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—— Abstract

Bee extinction is a great risk for humanity. To circumvent this ineluctable disaster, we propose

to develop beedroids, i.e., small UAVs mimicking the behaviors of real bees. Those beedroids are
endowed with very weak capabilities (short-range visibility sensors, no GPS, light with a few colors,
...). Like real bees, they have to self-organize together into swarms. Beedroid swarms will be
deployed in cuboid-shaped greenhouse. Each beedroid swarm will have to indefinitely search for
flowers to pollinate in its greenhouse. We model this problem as a perpetual exploration of a 3D
grid by a swarm of beedroids. In this paper, we propose two optimal solutions to solve this problem
and so to save humanity.
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1 Introduction

Bees are crucial for human beings. They have limited life span: only few weeks for the
workers and up to 6 years for the queen. The United Nation (UN) dedicates the 20th of May
as the “Bee day”.! UN says that “we all depend on the survival of bees”. Indeed, pollination
is a fundamental process for the survival of our ecosystems. Nearly 90% of the world’s wild
flowering plant species depend on pollination. There are more than 800 wild bee species,
seven of which are classified by the International Union for Conservation of Nature? (IUCN)
as critically endangered. A further 46 are endangered, 24 are vulnerable, and 101 are near
threatened. Many associations like Greenpeace® or World Wild Foundation* (WWF) are

protecting bees and helping to avoid their extinction.

https://www.un.org/en/observances/bee-day

https://www.iucn.org/
https://cdn.buglife.org.uk/2019/08/CM-EofE-bee-report-2019-Headlines-FINAL-CJ.pdf
https://www.greenpeace.org/static/planet4-international-stateless/2013/04/
66f3eb6b-beesindecline.pdf
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Our goal here is to anticipate by considering the worst-case: the bee extinction. We
propose solutions to save humanity using Beedroids. Beedroids are artificial bees that aim at
pollinating flowers autonomously in a greenhouse. Such a technology can also be used in
the Mars colonization. For example, the Biosphere 2 project® was meant to demonstrate
the viability of closed ecological systems to support and maintain human life in outer space.
Beedroids are mandatory to implement such a project since it is not yet clear whether bees
can survive interstellar trips.

A beedroid is a small autonomous Unmanned Aerial Vehicles (UAV) that mimics the
behavior of a real bee. A famous ability of bees is stigmergy, i.e., indirect communication
through the movements. Implementing stigmergy requires perfect synchronization and
visibility sensors. Consequently, we consider here a fully synchronous look-compute-move
model of computation [20] (FSYNC). As explained before, beedroids will be deployed in
greenhouses. So, each beedroid swarm will have to perpetually explore its greenhouse to find
flowers and pollinate them. We assume greenhouses are finite cuboids. Each of these cuboids
should be divided into cells to visit. Thus, we conveniently discretized a cuboid-shaped
greenhouse as a finite 3D grid. Then, the problem we have to solve consists in coordinating a
swarm of beedroids to perpetually explore a finite 3D grid in an exclusive manner (meaning
that two beedroids cannot occupy the same place simultaneously).

The world bee population constantly decreases but is still incredibly huge as compared
to human population. As a matter of facts, a bee colony is constituted of around 50 000
bees and in 2018 it was estimated that there were around 800 000 bee colonies in Canada
for example. So, to eventually be able to replace bees, we should (1) solve pollination of
greenhouses with the smallest possible number of beedroids and (2) also be able to massively
produced them. Consequently, the design of beedroids should be as simple as possible. Below
we list and motivate our main design choices.

Visibility Sensors: To maximize their flight time, we should save energy. Hence, the visibility
range of beedroids should be as small as possible.

Communication: As previously explained, the communication between beedroids, like real
bees, is indirect and based on positions of other bees. To vastly increase stigmergic
communication, without compromising production cost and energy consumption, we have
only endowed them with LED lights of a few colors that can be sensed by other beedroids
within a short distance.

Memory: Still to save energy and manufacturing costs, beedroids have no permanent memory,
except the color of their lights. They only have a short-term working memory allowing
them to compute a decision (destination and new light color) at each step of their
algorithm.

Orientation: Manufacturing costs and energy consumption also prevent us from endowing
beedroids with GPS. Instead, we use chirality facilities making beedroids able to distinguish
the two sides of a symmetrically reflexive panorama.

Contribution. To bring our own stone to the world safeguarding, we propose to implement
pollination into cuboid-shaped greenhouses using swarms of artificial bees, so-called beedroids.
Solving this problem requires to coordinate each swarm so that it perpetually explores a 3D
grid. As motivated before, we should both minimize the size of the swarm (i.e., the number
of beedroids that compose it) and the capabilities used by those beedroids.

5 https://biosphere2.org
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We first study the problem in the FSYNC model assuming the optimal visibility range
one. Under this assumption, we show that three beedroids are necessary and sufficient to
solve the problem. For the sufficient part, we propose an algorithm that requires only five
colors. Then, we look for another solution optimal in terms of colors, still in FSYNC model.
Actually, the solution we propose works with oblivious beedroids, i.e., beedroids endowed
with only one light color. This second solution requires five beedroids and visibility range
two.

In order to help the reader, online animations illustrating the behavior of our algorithms
are available for our two solutions: [3] and [4].

Roadmap. In the next section, we formally define the model, the beedroid skills, and the
problem to solve, so-called the Perpetual Flower Pollination Problem (PFPP). In Section 3,
we present the lower bound on the number of beedroids necessary to solve the PFPP under
visibility range 1. In Sections 4 and 5, we present two algorithms solving the PFPP. Section 6
is dedicated to related work. Finally, we make concluding remarks in Section 7. Due to the
lack of space, several proofs have been omitted.

2 Preliminaries

We consider a swarm of n > 0 beedroids (n.b., n is a priori unknown by beedroids) evolving
in a greenhouse modeled as a finite 8D grid of size S, x Sy x S, with S > n, Sy > n, S; > n,
i.e., an undirected graph G(V, E) where V = {(¢,4,k) : 1 €[0,5, —1],j € [0,S, — 1],k €
[0,5. — 1]} and E = {{(i,4,k), (.5, k')} : |i—4|+|j—j'| +|k—K|=1}. Note that
coordinates are used for the analysis only, i.e., beedroids cannot access them.

We assume discrete time and at each round, the beedroids synchronously perform a
Look-Compute-Mowve cycle. In the Look phase, a beedroid gets a snapshot of the subgraph
induced by the nodes within distance ¢ € N* from its position. ® is called the wvisibility
range of the beedroids. The snapshot is not oriented in any way as the beedroids do not
agree on the orientation of any of the three axes of the coordinate system. However, it is
implicitly ego-centered since the beedroid that performs a Look phase is located at the center
of the subgraph in the obtained snapshot. Then, each beedroid computes a destination in its
local coordinate system (either Front, Back, Left, Right, Above, Below, or Idle) based on the
received snapshot only. Finally, it moves towards its computed destination.

We forbid any two beedroids to occupy the same node simultaneously. A node is occupied
when a beedroid is located at this node, otherwise it is empty. Beedroids have lights with
maybe different colors that can be seen by beedroids within distance ® from them. We
denote by CI the set of all possible colors (|Cl| = 1 corresponds to the case of oblivious
beedroids).

The state of a node is either the color of the light of the beedroid located at this node,
if it is occupied, or L otherwise. In the Look phase, the snapshot includes the state of the
nodes (within distance ®). During the compute phase, a beedroid may decide to change the
color of its light (of course, if |Cl| > 1).

In all our algorithms, we also prevent any two beedroids from traversing the same edge
simultaneously. Since we already forbid them to occupy the same position simultaneously,
this means that we additionally prevent beedroids from swapping their positions. Algorithms
verifying this property are said to be exclusive. However, to be as general as possible, we do
not make this additional assumption in our impossibility result.
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Configurations. A configuration C in a 3D grid G(V, E) is a set of pairs (p, ¢), where p € V
is an occupied node and ¢ € CI is the color of the beedroid located at p. A node p is empty
if and only if Ve, (p,c) ¢ C. We sometimes just write the set of occupied nodes when the
colors are clear from the context.

Views. We denote by G, the globally oriented view centered at the beedroid r, i.e., the
subset of the configuration containing the states of the nodes at distance at most ® from
r, translated so that the coordinates of r is (0,0). We use this globally oriented view in
our analysis to describe the movements of the beedroids (see, for example, Figure 1): when
we say “the beedroid moves Left”, it is according to the globally oriented view. However,
since beedroids do not agree on any axis, they have no access to the globally oriented view.
When a beedroid looks at its surroundings, it instead obtains a local view. To model this,
we assume that the local view acquired by a beedroid r in the Look phase is the result of
an arbitrary indistinguishable transformation on G,. Here, we assume that beedroids are
self-inconsistent, meaning that different transformations may be applied at different rounds.
An indistinguishable transformation consists of applying to each of the three axes (z-axis,
y-axis, and z-axis) passing through r a rotation (maybe different for each axis) picked in the
set {0, 5,7
Nevertheless, beedroids share a common chirality, which means that their local view is not

3%}, We denote by ZT the set of all possible indistinguishable transformations.

a reflection (also called mirroring) of the global view. Having a common chirality allows a
beedroid to distinguish a local view from its reflection and so take different decisions in such
cases (e.g., chirality allows to discriminate Above from Below in Rule R; of Figure 1). In
other words, having a common chirality allows, given two axes, to determine a third one
using the right-hand rule.

It is important to note that when a beedroid r computes a destination d, it is relative to
its local view f(G,), which is the globally oriented view transformed by some f € ZT. So,
the actual movement of the beedroid in the globally oriented view is f~1(d). For example,
if d = Above but the beedroid sees the 3D grid upside-down (f is the w-rotation along the
y-axis), then the beedroid moves Below = f~!(Above). In a configuration C, V¢ (i, ) denotes
the globally oriented view of a beedroid located at (i, 7).

A beedroid is said to be lost when it sees no wall and no other beedroids. Observe that
in this case, if the beedroid decides to move, the destination is entirely determined by the
choice of the transformation f done by the adversary.

Algorithm. An algorithm A is a tuple (Cl, Init,T") where Cl is the set of possible colors,
Init is a mapping from any considered 3D grid to a non-empty set of initial configurations
in that 3D grid, and T is the transition function Views — {Idle, Front, Back, Left, Right,
Above, Below} x Cl, where Views is the set of local views. When the beedroids are in
Configuration C, a configuration C” obtained after one round satisfies: ((4,7,k),c’) € C’, if
and only if there exists a color ¢ € Cl and a transformation f € Z7T such that one of the
following conditions holds:
((i,4,k),c) € Cand f~toT o foVcl(i,j,k) = (Idle,c),

((i—1,5,k),c) e Cand f~toTo foVo(i—1,j,k) = (Right,c’),
((z—i—l ], k),e)e Cand f~1oTo fo V(i +1 ], k) = (Left, ),
((i,j —1,k),c) € Cand f~toTo foVco(i,j—1,k) = (Front,c),
(4,7 —|—1 k),c) e Cand f=*oT o foVc(i,j +1 k) = (Back, '),
((i,4,k —1),c) € Cand f~*oTo foVuo(i,j k—1) = (Above, '), or
((i,j,k+1),c) € Cand f~*oTo foVcs(i,j, k + 1) = (Below, ).
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We denote by C' ~» C’ the fact that C’ can be reached in one round from C (n.b., ~> is then
a binary relation over configurations). An ezecution of Algorithm A in a 3D grid G is then a
sequence (C;);en of configurations such that Cy € Init(G) and Vi > 0, C; ~ Cj41.

The Perpetual Flower Pollination Problem. An execution (C;);en in a 3D grid G = (V, E)
achieves the Perpetual Flower Pollination Problem (PFPP) in 3D grids if for every node
u € V and for every time ¢, there exists a time ¢’ > ¢ such that u is occupied in Cy .

An algorithm A that uses n beedroids solves the PFPP problem if, for every finite 3D
grid G = (V, E) of size at least n x n X n and every initial configuration Cy € Init(G), we
have every execution of A in G starting from Cy that achieves the PFPP.

An Algorithm as a Set of Rules. We write an algorithm as a set of rules, where a rule is a
triplet (V,d, c¢) € Views x {Idle, Front, Back, Left, Right, Above, Below} x Cl. We say that
an algorithm (Cl, Init, T) includes the rule (V,d, c), if T(V) = (d, ¢). By extension, the same
rule applies to indistinguishable views, i.e., Vf € ZT,T(f(V)) = (f(d),c). Consequently,
we forbid an algorithm to contain two rules (V,d, ¢) and (V',d’, ') such that V' = f(V) for
some f € IT.

As an illustrative example, consider the rule R; given in Figure 1. This rule is defined
for beedroids having a visibility range of one. This rule means that, when a beedroid sees
two beedroids, one with Color B on its left and the other with color green in front of it, then
the red beedroid is dictated to move Above and change its color to O. By extension, the
same rule applied if the view is rotated by 7 on the z-axis, but in that case, the destination
would be Below.

In the same figure, Rule R5 is a rule where a black node represent a part of the outer
boundary of the 3D grid, that we call a wall in the remaining of the paper. In our algorithms,
we often define similar rules that apply regardless of the presence of a wall in some part of
the view. Thus, to avoid defining several time rules with very similar views, we propose a
notation to represent several rules in just one picture. For example, Rule R3 in Figure 1 has
one node hatched with vertical lines, which means that the rule applies regardless of the
presence of a wall located at this node. In practice, every rule that contains such vertical
(resp. horizontal) hatched lines, represents a set of rules obtained by replacing each of those
lines either by walls, or by empty nodes. For example, Rule R3 in Figure 1 is a concise
representation of Rules R; and Rs.

Figure 2 shows an ambiguous rule. The beedroid has a symmetric view so that, depending
on the transformation f chosen by the adversary, the beedroid executing this rule moves either
above, or below. In the following, we represent in ambiguous rules all possible destinations
that can be dictated by the adversary.

Ry Ry Rs

®. ...... ....... O D ....... ® @ ...... ....... )

Figure 1 Examples of rules. Colored letters inside nodes indicate the color of the beedroids
occupying the nodes. The arrow indicates the destination and when a colored letter is given next to
an arrow, this means that the rule dictates the beedroid to switch to that color.
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py,=(R1) Pzm)2 © Py,x(R1)
®
@0 Ol @0 -+ @O
of o) o) o,
@) @) O @)

Figure 2 An ambiguous rule. Since the destination depends on the choice of the adversary, we
represent the rule abusively with multiple destinations, as illustrated on the right. Observe that if
blue beedroids had different colors (as in Figure 1) the rule would not have been ambiguous. Indeed,
having a common chirality allows the beedroid to determine a third direction, given two direction
obtained from the view.

3 Impossibility Result

In this section, we establish that there is no algorithm solving the PFPP problem in 3D grids
using two beedroids with visibility range one, whatever the finite number of available colors.

We first observe that in large enough grids, if beedroids travel a long distance without
seeing a wall, then they execute a periodic sequence of movements. Indeed, in our settings,
there are at most B = (‘g”) = w different views without wall, and so at most B
associated rules, where C1 is the set of available colors. Thus, if the two beedroids travel a
distance at least B without seeing a wall, then they are executing a periodic sequence of
movements. The definition of B, which depends on the algorithm, will be used throughout
this section.

The above observation is important to prove our impossibility results. Actually, the
outline of our proof is similar to the 2D case for luminous non-chiral robots studied in [19].
However, the existence of an axis of symmetry is replaced here by an axis of rotational
symmetry. Indeed, robots in a 2D grid that do not agree on a common chirality cannot
distinguish between two destinations that are symmetric with respect to an axis of symmetry.
Similarly, two beedroids that do not agree on a common coordinate system, but agree on
a common chirality, cannot distinguish between four destinations that are symmetric with
respect to a rotational symmetry. Nevertheless, the proof of the main argument, given in
Lemma 6 of [19], cannot be adapted directly since it is more complex than in the 2D case.

The overview of the proof is as follows. We proceed by contradiction assuming that an
algorithm solving the PFPP in 3D grids exists. Then, we show that once beedroids move far
away from the walls, their possible movements are restricted. In more details, they can only
move straight, otherwise they may not explore the whole grid. Next, we show that, once the
exploration has reached specific places, the beedroids must always stay close to at least one
wall (Lemma 6), leading to the final contradiction (Theorem 7).

The two first lemmas are technical results that are in particular used in the main lemma,
Lemma 6. The first one states that to explore the 3D grid, beedroids should stay neighbors
when they do not see any wall. The second one shows that if a beedroid by is lost, at distance
2 from a wall, and at distance at least 4 from other walls, then the other beedroid by should
be adjacent to a wall; moreover b; should wait for b, which, in turn, should eventually leave
the wall to meet b;.

» Theorem 1. Let A be an algorithm solving the PFPP in 3D grids using two beedroids
under visibility range one. In a 3D grid of size at least 4 X 4 X 4, no execution of A reaches
a configuration where the two beedroids are lost.
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Figure 3 If beedroids are on a line L, the adversary can decide from which side of the square
cuboid the beedroids will exit. In particular, we can decide that the beedroids will exit toward Ri,
the blue area.

» Theorem 2. Let A be an algorithm solving the PFPP in 3D grids using two beedroids
under visibility range one. Consider an execution E of A in a 3D grid of size at least 8 X 8 X 8.
If E contains a configuration C where a beedroid by is lost, at distance 2 from a wall, and at
distance at least 4 from the other walls, then

by s idle, moreover

the other beedroid by is adjacent to a wall and is either idle or moves away from the wall

during the next step.

The two next lemmas are also technical results used in the proof of Lemma 6. They
establish important properties related to long-term travels during which beedroids see no
wall.

» Theorem 3. Let A be an algorithm solving the PFPP in 38D grids using two beedroids
under visibility range one. If there exists an execution that reaches a configuration C where
beedroids are at distance at least 2B from any wall and, from C, the beedroids perform a
periodic sequence of movements without ambiguous rules, then there is a straight line of the
3D grid that contains the two beedroids while none of them sees a wall.

» Theorem 4. Let A be an algorithm solving the PFPP in 3D grids using two beedroids
under visibility range one. There exists no execution that reaches a configuration C' where
beedroids are at distance at least 2B from any wall and, from C, the beedroids perform a
periodic sequence of movements that includes an ambiguous rule.

The next lemma states that if two beedroids are on the same line and inside an area
that is rotationally symmetric, then they cannot break this symmetry without executing
an ambiguous rule (due to the lack of agreement on the coordinate system). Hence, the
adversary can decide on which side of the line the beedroids move. More formally, if beedroids
move out of the area through a node u, then there exists an execution where the beedroids
move out of the area through another node v’ that is symmetric to u.

We need to define a few concepts beforehand; see Figure 3 for an illustration. Consider a
configuration C' where the two beedroids are located in some line of the 3D grid. We call
blurred area of L in C' any subset S of nodes including the two nodes where beedroids are
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located and such that the subgrid induced by S shapes a square cuboid for which L is an
axis of rotational symmetry. A blurred area is non-trivial if it does not contain all nodes
of the 3D grid. We denote by EH(S) the external hull of a blurred area S, i.e., the set of
nodes in V\'S' at distance one from a node of S.

» Theorem 5. Let A be an algorithm solving the PFPP in 3D grids using two beedroids
under visibility range one. Consider an execution E reaching a configuration C' where the two
beedroids are on the same line L. Let S be a blurred area of L in C. Let Ry C EH(S) such
that the union of Ry and its symmetrics w.r.t. the rotations around L is equal to EH(S). If
S is non-trivial and L is also an axis of rotational symmetry of EH(S), then there exists an
execution from C where a beedroid reaches EH(S) for the first time at a node u € Ry.

In particular, we can choose R; to be the union of one side and two triangles, as shown
in Figure 3 (page 7), where Ry and its symmetrics form the red external hull of the square
cuboid. Assume the square cuboid leans against a wall (as illustrated in Figure 5 if the gray
plan is a wall). Then, R; can consist only in one face and one triangle. By applying the
lemma, we obtain that there is an execution where the beedroids escape from the blurred
area either through a rectangular face or the top triangle.

The lemma below is the cornerstone of our impossibility result. It states that there are
configurations from which the two beedroids can remain forever at bounded distance from
walls. To see this, we need to define a few concepts beforehand. We say that a beedroid is
2-close if it is at distance at most 2B from at least two walls. We say that beedroids are in a
T-configuration if there is a line L of the 3D grid such that

L contains the two beedroids,

one of them is adjacent to a wall that is orthogonal to L, and

robots are at distance at most 4B from another wall.

» Theorem 6. Let A be an algorithm solving the PFPP in 3D grids using two beedroids under
visibility range one. Assume some execution E reaches at a given time t (i) a configuration
where a beedroid is 2-close or (ii) a T-configuration. Let C be the configuration of E at time
t. Then, there exists an evecution E’ and a time t' > t such that

C is reached in E' at time t,

at time t' in E', a beedroid is 2-close or the system is in a T-configuration, and

between time t and t' in E’, the beedroids remain at distance at most 4B from a wall.

Proof. We consider a 3D grid whose size is more than 8 B x 8 B x 8 B. The lemma otherwise
trivially holds: by definition of A, a beedroid is infinitely often 2-close; moreover every
beedroid is always at distance at most 4B from a wall in a 3D grid where at least one side is
less or equal to 8B.

Assume first that a beedroid is 2-close in a configuration C' (the case where beedroids are
in a T-configuration will be treated in the last paragraph of this proof). To explore the 3D
grid, the two beedroids must sometimes be not 2-close. Indeed, if a beedroid remains 2-close
forever, the other beedroid should in particular explore nodes at distance more than 2B + 2
from every wall. In this case, it would be lost and consequently, the adversary can make it
alternating between two nodes forever, making the exploration fail.

Consider now an execution E’ such that, whenever a beedroid executes an ambiguous
moves that could make it not 2-close, then the adversary chooses a destination that is 2-close.
This is possible because, in case of an ambiguous move, the adversary can chose among at
least 4 destinations and if one destination would make the beedroid not 2-close, then the
opposite destination (with respect to the beedroid’s position) would keep it 2-close (because
when a beedroids makes a move, only the distance to one wall increases).
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In E', let tg > t be the first time when no beedroid is 2-close. By assumption, at least
one beedroid that is 2-close at time ty — 1, say bs, makes an unambiguous move. To make

this unambiguous move, b, necessarily moves toward the other one, b; that is not 2-close.
So, at time tg — 1, only by is 2-close, i.e., at distance at most 2B from two walls W7 and Whs.

Without loss of generality, at time tg, b is at distance 2B + 1 from wall W; and at distance

at most 2B from Wy (b is at distance more than 2B from other walls).

Since at time ty — 1, by is moving towards b1, then, at time ¢y — 1, the two beedroids are
on a line parallel to the wall W5. Assume first that beedroids are not adjacent to Ws. Two
cases can occur (both cases are represented in Figure 4) (page 10).

Case (1): They remain on the same line parallel to W5, moving away from Wi, until a
beedroid is at distance 3B + 1 from Wj.

If they do so, since they traveled a distance B since ¢ty — 1, they are executing a periodic

sequence of movements, hence, they continue to move on the same line until reaching the

wall opposite to W, (Lemmas 3 and 4), in a T-configuration, while remaining at distance
at most 2B from W5, and the lemma holds in this case.

Case (2): Before being at distance 3B + 1 from Wi, one or two beedroids move away from

the line they were traveling through.
These moves are necessarily ambiguous. If two beedroids moves away simultaneously,
we get a contradiction because the adversary can choose the destination so that the two
beedroids become lost (Lemma 1). So, only one beedroid, say by, moves away from the
line. Again, since beedroids cannot become lost (Lemma 1) and the destination of b is
chosen by the adversary, we can consider the case where the two beedroids end up, at
time t; > tp, in a line L orthogonal to Wh.

Consider now the case where the beedroids are adjacent to W5 at time tg — 1 when moving

away from Wj. Similar things occur.

Case (a): They perform a periodic movement while remaining adjacent to Wy and travel
along the wall (but not necessarily in straight line) until reaching another wall (so they
become 2-close), and the lemma holds in this case;

Case (b): a beedroid moves away from W, and forms with the other beedroid a line L
orthogonal to W5 before being at distance 3B + 1 from W7y; or

Case (c): both beedroids move away from Wj (simultaneously or one after the other, as a
lost beedroid must wait the other beedroid, by Lemma 2) and they end up in a line L
parallel to Ws.

In this case, since they traveled at most B from ¢, they can travel again a distance at

most B before either performing a periodic movement (Case (1)) while staying at distance

2 from W5 ( and the lemma holds in this case), or making an ambiguous move to end

up in a line L orthogonal to W5 (Case (2)). In this latter case, the beedroids end up at

distance at most 4B from Wj.

So, the only cases that remains to consider are those where the beedroids are in a line L

orthogonal to Wy at distance at most 4B from Wj.

Consider the set of nodes Ry = R;eten9le y Ririandle where RTMM9!¢ ig 4 rectangle of
nodes at distance 2B from the wall W and R 4 triangle of nodes at distance 2B from
Wy and at most 4B from W7, such that the union of Ry and its image by the three rotations
around L form the external hull of a square cuboid containing the two beedroids for which
(1) one face is at distance 1 from W5 and (2) L is axis of rotational symmetry; see Figure 5
for an illustration (page 10). Using Lemma 5, there exists an execution such that a beedroid
reaches R;.
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Figure 4 Position of the beedroids when ’94‘ . /'
they become not 2-close. \

Figure 5 Position of the beedroids if they
execute an ambiguous move after becoming not
2-close.

If a beedroid reaches RIEthyle, then a beedroid becomes 2-close and the lemma is proven.
If a beedroid reaches RY*™'  then the beedroids have traveled a distance at least B without
seeing a wall, hence are executing a periodic sequence of movements. The sequence cannot
contain an ambiguous rule (using Lemma 4) because the beedroids are at distance at least
2B from any wall, so they are moving in a straight line (by Lemma 3), and they end up in
the wall opposite to W5 and reach a T-configuration, while remaining at distance at most
4B from Wj.

Now we consider that the beedroids are in a T-configuration in configuration C'. Then,
they are on a line L orthogonal to a wall, say W5, and at distance at most 4B from another
wall, say W7. Using a similar argument, we know that either the beedroids become 2-close,
or move in a straight line to the opposite wall until they reach a T-configuration (while
remaining at distance at most 4B from Wh). |

Using the previous lemma, we can now conclude.

» Theorem 7. The PFPP is not solvable using two beedroids under visibility range 1 and
any finite number of colors.

Proof. Assume that algorithm A solves the problem. Consider a grid of size 10B x 10B.
Since the beedroids explore the entire grid, there exists a round where a beedroid is 2-close.
By applying Lemma 6 repeatedly, we can construct an execution from there where beedroids
forever remain at distance at most 4B from a wall, so that nodes at distance more than 4B
from all the walls are not visited anymore, a contradiction. |

4 Visibility range one: Voneg

In this section, we address the PFPP using beedroids under visibility range one. We present
an algorithm, denoted by Voneg, that solves the PFPP using three beedroids endowed with
five colors. By Theorem 7, under visibility range one, Voneg is optimal with respect to the
number of beedroids. We encourage the reader to follow the overview of Vone? while looking
at the animations available online [3], published as an additional material.
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Figure 6 Initial configuration of the beedroids.

Figure 7 Overview of the journey
made by the exploring beedroids.

The 3D grid can be seen as a building with several floors. The overall idea of the proposed
algorithm is to make the beedroids explore the 3D grid floor by floor, as illustrated in Figure 7.
On a given floor, two beedroids will be in charge of exploring the floor line by line while the
third one will be used as a landmark to keep track of the exploration direction: it will either
designate the next line or the next floor to explore. Thus, the algorithm defines three main
roles for the beedroids using colors: Leader (L), Follower (F) and Landmark. We use three
different landmarks A, B, and C to distinguish different situations. Notice that a beedroid
can change its role several times during the execution.

Initially, beedroids respectively have colors C, C, and A, as shown in Figure 6. They are
aligned and one beedroid with color C should be adjacent to the two others. This pattern can
be arbitrary placed on the 3D grid. In that sense, the set of all possible initial configurations
is locally-defined [6]. Starting from any such locally-defined initial configuration, beedroids
first move towards a wall. If they are aligned along an edge of the 3D grid, they do so
while keeping their respective color. Otherwise, they first switch to the color sequence A,
L, F. Once a wall is reached, beedroids coordinate together to reach a particular kind of
configurations, denoted by C), in the following, which will correspond to the effective start of
the exploration. In other word, the initial prefix leading to a configuration C, occurs only
once. Then, the system periodically goes through Configurations C}, and all nodes are visited
between two occurrences of them in the execution.

A configuration is of type C), if the beedroids are located on two adjacent lines ¢; and
l;1+1 of the 3D grid such that ¢; hosts two adjacent beedroids colored F and L respectively
at distance 2 and 3 from the same wall W; and ¢; 1 hosts a single beedroid that is colored
A and adjacent to W. The rules to reach a configuration C, from a locally-defined initial
configuration are given in Figure 8.

As explained before, from Configuration C), the beedroids will perform a periodic
exploring journey around the 3D grid visiting all nodes floor by floor. As each floor of the
3D grid is a finite 2D grid, the strategy used to explore a given floor is similar to the one
of [19], i.e., two beedroids move and explore a given line while the third one remains idle
next to a wall to indicate the next line to explore. More precisely, let ¢; be the current line
of the floor f; being explored. The leader moves away from the follower and the follower just
follows the leader using the rules given in Figure 9. At the beginning, both the leader and
the follower move away from the landmark which has color A, and move along the nodes of
¢; until reaching a wall. When the leader sees the wall, it does not see the landmark (since
the landmark was left on the opposite wall), then the leader and the follower exchange their
respective roles and move back along the same line ¢;. This role exchange is done in two
rounds: first, the leader moves to one of its adjacent nodes changing its color to A to notify
the follower that they have to change their role. As the follower does not sense the wall yet,
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Figure 8 Rules executed to reach a configuration C}, from a locally-defined configuration. Colored
letters inside nodes indicate the color of the beedroids occupying the nodes. The arrow indicates the
destination and when a colored letter is given next to an arrow, this means that the rule dictates
the beedroid to switch to that color. Finally, self-loops indicate when a beedroid stays idle.

it continues to follow the leader and hence it becomes neighbor to a wall. Next, by observing
a beedroid with color A, the follower moves back to its previous position and changes its
color to the leader’s one L, while the ex-leader, the beedroid with color A, starts following
the new leader and updates its color to become a follower. This u-turn is done by executing
the rules of Figure 10.
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Figure 9 Moving in a straight line. Figure 10 U-turn.

As the beedroids have switched their roles, they proceed again at the exploration of ¢;
but this time, in the reverse direction. When the leader reaches the opposite wall, it sees
this time the landmark and hence knows that the current line ¢; has been fully explored. Let
l;+1 be the line that hosts the landmark. Line ¢;; is the next line to be explored. For this
purpose, both the leader and the follower need to move to line ¢;; while the landmark moves
to another line ¢; 1, the line to visit after £;,11. This line switch is done in three rounds by
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Figure 13 Sequence of configurations during a line change on a floor.
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executing the rules of Figure 12. Figure 13 illustrates the sequence of configurations reached
during this latter process. The leader and the follower then simply proceed at the exploration
of line ¢;11 in the same manner as line ¢;.
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Figure 14 Sequenc