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Abstract
Shikaku is a pencil puzzle consisting of a rectangular grid, with some cells containing a number.
The player has to partition the grid into rectangles such that each rectangle contains exactly one
number equal to the area of that rectangle. In this paper, we propose two physical zero-knowledge
proof protocols for Shikaku using a deck of playing cards, which allow a prover to physically show
that he/she knows a solution of the puzzle without revealing it. Most importantly, in our second
protocol we develop a general technique to physically verify a rectangle-shaped area with a certain
size in a rectangular grid, which can be used to verify other problems with similar constraints.
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1 Introduction

Shikaku is a pencil puzzle introduced by Nikoli, a Japanese publisher that developed many
popular pencil puzzles such as Sudoku, Kakuro, and Slitherlink. The puzzle has become
popular and many Shikaku mobile apps have been developed [7]. A Shikaku puzzle consists
of a rectangular grid of size m × n, with some cells containing a number. The objective of
this puzzle is to partition the grid into rectangles such that each rectangle contains exactly
one number, which must be equal to the area of that rectangle (see Figure 1). Determining
whether a given Shikaku puzzle has a solution is an NP-complete problem [23].

Suppose that Paimon, an expert in Shikaku, created a difficult Shikaku puzzle and
challenged her friend Venti to solve it. After a while, Venti could not solve her puzzle and
began to doubt whether the puzzle actually has a solution. Paimon wants to convince him
that her puzzle indeed has a solution without revealing it (which would render the challenge
pointless). To achieve this, Paimon needs a zero-knowledge proof (ZKP).
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Figure 1 An example of a 7 × 7 Shikaku puzzle (left) and its solution (right).
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1.1 Zero-Knowledge Proof
First introduced in 1989 by Goldwasser et al. [6], a ZKP is an interactive protocol between a
prover P and a verifier V . Both P and V are given a computational problem x, but only
P knows a solution w of x. A ZKP enables P to convince V that he/she knows w without
revealing any information about w. It must satisfy the following three properties.
1. Completeness: If P knows w, then V accepts with high probability. (In this paper, we

consider only the perfect completeness property where V always accepts.)
2. Soundness: If P does not know w, then V rejects with high probability. (In this paper,

we consider only the perfect soundness property where V always rejects.)
3. Zero-knowledge: V learns nothing about w. Formally, there exists a probabilistic

polynomial time algorithm S (called a simulator), not knowing w but having an access
to V , such that the outputs of S follow the same probability distribution as the ones of
the real protocol.

As there exists a ZKP for every NP problem [5], one can construct a computational ZKP
for Shikaku. However, such construction requires cryptographic primitives and thus is not
intuitive or practical.

Instead, many results so far aimed to develop physical ZKP protocols using a deck of
playing cards. These card-based protocols have benefits that they use only portable objects
found in everyday life and do not require computers. They also allow external observers
to verify that the prover truthfully executes the protocol (which is often a challenging task
for digital protocols). In addition, these protocols have great didactic values to teach the
concept of a ZKP to non-experts.

1.2 Related Work
Card-based ZKP protocols for many other popular pencil puzzles have been developed,
including Sudoku [8, 17, 21], Nonogram [3, 16], Akari [1], Takuzu [1, 12], Kakuro [1, 13],
KenKen [1], Makaro [2], Norinori [4], Slitherlink [11], Juosan [12], Numberlink [18], Suguru
[14], Ripple Effect [19], Nurikabe [15], Hitori [15], Cryptarithmetic [9], and Bridges [20].

In a recent work of Robert et al. [15], the authors posed an open problem to extend the
idea of their protocol to verify a solution of Shikaku or other puzzles that require to draw
rectangles with certain sizes in a grid.

1.3 Our Contribution
In this paper, we answer the open problem posed by Robert et al. [15] by developing two
card-based ZKP protocols with perfect completeness and soundness for Shikaku: a brute
force protocol and a more elegant, intuitive flooding protocol. The two protocols use Θ(m2n2)
cards and Θ(mn) cards, respectively.

Most importantly, in the flooding protocol we develop a general technique to physically
verify a rectangle-shaped area with a certain size in a rectangular grid, which can be used to
verify other problems with similar constraints.

2 First Attempt: Brute Force Protocol

Every card used in this paper has an integer on the front side. All cards have indistinguishable
back sides denoted by ? .
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Let (x, y) denote a cell located in the x-th topmost row and y-th leftmost column of the
Shikaku grid. Let p2, p3, ..., pk+1 be the k numbers written on the grid1, with each number
pi in a cell (xi, yi). Note that we must have p2 + p3 + ... + pk+1 = mn.

Suppose that in P ’s solution, the grid is divided into k rectangles Z2, Z3, ..., Zk+1 such
that each Zi contains the number pi. Each rectangle Zi is represented by its top-left and
bottom-right corner cells (ai, bi) and (a′

i, b′
i), respectively. To verify that the solution is

correct, it is sufficient to show that
1. ai ≤ xi ≤ a′

i and bi ≤ yi ≤ b′
i (a cell with the number pi is inside Zi) for every

i ∈ {2, 3, ..., k + 1},
2. (a′

i − ai + 1)(b′
i − bi + 1) = pi (the area of Zi is equal to pi) for every i ∈ {2, 3, ..., k + 1},

and
3. a′

i < aj or a′
j < ai or b′

i < bj or b′
j < bi (Zi and Zj do not overlap) for every distinct

i, j ∈ {2, 3, ..., k + 1}.

These three conditions can be verified by applying the combination of the copy, addition,
multiplication, and equality protocols [20], and a protocol to compare two numbers [2].

This protocol, however, involves a lot of messy calculations and thus has lost its didactic
values as it becomes more computational and less intuitive. Moreover, it requires up to
Θ(m2n2) cards (as we have to multiply integers in modulo mn)2, which is far too many to be
practical. Instead, we are looking for an elegant and intuitive protocol that uses a reasonable
number of cards.

3 Verifying an Area of Connected Cells

In a recent work, Robert et al. [15] developed a sea formation protocol that allows the prover
P to convince the verifier V that a given area in a grid consists of t cells that are connected
to each other horizontally or vertically. We will first show the necessary subprotocols and
then explain the sea formation protocol.

3.1 Pile-Shifting Shuffle
Given a p × q matrix of cards, a pile-shifting shuffle rearranges the columns of the matrix
by a random cyclic shift, i.e. shifts the columns cyclically to the right by x columns for a
uniformly random x ∈ Z/qZ, unknown to all parties.

The pile-shifting shuffle was developed by Shinagawa et al. [22]. It can be performed in
real world by putting the cards in each column into an envelope and then taking turns to
apply Hindu cuts (taking several envelopes from the bottom and putting them on the top)
to the sequence of envelopes [24].

3.2 Chosen Cut Protocol
Given a sequence of q face-down cards C = (c1, c2, ..., cq), a chosen cut protocol for q cards
allows P to select a card ci he/she wants (to use in other operations) without revealing i to
V . This protocol also reverts the sequence C back to its original state after P finishes using
ci. It was developed by Koch and Walzer [10].

1 We intentionally start the indices at 2 so that our second protocol, which will be introduced later, will
be easier to understand.

2 In this protocol, an integer x in modulo mn is encoded by a sequence of mn consecutive cards, with all
of them being 0 s except the (x + 1)-th leftmost card being a 1 .
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? ? ... ? ? ? ... ?
c1 c2 ci−1 ci ci+1 cq

? ? ... ? ? ? ... ?
0 0 0 1 0 0
? ? ... ? ? ? ... ?
1 0 0 0 0 0

Figure 2 A 3 × q matrix M constructed in Step 1 of the chosen cut protocol.

1. Construct the following 3 × q matrix M (see Figure 2).
a. In Row 1, publicly place the sequence C.
b. In Row 2, secretly place a face-down 1 at Column i and a face-down 0 at each other

column.
c. In Row 3, secretly place a face-down 1 at Column 1 and a face-down 0 at each other

column.
2. Apply the pile-shifting shuffle to M .
3. Turn over all cards in Row 2. Locate the position of the only 1 . A card in Row 1 directly

above that 1 will be the card ci as desired.
4. After we finish using ci in other operations, place ci back into M at the same position.
5. Turn over all face-up cards in Row 2 and apply the pile-shifting shuffle to M again.
6. Turn over all cards in Row 3. Locate the position of the only 1 . Shift the columns of M

cyclically such that this 1 moves to Column 1. This reverts M back to its original state.

Note that Steps 3 and 6 of this protocol guarantee that the cards in Row 2 and Row 3
are in a correct format (each row having one 1 and q − 1 0 s).

3.3 Sea Formation Protocol
First, publicly place a face-down 0 on every cell in the Shikaku grid. To handle the case
where a selected cell is on the edge of the grid, we publicly place face-down “dummy cards”
-1 s around the grid. We now have an (m + 2) × (n + 2) matrix of cards (see Figure 3).

? ? ? ? ?
0 0 0 0 0
? ? ? ? ?
0 0 0 0 0
? ? ? ? ?
0 0 0 0 0

⇒

? ? ? ? ? ? ?
-1 -1 -1 -1 -1 -1 -1
? ? ? ? ? ? ?
-1 0 0 0 0 0 -1
? ? ? ? ? ? ?
-1 0 0 0 0 0 -1
? ? ? ? ? ? ?
-1 0 0 0 0 0 -1
? ? ? ? ? ? ?
-1 -1 -1 -1 -1 -1 -1

Figure 3 The way we place cards on a 3 × 5 Shikaku grid during the setup of the sea formation
protocol.

Start at the top-left corner of the matrix and pick all cards in the order from left to right
in Row 1, then from left to right in Row 2, and so on. Arrange them into a single sequence
D = (d1, d2, ..., d(m+2)(n+2)). Note that we know exactly where the four neighbors of any
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given card are. Namely, the cards on the neighbor to the left, right, top, and bottom of a
cell containing di are di−1, di+1, di−n−2, and di+n+2, respectively.

The sea formation protocol to verify a connected area with size t works as follows.

1. P applies the chosen cut protocol for (m + 2)(n + 2) cards to select a 0 that he/she
wants to replace.

2. P reveals the selected card to V that it is a 0 (otherwise V rejects) and then replaces it
with a 1 .

3. P repeatedly performs the following steps for t − 1 iterations.
a. P applies the chosen cut protocol for (m + 2)(n + 2) cards to select a 1 he/she wants.
b. P reveals the selected card to V that it is a 1 (otherwise V rejects).
c. P picks the four neighbors of the selected card and applies the chosen cut protocol

for four cards to select one of the four neighbors, which is a 0 that he/she wants to
replace.

d. P reveals the selected neighbor to V that it is a 0 (otherwise V rejects) and then
replaces it with a 1 .

We can see that in each iteration, the “sea” of 1 s expands by one cell, while all 1 s
remain connected to each other. Therefore, after t − 1 steps, V is convinced that there is an
area of t 1 s in the grid that are connected to each other.

4 Idea to Verify a Rectangle-Shaped Area

The sea formation protocol, however, does not say anything about the shape of the area. By
extending the idea of the sea formation protocol, we propose the following flooding protocol,
which allows P to convince V that the area is a rectangle with size t.

The idea is to always start at the top-left corner of the rectangle. At first, P changes
the card on the top-left corner cell of the rectangle from a 0 to a 1 . Similarly to the sea
formation protocol, in each step P selects a cell with a 1 and changes the card on one of its
neighbor from a 0 to a 1 . However, the difference from the sea formation protocol is that
P can only select the neighbor to the right or to the bottom (but not to the left or to the
top). We call this process a flood, which starts at the top-left corner and goes downwards or
rightwards in each step until it eventually fills the whole rectangle in t − 1 steps.

To be more specific, at first the flood can only go downwards (i.e. P can only select the
neighbor to the bottom) to fill cells along the left edge of the rectangle. Then, right after it
just filled all cells along the left edge, the flood suddenly changes direction and can only go
rightwards (i.e. P can only select the neighbor to the right) to fill the rest of the cells in the
rectangle. In particular, V must not know the exact time when the flood changes direction
(otherwise V will know the height of the rectangle).

The technique to achieve this “one-time direction change” is to let P keep a secret variable
r, which controls the direction of the flood (if r = 0, then the flood goes downwards; if r = 1,
then the flood goes rightwards). At the beginning, P shows V that r = 0. Before each step,
P secretly chooses whether to add 1 to r or not, then shows V that r ̸= 2 (without revealing
the actual value of r). This technique works because while r = 0, r can become either 0
or 1 in the next step, but once r becomes 1, it must remain 1 forever (see a subprotocol in
Section 5.2 on how to make the selected neightbor depend on the value of r).

FUN 2022
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P performs the above process for t − 1 times to change all 0 s in the rectangle to 1 s.
However, the protocol is not finished yet, as V is not yet convinced that the area is a rectangle.
In fact, P has only shown that the area has a straight left edge; it may look like one of the
shapes in Figure 4.

Figure 4 Examples of possible shapes with a straight left edge, each with area 10.

To convince V that the area is a rectangle, P needs to perform the “second flood”. The
second flood starts at the bottom-right corner and goes into the cells already visited by the
“first flood” in the opposite direction from the first flood – originally the flood can only go
upwards (i.e. P can only select the neighbor to the top), then right after it just filled all
cells along the right edge, the flood changes direction and can only go leftwards (i.e. P can
only select the neighbor to the left).

Formally, P starts at a bottom-right corner of the rectangle and replaces a 1 with a 2 .
P sets r = 0 and shows it to V . In each step, P secretly chooses whether to add 1 to r or
not, then shows V that r ≠ 2. If r = 0 (resp. r = 1), P selects a cell with a 2 and changes
the card on its neighbor to the top (resp. to the left) from a 1 to a 2 . P performs this for
t − 1 steps to change all 1 s in the rectangle to 2 s.

After the second flood, P have shown that the area also has a straight right edge. This is
sufficient to convince V that the area is a rectangle with size t (see the proof of Lemma 2 for
the full proof of perfect soundness).

In the next section, we will show the necessary subprotocols that enable us to formalize
this idea into an actual protocol.

5 Subprotocols

5.1 Addition Protocol for Z/3Z

We use a sequence of three consecutive cards to encode each integer in Z/3Z. Namely, we
use 1 0 0 , 0 1 0 , and 0 0 1 to encode 0, 1, and 2, respectively.

Suppose we have sequences R and S encoding integers r and s in Z/3Z, respectively.
This protocol, developed by Shinagawa et al. [22], computes the sum r + s without revealing
r or s.

1. Swap the two rightmost cards of S. This modified sequence, called S′, now encodes −s

(mod 3).
2. Construct a 2 × 3 matrix M by placing S′ in Row 1 and R in Row 2.
3. Apply the pile-shifting shuffle to M . Note that Row 1 and Row 2 of M now encode

−s + x (mod 3) and r + x (mod 3), respectively, for some uniformly random x ∈ Z/3Z.
4. Turn over all cards in Row 1 of M . Locate the position of a 1 . Shift the columns of M

cyclically such that this 1 moves to Column 1.
5. The sequence in Row 2 of M now encodes (r + x) − (−s + x) ≡ r + s (mod 3) as desired.
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Note that Step 4 of this protocol guarantees that S is in a correct format (having one
1 and two 0 s). In each step of the flooding protocol, P secretly selects s ∈ {0, 1} and
places S accordingly. Then, P reveals the rightmost card of S that it is a 0 to show V that
s ̸= 2. Similarly, after computing the sum r + s, P reveals the rightmost card of the resulting
sequence to show V that r + s ̸= 2.

5.2 Neighbor Selection Protocol
In Z/2Z, we use 1 0 and 0 1 to encode 0 and 1, respectively. Suppose we have two
face-down cards c0 and c1, and a sequence R encoding an integer r ∈ Z/2Z. We want to
select a card cr to use in other operations without revealing r, and also put c0 and c1 back
to where they came from.

We can do so by applying the chosen cut protocol for two cards. However, in Step 1.b, we
instead place a sequence R in Row 2 (without revealing R). Also, at the end of the chosen
cut protocol, M is reverted to its original state, so we can put c0 and c1 back to where they
came from.

In each step of the flooding protocol, after showing that r ̸= 2, P picks only the two
leftmost cards of a sequence encoding r in Z/3Z. This truncated sequence encodes r in Z/2Z
as desired. During the first flood, P chooses the cards on the neighbor to the bottom and to
the right of the selected cell as c0 and c1, respectively; during the second flood, P chooses the
cards on the neighbor to the top and to the left of the selected cell as c0 and c1, respectively.

6 Formal Steps of the Flooding Protocol

Similarly to the sea formation protocol, we first publicly place a face-down 0 on every
cell in the Shikaku grid, and also place face-down -1 s around the grid. We now have an
(m + 2) × (n + 2) matrix of cards (see Figure 3).

Let hi = a′
i − ai + 1 be the height of a rectangle Zi (i ∈ {2, 3, ..., k + 1}). To verify that

Zi is a rectangle with area pi and also contains a cell with the number pi, P performs the
following two phases: the first flood and the second flood.

6.1 First Flood
1. P applies the chosen cut protocol for (m + 2)(n + 2) cards to select a card on the top-left

corner cell of Zi.
2. P reveals the selected card to V that it is a 0 (otherwise V rejects) and then replaces it

with a 1 .
3. P publicly constructs a sequence R of three cards encoding an integer r = 0.
4. P repeatedly performs the following steps for pi − 1 iterations.

a. P secretly constructs a sequence S of three cards encoding an integer s ∈ {0, 1}. If
this is the hi-th iteration, P must choose s = 1; otherwise, P must choose s = 0.

b. P reveals the rightmost card of S to V that it is a 0 to show that s ̸= 2 (otherwise V

rejects).
c. P applies the addition protocol to compute r + s and reveals the rightmost card of the

resulting sequence to V that it is a 0 to show that r + s ̸= 2 (otherwise V rejects).
From now on, set r := r + s.

d. P applies the chosen cut protocol for (m + 2)(n + 2) cards to select a 1 he/she wants
from the Shikaku grid. If this is during the first hi − 1 iterations, P must choose the
bottommost 1 ; otherwise, P may choose any card that is the rightmost 1 in its row
and is not located in the rightmost column of Zi.

FUN 2022
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e. P reveals the selected card to V that it is a 1 (otherwise V rejects).
f. P chooses the neighbors to the bottom and to the right of the selected card as c0 and

c1, respectively, and applies the neighbor selection protocol to select a card cr (using
the two leftmost cards of a sequence encoding r as inputs).

g. P reveals the selected neighbor to V that it is a 0 (otherwise V rejects) and then
replaces it with a 1 .

After the first flood, all cards on the cells in Zi are now changed to 1 s.

6.2 Second Flood
1. P applies the chosen cut protocol for (m + 2)(n + 2) cards to select a card on the

bottom-right corner cell of Zi.
2. P reveals the selected card to V that it is a 1 (otherwise V rejects) and then replaces it

with an i .
3. P publicly constructs a sequence R of three cards encoding an integer r = 0.
4. P repeatedly performs the following steps for pi − 1 iterations.

a. P secretly constructs a sequence S of three cards encoding an integer s ∈ {0, 1}. If
this is the hi-th iteration, P must choose s = 1; otherwise, P must choose s = 0.

b. P reveals the rightmost card of S to V that it is a 0 to show that s ̸= 2 (otherwise V

rejects).
c. P applies the addition protocol to compute r + s and reveals the rightmost card of the

resulting sequence to V that it is a 0 to show that r + s ̸= 2 (otherwise V rejects).
From now on, set r := r + s.

d. P applies the chosen cut protocol for (m + 2)(n + 2) cards to select an i he/she wants
from the Shikaku grid. If this is during the first hi − 1 iterations, P must choose the
topmost i ; otherwise, P may choose any card that is the leftmost i in its row and
is not located in the leftmost column of Zi.

e. P reveals the selected card to V that it is an i (otherwise V rejects).
f. P chooses the neighbors to the top and to the left of the selected card as c0 and c1,

respectively, and applies the neighbor selection protocol to select a card cr (using the
two leftmost cards of a sequence encoding r as inputs).

g. P reveals the selected neighbor to V that it is a 1 (otherwise V rejects) and then
replaces it with an i .

After the second flood, all cards on the cells in Zi are now changed to i s. Finally, P

turns over a card on the cell with the number pi to show that it is an i , i.e. Zi contains
the cell with the number pi (otherwise V rejects).

P performs the above two phases for every i ∈ {2, 3, ..., k + 1}. If all verification steps
pass, then V accepts.

The number of cards used in the flooding protocol is Θ(mn), which is much lower than
the brute force protocol.

7 Proof of Security

We will prove the perfect completeness, perfect soundness, and zero-knowledge properties of
the flooding protocol.

▶ Lemma 1 (Perfect Completeness). If P knows a solution of the Shikaku puzzle, then V

always accepts.
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Proof. Suppose that P knows a solution of the puzzle. Consider the verification of each Zi.
In the first flood, during the first hi − 1 iterations P chooses s = 0 and chooses the

bottommost 1 , so the area of 1 s expands downwards by one cell. After hi − 1 iterations,
all cards along the left edge of Zi have been changed to 1 s. In the hi-th iteration, P chooses
s = 1 and chooses any 1 , so the flood direction is changed to rightwards and the area of
1 s expands by one cell. After that, in each iteration P chooses s = 0 and chooses any card
that is the rightmost 1 in its row and is not located in the rightmost column of Zi, so the
area of 1 s expands by one cell inside Zi. Therefore, at the end of the first flood, all cards in
Zi has been changed to 1 s.

Analogously, in the second flood, during the first hi − 1 iterations P chooses s = 0
and chooses the topmost i , so the area of i s expands upwards by one cell. After hi − 1
iterations, all cards along the right edge of Zi have been changed to i s. In the hi-th
iteration, P chooses s = 1 and chooses any i , so the flood direction is changed to leftwards
and the area of i s expands by one cell. After that, in each iteration P chooses s = 0 and
chooses any card that is the leftmost i in its row and is not located in the leftmost column
of Zi, so the area of i s expands by one cell inside Zi. Therefore, at the end of the first
flood, all cards in Zi has been changed to i s, thus a card on the cell containing the number
pi must also be an i .

Since the verification passes for every Zi, V always accepts. ◀

▶ Lemma 2 (Perfect Soundness). If P does not know a solution of the Shikaku puzzle, then
V always rejects.

Proof. We will prove the contrapositive of this statement. Suppose that V accepts, meaning
that the flooding protocol passes for every Zi. We will prove that P must know a solution.

First, note that the chosen cut protocol in Section 3.2 and the addition protocol in Section
5.1 guarantee that the inputs from P must be in a correct format. Consider the verification
of Zi. Suppose that the first flood goes downwards for h − 1 steps before changing direction
to rightwards. The area that contains 1 s after the first flood must have a straight left edge
with height h, and have a shape like h horizontal bars placing on top of each other. Let
ℓ1, ℓ2, ..., ℓh be the length of these bars from top to bottom. For example, in Figure 5 we
have h = 4, ℓ1 = 2, ℓ2 = 4, ℓ3 = 1, and ℓ4 = 3.

Figure 5 An example of a possible shape with a straight left edge.

Since all pi 1 s in this area have been replaced by i s after the second flood, all cells
in the area must be reachable from the starting point of the second flood by moving only
upwards or leftwards. Thus, the only possible starting point of the second flood is the
rightmost cell of the bottommost bar (the one with length ℓh).

Moreover, for any j < h, we must have ℓj ≤ ℓh (otherwise there is a cell in the j-th bar
which is located to the right of the starting point and thus not reachable by the second flood)
However, if ℓj < ℓh, the second flood cannot go directly from the starting point to the j-th
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bar by only moving upwards; it has to change direction at least twice, a contradiction since
the flood can change direction at most once. Therefore, we must have ℓj = ℓh for every
j ∈ {1, 2, ..., h − 1}, which means the area must be a rectangle.

Therefore, Zi is a rectangle with area pi that contains a cell with the number pi for every
i ∈ {2, 3, ..., k + 1}. Since any two rectangles do not overlap, and p2 + p3 + ... + pk+1 = mn,
they must be a partition of the grid. Hence, we can conclude that P knows a valid solution
of the puzzle. ◀

▶ Lemma 3 (Zero-Knowledge). During the verification phase, V learns nothing about P ’s
solution of the Shikaku puzzle.

Proof. To prove the zero-knowledge property, it is sufficient to show that all distributions of
cards that are turned face-up can be simulated by a simulator S that does not know P ’s
solution.

In Steps 3 and 6 of the chosen cut protocol in Section 3.2, the 1 has an equal probability
to be at any of the q positions, so this step can be simulated by S.
In Step 4 of the addition protocol in Section 5.1, the 1 has an equal probability to be at
any of the three positions, so this step can be simulated by S.
In the flooding protocol, during the verification of each Zi, there is only one deterministic
pattern of the cards that are turned face-up. This pattern solely depends on pi, which is
public information, so the whole protocol can be simulated by S. ◀

8 Future Work

We developed a physical ZKP protocol with perfect completeness and soundness for Shikaku
using Θ(mn) cards. Most importantly, we also developed a general technique to physically
verify a rectangle-shaped area with a certain size in a rectangular grid.

A possible future work is to develop physical ZKP protocols to verify other geometric
shapes or other puzzles with constraints related to shapes (e.g. Shakashaka). Another inter-
esting future work is to develop an equivalent protocol for Shikaku that can be implemented
using a deck of all different cards (like the one for Sudoku [17]).
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