since e = pi and f = pi−1 are on
the outer face, this exchange is a face pivot.

Case 2: e ∈ T . This case is similar to the previous case. ◀

7 Final remarks

In this paper, we proved that greedy algorithms are fundamental to matroids in a new way.
More specifically, we showed that a simple meta-algorithm can be used to generate exhaustive
lists of bases using exchanges. We then provided iterative implementations for generating
these lists. Finally, we specialized our results for specific matroids and tiebreaker rules. The
authors have observed that similar results can be established for the independent sets of a
matroid, and we look forward to establishing these results in the full version of this paper.
Furthermore, we also plan to provide efficient implementations for specific matroids in the
Combinatorial Object Server [5].
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