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Preface

This LIPIcs volume contains the papers presented at the 11th International Conference on
Fun with Algorithms (FUN 2022), May 30-June 3, 2022, Island of Favignana, Sicily, Italy.
FUN is a series of conferences dedicated to the use, design, and analysis of algorithms and
data structures, focusing on results that provide amusing, witty but nonetheless original and
scientifically profound contributions to the area. Fun is a notion that can be judged from
different perspectives, and be defined in many different manners. The conference defines
fun in a broad sense, including aspects such as elegance, simplicity, amusement, surprise,
originality, etc. The topics of interest include all aspects of algorithm design and analysis,
and of computational complexity, under all types of algorithmic models (sequential, parallel,
distributed, streaming, online, etc.).

Twenty-four papers were selected by the members of the program committee out of fifty
four regular submissions. The main two criteria for judging the quality of the submitted
papers were their scientific quality and their fit to the spirit of the conference. Several selected
papers are dedicated to the analysis of the computational complexity of games such as Chess
or Wordle, as well as to algorithmic solutions to these games, but many others are studying
problems unrelated to games. The latter are either focussing on classical computational
problems considered from an unorthodox angle, or are introducing new problems that were
judged original and potentially fruitful from an algorithmic perspective.

PC Members FUN 2022

Oswin Aichholzer (Graz University of Technology, Austria)
Alkida Balliu (University of Freiburg, Germany)
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Panagiota Fatourou (University of Crete, Greece)

Fedor Fomin (University of Bergen, Norway)

Pierre Fraigniaud (Université Paris Cité and CNRS, France) - co-chair
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Kei Kimura (Kyushu University, Japan)
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Preface

Adele Rescigno (University of Salerno, Ttaly)

Ryuhei Uehara (JAIST, Japan)

Yushi Uno (Osaka Metropolitan University, Japan) - co-chair
Virginia Vassilevska Williams (MIT, USA)

Aaron Williams (Williams College, USA)

Prudence Wong (University of Liverpool, UK)

Tom van der Zanden (Maastricht University, Netherlands)

We want to thank all authors of the papers submitted to FUN 2022. Selecting a restricted
subset of papers from these submissions often led to heartbreaking decisions. We also
want to express our profound gratitude to the program committee members (and to their
sub-reviewers), who not only produced informative reports on the submitted papers, but
also actively participated to the discussions leading to the final decisions.

Last but not least, we want to deeply thank the organization team, Linda Pagli and
Giuseppe Prencipe, both from Universita di Pisa, Italy, who made possible to have the
conference with participants onsite despite the uncertainties caused by the Coronavirus 2019
(COVID-19) pandemic. In fact, the May 2022 meeting on Island of Favignana will gather
the participants of both FUN 2020 and FUN 2022, as the former was postponed due to the
pandemic.

Pierre Fraigniaud and Yushi Uno
PC Chairs FUN 2022
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Pushing Blocks by Sweeping Lines

Hugo A. Akitaya =
University of Massachusetts Lowell, MA, USA

Maarten Loffler =

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Giovanni Viglietta =
School of Information Science, Japan Advanced Institute of Science and Technology (JAIST),
Ishikawa, Japan

—— Abstract

We investigate the reconfiguration of n blocks, or “tokens”, in the square grid using line pushes.

A line push is performed from one of the four cardinal directions and pushes all tokens that are
maximum in that direction to the opposite direction by one unit. Tokens that are in the way of
other tokens are displaced in the same direction, as well.

Similar models of manipulating objects using uniform external forces match the mechanics of
existing games and puzzles, such as Mega Maze, 2048 and Labyrinth, and have also been investigated
in the context of self-assembly, programmable matter and robotic motion planning. The problem of
obtaining a given shape from a starting configuration is know to be NP-complete.

We show that, for every n, there are sparse initial configurations of n tokens (i.e., where no two
tokens are in the same row or column) that can be compacted into any a X b box such that ab = n.
However, only 1 x k£, 2 x k and 3 X 3 boxes are obtainable from any arbitrary sparse configuration
with a matching number of tokens. We also study the problem of rearranging labeled tokens into a
configuration of the same shape, but with permuted tokens. For every initial configuration of the
tokens, we provide a complete characterization of what other configurations can be obtained by
means of line pushes.
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1 Introduction

Background. Manipulating a set of objects with uniform external forces is a concept that
appears in many game and puzzle mechanics, such as Mega Maze [2], the 2048 puzzle [4, 6],
Tilt [14] and dexterity games such as the Labyrinth marble game [1] and Pigs in Clover [3].
It also appears in self-assembly, programmable matter and robotic motion planning, with
many applications involving controlling particles in the micro and nanoscale [12, 14, 10, 11].
Having the particles being controlled by a uniform external force is of particular interest
since it might be unfeasible to control them individually due to their small scale. The most
studied model for self-assembly using uniform external forces is the ¢ilt model. Objects called
“tokens” are in a 2D board where some locations are marked “blocked”. A tilt move moves
all tokens maximally in one of the four cardinal directions, stopping the movement only if
there is a collision with a blocked position or with another token [12]. Another model that
resembles the dexterity games model uses a single step to control tokens via uniform signals
to move a single unit in one of the cardinal directions [13, 15].
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Pushing Blocks by Sweeping Lines
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Figure 1 A configuration of tokens in the square lattice (left), and the configuration after a
=> push (right). Tokens can be thought of as being pushed by a line coming from the left or,
equivalently, as “falling” to the left without exiting their bounding box.

Akitaya et al. [5] introduced the trash compaction problem that displaces tokens in a
square grid via a line push, or simply push. A push is also caused by an external force, but
unlike the tilt, each token moves by at most one unit in the direction of the force, perhaps
better approximating a dexterity game model. Informally, a push is applied in one of the
four cardinal directions from which we sweep an axis-aligned line. The first tokens hit by the
line are displaced by one unit; in turn, these tokens might displace other tokens, and so on.
Figure 1 illustrates an example. If we consider configurations equivalent under translation,
the same push operation can be seen as placing a line barrier on one of the sides of the
bounding box and applying a uniform force pushing all tokens towards the barrier by at
most one unit. Note that pushes are not necessarily reversible.

The trash compaction problem gives an initial configuration of 1 x 1 tokens in the
square grid and asks whether it can be reconfigured via pushes into a rectangular box of
given dimensions. It is shown in [5] that the problem is NP-complete in general, but it is
polynomial-time solvable for 2 x k rectangles, where k is an arbitrary constant.

Our contributions. In this paper, we consider reconfiguration problems using pushes in two
scenarios: labeled and unlabeled. Two tokens with the same label are indistinguishable; a
configuration is unlabeled if all tokens have the same label, and labeled otherwise.

In Section 2 we make some preliminary observations, where we study certain important
configurations called compact and the ways they can be reconfigured.

Next, we investigate two types of puzzles. The first is called Compaction Puzzle, and
is equivalent to the trash compaction problem. In Section 3 we show that, for sparse
configurations of unlabeled tokens (i.e., where no two tokens are in the same row or column),
only rectangles of sizes 1 X k, 2 X k, and 3 x 3 can be obtained in general. That is, we
give algorithms to push tokens into these rectangles, and we show that there are sparse
configurations that cannot be pushed into rectangles of any other size.

The second puzzle is called Permutation Puzzle, and the goal is to reconfigure a labeled
configuration into another; Figure 2 shows an example. In Section 4 we give a complete
characterization of which labeled compact configurations can be obtained from one another.
Namely, in Section 4.1 we prove that only even permutations of the tokens are possible, and
in Section 4.2 we show exactly which even permutations can be obtained, depending on the
initial configuration. Our characterization can be considered a (partial) universality result;
that is, after ruling out cases using some easily identifiable necessary conditions, every pair
of configurations can be reconfigured into each other (Theorem 20 gives a precise statement).

Section 5 concludes the paper. Due to space constraints, some figures and technical proofs
have been omitted from this version of the paper, and can be found in [8].
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Figure 2 A Permutation Puzzle, where the goal is to rearrange tokens from the left configuration
to the right configuration by means of line pushes. Due to Theorem 20, this puzzle is solvable.

Related work. There is a rich literature regarding reconfiguration through pushing objects,
including sliding-block puzzles [20, 18], block-pushing puzzles [19, 21], the 15-puzzle [23],
the 2048 puzzle [4, 6], etc. In the block-pushing model, a 1 X 1 agent moves through empty
positions in the square lattice and can displace (push) objects that are free, while some
objects are blocked and cannot be moved. The problem of whether the agent can reach a
target position, depending on the model of the push move, is known to be PSPACE-complete.
Note that this operation, albeit being called “push”, differs from our model since the agent
can move specific individual objects.

As previously discussed, models that consider movement of objects by uniform external
forces have received some attention due to their applications to programmable matter. In
the tilt model with 1 x 1 free and blocked objects, deciding whether a given free object can
get to a given position is PSPACE-complete [10]. This implies the same complexity for the
reconfiguration problem. Other papers considered some form of universality given a certain
placement of blocked objects such as reconfiguration [12, 27|, particle computations [14],

and building shapes when given edges of free objects stick together when in contact [11, 10].

In the single-step model, for a given configuration of blocked objects, reconfiguration is
NP-complete with single steps limited to two directions [16], and universality results also
exist for a special configuration of blocked objects [17]. Note that the hardness of the trash
compaction problem [5] implies the hardness of the problem of constructing a given shape in
the single-step model.

Concerning our line-push model, in addition to the aforementioned paper [5] about trash
compaction, a second short paper has appeared [7], introducing some 2-player games based
on the same mechanic.

2 Definitions and Preliminaries

Let £ be the 2D square lattice. Let T be a set of n labeled objects called tokens, and let 3
be the set of labels. A configuration of T is an arrangement of 7 in £ where no two tokens
occupy the same position. Formally, a configuration is a function C': £ — XU {empty} where
the cardinality of the preimage of an element ¢ € ¥ is the number of tokens labeled ¢, and

|C~Y(Z)| = |T| = n. A lattice position (x,y) is full if its image is in ¥, and empty otherwise.

Notice that we do not distinguish two tokens that have the same label. However we may
refer to full positions and tokens interchangeably for ease of reference. The bounding box of
C is the minimum rectangular subset of £ containing all full positions. In the following, we
will identify configurations that are equal under translation.

A push is an operation that takes a configuration C and a direction d € {=>, <=, &, @} and
returns a configuration C” as follows. We describe a => push; the other cases are symmetric.
Informally, a => push moves all leftmost tokens one unit to the right, further displacing tokens
to the right if there are collisions. Without loss of generality, assume that the lower-left
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Figure 3 An incompressible non-compact configuration (left); a canonical configuration (center);
a compact configuration (right). The central and right configurations are compatible.

corner of the bounding box is (0,0), applying the appropriate translation otherwise. For all
columns i > 1 from left to right, and for all rows j, if (¢, ) is full and (i — 1, j) is empty, move
the token from (4, ) to (¢ — 1, 7). Finally, translate the configuration making the lower-left
corner of the bounding box (1,0).

Note that the last step just translates the configuration, producing an equivalent one.
Then, we can also consider an alternative informal interpretation of a push: A => push places
a vertical barrier to the left of = 0 and lets all tokens that can move “fall” towards the left
by one unit. We call this interpretation the “gravity” formulation of the puzzle.

Observe that pushes are not necessarily reversible, and every push either does not affect
the size of the bounding box, or decreases its area by exactly one row or column. We denote
a sequence of pushes by the respective sequence of directions (d; .. .d,,). We use the notation
dF to express k repetitions of direction d. A configuration is compressible if a push can
decrease the area of its bounding box, or incompressible otherwise. By definition, it is easy to
see that a configuration is incompressible if and only if its bounding box contains a full row
and a full column. If || =1, i.e., all tokens have the same label, we call the configuration
unlabeled. When no restrictions are made on |X|, we say that the configuration is labeled.

We can now define our Compaction Puzzle.

» Problem 1 (Compaction Puzzle). Given an unlabeled starting configuration, is there a
sequence of pushes that produces a configuration whose tokens form an a X b box?

If we start from any configuration and we keep pushing in the two directions => and 4
alternately, we eventually reach a configuration for which any push in these two directions
produces an equivalent configuration. We call such a configuration canonical. By definition, a
canonical configuration forms an orthogonally convex polyomino with its leftmost column and
bottommost row full. A compact configuration is a configuration that can be obtained from
a canonical configuration by pushes (see Figure 3). Note that all canonical configurations
are also compact.

» Observation 1. Configuration C is compact if and only if each row r (resp., column c)
has a contiguous interval of tokens and its projection on any other row r’ (resp., column c')
with the same amount or more tokens is contained in the interval of tokens of v’ (resp., ¢’ ).

Proof. Let P denote the conditions after the “if and only if”. Observe that all canonical
configurations satisfy P. Also, P is easily seen to be preserved by pushes, and therefore all
compact configurations satisfy P, as well.

In order to prove the converse, we first show that if C' satisfies P, then any push performed
in C is reversible. The remainder of the proof follows from the fact that we can obtain a
canonical configuration by applying => and 4 pushes.
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Without loss of generality, assume a => push in C' and that the lower-left corner of the
bounding box is (0,0). Let H be the set of rows with a token in the leftmost column (0, -).
Let V be the set of columns to the right of (0,-) that contain a token in each row in H.
Observe that each token in C must be in H or in V, or else there would be a column whose
interval of tokens’ projection neither contains nor is contained in the interval of tokens of the
first column (0,-). Note that applying the => push causes only tokens in H to move. We
reverse this operation by applying <<bk ), with & chosen so that the right side of the bounding
box coincides with the rightmost column in V, then applying (=>*~1). By construction, only
tokens in H move, and the sequence brings the leftmost token in each row in H back to its
original position in column (0, -). This proof works for the labeled as well as the unlabeled
case. <

The proof of Observation 1 immediately implies the following corollary.
» Corollary 2. A push applied to a (labeled) compact configuration is reversible. J

Note that, by Observation 1, compact configurations are orthogonally convex polyominoes;
also, all compact configurations are incompressible. Moreover, a random sequence of pushes
results in a compact configuration with high probability (this certainly happens, for instance,
if the sequence of pushes has a subsequence of the form ({}k =>F) for a large-enough k).

The number of tokens in a row or a column of a compact configuration is said to be the
length of that row or column. Two compact configurations are compatible if they have the
same number of rows (resp., columns) of each given length. For example, in Figure 3, the
central and right configurations are compatible. The observation below shows that the set of
compatible compact configurations is closed under pushes.

» Observation 3. A push applied to a compact configuration C results in a compatible
compact configuration C’.

Proof. Since C can be obtained from a canonical configuration by pushes, then so can C’,
and therefore C’ is compact, as well. It is enough to show that a => push in C does not
change the number of rows (resp., columns) of each given length. Note that labels are
irrelevant, and so we will assume C' and C’ to be unlabeled, without loss of generality. We
reuse the notation of the proof of Observation 1. The => push only moves tokens in H, so
it is clear that the lengths of rows do not change. We can see the push as removing the
leftmost column (which has length |H|), moving all columns to the right of V' by one unit to
the right, and creating a new column of length |H| immediately to the right of V. Thus, the
number of columns of each length remains the same, and C’ is compatible with C. <

Note that compatibility is an equivalence relation on the set of compact configurations.
By Observation 3, in any equivalence class of unlabeled compatible compact configurations
there is exactly one canonical configuration. Once we reach a compact configuration via
a sequence of pushes, no other canonical configuration can be reached, except for the one
corresponding to the current compact configuration.

The following observation follows from the fact that we can obtain a canonical configuration
by applying 4" and => pushes and by Corollary 2.

» Observation 4. Any two unlabeled compatible compact configurations can be obtained from
each other by pushes. 1

Two labeled configurations are said to have the same shape if they have the same set of
full positions (recall that we are identifying configurations that only differ by a translation).
We can now define our Permutation Puzzle.
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» Problem 2 (Permutation Puzzle). Given two same-shaped labeled compact configurations C
and C’, is there a sequence of pushes that transforms C into C'?

Two same-shaped labeled configurations differ by a permutation of their tokens. If we
obtain a same-shaped configuration C’ from C, the sequence of pushes results in such a
permutation. Note that the set of possible permutations is finite and closed under composition,
and therefore is a permutation group, which we denote as G¢.

The following observation allows us to focus on sequences between canonical configurations.
We say that the labeled canonical configuration C' obtained from a compact configuration C’
by (@kl =>*2) for some ki, ko, is the canonical form of C'. Then the following is a direct
consequence of Corollary 2.

» Observation 5. A labeled compact configuration C' can be obtained from a same-shaped
labeled compact configuration C' if and only if the canonical form of C is reachable from the
canonical form of C'. J

3 Compaction Puzzles

In this section, we focus on Compaction Puzzles (Problem 1) where the input configuration is
sparse; that is, where no row or column has more than one token. We assume that the number
of tokens is n = ab, and we wonder if there is a sequence of pushes that produces an a x b
box. Note that, as long as the configuration is sparse, any push shrinks the bounding box,
and therefore is irreversible (unless n = 1). Recall that without the sparseness assumption,
the problem is NP-complete [5].

One may wonder if the leeway given by sparse configurations is enough to obtain every
compact configuration; in this section, we will show that this is not the case.

We begin by observing that, for every n, there exists a “universal” configuration that can
be reconfigured into any compact configuration with n tokens (such as an a x b box).

» Observation 6. There exists a sparse unlabeled configuration with n tokens that can be
reconfigured into any compact configuration with n tokens.

Proof. Such a configuration is the secondary diagonal of an n x n matrix, i.e., all positions
(i,7) are full, for ¢ € {1,...,n}, and all other positions are empty. Due to Observation 4, it
suffices to show that any canonical configuration can be formed.

By definition, a canonical configuration has a monotonic decreasing sequence of column
lengths. After k => pushes, the configuration will have a column of length k. We then perform
k 4 pushes bringing the column up aligning its bottom with the next token. Any subsequent
k' < k = pushes would accumulate tokens in the bottommost contiguous positions of the
second leftmost column. We can then repeat this procedure to produce any monotonic
decreasing sequence of column lengths. |

We will now show that not all configurations can be reconfigured into an a x b box.

» Lemma 7. For all a > 4 and b > 3, there exists a sparse configuration that cannot be
reconfigured into an a X b boz.

Proof. We will describe a sparse configuration C, , and argue that it cannot be reconfigured
into an a x b box; refer to Figure 4. The configuration Cj; is subdivided into four quadrants;
the lower-left and upper-right quadrants are empty, all tokens are in the other two quadrants.
We place ny = [%] tokens in the upper-left quadrant and ny = [%] in the lower-right

quadrant; each of those quadrants is a square matrix with only its secondary diagonal full.
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Figure 4 The configuration Cy ; defined in Lemma 7, with @ = 4 and b = 3 (left). Any sequence
of pushes produces an “L-shaped” pattern (center), which eventually causes the formation of rows
with more than a tokens or columns with more than b tokens (right).

Initially, all the => and ¢ pushes (resp., <= and 1 pushes) only affect tokens in the
upper-left (resp., lower-right) quadrant. Thus, as soon as either ny — 1 pushes have been
made in the upper-left quadrant or ny — 1 pushes have been made in the lower-right quadrant
(whichever comes sooner), all the tokens in that quadrant must be located on the union
between a single row and a single column, forming a connected “L-shaped” pattern.

If the L-shaped pattern contains x tokens on the same row and y tokens on the same
column, we must have z + y = n; + 1 for some i € {1,2}. Thus, z +y > L%bj + 1. Tt is easy
to see (cf. [5, Observation 3]) that it is impossible to form an a x b box from a configuration
where more than a (resp., b) tokens are on the same row (resp., column). Therefore, we must
have r < a and y < b, which implies a + b > L%bJ +1> %. By rearranging terms we have

(a —2)(b—2) < 3; the only solutions with a >4 and b >3 area=4,b=3 and a =5, b= 3.

Let a =4 and b =3 (resp., a =5 and b = 3), and let x and y be defined as above. Since
x4y > 7 (resp., x +y > 8), we must have z = a and y = b. Now, further pushes in the
same quadrant cause the L-shaped pattern to rigidly move toward the opposite quadrant,

eventually creating a row with more than a tokens or a column with more than b tokens.

On the other hand, making more pushes in the opposite quadrant ends up forming another,
oppositely oriented, L-shaped pattern identical to the first. At this point, any push causes
the two L-shaped patterns to rigidly approach each other, eventually creating a row or a
column with too many tokens. <

In all other cases, any sparse configuration can be reconfigured into an a x b box, which
yields the following theorem.

» Theorem 8. All sparse configurations of n = ab tokens can be pushed into an a x b box if
and only if a <2 orb<2 ora=>b=3.

Proof. Lemma 7 provides counterexamples for a > 4 and b > 3 (and, symmetrically, for
a > 3 and b > 4); it remains to show the positive cases.

First, note that the claim for a = 1 is trivial (and b = 1 is symmetric): Perform 4 pushes
until all tokens are in the same row, then perform => pushes until they occupy consecutive
positions.

Now assume a = 2 (b = 2 is symmetric). Perform < pushes until half of the tokens are
in the same row r. Then, the other half form a sparse subconfiguration below r. Perform
4 pushes until all such tokens are in the row immediately below r. Then, a 2 x 5 box is
obtainable by performing => pushes.
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Figure 5 Pushing a sparse configuration of n = 9 tokens into a 3 x 3 box (Theorem 8).

Finally, assume that a = b = 3; refer to Figure 5. Because the initial configuration is
sparse, if we perform => pushes, the number of tokens in the leftmost column increases by
at most one with every push. Apply => pushes until there are three tokens in the leftmost
column. The subconfiguration obtained by deleting the leftmost column is also sparse. Then,
by the same argument we can perform <= pushes until there are three tokens in the rightmost
column. Since we have not yet performed any vertical push, every row has at most one token.
There are exactly three tokens that are not in the leftmost or rightmost columns. Let tq,
to and t3, respectively, be those tokens, from smallest to largest y-coordinate. Perform 4
pushes until the bottommost row of the configuration is one unit below ¢3. Note that t;
must be in the bottommost row. Symmetrically, apply ¥ pushes until the topmost row of
the configuration is one unit above to. Now, t1, to and t3 are strictly between the leftmost
and rightmost columns, and are one in each row. Then, we obtain a 3 x 3 box by performing
=> pushes. |

4 Permutation Puzzles

In this section, we will give a complete solution to the Permutation Puzzle (Problem 2): For
any given starting compact labeled configuration C, we will determine the set of labeled
configurations of the same shape as C' that we can reach by means of pushes. Specifically,
we will give a description of the permutation group G¢, as defined in Section 2.

By Observation 5, it is not restrictive to limit our attention to canonical configurations.
For most of this section, we will assume that all tokens have distinct labels; the general case
will be discussed at the end of the section.

We will show that all feasible permutations in this setting are even (Section 4.1), and
furthermore that all even permutations are feasible, with some simple restrictions (Section 4.2).

It will be convenient to always consider the lower-left corner of the bounding box to be
(0,0), even after a sequence of pushes. That is, we consider the “gravity” formulation of
the puzzle, where the bounding box remains still and the tokens move within it (recall that
compact configurations are uncompressible). As a consequence, a push in one direction will
cause the tokens to “fall” in the opposite direction within the bounding box.
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Figure 6 A configuration with labeled empty cells and the result after the sequence (<= <= <= {})
We use yellow for full tokens and light blue for empty cells (and later, dual tokens) in this section.

4.1 All Feasible Permutations Are Even

In this section, we will prove Theorem 11, which states that only even permutations are
possible in the Permutation Puzzle.

For a labeled canonical configuration C, let C' be an extension of the labeling where also
the empty cells inside the bounding box of C' get a unique label. Our proof strategy is to first
extend permutations of C' to permutation of C’, and argue that a permutation of full and
empty cells must be even. We then introduce a dual game played on the empty cells only,
and argue that this dual game has similar properties. Since the dual of any game is always
smaller (in terms of bounding box) than the original, our theorem then follows by induction.

Permutations on Full Cells and Empty Cells

Let C be a labeled canonical configuration; that is, a function C': £ — X U {empty}. We
extend C to C': L — YUY U {empty}, where X’ is a second set of unique labels, C'(z) € ¥’
if and only if z is in the bounding box of C, but not in C, and for all other z, C'(z) = C(z).
We now define the effect of a push operation on C” (illustrated in Figure 6). We define it
for a <~ push; the other directions are symmetric. A <= push affects each row as follows:
For each row in which the rightmost cell is empty, we shift all tokens and empty cells one
position to the right and place the rightmost empty cell at the left; in other words, we
perform a single cyclic permutation on the tokens in the row.
For each row in which the rightmost cell is full, nothing changes.

We now argue that for any sequence of pushes which transforms C' into another canonical
configuration, the effect of these moves on C’ must be an even permutation.

» Lemma 9. FEvery achievable permutation on both the full and empty cells must be even.

Proof. By definition, every horizontal (resp., vertical) push causes a cyclic permutation
on some rows (resp., on some columns) involving both labeled tokens and labeled empty
cells. We will argue that the total number of cyclic permutations on the rows (resp., on
the columns) caused by these pushes is even. Since all cyclic permutations on rows (resp.,
on columns) have the same parity, which depends only on the width (resp., height) of the
bounding box, this implies that the overall permutation is even.

(23] (23] (1)(2)3)

(4)s]e] (4)(5 6]

1 (9) (10fa1]1s
(4)
24]25)
(26)27]268][29]/3031/32)33)39

Figure 7 Rows and columns of the same length are always aligned.
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Figure 8 A primal puzzle (yellow) with its corresponding dual puzzle (light blue). The blue
rectangle represents the bounding box of the dual puzzle. Note that the tokens in the dual puzzle
match the labels on the empty cells of the primal puzzle.
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Figure 9 Rules of the dual puzzle. The sequence of pulls (<= & ) is shown.

From Observations 1 and 3 it follows that all rows (resp., columns) of the same length
must always be aligned throughout the reconfiguration (see Figure 7). In particular, observe
that a wertical push never influences the horizontal placement of the rows of a particular
length (note that here we only argue about the shape, not the labels). Now consider the set
of rows of length k. Every horizontal push either moves all such rows one cell to the right, or
one cell to the left, or not at all. Since both at the start and at the end of the process all
rows of length k are aligned with the left border of the bounding box, the total number of
pushes that influence the horizontal placement of these rows is even, and thus the number of
cyclic permutations performed on these rows is also even.

Note that a single push may influence the placement of rows of different lengths; however,
for each specific length k, the total number of pushes that influences them is even, and
therefore the total number of cyclic permutations on rows is even. The same holds for the
cyclic permutations on columns, which concludes the proof. <

Now, in order to prove our main theorem, we still need to show that the resulting
permutation restricted to the tokens is also even.

Dual Puzzles

Given a configuration C, we have extended its labeling to a configuration C’ having labels
on the empty cells, as well. Now, consider the restriction of C’ to only the empty cells; that
is, the function D: £ — ¥’ U {empty} which labels exactly the cells that are empty in C
but lie inside the bounding box of C'. Clearly, if we can prove that a permutation on D is
even, then Lemma 9 implies that the corresponding permutation on C must also be even
(the product of two permutations is even if and only if they have the same parity).

For convenience, we will consider the bounding box of C' as a torus and display it in such
a way that all full rows and columns are aligned with the left and bottom of the rectangle
(see Figure 8). We call D a dual configuration, and we will study the effects of push moves on
D, which we will treat as a dual puzzle (while the original puzzle on C is the primal puzzle).
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Figure 10 The dual of a dual puzzle is again a primal puzzle; we see the result after (=> ﬁ)

When considering a dual puzzle in isolation, we swap terminology and refer to the empty
cells as full, and vice versa. In this context, a push move in the primal puzzle either leaves the
dual puzzle unchanged or causes a pull move in the dual puzzle. Specifically, if we perform a
<~ push move in the primal puzzle from a configuration where only the full rows are touching
the right side of the bounding box, nothing happens in the dual puzzle. Otherwise, the <=
push move in the primal puzzle causes a <= pull move in the dual puzzle, where exactly
those rows that are farthest from the left boundary are pulled one unit to the left (refer to
Figure 9, where the blue line represents a side of the bounding box of the primal puzzle).

Thus, as we play the primal puzzle, we are also playing the dual puzzle. We say that a
dual configuration is canonical when all tokens are aligned with the top and right borders
of their bounding box; this way, the empty cells in a canonical (primal) configuration form
a canonical (dual) configuration. Most of the results obtained so far for primal puzzles
automatically apply to dual puzzles, as well.

In particular, we claim that in the dual game, the equivalent of Lemma 9 still holds. For
this, we now consider again an extension of our dual configuration D which labels both the
full and empty cells of the bounding box of D. Crucially, this is not the same as the original
extension C’, because the bounding box of D is smaller than the bounding box of C.

» Lemma 10. Let D be a labeled canonical configuration, and let D' be an extension of D
that labels also the empty cells of the bounding box of D’'. Every achievable permutation on
D' under a sequence of dual moves must be even.

Proof. Since the number of rows (resp., columns) of any given length in the primal puzzle
remains constant, the same is true in the dual puzzle. Also, all of the rows (resp., columns)
of the same length must always be aligned in the primal puzzle, and therefore they must be
aligned in the dual puzzle, as well. The proof now proceeds exactly as in Lemma 9. |

Induction
We are now ready to prove that all permutations in G¢ must be even.

» Theorem 11. Let C be a labeled canonical configuration, and let m € Go. Then, 7 is an

even permutation.

Proof. The proof follows from two simple observations. Firstly, if we take the dual of a
dual-type puzzle, we obtain another puzzle that again follows the rules of a primal-type
puzzle (refer to Figure 10). Secondly, the bounding box of a (primal or dual) puzzle is strictly
larger than the bounding box of its dual.

We will prove a stronger statement: that our theorem holds for both primal-type and
dual-type puzzles. The proof is by well-founded induction on the size of the bounding box.

If the bounding box of our puzzle is completely full, then moves have no effect, and the
only allowed permutation is the identity, which is even.

1:11
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Figure 11 A configuration with a = 10, b =9, @’ = 7, and b’ = 6. The blue rectangle in the
center surrounds the core tokens.
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Now, consider a canonical configuration C' in a (primal or dual) puzzle with a bounding
box which is not completely full. Such a puzzle has a dual, with a canonical configuration D
corresponding to C'. The bounding box of D has smaller size, and therefore the induction
hypothesis applies to the dual puzzle. After performing some moves and restoring a canonical
configuration in both puzzles, the tokens in C' have undergone a permutation 7 € G¢, while
the tokens in D have undergone a permutation ¢ € Gp. By Lemmas 9 and 10, the overall
permutation 7o is even; by the induction hypothesis, o is even; hence, 7 is even, as well. <«

4.2 Generating All Feasible Permutations

In this section, we will give a complete description of the permutation group G¢, which we
already know from Section 4.1 to be a subgroup of the alternating group Alt(n).

Unmovable Central Core

Let the bounding box be an a x b rectangle. Our first observation is that, if more than half
of the rows and more than half of the columns of the bounding box are full, then there is a
central box of tokens that cannot be moved. Let a’ (resp., ') be the number of full columns
(resp., full rows), and let " =a —a’ and V" =b—1¥'.

» Definition 12 (Core). If o’ > a” and V' > V", the core of C is the set of lattice points in
the bounding box of C that are in the central a’ — a” columns and in the central b’ —b" rows.!
If o' <a”’ ord/ <V”, the core of C is empty.

The lattice points in the core are called core points, and the tokens in core points are
called core tokens. Figure 11 shows an example of a non-empty core.

» Observation 13. No permutation in Go moves any core token.

Proof. If the core is empty, there is nothing to prove; hence, let us assume that a’ > a”
and b > b”. From Section 2, we know that there are always exactly o’ contiguous full
columns and b contiguous full rows, no matter how the tokens are pushed. Hence, the central
a—2a" =da' —da"” columns (resp., the central b — 2" = b’ — b” rows) are always full, and are
not affected by & or 4 pushes (resp., = or <= pushes). Therefore, no push can affect the
core tokens. |

! Equivalently, if a > 2a” and b > 2b”, the core is obtained by discarding the a’ leftmost columns, the
a” rightmost columns, the b” topmost rows, and the b” bottommost rows.
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Permutation Groups

In order to understand the structure of G¢, we will review some notions of group theory and
prove three technical lemmas.

» Definition 14. A permutation group G on {1,2,...,n} is 2-transitive if, for every 1 <
x,y,w,z <n with x #y and w # z, there is a permutation m € G such that 7(z) = w and

m(y) = 2.

» Theorem 15 (Jones, [22]). If G is a 2-transitive permutation group on {1,2,...,n} and

G contains a cycle of length n — 3 or less, then G contains all even permutations.? _|

To express cyclic permutations, we use the standard notation o = (s1 s2 s3 ... Sk),
occasionally adding commas between terms when doing so improves readability. The cycle o
is the permutation that fixes all items except s1, Sa, ..., S such that o(s1) = $2, 0(s2) = 3,

..., 0(8g) = s1. Since we are studying permutations puzzles, it is visually more convenient to
interpret a permutation as acting on places rather than on items. Thus, for example, (1 2 3)
is understood as the cycle involving the tokens occupying the locations labeled 1, 2, and 3
rather than the tokens labeled 1, 2, and 3. Also, we will follow the convention to compose
chains of permutations from left to right, which is the common one in permutation theory.
The following three lemmas have simple but technical proofs, which can be found in [8].

» Lemma 16. Let o = (1,2,...,a) and f=(a—b+1,a—b+2,...,2a —b) be two cycles
spanning n = 2a — b items, with a > 2 and 1 < b < a. Then, the permutation group generated
by « and B acts 2-transitively on {1,2,...,n}. J

» Lemma 17. Leta=(1,...,2a+b+1,3a+b+2,...,3a+20+1) and B = (a+1,...,a+
b,2a+b+2,...,4a+2b+2) be two cycles spanning n = 4a+2b+2 items, witha > 0 and b > 1.
Then, the permutation group generated by o and 8 acts 2-transitively on {1,2,...,n}. N

» Lemma 18. Let A and B be two finite sets such that AN B # 0 and A\ B# 0. Let G be
a permutation group on AU B whose restriction to A is 2-transitive and whose restriction to
B\ A is trivial, and let B be a cycle spanning B. Then, the permutation group generated by
G and B acts 2-transitively on AU B. 1

Generating Cycles

We will now assume that all labels are distinct. Specifically, the n tokens in C are labeled 1
to n from left to right and from top to bottom, as in Figure 11. The general case will be
discussed later.

We introduce three types of sequences of moves:

Type-A k-sequence: (<=F <= & =>4 %) for 0 <k < a”.

Type-B k-sequence: ({}k <P {}k> for 0 <k <.

Type-C k-sequence: (<=F <= P> =bk) for 0 <k < a”.

It is straightforward to check that a type-A k-sequence always produces a cycle of length
2a’ 4+ 2b' — 1 (refer to Figure 12), which involves the lattice points (k,4) and (' + k, ) for all
0 <i < b (plus some other points in the rows (0,-) and (V/,-)). Such cycles are called type-A
cycles.

2 Jones’ theorem in [22] holds more generally for primitive permutation groups. The fact that all
2-transitive permutation groups are primitive is an easy observation.

1:13
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Figure 12 Performing a type-A k-sequence: (<=Ft! &> ek ). Recall that a push in a
direction causes the tokens to “fall” in the opposite direction within the bounding box.

Symmetrically, a type-B k-sequence produces a type-B cycle of length 2a’ + 20" — 1
involving (among others) the lattice points (¢, k) and (i,b + k) for all 0 < ¢ < a’. Thus, the
type-A and the type-B cycles collectively cover all the non-core points that lie in one of the
a’ full columns or in one of the b’ full rows.

A type-C k-sequence produces a cycle, as well, which we call type-C cycle (see Figure 13).
However, unlike previous cycles, a type-C cycle’s length may vary depending on k. It is easy
to see that, if the row (-,4), with 0 < ¢ < b, has length ¢;, then the cycle produced by a type-C
k-sequence with a — ¢; < k < a” involves (among others) the lattice point (¢; + k — a”, 7).
Such a point lies at distance @’ — k — 1 from the rightmost full token in the row. Thus, the
type-C cycles collectively cover all the tokens that are not in a full column. We conclude
that type-A, type-B, and type-C tokens collectively cover all non-core points.

The next theorem states that, in most cases, the group G¢ is exactly the alternating group
on the non-core tokens, i.e., the group of all even permutation on the n — (a’ — a”)(b' — b")
tokens not in the core (or on all n tokens if the core is empty).

» Theorem 19. I[fn/2 > a +V +1 and a'b" > 1, then G¢ is the alternating group on the
non-core tokens.

Proof. We know from Theorem 11 that G¢ only contains even permutations; also, by
Observation 13, no permutation in G¢ can move any core tokens. Hence, it suffices to show
that G¢ contains all even permutations of the non-core tokens. By applying a reflection
to C' if necessary, we may assume that a” > b”. Also, since a”’b"" > 1, we have a” > 2, and
therefore there are at least two distinct type-A cycles.

Let o and 8 be the type-A cycles for £k = 0 and k = 1, respectively. Observe that, if
a’ =1, then « and (the inverse of) [ satisfy the hypotheses of Lemma 16; if a’ > 1, then «
and [ satisfy the hypotheses of Lemma 17. In both cases, the group G; < G¢ generated by
« and B acts 2-transitively on the points spanned by « and 8 and acts trivially on all other
points.

The group Gi, together with the type-A cycle for k = 2, satisfies the assumptions of
Lemma 18. Therefore, G¢ has a subgroup G that acts 2-transitively on the points spanned
by the first three type-A cycles and acts trivially on all other points. By repeatedly applying
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Figure 13 Performing a type-C k-sequence: (<=F NECENE ik ).

Lemma 18 to all remaining type-A cycles, we conclude that G¢ has a subgroup that acts
2-transitively on a set that includes all the non-core points in the ¥’ full rows of C.

By applying Lemma 18 again to the type-B cycles (the first of which properly intersects
all of the full rows), we obtain a subgroup of G¢ that acts 2-transitively on a set that includes
all the non-core points in the a’ full columns and in the b’ full rows. Finally, we can apply
Lemma 18 to the type-C cycles (all of which properly intersect the full rows) to obtain a
subgroup of G¢ that acts 2-transitively on all non-core tokens. This implies that G¢ itself
acts 2-transitively on all non-core tokens, as well.

To conclude the proof, we recall that each type-A cycle has length 2a’ + 2’ — 1. Since
n/2 > a + b + 1, these cycles have length at most n — 3. Thus, G¢ contains all even
permutations of the non-core tokens, due to Theorem 15. <

Special Configurations

We will now discuss all configurations of the Permutation Puzzle not covered by Theorem 19.

If a” =1 =0, i.e., there are no empty cells in the bounding box, then clearly no token
can be moved, and G¢ is the trivial permutation group (Figure 14, left).

Let o/ = V" =1, i.e., there is exactly one empty cell, located at the top-right corner of
the bounding box. The core includes all the tokens, except the ones on the perimeter of
the bounding box, which are spanned by the type-A cycle with & = 0. It is easy to see
that the only possible permutations are iterations of this cycle and its inverse. Therefore,
G¢ is isomorphic to the cyclic group Caqiop—5 (Figure 14, right).

In the following, we will assume that a” > b” and o’ > 2, and we discuss all configurations
where n/2 < a’ + b + 1. We invoke some theorems from [26] about cyclic shift puzzles.

Let b = 2, and let the two rows have length 1 and 3, respectively (Figure 15, top row,
first image). The two type-A cycles (1 2 3) and (1 3 4) form a 2-connected (3, 3)-puzzle
involving all tokens, and therefore Go = Alt(n), due to [26, Theorem 2].
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Figure 15 Some special configurations with b = 2 and b = 3 rows.

Let b = 2, and let the two rows have length 1 and 4, respectively (Figure 15, top row,
second image). The first and third type-A cycles (1 2 3) and (1 4 5) form a 1-connected
(3, 3)-puzzle involving all tokens, and therefore Go = Alt(n), due to [26, Theorem 1].
Let b = 2, and let the two rows have length 2 and 4, respectively (Figure 15, top row,
third image). We denote the two type-A cycles by a =(13452)and 8= (1456 2).
It is easy to see that G¢ is generated by « and [, because any non-trivial sequence of
four pushes necessarily goes through a configuration whose canonical form yields one the
permutations «, 8, a~ !, or f71.

In order to determine G¢, we transform « and § by a suitable outer automorphism
1: Sym(6) — Sym(6). Since 9 is an automorphism, the group G, generated by ¥(c) and
1 (p) is isomorphic to G¢. The automorphism 1 is defined on a set of generators of Sym(6)
as follows (cf. [25, Corollary 7.13]): #((1 2)) = (1 5)(2 3)(4 6), ¥((1 3)) = (1 4)(2 6)(3 5),
(1 4)) = (13)(2 4)(5 6), ¥(1 5)) = (1 2)(3 6)(4 5), ¥((16)) = (1 6)(2 5)(3 4). We have

a=(13452)=(12)(15)14(13), B=(14562)=(12)(16)(15)(14).

Therefore, the two generators of G, are

Both generators ¢(«) and (/) leave the number 4 fixed, and thus G, is isomorphic to a
subgroup of Sym(5). Moreover, the generators are cycles of odd length, and therefore
they produce only even permutations. Hence, G is isomorphic to a subgroup of Alt(5).
Observe that 1(a)y(8) = (1 5 6), which is a 3-cycle involving consecutive elements of the
5-cycle 1 (). These two cycles generate all even permutations on {1,2,3,5,6} (cf. [26,
Proposition 1]).

We conclude that G, and therefore G¢, is isomorphic to Alt(5), which is a group of
order 60 and index 12 in Sym(6). A permutation 7 € Sym(6) is in G¢ if and only if ¢ ()
is even and leaves the number 4 fixed.
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Figure 16 Some small configurations where at least three tokens are not covered by the first
type-A cycle.

Let b = 2, and let the two rows have length 2 and 5, respectively (Figure 15, top row,
fourth image). We denote the three type-A cyclesby a =(13452), 8=(1456 2), and
v =(15672). Consider the permutations (a3717)? = (254) and Bya = (135426 7).
We have a 3-cycle involving consecutive elements of a 7-cycle, which generate all even
permutations on {1,2,...,7} (cf. [26, Proposition 1]). We conclude that Go = Alt(n).
Let b = 2, and let the two rows have length ¢ > 3 and £+ 2, respectively (Figure 15, bottom
row, first image). We denote the two type-A cycles by o = (1,£+1,...,n—1,¢,...,2) and
B=1,0+2,...,n,¢,...,2). The permutation f~2(a?8 1a=28)?8? = (n—3,n—2,n) is
a 3-cycle that, together with «, forms a 2-connected (3,n — 1)-puzzle involving all tokens.
We conclude that G¢o = Alt(n), due to [26, Theorem 2.

Let b = 2, and let the two rows have length ¢ > 3 and ¢ + 3, respectively (Figure 15,
bottom row, second image). Observe that this configuration is the same as the previous
one, except for an extra token, labeled n, in the bottom row. In particular, the first
two type-A cycles are the same, and generate all even permutations on {1,2,...n — 1},
including the 3-cycle (1,¢+ 1,¢+ 2). This 3-cycle forms a 1-connected (3,7n — 2)-puzzle
with the third type-A cycle. Since all tokens are involved in this puzzle, we conclude that
Gc = Alt(n), due to [26, Theorem 1].

Let b = 3, and let the three rows have length 1, 1, and 3, respectively (Figure 15,
bottom row, third image). The two type-A cycles (2 3 4) and (2 4 5) form a 2-connected
(3,3)-puzzle, and therefore they generate all even permutations on {2,3,4,5}, due to [26,
Theorem 2]. In particular, they generate the 3-cycle (3 4 5), which forms a 1-connected
(3,3)-puzzle with the type-B cycle (1 2 4), involving all tokens. By [26, Theorem 1],
Ge = Alt(n).

Let b = 3, and let the three rows have length 1, 3, and 3, respectively (Figure 15, bottom
row, fourth image). We denote the two type-A cyclesby o« = (1256 3) and 8= (1367 4).
Consider the permutations (82a~1)? = (256) and af~t = (147325 6). We have a
3-cycle involving consecutive elements of a 7-cycle, which generate all even permutations
on {1,2,...,7} (cf. [26, Proposition 1]). We conclude that G¢ = Alt(n).

We will now prove that all configurations not listed above satisfy n/2 > a' +V' + 1, i.e.,
they have at least three tokens not lying on the first type-A cycle.

If b =1, then o’ = b” = 0. This case has already been discussed (Figure 14, left).

For b = 2, we have discussed all cases where a” < 3. If @’ > 4, then n = 2a’ + a”, while

a type-A cycle spans 2a’ + 1 tokens, and leaves out at least three tokens (Figure 16, first

image).

Let b > 3 and @’ = b = 1. Then, a type-A cycle spans three tokens. We are assuming

that a” > 2, and so a > 3, implying that n > 5. The only case where n = 5 has already

been discussed (it is the case with b = 3 rows of length 1, 1, and 3, illustrated in Figure 15,

bottom row, third image); in all other cases we have n > 6, and thus at least three tokens

are left out of the type-A cycle (Figure 16, second image).
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Let b> 3, a’ =1, and ¥’ = 2. Then, a type-A cycle spans five tokens. We are assuming
that a” > 2, and so a > 3, implying that n > 7. The only case where n = 7 has already
been discussed (it is the case with b = 3 rows of length 1, 3, and 3, illustrated in Figure 15,
bottom row, fourth image); in all other cases we have n > 8, and thus at least three
tokens are left out of the type-A cycle (Figure 16, third image).

Let b > 3, a’ =1, and b’ > 3 (Figure 16, fourth image). Since we are assuming that
a’ > 2, the rightmost column contains at least three tokens, which are not included in
the first type-A cycle.

Let b>3,a >2,and b =1 (Figure 16, fifth image). Since we are assuming that o’ > 2,
the rightmost token is not included in the first type-A cycle. Moreover, the top row
contains at least two tokens, which are not in the type-A cycle. In total, there are at
least three tokens not spanned by the cycle.

Let b >3, a’ > 2, and b’ > 2 (Figure 16, sixth image). Since we are assuming that a” > 2,
the rightmost column contains at least two tokens, which are not included in the first
type-A cycle. Moreover, the token at (1,1) is not contained in the first type-A cycle,
either. In total, there are at least three tokens not spanned by the cycle.

Arbitrary Labels

We now discuss the case where not all labels are distinct. Clearly, if all the non-core tokens
have distinct labels, then our previous analysis carries over verbatim.

Let us now assume that at least two non-core tokens x and y have the same label. In this
case, we identify two permutations 7y, € G if the configurations Cy,Cy: £ — X U{empty}
they produce are equal, i.e., Cy(p) = Ca2(p) for all p € L.

Assume that G¢ contains all even permutations of the non-core tokens, which we know
to be always the case except in some special configurations. Let 7w be any permutation of
the non-core tokens. If 7 is even, then m € G, and we can reconfigure the tokens to match
m. If 7 is odd, then let 7’ = (2 y)m. Since 7’ is even, we have 7’ € G¢. However, 7 and #/
produce equal configurations, because x and y have the same label, and therefore we can
reconfigure the tokens to match m, as well.

We now have a complete solution to the Permutation Puzzle.

» Theorem 20. If the configuration C is compact, then the group Go of possible permutations
is as follows.
If no cell in the bounding box is empty, then G¢ is the trivial group.
If exactly one cell in the bounding box is empty, then G is generated by the cycle of the
non-core tokens taken in clockwise order.
If there are exactly 6 tokens and exactly 2 empty cells in the bounding box, then G¢ is
isomorphic to the alternating group Alt(5).
In all other cases, G¢ is the alternating group on the non-core tokens. Hence, if at least
two non-core tokens have the same label, then all permutations of the non-core labels
can be obtained; otherwise, only the even permutations of the non-core labels can be
obtained. J

5 Conclusions and Open Problems

Concerning the Compaction Puzzle, we showed that all sparse configurations of n = ab tokens
can be pushed into an a x b box if and only if a <2 or b < 2 or a = b = 3 (Theorem 8), and
that there exist sparse configurations capable of becoming any compact configuration of size
n (Observation 6). We leave the following as an open problem.
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» Open Problem 1. Is it NP-complete to decide whether a given unlabeled sparse configuration
can be pushed into a given compact configuration?

We do not know the answer to this problem even if we restrict the target configuration
to be a rectangle (note that the NP-completeness proof in [5] does not hold for sparse initial
configurations).

Concerning the Permutation Puzzle, we have shown that, given two same-shaped compact
configurations, all even permutation of the non-core tokens are reachable, with a few minor
exceptions (Theorem 20). Notably, if at least two tokens have the same label, then all
permutations of the non-core labels can be obtained.

In particular, the puzzle in Figure 2 is solvable, because it features a compact configuration
with no core tokens, more than two empty cells, and at least two same-labeled (i.e., same-
colored) tokens. Thus, according to Theorem 20, any permutation of the labels is feasible in
this puzzle, and we only have to verify that the number of tokens with any given label in the
initial configuration matches the number of tokens with that label in the goal configuration.

We remark that, even though our proof relies on Theorem 15, which is a deep, non-
constructive result, we have nonetheless uncovered a great deal of structure in the Permutation
Puzzles. We claim that, when a Permutation Puzzle is solvable, there is a solution within
O(n*) pushes which is computable by a polynomial-time algorithm. However, we conjecture
that finding the shortest solution is NP-hard (this is known to be the case in other token-
shifting puzzles [26, 9, 24]).

» Open Problem 2. Is it NP-hard to find the shortest solution in the Permutation Puzzle?

When the initial configuration is not compact, the pushes applied in order to obtain
a compact one can affect the permutation, making the problem substantially harder. For
example, the pushes performed before the configuration becomes incompressible may affect the
configuration of core tokens. Furthermore, a solution to the general problem of transforming
an arbitrary labeled configuration into a target compact one would imply a solution to Open
Problem 1.

» Open Problem 3. Given a (not necessarily compact) labeled configuration, is there a
sequence of pushes that transforms it into a (not necessarily compact) target configuration?
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—— Abstract

The FIDE Laws of Chess establish that if a player runs out of time during a game, they lose unless
there exists no sequence of legal moves that ends in a checkmate by their opponent, in which case
the game is drawn. The problem of determining whether or not a given chess position is unwinnable
for a certain player has been considered intractable by the community and, consequently, chess
servers do not apply the above rule rigorously, thus unfairly classifying many games.

We propose, to the best of our knowledge, the first algorithm for chess unwinnability that is
sound, complete and efficient for practical use. We also develop a prototype implementation and
evaluate it over the entire Lichess Database (containing more than 3 billion games), successfully
identifying all unfairly classified games in the database.
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1 Introduction

Chess clocks have been used since 1883 [14] and are an essential tool in (tournament) chess to
enforce game termination. They introduce a reliable upper-bound on the duration of games,
ensuring that players will not excessively delay the match. This is crucial for designing and
respecting tournament schedules.

A chess clock consists of two adjacent and entangled (countdown) timers that can never
run simultaneously. Each player is responsible for one of the timers and must complete the
game before their timer gets down to zero. Otherwise the player would “flag”, i.e., lose on
time. During the game, the player with the turn must press the clock’s button after making
a move (this is not necessary in online chess). This action, which concludes the player’s turn,
will stop their timer and resume their opponent’s timer, who now has the turn and must
proceed analogously.

There exists a wide variety of time controls that specify the initial allotted time and
(optionally) a time bonus after every prescribed number of moves, ranging from several hours
(or even days) to just 15 seconds to complete the entire game [1]. What is common to all
time controls is that running out of time leads to a defeat. But not always! The clock is
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just a tool to guarantee that the game will finish, but actual game position is given a higher
priority than the clock state. For example, if your last move has checkmated your opponent,
you win, even if your timer got down to zero while executing it [7, Article 5.1.1]. Or if you
just have the king (because all your other pieces were captured), you cannot win anymore,
not even on time! This folklore rule is a particular case of the following more general rule
described in Article 6.9 of the FIDE Laws of Chess [7].

. if a player does not complete the prescribed number of moves in the allotted
time, the game is lost by that player. However, the game is drawn if the position is
such that the opponent cannot checkmate the player’s king by any possible series of
legal moves.

1.1 The problem

Thus, in order to rigorously apply Article 6.9, one must be able to tell whether or not a given
position can be won by the player who still has time on their clock.

» Remark 1. A position being winnable does not mean that a certain player can force a victory.
Rather, it refers to the existence of a sequence of legal moves that ends in a checkmate by
the player. Such sequence, which typically contains a poor choice of moves, is sometimes
referred to as a helpmate [22].

Deciding whether or not a position is unwinnable, i.e. whether a helpmate does not exist,
is usually relatively simple for a human. For example, it is not very hard to realize that no
player can deliver checkmate in Position 1 (it is a so-called dead position), since the pawn
wall is blocked and the bishops are not useful to make any progress. According to the FIDE
Laws of Chess [7, Article 5.2.2] the game is finished as soon as the position becomes dead.
No further moves are permitted and would be considered illegal.

However, other such positions can be more involved. For example, it is not so easy to
understand /prove why Position 2 is also dead (White to move).? Interestingly, if in Position 2
the pawn on a4 were on ab, the position would be winnable for White. Indeed, the following
is a possible helpmate sequence in that case:

1 Yab6 Le8 2 £b7 Ld8 3 £c8 He8 4 £d7+ Hd8 5 Le8 Lc8 6 47 HA8 7
£g8 Ye8 8 Yb7 d8 9 gb Le8 10 Hc8 ad 11 LfTH#

Note how the pawn being on ab gave Black an additional tempo on move 10; without it,
Black would have been in stalemate. This position, devised by the prominent chess composer
Andrew Buchanan?®, evidences the hardness of deciding unwinnability, as very subtle changes
in the position can alter the result.

This rule was introduced on July 1, 1997, and gave birth to a completely new genre of chess compositions
called dead reckoning [3,4,20]. See Appendix C for two original compositions of this kind.

The player to move is indicated by either a white or a black box adjacent to the diagram.

The original composition asks: What was the last move? (In Position 2). Since it is White to move, the
last move must have been either ... ®e8-d8 or ...a5-a4, but only one of these moves comes from a
position that is not dead. It’s instructive to guess which one is the case here!
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8 8 /
7 7 %/
6 6 A
5 5 //
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1 1 7 ]
a b c¢c d e f g h
Position 1 Lichess game tLUsotyi. Position 2 A. Buchanan, StrateGems 2002.

1.2 Related work

Online chess. Chess servers are an important point of reference to understand what the
current state-of-the-art with respect to chess unwinnability is. It turns out that given
the apparent complexity of deciding unwinnability, chess servers only analyze whether the
intended winner has sufficient material to checkmate. Indeed, the three most popular chess
servers adjudicate timeouts to date as follows.

Chess.com, currently the Internet’s biggest online chess server, declares a position as drawn

if, after a timeout, the player with time on the clock has insufficient material [5,16,17].

Namely, if they have (i) a lonely king, (ii) a king and a bishop, (iii) a king and a knight,
(iv) a king and two knights. This decision is supported by the claim that they do not
follow the FIDE Laws of Chess for adjudicating timeouts and instead follow the USCF
rules, which specify that the game is drawn (in case of insufficient material) if there is no
forced mate by the intended winner.

Lichess.org, one of the most popular chess websites in the world while remaining 100%
free/libre and open-source, focuses on positions without pawns. Unlike other servers,
Lichess never declares a position as unwinnable when it is indeed winnable. (Although it
fails to identify all unwinnable positions.) In particular, Lichess correctly classifies all
insufficient material positions that do not contain pawns. For example, KQ vs KB (king
and queen vs king and bishop) positions are (correctly) declared as unwinnable for the
player holding the bishop (see Lemma 6).

Chess24 seems to proceed as Chess.com does. As an example, see Position 3. It corresponds
to a Chess24 game that, according to FIDE rules, was unfairly classified as a draw after
Black ran out of time. White has only a bishop, but there is still a chance for White
to checkmate Black (of course not by force) if Black promoted to a knight and trapped
themself in a corner!

We do not advocate following the FIDE Laws of Chess over other choices. Every chess
server should have the right to choose their own rules, especially for situations that occur
infrequently and do not significantly impact the experience of chess players. However, we
believe that the approach followed by Lichess is more satisfactory: in case unwinnability
cannot be determined by the system’s logic, declare the position as winnable. Otherwise, very
unfair situations may arise. For example, using only the above-mentioned material rules
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Position 3 Black ran out of time. White can Position 4 White ran out of time.
still helpmate with under promotion to a knight. Black can force a victory with just a knight.
(Chess24 game VO1NB3MGSYqXv3BhVsCBkA [8].) (Lichess game HaTT3dsU.)

in Position 4, after White ran out of time, would lead to classifying the game as drawn.
However, not only can Black helpmate in that position, but Black can also force a victory,

for example, with the following forced sequence.*

1 ¥h8 Dh4 2 ¥h7 Ng2 3 ¥h8 Nf4 4 Lh7 De6 5 Lh8 Nf8 6 h7 Dg6#

An absurd situation arises: In Position 4, White is completely lost. However, White
can still draw the game by letting their time run out (if they are playing on a server that
adjudicates timeouts by following simple rules based on the amount of material) [9].

Ezisting tools for unwinnability. Labelle [12] performed a computer search over a database of
2M+ owver the board games (from 1998 to 2011), searching for dead drawn positions by forced
insufficient material or forced stalemate where players continued making moves (illegal moves,
according to [7, Article 5.2.2]). This demonstrates that dead positions occur in professional
chess and can be easily missed by chess arbiters.

Varmose [21] implemented an algorithm that identifies blocked positions that only involve
bishops and pawns, which only misses some corner cases. This is a non-trivial step towards
solving unwinnability, but the tool cannot identify all unwinnable positions.

Other tools for solving helpmate problems, such as the analyzer by Paliulionis [18] or the
solver by Dugovic [6] can potentially identify any unwinnable position as they perform an
exhaustive search over the tree of moves. Nevertheless, such tools can hardly be utilized to
decide unwinnability, they would incur a prohibitive cost for most positions [15].

This state of affairs leaves the problem of automatically checking whether or not a position
can be won by a given player inadequately addressed. Given the intractability of a simple
brute force approach, we ask:

How can we rule out all sequences of legal moves without actually exploring them all?
4 The trick is to always watch the gb square when the white king is on h8, preventing White from

stalemating themself by pushing the pawn. This has to be done while maneuvering the knight to f8
from where it controls g6 as before as well as h7, thus forcing White to push the pawn.


https://chess24.com/en/game/VO1NB3MGSYqXv3BhVsCBkA
https://lichess.org/HaTT3dsU#124
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On the complezity of chess unwinnability. Chess unwinnability for an appropriate general-
ization of chess over an n x n board has been studied by Brunner, Demaine, Hendrickson,
and Wellman [2]. The authors prove, via a reduction from a one-player game called Subway
Shuffle [10], that chess unwinnability is PSPACE-complete.

Their generalization of chess does not impose any restriction on the length of games. A
natural alternative generalization, motivated by the 75-moves rule®, would be to impose
a polynomial bound on the round complexity of the game. In that case, it would follow
from the results of Brunner et al. that chess unwinnability is coNP-complete under such
generalization. These intractability results, however, do not apply to the (constant) case
n = 8, our goal in this paper.

1.3 Our contributions

We pursue the study of chess unwinnability and establish several results that, together, form
an algorithm which is sound, complete and computationally practical.

Static analysis. Our main contribution is a mechanism for statically determining that a
position is unwinnable without explicitly exploring game variations (Section 3), which we
believe, can be of independent interest and applicable to other board games. This algorithm
is particularly effective on blocked positions, e.g. Position 1, where players have access to
limited and disjoint regions of the board and can make no progress. Our static analysis is
performed in two steps: (i) identifying what pieces can move and all the squares that each
can potentially reach; (ii) based on the previous information and based on the number of
pieces that can check and constrain the movement of the intended loser’s king, our analysis
may conclude that checkmate is impossible.

The problem associated to (i), that we coin the mobility problem, is arguably the most
challenging part of the analysis. In Section 3.1, we provide an algorithm (Figure 7) that over-
approximates the true solution to the mobility problem on the given position (Corollary 9).
(Informally, the solution provided by our algorithm is always greater than or equal to the
actual solution.) We then show (Lemma 11) that our routine for addressing our second
step (ii), described in Figure 8, is sound when given as input the true solution to the mobility
problem. (It is never wrong when its output is “unwinnable”.) Furthermore, we argue that
this routine is monotone (Lemma 10), which allows us to conclude that it is also sound when
given an over-approximation to the actual mobility solution (Theorem 12). Consequently,
the composition of our two routines leads to a (static) unwinnability algorithm which is
sound (but not complete).

Search of variations. We propose an algorithm for exploring variations, enhanced with
a transposition table and selected heuristics for deciding what moves to explore further
(Section 2.2, Figure 5). This building block is combined with our static analysis to build an
algorithm for chess unwinnability (Section 4, Figure 9) that is sound and complete.

Implementation. We implement our algorithm and evaluate it over the entire database of
Lichess standard rated games [13], successfully identifying all the games that were unfairly
classified after a timeout (Section 5). These results evidence that the algorithms developed
in this work are suitable for practical use and could be adopted by real-world chess servers.

5 Establishing that a game is drawn if 75 full moves are completed without captures or pawn movements.
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2 Preliminaries

We assume the reader to be familiar with the basic rules of chess, including piece movement
and game completion. Nevertheless, we establish a formal notation, which facilitates a
rigorous description of our main algorithms and results.

Let S := {al,bl,... h8} be the set of all 64 squares on a chessboard. Let the set of
piece types be T = {&H, W B & /N A}. A position pos is a collection of pieces, i.e., triples
(t,c,s) € T x {w,b} x S where t is a piece type, ¢ is the piece color and s is a square. Given
a piece P = (t, ¢, s) we define P.type = t, P.side = ¢ and P.sq = s.

A position is valid if for every distinct P, P’ € pos, it holds that P.sq # P’.sq. A position
is said to be legal if it can be reached from the initial position of a chess game by a sequence
of legal moves. We define the king-distance between two squares as the number of moves that
it takes for a king to go from one to the other over an empty board. We define knight-distance
analogously. We say that two squares are adjacent if they are at king-distance 1. A rank is
a row of 8 squares, whereas a file is a column of 8 squares. Unless specified otherwise, we
measure the depth of a variation (a sequence of moves) in halfmoves or plies.

For every square s € S, we denote by #(s) the set of squares that share a border with s
(that is, adjacent squares of a different color) and by #i(s) the squares that are diagonally
adjacent to s (i.e., adjacent squares of the same color). We define El(s) := #(s) U Hi(s). We
also denote by #X(s) the set of squares that are at knight-distance 1 from s. The empty or
singleton set containing the adjacent square to s from which a white (respectively, black)
pawn could move to s in one non-capturing move is denoted by F(s) (respectively, B(s)).
Finally, we denote by sa(s) (respectively, mn(s)) the set of squares from which a white
(respectively, black) pawn attacks s.

» Definition 2 (Unwinnability). We say that a position is unwinnable for a given player if
there does not exists a sequence of legal moves that ends in a checkmate by the player.

Our goal is to build an algorithm for solving chess unwinnability, which given a position
and an intended winner, after a finite number of steps always outputs a binary value in
{Unwinnable, Winnable}, indicating unwinnability. Ideally, when the position is declared as
Winnable, we would like our algorithm to also provide a helpmate sequence, i.e., a witness of
non-unwinnability. We require our algorithm to be sound.

» Definition 3 (Soundness). We say an algorithm for solving chess unwinnability is sound if
it is never wrong when its output is Unwinnable.

Another desirable property is completeness, meaning that the algorithm will be able to
identify all unwinnable positions.

» Definition 4 (Completeness). We say an algorithm for solving chess unwinnability is
complete if it is never wrong when its output is Winnable.

Since chess is finite, it is not hard to implement a chess unwinnability algorithm that is
both sound and complete, by performing an exhaustive search over the tree of variations. The
challenge here, however, is to achieve efficiency while preserving soundness and completeness.
Note that an exhaustive search would terminate relatively quickly in most positions, since it
just needs to find a helpmate sequence for the intended winner. However, in positions where
no checkmate is possible, the whole tree of variations would need to be exhausted before
unwinnability could be concluded.

Our starting point will be a routine that performs an exhaustive search, enhanced with
a transposition table and with heuristics for selecting what moves to explore first (see
Section 2.2). We will first establish some preliminary results that ensure unwinnability in
positions that contain no pawns.
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Find-Helpmate,(pos, depth, maxDepth): Global variables: table, cnt, nodesBound

Inputs: position, depth (int), maxDepth (int)
Output: bool (true if a checkmate sequence was found, false otherwise)

1: if the intended winner is checkmating their opponent in pos then return true

2: if the intended winner has just the king or the position is unwinnable according
to Lemma 5 or Lemma 6 or the position is stalemate or the intended winner is
receiving checkmate in the position then return false

3: increase cnt and set d := maxDepth - depth

4: if cnt > nodesBound V d < 0 then return false > The search limits are exceeded
5: if (pos, D) € table with D > d then return false > pos was already analyzed
6: store (pos,d) in table

7. for every legal move m in pos do:

8: let inc = match Score(pos, m) with Normal — 0 | Reward — 1 | Punish — —2
9: if Find-Helpmate,(pos.move(m), depth 4 1, maxDepth + inc) then return true
10: return false > No mate was found after exploring every legal move

Figure 5 Find-Helpmate, routine, returns true if a checkmate sequence for player ¢ € {w, b}, the
intended winner, is found or false otherwise. The base call should be done on depth = 0, cnt = 0,
and an empty table. The value of maxDepth and nodesBound can be chosen to set the limits of the
search. See the full version of this paper for details about the Score routine.

2.1 Preliminary results

We say a position is pawn-free if it does not contain pawns of any color. We refer to the full
version of this paper for a formal a proof of the following lemmas.

» Lemma 5. A pawn-free position is unwinnable for a player with just a knight if their
opponent does not have knights, bishops or rooks.

» Lemma 6. A pawn-free position is unwinnable for a player with just bishops of one square
color if their opponent does not have knights or bishops of the opposite square color.

2.2 Search of variations

We propose a dedicated search of variations, enhanced with a transposition table and
heuristics that reward some variations, which will be explored further before others (described
in Figure 5). This routine, called Find-Helpmate_, constitutes an important building block
of our main algorithm for chess unwinnability, described in Section 4, where it is combined
with our static analysis (see Section 3).

Find-Helpmate, is a recursive algorithm that outputs true only when it has found a
checkmate position for the intended winner. Otherwise, the algorithm will output false based
on several criteria:

The game is over, but the intended winner did not checkmate their opponent.

The conditions of Lemma 5 or Lemma 6 apply.

The position was found in the transposition table (a table storing all positions that have

been explored so far), so it is not necessary to repeat the search that starts from it.

All legal moves have been explored without having found a checkmate.

The search limits were reached.
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If the final output of Find-Helpmate, on the given position is false, and the search limits
were not reached in any of its recursive calls, the position is truly unwinnable.

The search limits include a maximum depth for the variations being explored and a limit
on the total number of explored positions. Before exploring the position after a legal move,
we determine with our Score heuristic (described in the full version of this paper) whether
the maximum depth limit will be increased (rewarded), decreased (punished) or remain the
same in the analysis of the variation associated with the move.

We refer to Section 4 for details of how Find-Helpmate, is integrated into our chess
unwinnability algorithm via iterative deepening [11].

3 Static algorithm

The search of variations provided by Find-Helpmate, (Figure 5), which is enhanced with a
transposition table and our heuristics for selecting what moves to explore first, will potentially
terminate on any position, correctly classifying it with respect to unwinnability if the search
limits were sufficiently large. However, in blocked positions, the search space can become
prohibitively large. For example, in Position 1 the search would need to iterate over and store
the (more than) 80K positions that can arise from that board configuration before deciding
that the position is unwinnable. This would greatly exceed the maximum computation time
that we should dedicate to a single position if we want our algorithm to be competitive and
suitable for its integration in real-world chess servers, which usually handle tens of games
terminating every second.

In order to offload unnecessary computations from our main routine in blocked positions,
we design a mechanism that allows us to conclude that certain positions are unwinnable
without explicitly exploring all variations. Our algorithm is divided into two phases:

(i) Identifying what pieces can move and all the squares that each can potentially reach.

(ii) Identifying the king’s region, defined as the set of all squares that can be reached by
the intended loser’s king, as well as identifying all the intended winner’s pieces that can
move inside the king’s region, the so-called intruders. Based on the number of intruders
and their piece type, our algorithm may conclude that checkmate is impossible.

» Remark 7. This algorithm does not need to be complete, since it is backed by our main
search routine. In fact, as evidenced by [2] or by the example in Position 2, deciding
unwinnability without exploring variations may be an impossible task. Nevertheless, we
require that our static algorithm be sound in the sense that it can be fully trusted when it
classifies a position as unwinnable.

Performing step (i) is arguably the most challenging part of the analysis. For every
P € pos and every s € S, we need to decide whether or not piece P, currently on square P.sq,
can potentially go to square s after a sequence of legal moves. Define My _, _ as 1 if the above
displacement is possible and 0 otherwise. Our mobility algorithm will try to approximate the
correct value of M} _, . in the given position for every piece and every target square.

3.1 Mobility algorithm

We consider binary variables Mp_,; € {0,1} for every P € pos and every s € S, encoding
the output of our mobility algorithm. Since the function associated to solving step (ii) is
monotone (see Lemma 10), any over-approximation of the actual solution is acceptable
for the static algorithm to be sound. Namely, we allow for solutions Mp_,¢ that satisfy
Mp_,s > M }kz

_s» coined admissible solutions. Intuitively, this is possible because wrongly
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concluding that a piece can move more than what it really can is not harmful (in the sense
that it may lead to the conclusion that the position is winnable when it is actually unwinnable,
but not vice versa). However, we hope for an approximation that is as close as possible
to the actual solution. (Observe that a degenerate output of Mp_,; =1 for all P and s is
admissible, but not useful, because step (ii) would simply return “possibly winnable”.)

We also define additional variables representing square reachability and clearance. This
is useful to model pawn captures and king movements more accurately. More concretely, we
consider the following binary variables: Mp_, for every P € pos and every s € S; Cp for
every P € pos; and R for every s € S and every ¢ € {w, b}, defined as follows:

Mp_, s indicates if piece P, currently on P.sq, can eventually move to square s.

R¢ indicates if square s can eventually be reached by a non-king piece of color ¢ (or if it

is currently occupied by such a piece).

Cp indicates if piece P can be cleared from its current square (by moving or being

captured).

Given a piece P and a square s, we define the P-predecessors of s, denoted by predp(s),
as the squares that are at king-distance 1 from s (except for knight predecessors, which are
at king-distance 2), from which a piece of type P.type can reach s in one non-capture move
over an empty board. More concretely,

g P (A.w, ou(s) ifP=(&,w,_)
HEL:% ;f p_ E&’W’ ) pred-captp(s) = < =m(s) if P=(&,b,_)
. 23(s) if Pype — @* predp(s) otherwise
predp(s) = .
’ EEZ; i I;Eypz _ % {a8,...,h8} ifP=(A,w, )
= 'fP' ype = s prom(P) =< {al,...,h1} if P=(&,b, )
(s) if Ptype € {, &} 0 otherwise

We define pos.attackers(s) as the set {P € pos : P.sq € pred-captp(s)}. The mobility
algorithm from Figure 7 greedily activates the mobility (reachability and clearance) variables
as soon as it is possible (i.e. not forbidden by the logic of the implications from Figure 6).
For example, if P is a knight and there is some piece P’ of the same color as P, currently
on h8, Mp_.ng can be set to true as soon as (Mp_,g =1 or Mp_,s7 = 1) and Cpr = 1. But
it cannot be set to true otherwise: for the knight to reach h8, it must first reach a direct
predecessor of h8 and the ally piece on h8 must first be cleared.

» Lemma 8 (Mobility Soundness). Let pos be a position where no player has castling rights
and en passant is not possible. Let M < Mobility(pos) (see Figure 7). If Mp_s = 0 for
some piece P € pos and some square s, then there is no sequence of legal moves after which
piece P, starting from pos, can reach square s.

Proof. The result follows from the fact that all implications from Figure 6 are sound, in the
sense that they are all satisfied by the true solution to the mobility problem.

We will prove a more general result, involving the extra variables for reachability and
clearance. Let ({Mp_stps, {Cpr}p,{RS}s,c), for P € pos, s € S, ¢ € {w,b}, be the final
state of the execution of Mobility(pos). We will argue that, for all n € N:

(a) If there exists a sequence of n legal halfmoves (plies) after which piece P € pos ends at
square s, then Mp_,, = 1.

(b) If there exists a sequence of n legal halfmoves after which a square s is occupied by a
non-king piece of color ¢, then RS = 1.

(c) If there exists a sequence of n legal halfmoves after which a piece P € pos is cleared from
its current square P.sq, then Cp = 1.

2:9
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Move. If a piece can move to square s, it must pass first by a predecessor of s:

VP € pos : Ptype # A,

Vs € S\ {Psql. Mpos = \/ Mp—u

u€Epredp (s)

Pawn move. For pawn captures we require that the capturing square can be reached
by a (non-king) opponent piece. Pawns that promote may go everywhere:

VP € pos : Ptype = A,

Vs € 3\{Psq} Mp_,s = \/ Mp_,, V \/ (MP—)u /\R;P.side)

u€pred p(s)Uprom(P)  uEpred-captp(s)

Clearance. A piece can be cleared from its square by moving or being captured:

VPEPOS. CP - \/ MP_>S vV \/ MP’—>P.5q

s€S\{P.sq} P’ cpos
P’ .side#£P.side

Reachability. A square can be reached if some piece can move to it or it is occupied:

Vs € S,

¢ M
Ve € {w,b}. R, = \/ Pos

Pe&pos
P.side=c A P.type£&

King attackers. Direct opponent attackers must be cleared before a king can move:

VP € pos : P.type = <,

Vs € S\ {Psq}. Mpos = /\ Crr

P’ €pos.attackers(s)
P’ .side# P.side

Not self-capture. A piece must be cleared from a square before other of the same
color can move to it:

VP, P’ € pos, P # P’

with Pside — P’ side,  MPorrsa = Cp

Figure 6 Logical implications for the static algorithm.

We proceed by induction on n. Assume n = 0, it is easy to see that (a) will hold, because
the Mobility algorithm sets Mp_,psq to 1 in step (2), for every piece P. (Note that the
algorithm never changes the value of a variable to 0 after it has been set to 1.) To see that
(b) holds, note that the reachability rule from Figure 6 will set Rp3® to 1 for all P € pos,
but those are exactly the squares that can be reached in no halfmoves by pieces of the
corresponding color. Finally, (c) holds trivially, because there is no sequence of 0 halfmoves
that allows a piece to be cleared from their current square.

Now, assume that the result is true for sequences of halfmoves of length n. We will argue
that it must also be true for sequences of n+1 halfmoves. We start with (a). Consider a
piece P € pos and a square s such that Mp_,, = 0. We distinguish four cases depending on
the piece type of P:

If P.type = &\, then there are at most two rules in Figure 6 of the form Mp_,, — f,

the move rule, with f; = \/uepredp(s

fa = Cps (if there was a piece P’ of the same color as P originally at s). Because variable

) Mp_,,; and possibly the not self-capture rule, with
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Mobility(pos):

Inputs: a position
Output: mobility solution {Mp_,s}pepos,ses

1: set Mp_,s =0, Cp =0, RS:=0 for all P € pos, s € S and ¢ € {w, b} and let X be
the state containing all these variables
2: set Mp_,psq =1, for all P € pos © Every piece can “move” to its current square
3: for every variable V in X that is still set to 0 do
if for every rule from Figure 6 of the form “V = f”, formula f evaluates to true
on the current state of variables X then set V to 1 in X
5: repeat steps 3 and 4 until no new variables are set to 1
6: return {Mp_, s} pepos,scs

Figure 7 Mobility algorithm.

Mp_,s was not set to 1 in any iteration of steps 3-4 from Figure 7, clause f (or clause
f2 when applicable) must evaluate to false on the final state. Applying the induction
hypothesis, this means that in n halfmoves P did not have time to reach any of the
P-predecessors of s, or that there was a piece P’ of the same color as P initially on square
s that did not have time to be cleared from s. Therefore, it is impossible for piece P to
reach s in one more halfmove, as desired.

If Ptype € {&, H,%W} the sliding pieces, we will argue that Mp_,; = 0 implies that
for every sliding direction starting at s in which P can potentially move, it must hold
that every square ¢ in the direction (counting from s) satisfies Mp_,; = 0, until there is
(possibly) a square t* such that Cpr = 0 with P’.sq = t* and P’.side = P.side for some
P’ # P. If we can show that, the induction hypothesis gives us that piece P cannot reach
in n halfmoves any square in the relevant sliding directions of s, unless there is a piece of
the same color as P between the square and s, which cannot be cleared in n halfmoves.
In that case we can safely conclude that P cannot reach s in n+1 halfmoves, as desired.
The above claim can be proved by induction on the sliding direction. Let ¢ be the
predecessor of s in a certain direction. As before, if Mp_,; was not set to 1 in any
iteration of steps 3-4 from Figure 7, we know that either Mp_,,, = 0 for all P-predecessors
of ¢t (and in particular for the next square in the direction!) or Cp = 0 for some piece
of the same color as P with P’.sq = ¢. If the first case is true, we can continue the
induction on the direction from the next square. If the second case is true, we can stop
the induction since we have already found an ally blocker in the direction, as desired.

If P.type = <&, we can proceed as before but this time there is one extra rule that comes
into play, the king attackers rule. Again, by applying the induction hypothesis, we can
conclude that in n halfmoves it was impossible for P to reach a P-predecessor of s, or
that there was an ally piece on s that did not have time to be cleared, or that there was at
least an enemy directly attacking s that did not have time to be cleared.® Consequently,
we conclude that it is impossible for king P to reach s in one extra move.

Finally, if P.type = & a similar reasoning, now involving rules pawn move and not self-
capture, applies. By the induction hypothesis we can conclude that in just n halfmoves,
either (i) it was impossible for P to reach a P-predecessor of s7 and it was impossible for

6 Direct enemies cannot be blocked, so the only way they stop attacking s is by moving or being captured.
7 For double pawn pushes we need to argue as for sliding pieces over the jumped square, but a similar
technique applies.
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pawn P to reach a promoting square and it was impossible for P to reach a P-capture-
predecessor of s while at the same time having a (non-king) enemy piece reaching s; or
(ii) it was impossible for an ally initially at s to be cleared from s in n halfmoves. This
makes it impossible for pawn P to reach s in one extra move.

To see (b), let s be an arbitrary square, let ¢ € {w,b} and assume that RS = 0. Note
that variable RS only appears in one rule from Figure 7, the reachability rule. Since RS has
not been activated, we conclude that Mp_,; = 0 for all P € pos such that P.side = ¢ and
P.type # . As we have shown above, this means none of the non-king pieces of color ¢
could have reached s in a sequence of n+1 halfmoves, as desired.

Finally, to see (c), let P be any piece in the position and assume that Cp = 0. Note that
Cp only appears in the clearance rule. Because Cp has not been activated, we can conclude
that Mp_,, = 0 for all s € S\ {P.sq} and that Mp/_,psq = 0 for all P’ € pos such that
P'.side # P.side. As we have shown above, this means that there is no sequence of n+1 legal
halfmoves after which piece P could have left square P.sq and it is also impossible (in n+1
halfmoves) that any enemy piece could have reached P.sq, capturing P. We can conclude
that piece P must still be at its initial square in pos after n+1 halfmoves as desired. |

The following is an immediate consequence of Lemma 8. Observe that, whenever Mp_,, =0
for some P € pos, s € S, the lemma guarantees that there is no sequence of legal moves that
allows P to reach s, so the true solution to the mobility problem will also satisfy M} _,, = 0.

» Corollary 9. Let pos be a position where no player has castling rights and en passant is not
possible. Let M* be the true solution to the mobility problem of pos and let M < Mobility(pos).

Mp_ ., < Mp_,, VP€posscS .

3.2 Declaring unwinnability from a mobility problem solution

The second step of our static algorithm is described in Figure 8. It is based on the idea that
a position is unwinnable if there is no good candidate mating square. Namely, if for every
square in the board, (i) either the square cannot be reached by the intended loser’s king,
or (ii) the square cannot be attacked by the intended winner, or (iii) its adjacent squares
(escaping squares for the intended loser’s king) cannot all be blocked by defender pieces or
covered/attacked by the intended winner pieces at the same time.

» Lemma 10. The function induced by algorithm Unwinnable>® from Figure 8 is monotone
in the following sense. For every pos, ¢ € {w, b} and any two mobility solutions M, M':

VP e pos,s€S. Mp_,, < Mp_,. = Unwinnable®®(pos, ¢, M) >% Unwinnable>*(pos, ¢, M").

We refer to the full version of this paper for a formal proof.

» Lemma 11. Let pos be a position and let ¢ € {w, b}. Let M* be the true solution to the
mobility problem on pos. If Unwinnabless(pos, ¢, M*) returns true, the position is indeed
unwinnable for player c.

8 By convention, true > false.
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Unwinnabless(pos, e, {Mp_s}pepos,ses):

Inputs: position, intended winner, solution to the mobility problem
Output: bool (true if position is declared unwinnable, false otherwise)

if en passant is possible or a player has castling rights in pos then return false
for every piece P € pos, define region(P) :={s € S| Mp_,s = 1}

let K. (resp. K-.) be the intended winner’s king (resp. intended loser’s king)

set intruders := {P € pos | P.side = ¢ A region(P) Nregion(K_.) # 0}

if 3P € intruders with P.type # £ then return false

if 3P, P’ € intruders with color(P.sq) # color(P’.sq) then return false

for P € pos, define att—region(P) = {5 € S| pred-capt p(s) N region(P) # 0}

for s € S, let blockers(s) :== {P € pos | P.side # ¢ A region(P) N <k(s) # (Z)}“

for s € S, define assistants(s) := {P € pos | P.side = ¢ A att-region(P) N £r(s) # 0}
if Js € region(K ) such that |blockers(s)| + |assistants(s)| > |4=(s)| and 3P € pos
satisfying s € att-region(P) A P.side = ¢ then return false

—
=4

11: return true > The position must be unwinnable

% We could design a more complete check that looks at all neighbours of s, but the condition on
step 10 would be significantly more involved (to ensure monotonicity).

Figure 8 Statically unwinnable algorithm, which may conclude that a position is unwinnable for
an intended winner based on an admissible solution to the mobility problem.

Proof. Since Unwinnable®® did not return any value in step 5 or step 6, the set of pieces
that can check the intended loser’s king is empty or formed entirely by same-colored bishops.
Furthermore, every square s in the board is such that: (i) the intended loser’s king cannot
reach it, or (ii) the square cannot be attacked by the intended winner, or (iii) its adjacent
squares cannot not all be blocked by defenders or covered by attackers at the same time.
Therefore, the intended loser will always have at least a legal move when they are in check. <

Since the mobility algorithm (Figure 7) always provides admissible solutions, since the
static check (Figure 8) is sound on the true solution of the mobility problem, and because the
static check is a (decreasing) monotone function, the composition of the mobility algorithm
with the static check constitutes an algorithm for chess unwinnability that is sound.

» Theorem 12. Let pos be a position and let ¢ € {w, b}. If Unwinnable>(pos, ¢, Mobility(pos))
outputs true, then the position is unwinnable for player c.

Proof. Let M < Mobility(pos) and let M* be the true solution to the mobility problem on
pos. If Unwinnabless(posm, M) = true, then en passant is not possible and no player has
castling rights in pos (see step 1 of Figure 8), so we can apply Corollary 9 and conclude that
M* < M. We can now apply Lemma 10 and get:

true = UnwinnabIeSS(pos,c,M) < Unwinnabless(pos,c,M*) .

Hence we must have Unwinnabless(pos, ¢, M*) = true. By virtue of Lemma 11, pos must be
unwinnable for player c, as desired. <
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Unwinnable™"(

pos, ¢):

Inputs: position, intended winner
Output: Unwinnable or Winnable (definite solution to the chess unwinnability problem)

1: if true < Unwinnable®®(pos, ¢, Mobility(pos)) then return Unwinnable

2: for every d € N do > Iterative deepening

3: set bgq < Find-Helpmate,(pos, 0, maxDepth = d) (global nodesBound = bound(d))
if by = true then return Winnable

4
5: else if the search was not interrupted (in step 4 of Figure 5) then
6 return Unwinnable

Figure 9 Main routine for deciding chess unwinnability. It is based on our static algorithm
(Figure 8) and our search routine (Figure 5) integrated via iterative deepening. Function bound must
be increasing on d for the algorithm to be complete. The transposition table used by Find-Helpmate_
should be initialized to empty at the beginning, but it can be shared between different calls to
Find-Helpmate, in step 3. On the other hand, the global counter cnt should be initialized to 0 on
every base call to Find-Helpmate, in step 3.

4  Unwinnability algorithms

We present our main routine for solving chess unwinnability in Figure 9. Our algorithm
consists of a search of variations (Figure 5), preceded by a static analysis (Figure 8) on the
given position. Such analysis will prevent the search routine from exploring large trees of
variations exhaustively, whenever it concludes that the given position is unwinnable via our
alternative and much lighter mechanism described in Section 3. Our main routine achieves:
Soundness: Given that it combines a search of variations with our static algorithm for
identifying blocked positions, it is sound by virtue of Theorem 12.
Completeness: This is due to the fact that the search over variations is exhaustive for a
sufficiently large maxDepth limit, and this in turn will be eventually reached during the
iterative deepening loop (step 2 of Figure 9).
Efficiency: As evidenced by the experimental results from Section 5, our algorithm is
practical. We identified all the unfairly classified games from the Lichess Database [13].

4.1 An alternative quicker version of our algorithm

We propose a significantly more efficient chess unwinnability algorithm, inspired by the fact

that most (if not all) unwinnable positions can be classified in the following two categories:
Imminently terminating positions, where the tree of variations is very small. This is
usually due to the existence of forced lines, which never end on a checkmate by the
intended winner (all variations end in either stalemate, checkmate by the intended loser,
or insufficient mating material for the intended winner.) An example is Position 15.
Blocked positions, where players can maneuver over limited and disjoint regions of the
board, what prevents their interaction (and thus any possible checkmate). (See Position 1.)

The quick version of our algorithm is described in Figure 10. It performs a depth-first
search over the tree of variations and stops if a certain (small) depth D is reached, with the
hope that it will be sufficient to exhaustively explore the tree of variations of imminently
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Unwinnable® (pos, ¢):

Inputs: position, intended winner
Output: Unwinnable, Winnable, or PossiblyWinnable

1: advance the position as long as there is only one legal move

2: perform a depth-first search over the tree of variations of pos and interrupt the
search if (i) checkmate is found for player ¢ or (ii) depth D is reached

3: if checkmate was found on the previous search then return Winnable

4: else if the search was not interrupted then return Unwinnable

5: else if the position only contains pieces of type A, £, & and there are no semi-open
files in the position then

6: if true < Unwinnable® (pos, ¢, Mobility(pos)) then return Unwinnable

7: return PossiblyWinnable > Unwinnability could not be determined

Figure 10 Quick routine for analyzing unwinnability.

terminating positions. Note that this search will be almost instantaneous in most positions,
because it is interrupted as soon as depth D can be reached.

After that, and if the previous search did not conclude unwinnability, our quick algorithm
simply performs a call to our static routine (Figure 8). But this is done only if the position
is such that there exists no semi-open files (files with pawns of only one color) and the only
existing pieces are kings, pawns and/or bishops. This heuristic is supported by the fact that
positions that do not satisfy these properties will very likely be non-blocked.

Our quick algorithm is extremely light, requiring only a few microseconds on average per
position. It is also sound, but not complete. However, as we detail in Section 5, with an
(empirically chosen) depth bound of D = 9, all unfairly classified games from the Lichess
Database except three were correctly identified by Unwinnabled"'<k.

5 Experimental results

We have implemented all the algorithms described in this work and evaluated their perform-
ance in real-world games from the Lichess Database [13]. Our source code is written in C++
and leverages the code of the open-source chess engine Stockfish [19] for move generation
and chess-related functions. Our implementation is publicly available as open-source and
can be found on this link: https://github.com/miguel-ambrona/D3-Chess.

The Lichess Database of standard rated games includes 3,099,534,127 games up to date.
We have applied our algorithm from Figure 9 to the final position of all games that ended in
a victory by timeout. In total, 981,467,875 games (31% of all games) were analyzed in about
88 hours of CPU time (323 us per position on average). All experiments were performed on
a 3.5GHz Intel-Core i9-9900X CPU with 32GB of RAM, running Ubuntu 20.04 LTS.

Our analysis led to identifying a total of 84,100 games that were unfairly classified.
Namely, games that were lost by the player who ran out of time, but their opponent could
not have checkmated them by any possible sequence of legal moves. We refer to Appendix A
for some remarkable positions of unfairly classified games; the remaining can be found
on the following link (where our tool can also be tried interactively without installation):
https://chasolver.org.
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Table 1 Performance of the Full and Quick versions of our algorithm when applied to all games
from January 2022 that ended in a victory by timeout. (A total of 32,599,280 games.)

Full Algorithm (Figure 9) vs Quick Algorithm (Figure 10)
2700 average # positions per second 200,000+
370 ps average time per position 4.96 ps
1270 ps standard deviation 9.06 us
141 ms maximum time per position 586 us
2462 (100%) unwinnable positions identified 2462 (100%)
3 h 21 min total execution time 2 min 42 s

Our analysis identified all the unfairly classified games in the database. In all other
games, the tool provided a checkmate sequence for the player who did not run out of time.

5.1 Comparison between the full and quick routines

Here we perform a comparison between our full algorithm, described in Figure 9 (we use
bound(d) = 10,000)?, and our quicker version, described in Figure 10 (we use D = 9).

The latter is designed to be significantly faster, but it is not complete. Note that the quick
version may terminate without having found a help mating sequence, declaring the position
as “probably winnable”. Consequently, the quick version may fail to find all unwinnable
positions. In fact, out of the exactly 84,100 games that were unfairly classified (identified
with the full version of our tool), the quick version can identify 84,097 of them, missing
only 3 positions in the entire database. These three positions are: FKr42ZRT (Position 12),
bKHPgNEw (Position 13) and £6c11u7R (Position 14).

In Table 1, we present a comparison of the performance of the two versions of our tool
when analyzing all Lichess games from January 2022 that ended in a victory after a timeout.
We also present in Figure 11 the execution times of this analysis (for the quick algorithm).

5.2 Conclusions and future work

We believe that our algorithms are suitable for practical use and in particular chess servers
(and chess software) can leverage them to accurately classify games after a timeout, following
Article 6.9 of the FIDE Laws of Chess [7]. Furthermore, given the results of Figure 11, chess
servers could also apply our tools after every single move during games, to terminate games
as soon as a dead position is achieved, correctly applying [7, Article 5.2.2].

Although our tool successfully solved all positions from the Lichess Database, we note
that there exist artificial positions that are not efficiently captured by our logic and the
tool could take a long time to analyze. Indeed, Position 12 with several additional black
dark-squared bishops is an example.

A very interesting direction for future work would be to equip our mobility algorithm
with extra rules (see Figure 6), that increase its scope. That way, the quick algorithm could
potentially identify all unfairly classified games from the Lichess Database. Out of the three
positions that our quick version cannot currently handle, Position 13 could be solved by
setting D = 14 (instead of D = 9 as in the experiments above; see Figure 10), but that would

9 Note that bound should technically be an increasing function on d for the algorithm to be complete. In
practice this is not necessary and a constant amount of 10K nodes per iteration seems empirically good.


https://lichess.org/FKr42ZRT#125
https://lichess.org/bKHPqNEw#81
https://lichess.org/f6c1lu7R#164

M. Ambrona

Frequencies (in millions)

2.00 le6

1.75

1.25

0.75

0.50

0.25

-

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Execution times (in microseconds)

Figure 11 Quick analysis of 32,599,280 Lichess positions from January 2022.

significantly affect its performance. Positions 12 and 14, which look surprisingly similar, are
harder to address. Our mobility algorithm would need to “understand” that although the

pawn on g2 (of both positions) can be captured, that would leave White with no legal moves.
Finally, it would be very interesting to explore whether the ideas presented in this paper

can be applied to other games that require similar analyses.
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Position 12 Lichess game FKr42ZRT.

a b ¢ d e f g h

Position 14 Lichess game f6c11u7R.

a b ¢ d e f g h

Position 16 Lichess game ZNBhS4pz.
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Position 15 Lichess game OawUhnkgq.

Position 17 Lichess game 3y8e8sCm.
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B Puzzles: Are the following positions dead?

= N W s 00 N
= N W s~ 00 N

Position 18 Is this a dead position? Position 19 Is this a dead position?
Lichess game QRvIMh3z. Miguel Ambrona (Spain).

C Original compositions based on dead reckoning

We present two original compositions, by Andrew Buchanan and Andrey Frolkin, that the
authors kindly offered to be included in this article. (Solutions available in the full version.)

In both problems the objective is to determine what the last move was. Solving them
requires a clever retrograde analysis based on the fact that, by virtue of the FIDE Laws of
Chess [7, Article 5.2.2], a game is finished as soon as a dead position is reached and no more
moves are permitted. This genre of chess compositions is known as dead reckoning and can
lead to unique motifs that cannot be enforced otherwise.

= N W 00 N

= N W Pk~ a0 N

Position 20 [t is Black’s turn. Last move? Position 21 Whose turn is it? Last move?
A. Buchanan (Singapore). A. Frolkin (Ukraine) & A. Buchanan (Singa-
Original. pore). Original.
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1 Introduction

In the Push family of pushing-block puzzles, introduced by O’Rourke in 1999 [14], a 1 x 1
agent must traverse a unit-square grid, some cells of which have a “block”, from a given start
location to a given target location. Refer to Figure 1. In Push-k [7,8]), the agent’s move
(horizontal or vertical by one square) can push up to k consecutive blocks by one square,
provided that there is an empty square on the other side. In the -F variation (described
in [8,14] but first given notation in [10]), some of the blocks are fized in the grid, meaning
they cannot be traversed or pushed by the agent or other blocks. Push-1F has the same
allowed moves as the famous Sokoban puzzle video game, invented in 1982 and analyzed at
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FUN 1998 [6], but crucially Push-1F’s goal is for the agent to reach a target location, which
is much simpler than Sokoban’s “storage” goal where the blocks must be pushed to certain
locations.

T T S e T
(] (] (] { ]

% 0O m O F% T ~
@0 & —al (55 o=
e T e, e

(d) (e) (f)

Figure 1 Sample Push-1F puzzle and solution sequence. In steps (c¢) and (e), for example, the
agent cannot push right again. The agent is drawn as a robot head; the traversed path between
steps is drawn as a gray line; pushable blocks are drawn as boxes; fixed blocks are drawn as brick
walls; and the goal location is drawn as a flag. Robot and flag icons from Font Awesome under CC
BY 4.0 License.

In this paper, we prove that Push-1F is PSPACE-complete, settling an open problem
from [8,10], and complementing previous PSPACE-hardness for Push-kF for & > 2 from 20
years ago [10].

To gain some intuition about why Push-1F is so difficult to prove PSPACE-hard, and
how we surmount that difficulty, consider the attempt at a “diode” gadget in Figure 2. The
goal of this gadget is to allow repeated traversals from the left entrance to the right (as in
Figure 2b), while always preventing “backward” traversal from the right to the left (as in
Figure 2c). But given the opportunity for forward traversal, the agent can instead “break”
the gadget to allow future forward and backward traversal (as in Figure 2d).

To solve this problem, we introduce the idea of a checkable gadget where, after the
agent completes the “main” gadget traversal puzzle, the agent is forced (in order to solve
the overall puzzle) to do a specified sequence of checking traversals of every gadget, all
of which must succeed in order to solve the overall puzzle. If designed well, these checking
traversals can detect whether a gadget was previously “broken”, and allow traversal only
if not. In the case of Figure 2, one can think of the gadget as a four-location gadget (the
top three rows) which has its bottom two locations connected. This four-location gadget
is “checkable”: we will demand that, after completing the main puzzle, the agent follows
the two checking traversals shown in Figure 3. In order for these checking traversals to
both be possible, the agent cannot push the block into either corner, preventing the agent
from breaking the gadget during the main gadget traversal puzzle. We call this process of
removing broken states from a gadget by demanding that the checking traversals remain
legal postselection.’

We develop a general framework of checkable gadgets that enable a reduction to focus on
the main gadget traversal puzzle, assuming all gadgets remain unbroken (i.e., the checking
traversals remain possible at the end), while the framework ensures that the agent makes
these checking traversals at the end (without other unintended traversals). This framework
builds upon the motion-planning-through-gadgets framework introduced at FUN 2018 [9]
and developed further in [2,3,11-13] to handle checkable gadgets.

! In quantum computing, for example, “postselection is the power of discarding all runs of a computation in
which a given event does not occur” [1]. In probability theory, postselection is equivalent to conditioning
on a particular event.
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Figure 2 A broken Push-1F diode gadget.
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gadget

Figure 3 The top three rows of the Push-1F diode gadget of Figure 2, as a checkable gadget.
The checking traversals are “check 1 in — check 1 out” and “check 2 in — check 2 out”, denoted by
the hollow arrows.

We also apply our framework to resolve the complexity of Block Dude, a puzzle video
game made over a dozen times on many platforms, originally under the name “Block-Man 1”
(Soleau Software, 1994); see [5] for details. Barr, Chung, and Williams [5] recently formalized
this game’s mechanics, along with several variations, and proved them all NP-hard. In this
paper, we prove PSPACE-completeness of three of these variations, including the original
video game mechanics:

1. BoxDude is like Push-1 but where all pushable blocks and the agent experience gravity,
falling straight down whenever they have blank spaces below them. In addition to moving
horizontally left or right, the agent can “climb” on top of horizontally adjacent blocks
(be they pushable or fixed), provided the square above the agent is empty. See Figure 4.

S E =
QO X &0 Q0 O
S

(a) Pushing (b) Climbing

Figure 4 Mechanics for BoxDude, with pushable boxes shown in red. Squares marked with a red
X must be empty for the move to be possible.

2. In BlockDude (as in the Block Dude video games), blocks cannot be pushed; instead,
nonfixed blocks can be “picked up” by the agent from a horizontally adjacent position to
the position immediately above the agent, provided that that position and the intermediate
diagonal position are empty. See Figure 5. The agent can then carry one such block to
another location (provided the ceiling offers height-2 clearance), and then drop the block
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Figure 5 Mechanics for BlockDude, with liftable blocks shown in blue. Squares marked with a
red X must be empty for the following move to be possible.

in front of them, again provided that that position and the intermediate diagonal position
are empty.? They can also stack the block on top of another block. If the agent tries to
move past a low ceiling while carrying a block, the block will be dropped behind them.

3. In BlozDude, nonfixed blocks can be pushed (as in BoxDude) and/or picked up (as in
BlockDude).

The other variations described in [5], called ---Duderino instead of ---Dude, change
the goal of a puzzle to place the k nonfixed blocks into k specified storage locations, as in
Sokoban. We leave open the complexity of BoxDuderino, BlockDuderino, and BloxDuderino.

All of the games we consider can easily be simulated in polynomial space, and thus are
in NPSPACE = PSPACE by Savitch’s Theorem. Proving PSPACE-hardness is much more
complicated, and is the goal of this paper.

The rest of this paper is organized as follows. In Section 2, we review the motion-
planning-through-gadgets framework. In Section 3, we prove that BlockDude and BloxDude
are PSPACE-complete using standard reductions from motion-planning-through-gadgets. In
Section 4, we develop our checkable gadget framework. In Section 5, we prove that BoxDude
is PSPACE-complete using our checkable gadget framework. In Section 6, we prove that
Push-1F is PSPACE-complete via a much more involved application of our checkable gadget
framework.

2 Gadgets Framework

The motion-planning-through-gadgets framework is an abstract motion planning model
used for proving computational hardness results. Here we give the definitions and results we
need for this paper; see [11-13] for more details.

A gadget G consists of a finite set Q(G) of states, a finite set L(G) of locations
(entrances/exits), and a finite set T(G) of transitions of the form (q,a) — (r,b) where
q,m € Q(G) are states and a,b € L(G) are locations. The transition (¢g,a) — (r,b) € T(G)

2 A complication in some implementations of the game is that the agent can only pick up or drop the block
in front of them, with the agent’s orientation determined by their previous move. (Some implementations
allow turning around in place.) This detail will not affect our results.
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Figure 6 State diagram for the locking 2-toggle gadget. Each box represents the gadget in a
different state, in this case labeled with the numbers 1,2,;3. Dots represent the four locations of
the gadget. Arrows represent transitions in the gadget and are labeled with the states to which

those transitions take the gadget. In state 2, the agent can traverse either tunnel going down, which
blocks off both downward traversals until the agent reverses that traversal.

means that an agent can traverse the gadget when it is in state ¢ by entering at location
a and exiting at location b which changes the state of the gadget from ¢ to r. We use
the notation a — b for a traversal by the agent that does not specify the state of the
gadget before or after the traversal. A traversal sequence [a; — by, ...,ar — bi] on the
locations L(G) is legal from state sq if there is a corresponding sequence of transitions
[(a1,s0) — (b1,81),...,(ak,sk—1) — (b, sk)], where each start state of each transition
matches the end state of the previous transition (so for the first transition). We define
gadgets in figures using a state diagram which gives, for each state ¢ € @, a labeled
directed multigraph G4 = (L(G), Ey) on the locations, where a directed edge (a, b) with label
r represents the transition (¢q,a) — (r,b) € T'(G).

Figure 6 shows the state diagram of a key gadget called the locking 2-toggle [11]. This
gadget has four locations (drawn as dots) and three states 1,2,3. The central state, 2, allows
for two different transitions. Each of those transitions takes the gadget to a different state,
from which the only transition returns the agent to the prior location and returns the gadget
to state 3.

A system of gadgets S consists of a set of gadgets, an initial state for each gadget,
and a connection graph on the gadgets’ locations. If two locations a,b of two gadgets
(possibly the same gadget) are connected by a path in the connection graph, then an agent
can traverse freely between a and b (outside the gadgets).®> We call edges of the connection
graph hallways, and for clarity in figures, we add extra vertices to the connection graph
called branching hallways, which we can equivalently think of as a one-state gadget that
has transitions between all pairs of locations. A system traversal is a sequence of traversals
a1 — bi,...,ar — by, each on a potentially different gadget in S, where the connection
graph has a path from b; to a;4;1 for each i. We write such a traversal as a; —* by, ignoring
the intermediate locations. A system traversal is legal if the restriction to traversals on a
single gadget G is a legal traversal sequence from the initial state of G assigned by S, for
every G in S. Note that gadgets are “local” in the sense that traversing a gadget does not
change the state (and thus traversability) of any other gadgets.

The reachability or 1-player motion planning problem with a finite set of gadgets
G asks whether there is a legal system traversal s —* t from a given start location s to a
given goal location ¢ (by a single agent) in a given system of gadgets S, which contains only
gadgets from G.

3 Equivalently, we can think of identifying locations a and b topologically, thereby contracting the
connected components of the connection graph. Alternatively, if we think of the gadgets as individual
“levels”, then the connection graph is like an “overworld” map connecting the levels together.
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Because we are working with 2D games, we also consider planar motion planning,
where every gadget additionally has a specified cyclic ordering of its vertices and the system
of gadgets is embedded in the plane without intersections. More precisely, a system of
gadgets is planar if the following construction produces a planar graph: (1) replace each
gadget with a wheel graph, which has a cycle of vertices corresponding to the locations
on the gadget in the appropriate order, and a central vertex connected to each location;
and (2) connect locations on these wheels with edges according to the connection graph. In
planar reachability, we restrict to planar systems of gadgets. Note that this definition
allows rotations and reflections of gadgets, but no other permutation of their locations.

2.1 Simulation

To define a notion of gadget simulation, we can think of a system of gadgets as being
characterized by its set of possible traversal sequences (as formalized by the related gizmo
framework of [12]).

» Definition 1. A (local) simulation of a gadget G in state q consists of a system S of
gadgets, together with an injective function m mapping every location of G to a distinct
location in S, such that a traversal sequence [a; — by, ...,ax — by] on the locations in G
is legal from state q if and only if there exists a sequence of system traversals m(a;) —*
m(b1),...,m(ar) —=* m(by) that is legal in the sense that the concatenation of the restrictions
of the system traversals m(a;) —* m(b;) to traversals on a single gadget G is a legal traversal
sequence for G from the initial state of G assigned by S, for every G in S.

A planar simulation of a gadget G in state q is a simulation (S, m) where S is
furthermore a planar system of gadgets, and the cyclic order of locations of G must map via
m to locations in cyclic order around the outside face of S.

A [planar] simulation of an entire gadget G consists of a [planar] simulation of G in state
q, for all states q € Q(QG), that differ only in their assignments of initial states. A finite set
G of gadgets [planarly] simulates a gadget G if there is a [planar] simulation of G using
only gadgets in G.

These definitions of simulation imply that, if we take a larger system of gadgets and replace
each instance of gadget G with the system S using the appropriate initial states (matching up
locations that correspond via m), then the entire system behaves equivalently. In particular,
this substitution preserves reachability of locations from one another. Furthermore, if the
larger system and the simulation are both planar, then the full resulting system is planar.
More formally:

» Lemma 2. Let H be a gadget, and let G and G’ be finite sets of gadgets. If G [planarly]
simulates H, then there is a polynomial-time reduction® from [planar] reachability with
{H}yUG' to [planar] reachability with G UG'.

2.2 Known Hardness Results

We can now formally state the problems we will reduce from in this paper.
In Section 3, we use the locking 2-toggle to show PSPACE-completeness of BlockDude
puzzles.

4 Throughout this paper, reductions are many-one/Karp: a reduction from A to B maps an instance of
A to an equivalent (in terms of decision outcome) instance of B.
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» Theorem 3 ( [11, Theorem 10]). Planar reachability with any interacting-k-tunnel reversible
deterministic gadget is PSPACE-complete.

The locking 2-toggle is an example of an interacting-k-tunnel reversible deterministic gadget
[11] and thus we obtain PSPACE-completeness of planar reachability with the locking 2-toggle.
We recommend readers interested in this more general dichotomy to refer to [11].

1 3
2 4

Figure 7 State diagram for a nondeterministic locking 2-toggle. From state 1, the left tunnel can
be traversed so as to leave the gadget in either state 2 or state 4. Formally, in the multigraph for
state 1 there are two different edges, one labeled 2 and the other labeled 4.

We also use the nondeterministic locking 2-toggle shown in Figure 7. This is used in
Section 5 to show PSPACE-completeness of BoxDude puzzles. Its behavior resembles that of
the locking 2-toggle, but because it is not deterministic it is not covered by the prior theorem.

» Theorem 4 ( [2, Theorem 3.1]). Planar reachability with the nondeterministic locking
2-toggle is PSPACE-complete.

The final main gadget we will make use of is a type of self-closing door shown in Figure 8.
This gadget will be used in our result on Push-1F in Section 6.

» Theorem 5 ( [3, Theorem 4.2]). Planar reachability with any normal or symmetric self-
closing door is PSPACE-hard.

Figure 8 State diagram for the directed open-optional self-closing door. The door must be opened
by visiting its opening location before every traversal.
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3 BlockDude and BloxDude are PSPACE-complete

In this section, we show that BlockDude and BloxDude are PSPACE-complete using a
reduction from planar reachability with locking 2-toggles, shown in Figure 6, which is
PSPACE-complete by Theorem 3. Recall from Section 1 in this model blocks can be picked
up by BlockDude from an adjacent square. BloxDude allows both picking up and pushing
blox, and the reduction will be a small modification to the BlockDude proof.

We will build hallways allowing the player to move between connected locations on
gadgets. To connect more than two locations, we need a branching hallway, which is shown
in Figure 9. This allows the player to freely move between any of the three entrances.

Figure 9 A branching hallway for BlockDude. Blue squares represent blocks (which can be picked
up).

We now describe how the player can use the branching hallway in a way that always
lets them move between any of its entrances. Whenever the player is outside the branching
hallway, both bottom blocks will be in their original positions, and the top block will be
somewhere on the middle platform, depending on the most recently taken exit. When the
player arrives at the branching hallway, they will first move the top block to the right side of
the middle platform (the position in Figure 9). The only case where this is nontrivial is when
the player enters at the bottom with the top block on the left. In this case, the player can
go under the middle platform and climb up from the right by moving both bottom blocks.
Then they can pick up the top block and step back down on the right, causing the carried
block to fall onto the right end of the middle platform. Finally, they can reset the bottom
blocks and return to the bottom entrance. Once the top block is on the right, the player can
take whichever exit they need. If they take the top left exit, they will move the top block to
the left first.

To embed an arbitrary planar graph in BlockDude, we also need to be able to turn
hallways and in particular to make vertical hallways despite gravity. Fortunately, the
branching hallway in Figure 9 can achieve both goals. If we ignore the top-right entrance,
the agent can turn around and make some vertical progress. By chaining these switchbacks
in alternating orientation, we can build an arbitrarily tall vertical hallway.

To complete the proof of PSPACE-hardness, we only need to build a locking 2-toggle. We
will construct the locking 2-toggle out of simpler pieces, as shown in Figure 11. The simpler
pieces are two kinds of 1-toggle: one just for the player, and one that the player can carry
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I )I [ 2 } [ L l
Figure 10 Icon and state diagram for the 1-toggle. Leftwards and rightwards traversals must
alternate.

Figure 11 The schematic for our locking 2-toggle for BlockDude. Arrows with a faded backward
arrowhead are 1-toggles. Only the player can go through the 1-toggle unless it has a block icon
above the arrow, in which case the player can carry a block through.

a block through. The state diagram for a 1-toggle is given in Figure 10. When the player
arrives at (say) the bottom left entrance, they can grab the block in the middle and bring it
to the left side, and use it to reach the top left entrance. With the block stuck on the left,
the right side cannot be traversed until the player returns to the top left, puts the block
back, and exits the bottom left. The player cannot move through this gadget in any way not
allowed by a locking 2-toggle. They may leave the block on the left side when the exit the
bottom left, but this does not achieve anything; it only prevents them from traversing the
right side.

Our 1-toggle for just the player is shown in Figure 12. In the state shown, the player
can not enter on the right. If they enter on the left, they can move the blocks to exit on
the right, but in doing so must block the left entrance. Because of the 1-high hallways, the
player can not bring a block through this gadget.

The 1-toggle that lets the player carry a block through is more complicated, and is shown
in Figure 13. If the player enters on the left with or without a block, they can get to the
right as follows:

Move the top staircase to the right, so they can climb all the way down.

Move the top staircase and then the bottom staircase to a single pile in the bottom left

corner.

Move the single pile to the bottom right corner.

Use three blocks to build a staircase to the middle platform on the right, and move the

rest of the blocks up to that platform.

Use another three blocks to build a staircase to the right exit.

To reach either exit, there must be at least three blocks on the bottom level to form a
staircase to the middle platform, and three blocks on the middle platform to form a staircase
to the exit. In particular, six blocks must stay inside the gadget, so the player can leave with
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Figure 12 A 1-toggle for BlockDude, currently traversable from left to right.

a block only if they brought one with them. If the player tries to enter the side opposite
the one they most recently exited, they will be blocked by both staircases and unable to get
across the gadget.
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Figure 13 A 1-toggle for BlockDude that lets the player carry a block through it, currently
traversable from left to right.

This 1-toggle might break if the player brings several additional blocks to it, but it will
never be possible to bring more than one additional block because of the structure of our
locking 2-toggles.

With these components, we can fill in our schematic for a locking 2-toggle (Figure 11),
which we show in full in Figure 14. To summarize: the player can enter on either side, at the
lower entrance. They can get to the block in the center, but must return to the side they
came from. Then they can use this block to reach the top exit on the same side. This makes
the center block inaccessible from the other side, so the other side cannot be traversed until
the player comes back in the opposite direction and returns the center block.

3.1 BloxDude is PSPACE-complete

In this section we discuss how to adapt the prior proof for BlockDude puzzles to work for
blox which can both be picked up and pushed. All the valid traversals from our BlockDude
constructions remain and we only need to prevent unwanted movement of the blox due to
pushing.

First, whenever there is a hallway in which a blox should not be able to be moved, such
as all three hallways from the branching hallway, we add a step in the hallway, as shown in
Figure 15. Thus the blox cannot be carried and if it is pushed to the step it will become
stuck.
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Figure 15 A blox cannot be moved through this hallway.

Next we show how to adapt the 1-toggle with block traversal so it works in this setting.
This is given in Figure 16. The three-block-tall staircases ensure that bringing a single blox
from the wrong direction does not allow deconstructing a staircase from behind. In particular,
the middle layer has two blox in a row which cannot be pushed and thus one extra blox will
not enable the Dude to deconstruct the staircase from that side.

D
5]
e SR
0
Do
e e EEEEEEEEEEEEEEEEE

Figure 16 A 1-toggle for BloxDude that lets the player carry a block through it, currently
traversable from left to right.

We also need a regular 1-toggle, and the construction in Figure 12 can be broken in the
blox model. Luckily we have a hallway that prevents blox from being carried or pushed
through it, so we can add such a hallway to each end of the gadget in Figure 16 preventing
extra blox from entering or leaving. This yields a regular 1-toggle which does not permit
blox to pass through.

Once we have the prior two gadgets, it is clear the locking 2-toggle in Figure 11 will still
work in the blox model, giving the desired PSPACE-hardness result.
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4 Checkable Gadget Framework

In this section, we introduce a new extension to the gadgets framework which will be used in
the rest of the paper. This extension allows us to indirectly construct a gadget G by first
constructing a “checkable” version of GG, and then using “postselection” to obtain G. The
checkable G behaves identically to G except that the agent can make undesired traversals
into “broken” states which prevent later “checking” traversals. The postselection operation
removes these possibilities by guaranteeing that the agent will perform the checking traversals
at the end, so to solve reachability, the agent could never perform the undesired traversals.
The price we pay for this ability to constrain the behavior of gadgets is that the resulting
simulations are no longer drop-in replacements as in the local simulations of Definition 1;
instead we obtain “nonlocal simulations” which require altering the entire surrounding system
of gadgets:

» Definition 6. A finite set of gadgets G [planarly] nonlocally simulates a gadget H
if, for every finite set of gadgets G', there is a polynomial-time (many-one/Karp) reduction
from [planar] reachability with {H} UG’ to [planar] reachability with GUG'.

Lemma 2 says that simulations are nonlocal simulations, so this notion is a generalization
of Definition 1.

Next we define “checkable” gadgets via “postselection”, which transforms a gadget with
broken states (where a checking traversal sequence is impossible) into an idealized gadget
where those broken states are prevented. At this stage, the prevention is by a magical force,
but we will later implement this force with a nonlocal simulation.

» Definition 7. Let G be a gadget, C be a traversal sequence on L(G), and L' C L(G). Call
a state q of G broken if C is not legal from q. Assume that broken states are preserved by
transitions on L' in the sense that, if q is broken and there is a transition (q,a) — (¢’,b)
where a,b € L', then ¢’ is also broken.

Define Postselect(G, C, L") to be the gadget G' where L(G') = L', Q(G’) contains the
nonbroken states of G, and T(G') contains the transitions of G restricted to L' and Q(G').
When there exist C and L' such that Postselect(G,C, L") is equivalent to G', we say that G
is a checkable G’, and we call C the checking traversal sequence.

A traversal sequence X is legal for Postselect(G, C, L’) from state ¢ if and only if XC' is
legal for G from ¢, because both are equivalent to there being a nonbroken state reachable by
traversing X. Intuitively, Postselect(G, C, L') is the gadget that results from forcing the agent
to traverse C after solving reachability, to ensure that the gadget was left in a nonbroken
state, and hiding locations in L \ L’. Postselect(G,C, L’) behaves like G on the locations L’
except that transitions into broken states are prohibited.

We now state the main result of the checkable gadget framework, which is in terms of two
simple (and often easy-to-implement) gadgets SO (single-use opening) and MSC (merged
single-use closing gadgets) defined in Section 4.1.

» Theorem 8. For any G, C, and L' satisfying the assumptions of Definition 7, {G, SO, MSC?}
planarly nonlocally simulates Postselect(G,C,L’).

5 If every state of G is broken, then Postselect(G, C, L) has no states. In this case, it is impossible to use
Postselect(G, C, L) in a system of gadgets because that requires specifying an initial state, so all of our
theorems hold vacuously.
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The goal of this section is to prove Theorem 8. Figure 17 provides a schematic overview
of the gadget simulations throughout this section that culminate in this result. In Section 4.1,
we describe the base gadgets needed for our construction. In Section 4.2, we prove that
nonlocal simulations compose in the natural way. In Section 4.3, we introduce a particularly
simple kind of checkable gadget, and show that they nonlocally simulate the gadget they are
based on. Finally, in Section 4.4 we use all of these tools to prove Theorem 8.

SD «<—— SO MSC
[ | |1 |
v v
G SX WCX

| ! Il
v

simply checkable PostSelect(G, C, L")

nonlocali

PostSelect(G, C, L")

Figure 17 Overview of gadget simulations used for postselection. Black arrows show local
simulations and blue arrows show nonlocal simulations.

4.1 Base Gadgets

We now define two base gadgets and three additional derived gadgets, shown in Figure 18,

that we use to implement the machinery of checkable gadgets. All five of these gadgets can

change state only a bounded number of times; they are “LDAG” in the language of [13].
The two base gadgets required for our construction are shown in Figure 18a-18b:

(a) The single-use opening (SO) gadget, shown in Figure 18a, is a three-state three-
location gadget. In state 1, the “opening” location has a self-loop traversal (also called a
button, or a port in [3]), which transitions to state 2. State 2 allows a single traversal
between the other two locations, after which (in state 3) no traversals are possible.

(b) The merged single-use closing (MSC) gadget, shown in Figure 18b, is a two-state
three-location gadget. In the “open” state 1, horizontal traversals in both directions are
freely available. After a traversal from top to right, the gadget transitions to the “closed”
state 2, where no traversals are possible.

Next we describe three useful gadgets for our construction which can be built from these
base gadgets.

The dicrumbler/single-use diode (SD) gadget, shown in Figure 18c, is a two-state
two-location gadget. In state 1, there is a single directed traversal between the two locations,
which permanently closes the gadget in state 2 where no traversals are possible. The SD
gadget can be simulated by either of the two base gadgets: it is equivalent to state 2 of SO,
and to MSC restricted to the two locations incident to the closing traversal.

The single-use crossover (SX) gadget, shown in Figure 18d, allows one traversal from
left to right and then one from top to bottom. It can be simulated using SO and SD gadgets
as shown in Figure 19. The top location in the simulation cannot be entered until the top SO
is opened. This opening is possible only after traversing the first two SDs, which prevents
any further traversals coming from the left or going to the right. The bottom SO prevents
premature traversals going to the bottom.
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:
[

gt

(a) Single-use (b) Merged (c) Dicrumbler/ (d) Single-use (e) Weak closing

opening gadget single-use closing single-use diode crossover (SX) crossover (WCX)
(SO) gadget (MSC) (SD)

Figure 18 Icons (top) and state diagrams (bottom) for two base gadgets (a—b) and three derived
gadgets (c—e). Green arrows show opening traversals, red arrows show closing traversals, and purple
crosses indicate traversals that close themselves.

Figure 19 Construction of the single-use crossover from SO and SD gadgets.
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Figure 20 Construction of the weak closing crossover from SD, SO, and MSC gadgets.

The weak closing crossover (WCX), shown in Figure 18e, initially allows traversals
freely between the left and right. If a bottom-to-top traversal is performed, no more traversals
are possible. However, a bottom-to-left or bottom-to-right traversal is also possible (which
also opens up left-to-top or right-to-top traversals), making the crossover “leaky”. The weak

closing crossover can be simulated using SO, MSC, and SD gadgets, as shown in Figure 20.

To open the upper-right SO, the agent needs to traverse the upper-left SO and then close

the middle MSC. To open the upper-left SO, the agent will need to close the leftmost MSC.

Having closed both the left and the middle MSCs, the agent is forced to traverse the bottom
SO and close the rightmost MSC. The bottom SO can only be opened by the agent traversing
entering the bottom and traversing bottom two SDs, preventing any future traversals from
the bottom. In summary, in order to exit the top, the agent must have entered the bottom
in the past, and have closed all three MSCs. Entering the bottom changes to state 2, and
exiting the top changes to state 3.

4.2 Nonlocal Simulation Composition

A crucial fact about nonlocal simulation is that nonlocal simulations can be composed:

» Lemma 9. Let G and H be finite sets of gadgets. Suppose G [planarly] nonlocally simulates
every gadget in H, and H [planarly] nonlocally simulates another gadget H. Then G [planarly]
nonlocally simulates H .
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Proof. For a finite set of gadgets G’, we must find a polynomial-time reduction from
reachability with { H} UG’ to reachability with GUG’. Let H = {Hy, ..., H,}, where n = |H]|,
and let H; be the prefix {Hy,..., H;}, so H, = H. Then we construct a chain of reductions
between reachability with different sets of gadgets:

{H}u¢g" - GUH, UG — GUH, UG — - > GUH, UG — GUG".

The first reduction is because H = H,, nonlocally simulates H. The remaining reductions
come from the assumption that G nonlocally simulates each H; € H, which implies that there
is a polynomial-time reduction from reachability with {H;} UGUH; 1 UG = GUH,; UG to
reachability with GUGUH,;,_1 UG =GUH,;,_1UG". <

4.3 Simply Checkable Gadgets

Next, we define a special kind of checkable gadgets, called “simply checkable” gadgets. A
simply checkable G is essentially a checkable G where the checking sequence consists of a
single traversal between two locations not in L(G), called ¢j, and cout. Simply checkable
gadgets will be a useful as an intermediate step in our proof of Theorem 8.

» Definition 10. For a gadget G, a simply checkable G is a gadget G’ satisfying the

following properties:

1. L(G") = L(G) U{cin, Cout} has two new locations ci,, cour. For planar gadgets, the cyclic
orderings of the shared locations L(G) are the same. (Locations cip and oy can be added
to the cyclic order anywhere.)

2. There is a function f: Q(G) = Q(G’) assigning a state of G’ to each state of G.

3. For any traversal sequence X that is legal for G from state q, the concatenated traversal
sequence X - [Cin — Cout] 18 legal for G from f(q).

4. Fvery traversal sequence that ends at ¢,y and is legal for G' from state f(q) has the form

X [cin—0,0 >0 ... 0 Coyl
where X is legal for G from state q and the omitted o locations (if any) belong to L(G).

Intuitively, a simply checkable G in state f(q) behaves the same as G does in state ¢,
provided that afterward the agent performs a traversal sequence from ¢j, t0 oy (Which may
involve the agent exiting and re-entering the gadget, but only via nonchecking locations).
The gadget can do essentially anything in a traversal sequence not ending in coyt-

Any simply checkable G is also a checkable G: if G’ is a simply checkable G, then
Postselect(G’, [¢in — Cout), L(G)) is equivalent to G.

We show that a simply checkable G can nonlocally simulate G while preserving planarity,
using an auxiliary gadget. First, define the hallway gadget to be the one-state two-location
gadget with transitions in both directions between the locations (i.e., a “branching hallway”
with only two locations). A checkable hallway crossover is a simply checkable hallway
where the added locations ¢, and coyt are not adjacent in the cyclic order, i.e., they interleave
with the two hallway locations. For example, the weak closing crossover from Figure 18e is a
checkable hallway crossover, where the horizontal traversal corresponds to the hallway, the
bottom location is ¢, and the top location is coyut-

» Lemma 11. Let G’ be a simply checkable G and let CHX be a checkable hallway crossover.
Then

1. {G'} nonlocally simulates G; and

2. {G', CHX} planarly nonlocally simulates G.
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Figure 21 Our nonlocal simulation for the proof of Lemma 11. The system is modified by
replacing each copy of G with a copy of G’ and adding the blue path from ¢ through cin — cout On
each one.

Proof. For any gadget set G’, we construct a polynomial-time reduction from reachability

with {G} UG’ to reachability with {G’} UG, or from planar reachability with {G} UG’ to

planar reachability with {G’, CHX}UG’. Suppose we have a [planar] system S of gadgets from

{G} U@, along with a designated starting location s and target location t. Let G1,...,G,

denote the copies of G in S, and let ¢1,...,q, be their respective initial states in S. We

build a new system S’ of gadgets from {G'} UG’ as follows; refer to Figure 21.

1. Replace each copy G; of gadget G with initial state ¢; in S by a corresponding copy G
of G’ with initial state f(g;), whose copies of ¢, and coyt, are named ¢y ; and cout ;-

2. Connect ¢ to cin,1. In the planar case, we place a copy of CHX on each crossing this
creates, with the check line on the way from ¢ to cin 1.

3. Connect cout,; t0 cin i1 for each 4. In the planar case, we place a copy of CHX on each
crossing this creates, with the check line on the way from cout,; t0 Cin,it1-

Our reduction outputs this new system S’ along with the same start location s and the new

target location ' = cout -
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This construction clearly takes polynomial time. To prove that the reduction is valid, we
must show that there is a legal system traversal s —* cout,n in S’ if and only if there is a
legal system traversal s —* ¢t in S.

First suppose there is a legal system traversal s —* ¢ in S. Then this solution can be
extended to a legal system traversal s —* cou,n in S’ by appending the traversal cin; — Cout,s
on G for each 7 in increasing order, and in the planar case, adding the needed traversals
of the inserted copies of CHX (including the check traversals needed to get from t to ¢in1
and from each cout,; 0 Cin,it1). The appended cin i — Cous,i traversals are all valid because
Property 3 of Definition 10 requires that any legal traversal sequence for G can be extended
by ¢in — Cout to yield a legal traversal sequence for G’. For the same reason, the appended
Cin — Cout traversals in copies of CHX are valid. Also, the inserted hallway traversals of the
copies of CHX are all valid from the definition of checkable hallway crossover, because they
occur before all appended c¢j, — Cout traversals.

Now suppose that there is a legal system traversal s —* cout ., in S’ Define ¢, ;, cf 5 to
be the check in and out locations for all checkable gadgets (copies of both G’ and CHX),
in the order that these check traversals occur in the intended solution described above. By
Property 4 of Definition 10, the agent can only exit the ith checkable gadget (G’ or CHX) at

/ .. In S’ the only location connected to

in,i*

out,; i it previously entered at the corresponding ¢

Cinit1 18 Chyy ; (ignoring hallway traversals of CHX gadgets), so this property implies that

C

Cout,i Was previously visited as well. By induction, the solution must have reached cf, ; via t,
and then traversed all of the ¢f, ; and ¢ ; locations (possibly with some detours). Consider
the prefix X’ of the solution up to the first time ¢ is visited, and let X be the modification to
remove any hallway traversals of the copies of CHX. We claim X is a solution for S. Clearly
X is a system traversal s —* ¢ and satisfies all unmodified gadgets (from G’). By Property 4

of Definition 10, ¢f, ; and ¢, ; are visited at most once in the full solution, and the prefix of

out,?

the solution prior to visiting an,i is legal for the ith checked gadget. Because each an,i
visited after ¢, it is not visited in X, and thus X is legal for G;. Similarly, X makes only
hallway traversals of CHX, so removing those traversals is valid in S where there were direct
connections before the crossings were introduced. Therefore X is a valid system traversal

s—*tin S. <

is

4.4 Postselected Gadgets

We now finally prove our main result, Theorem 8: postselection can be achieved using only
the two base gadgets from Section 4.1, while preserving planarity.

It will be convenient to assume all of our gadgets are transitive: if there are two
transitions (g1, ¢1) — (ga2, £2) — (g3, £3), then there is also a transition (g1, ¢1) — (g3, ¢3). For
reachability, this makes no difference: we can replace any gadget with its transitive closure
without affecting the answers to any reachability problems, since we can always think of
the transition (q1,¢1) — (g3,¢3) as a sequence of two transitions. That is, every gadget is
equivalent for reachability to some transitive gadget, and in particular there are nonlocal
simulations in both directions.

Proof of Theorem 8. Assume without loss of generality that G is transitive, by replacing G
with its transitive closure.

We will show that {G, SO, MSC, SD, SX, WCX} planarly locally simulates some gadget G
which is a simply checkable Postselect(G, C, L’). As shown in Section 4.1 (Figures 19 and 20
in particular), {SO, MSC} planarly locally simulates WCX, SX, and SD. By combining these
local simulations, we obtain that {G,SO, MSC} planarly locally simulates the same G’. By
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Lemma 2, this is also a nonlocal simulation. By Lemma 11, for any checkable hallway crossover

gadget CHX, {G’, CHX} planarly nonlocally simulates G’. Because {SO,MSC} planarly

simulates the weak closing crossover (Figure 20), which is a checkable hallway crossover, it

follows from Lemma 9 that {G, SO, MSC} planarly nonlocally simulates Postselect(G, C, L'),

proving the theorem.

Now we show that {G, SO, MSC, SD, SX, WCX} planarly locally simulates some gadget

G’ which is a simply checkable Postselect(G, C, L’). Unpacking the definitions of “simply

checkable” and Postselect, we must simulate a gadget G’ that satisfies the following properties:

1. L(G") = L' U{cin, Cout }-

2. There is a function f from unbroken states of G to states of G'.

3. For any traversal sequence X on L', if XC' is legal for G from state ¢, then X - [¢in — Cout]
is legal for G’ from state f(q).

4. Any traversal sequence that ends with ¢y and is legal for G’ from state f(q) has the
form X - [cin — o, — o, ... @ — coyt], where X is a traversal sequence on L', XC' is
legal for G from state ¢, and all the omitted e locations are in L'.

We construct our simulation of the gadget G’ starting from G as follows; refer to Figure 22.

1. For purposes of description, orient so that G has all of its locations on the top of its
bounding box. We will place the locations for the simulated gadget on a horizontal line
L above G (so they will lie on the outside face).

2. For each location [ € L', add a long upward edge e; connecting [ in G to a new location I’
on L. Because the edges are all vertical, they do not cross each other, and the I’ locations
appear in the same cyclic (left-to-right) order as [ € L’.

3. Place ¢;, on L left of all e; edges. Starting from ¢;,, draw a non-self-crossing path that
crosses each of the e; in one rightward pass, then turn down, then cross each e; a second
time in one leftward pass in between the first pass and G. We ensure any further crossings
with the edges e; take place between these two delimiter passes, which we call the top
and bottom delimiters, by routing paths across the bottom delimiter before crossing any
e;. These delimiters serve to “cut off” the rest of the construction, preventing leakage.

4. For each traversal a; — b; in the sequence C = [a; — by,...,ar — by, add a single-use
opening gadget O; and a dicrumbler D;, near locations b; and a; respectively. Connect the
opening location of O; to the entrance of D; (routing up across the bottom delimiter, then
horizontally, then down). Connect the exit of D; to a;, and connect b; to the entrance of
Oi~

5. Connect the exit of each O; to the opening location of O, 1, routing up across the bottom
delimiter, then all the way left, then up, then right, then down.

6. Finally, connect ¢, to the opening location of O; after the two delimiter passes; and
connect the exit of O to cout, routing up across the bottom delimiter, then all the way
left, then up.

We call the path we have constructed from ¢, to couy the checking path. For an
unbroken state ¢ of G, the corresponding state f(q) of G’ is simulated by placing G in state
q and all other gadgets in their usual initial states.

This construction is nonplanar in two ways: our new checking path crosses the edges
e; and also crosses itself. In the former case we replace the crossing with a weak closing
crossover, oriented so that the checking path closes ;. In the latter case we replace the
crossing with a single-use crossover, oriented correctly so that the agent can traverse the two
directions in the expected order detailed below. We must prove this construction has the
properties stated above. By construction, its locations are L' U {¢in, Cout }-
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Figure 22 The simulation of a simply checkable, postselected version of the gadget G. The two
initial crossings of the edges e; connecting locations in L’ to the outside are shown in red. The rest
of the checking path is shown in purple. All further crossings of the checking path with edges e;
occur between the two initial crossings. In this example, L = {l1,l2,l3,14,l5} and L' = {l2,13,15}.
The ith checking traversal [la — l2] is enforced by O; and D;.

Suppose X C'is legal for G from state g. We can perform X - [ciy — Cout] in the simulation
where G starts in ¢ by first performing X in the natural way (using the edges e;) and then
following the checking path: starting at c¢i,, for each ¢ we visit the opening location of O;,
then go through D;, then traverse a; — b; via G, then traverse O;. This path brings us to
Cout at the end, and its restriction to G is exactly XC.

Now suppose that there is a legal traversal sequence for G’ from state f(q) ending in
Cout- Putting ourselves in the position of a forgetful agent, we find ourselves at ¢,y and must
determine how we got there. We can induct backwards along the checking path (as in the
proof of Lemma 11) to show that we must have visited ¢y, using the facts that in order to
exit the closing side of a weak closing crossover we must have entered it on the opposite side,
and that in order to exit from O; we must have visited its opening location.

Thus at some point in the path we entered G’ through c;,, crossed all the e; twice, and
then for every a; — b; of C' in order we opened O;, traversed D;, and later traversed O;.
Crossing each e; twice closes the weak closing crossovers, making e; no longer traversable.
Between traversing D; and O;, we somehow must have gotten from a; to b;. We cannot have
used the edges e; because they were already closed during the initial crossings. So we must
have made transitions only in G, of the form (q1,¢1 = a;) = (g2, €2) = -+ = (qk, bm = b;).
Since G is transitive, we could equivalently have made the single transition (g1, a;) — (qx, bi),
and in particular have traversed a; — b;.
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Similarly, after the initial two crossings of the e;, we can’t have left this simulated gadget
or entered G except for the traversals of C. Finally, we take advantage of the fact that
before entering c;,, the simulation behaves exactly like G' except that only locations in L’ are
accessible. So the full path through the simulation G’ ending at c,u; must have the following
form:

1. We use G as if it were G (restricted to the locations of L’) with initial state ¢, performing
some traversal sequence X.

2. We enter G’ through c;,.

3. We possibly leak out of G’ or into G via locations in L', through the weak closing
crossovers at the initial two crossings with each e;. Call the sequence of traversals made
during this phase Y.

4. Eventually, we finish all of initial crossings with e;, and moved to the O;s and D;s.

5. We perform the traversal sequence C' in G without any additional traversals in G in
between and without leaving G'.

6. Finally, we leave G’ through coys.

Therefore the sequence of traversals on G’ has the form X - [¢;, — o, — o, ... @ — ¢,y t] and

the sequence of traversals just on G is XY C, where X and Y are traversal sequences on L’

and the omitted e locations are in L’. In particular, XY C is legal for G from state g, so by

the assumption that broken states are preserved by transitions on L', XC is legal for G from

g. This is the final condition we needed, so G’ is a simply checkable Postselect(G,C,L’). <

5 BoxDude is PSPACE-complete

We now show that BoxDude is PSPACE-complete via a reduction from reachability with
nondeterministic locking 2-toggles. In this model, boxes can be pushed horizontally by the
Dude but cannot be picked up. We will make use of the postselection construction from
Section 4 in order to nonlocally simulate nondeterministic locking 2-toggles.

Similarly to BlockDude we must build a branching hallway in order to connect the
locations of our gadgets. This time, we also build a directed crossover gadget. These gadgets
are shown in Figure 23. Directed crossovers can be used to construct undirected crossovers
as in Figure 24. This allows us to connect locations in nonplanar ways, and reduce from
reachability instead of planar reachability. We note a diode gadget is easy to build by simply
having a height 2 drop.

R s % |

e %
s .

(a) Branching Hallway (b) Directed Crossover

Figure 23 Hallway connection gadgets for BoxDude. Pushable boxes are in red. The branching
hallway gadget is fully traversable from any of its three locations to the others. The directed
crossover can be traversed only from bottom-left to top-right or from bottom-right to top-left.
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(a) Directed (b) Crossover (c) Construction of an undirected crossover from a directed
Crossover Icon Icon Crossover.

Figure 24 Icons for directed and undirected crossovers. The undirected crossover can be
constructed from four directed crossovers as shown in [10].
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(a) SO (b) MSC

Figure 25 SO and MSC gadgets for BoxDude.

Postselection requires us to additionally simulate the gadgets SO and MSC. These gadgets
are shown in Figure 25.

Next we build a checkable leaky door gadget. A leaky door has two states (“open
and “closed”), and three locations, called “opening”, “entrance”, and “exit”. Similar to a
self-closing door [3], the gadget can be traversed in the open state from entrance to exit, but
doing so transitions the door to the closed state. In the closed state, it is not possible to
enter the gadget through the entrance at all, but visiting the opening location allows the
gadget to transition back to the open state. Unlike a self-closing door, it is possible to go

”
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from the entrance to the opening location when the gadget is in the open state. It is also
always possible to go from the opening location to the exit, but doing so transitions the door
to the closed state. The full state diagram for the leaky door is shown in Figure 26.

1 2
DED €

Figure 26 Icon and state diagram for the leaky door gadget.

The checkable leaky door is shown in Figure 27. We apply postselection to this gadget
with the checking traversal sequence [opening — opening, entrance — opening].> We now
analyze which states are broken in the sense that this traversal sequence is impossible from
those states.

If the left box is further to the left than its current location, the gadget state is broken
since the entrance is unusable.

If the left box is more than one square to the right of its current location, the gadget
state is broken because the opening location is unreachable from the entrance.

If the two boxes are adjacent, the gadget state is broken for the same reason.

Moving the right box more than one square to the right is never advantageous for the
player, so we assume it does not occur.

We will show that the postselection of this gadget is exactly the leaky door gadget. When
the right box is in its current location, we say that the gadget is in the closed state; when it
is one square to the right the gadget is in the open state. Because the left box cannot move
more than one square to the right, it follows that any traversal to the exit location must
leave the gadget in the closed state. In the closed state, no traversals are possible from the
entrance without breaking the gadget by putting two boxes adjacent. Visiting the opening
allows transitioning to the open state. In the open state, additional traversals are available
from the entrance. The agent may go from entrance to exit by using the connected opening
locations to reset the gadget to the closed state and then using the right block to reach the
exit. It is also possible to leak from the entrance to the opening location, and from the
opening location to the exit (transitioning to the closed state). Thus the traversals within
unbroken states are exactly those allowed by the leaky door gadget. By Theorem 8 the
checkable leaky door, along with the SO and MSC gadgets built earlier, nonlocally simulate
the leaky door.

We now build a 1-toggle gadget, shown in Figure 10, using a pair of leaky doors. This
construction is shown in Figure 28. It can be seen that none of the leaks are useful to an
agent traversing the gadget, since the most they accomplish is bringing the agent back to its
starting location without changing any state.

6 The first check from opening to opening does not enforce anything but merely allows access to the
location in case the gadget was last left in the closed state. The check from entrance to opening cannot
be done if the gadget is in the closed state.
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opening

| == ﬁﬁ % -

exit

L

entrance

Figure 27 A checkable leaky door, shown in the closed state. The crossover and branching hallway
needed to connect the top left and bottom right hallways have been abstracted. Horizontal “tracks”
display the range of locations for each box in unbroken states. (The right box can move farther right
but it is never advantageous to do this.) The two boxes may not be adjacent in unbroken states.

Figure 28 A 1-toggle built from leaky doors. Solid or dashed arrows inside gadgets show the
traversal from entrance to exit in an open or closed leaky door, respectively. Green self-loops are
opening locations of leaky doors. Arrows outside gadgets are diodes.

We are now in a position to build a nondeterministic locking 2-toggle. By Theorem 4,
reachability with this gadget is PSPACE-complete. The final construction, shown in Figure 29,
is quite simple in appearance; the complexity is hidden in the 1-toggles used to protect the
locking 2-toggle’s locations. Traversing from A to B is only possible when the box is on
the left side of the gadget, and conversely for C to D. Since the box’s position can only be
changed when exiting the gadget through A or C (corresponding to which side the gadget is
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Figure 29 A nondeterministic locking 2-toggle, currently locked to the left side. Locations B and
C are protected with inwards-directed 1-toggles; locations A and D with outwards-directed 1-toggles.
(Note: the middle portion of the gadget would actually need to be wider than shown in this diagram
in order to make enough space to route locations B and D away from each other.)

locked to), the gadget simulates a locking 2-toggle. Note that this gadget cannot be broken
by moving the box further to the left than its current position, since doing so renders the
gadget fully untraversable. This is because in this state location A is permanently unusable
and B and D cannot be reached from inside the gadget. The agent can only exit out of C,
so that C’s 1-toggle points inwards. Since C’s and D’s 1-toggles always point in different
directions, D is also permanently unusable. The only remaining traversal is B — C, but this
is impossible also because C’s 1-toggle points inwards.

Using Theorem 8 and Lemma 9, our simulations imply that the BoxDude gadgets we
have explicitly built nonlocally simulate a nondeterministic locking 2-toggle. In particular,
there is a polynomial-time reduction from planar reachability with nondeterministic locking
2-toggles, which is PSPACE-complete by Theorem 4, to BoxDude. Hence BoxDude is
PSPACE-complete.

6 Push-1F is PSPACE-complete

In this section, we show that Push-1F is PSPACE-complete using a reduction from planar
reachability with self-closing doors, shown in Figure 8, which is PSPACE-complete by
Theorem 5. Recall that in this model there is no gravity, and the agent can push one block
at a time in any direction. We will make several uses of postselection from Section 4 in order
to nonlocally simulate various gadgets along the way.

In order to use postselection, we must build single-use opening (SO) and merged single-use
closing (MSC) gadgets. We start by building a weak merged closing gadget, based on the
Lock gadget from [8]. The weak merged closing gadget acts like the MSC except that the
closing traversal can be performed multiple times. We also use a gadget introduced in [8]
called a no-return gadget. After a no-return gadget is traversed from left to right, it cannot
immediately be traversed from right to left. However, initially traversing it from the right
or traversing left to right twice breaks the gadget, making it fully traversable. Finally, we
build a weak opening gadget. A weak opening gadget’s exit cannot be used in traversals
until both of its input locations are visited separately. Figure 30 shows the state diagrams
for these gadgets, and Figure 31 shows how to implement them in Push-1F.

We combine the weak merged closing, no-return, and weak opening gadgets to make a
dicrumbler; this allows us to simulate ordinary SO and MSC gadgets using the gadgets we
have built so far. These simulations are shown in Figure 32. Having built these gadgets,
we can now take advantage of the machinery of checkable gadgets. The structure of the
remaining gadget simulations used in this section is outlined in Figure 33.
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(a) Weak merged (b) No-return (c) Weak opening
closing

Figure 30 Icons and state diagrams for Push-1F base gadgets.

1
1
1
1
(a) Weak merged (b) No-return (c) Weak opening
closing

Figure 31 Constructions of base gadgets for Push-1F.

(a) Dicrumbler (b) SO (c) MSC

Figure 32 Constructions of gadgets required for postselection in Push-1F.

We first nonlocally simulate a diode, which allows traversal in only one direction. We
accomplish this by building a checkable protodiode, where the protodiode is a certain four-
location gadget which easily simulates a diode. Refer to Figure 34. We apply postselection to
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checkable proto-precursor

checkable protodiode nonlocall
\_l proto-precursor
nonlocal ¢
proto fho de precursor
diode 1-toggle
| l
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checkable self-closing door

nonlocall

self-closing door

Figure 33 Overview of gadget simulations used for Push-1F. Black arrows show local simulations
and blue arrows show nonlocal simulations.

the checkable protodiode with the checking traversals [A — C, D — B] to nonlocally simulate
the protodiode. The nonbroken states are exactly those in which the block is confined to the
middle two squares. Connecting the bottom two locations of the protodiode yields a diode.

B AT e

(a) Checkable protodiode (b) Protodiode (c) Diode
and checking traversals

Figure 34 Nonlocal diode simulation for Push-1F. Horizontal tracks show where the block is
allowed to move in the protodiode and diode, as if it is confined by a magical force.

We now nonlocally simulate a precursor gadget, which will be used to build a 1-toggle
and a checkable self-closing door. The precursor’s state diagram is shown in Figure 35d. We
begin by building a checkable proto-precursor, where again the proto-precursor is a certain
gadget which easily simulates the precursor. Refer to Fig 35. We apply postselection to the

checkable proto-precursor with the checking traversals [A — D,C — G,B — A, B — C)].

We close off locations D and G during postselection by not including them in the set
L' ={A,B,C,E, F} of locations on the proto-precursor. The nonbroken states are exactly
those in which the blocks are confined to the four center-most spaces, and the two blocks
are not adjacent. Entering a broken state is irreversible with respect to transitions on the
locations in L' because D and G were excluded in L'. (If D or G were included then it would
be possible to un-break the gadget from some broken states by pushing a block back into the
center.) Thus we can use postselection to nondeterministically simulate the proto-precursor;
joining its upper three locations together yields the precursor gadget. Additionally, closing
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the top location of the precursor gadget produces a 1-toggle.
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(a) Checkable proto-precursor and checking (b) Proto—precursor

traversals. Locations excluded from L’ are

marked with an X.
(c) Precursor (d) Icon and state diagram for precursor

17 CILT T 1 I

Figure 35 Nonlocal precursor simulation for Push-1F. As before, horizontal tracks in the proto-
precursor and precursor show spaces to which blocks are magically confined. The magical force also
prevents the pair of blocks in the proto-precursor and precursor from being adjacent.

Finally, we nonlocally simulate a self-closing door. Our construction of a checkable
self-closing door is shown in Figure 36. This gadget is almost identical to a self-closing door,
except that it permits a traversal from the opening location to the exit location exactly
once, after which the gadget is fully untraversable. We eliminate this problem by applying
postselection with the checking traversal sequence [opening — opening, entrance — exit].
The sole broken state is the fully untraversable one arising from the aforementioned undesired
traversal. If we imagine that a magical force prevents the gadget from being left in such a
state, then we obtain exactly a self-closing door.

> o >}

Figure 36 Checkable self-closing door for Push-1F using the precursor gadget, two diodes, and a
1-toggle.
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We have demonstrated a series of planar, nonlocal gadget simulations culminating in
the planar nonlocal simulation of a self-closing door. Because planar reachability through
systems of self-closing doors is PSPACE-complete by Theorem 5, so is Push-1F.

7 Open Problems

The primary remaining question is the complexity of Push-1 block puzzles where there
are no fixed blocks allowed in the puzzle. Push-1 can easily simulate fixed blocks using
2 x 2 arrangements of movable blocks, so we only need to make all fixed areas two blocks
thick. Our constructions of the gadgets SO and MSC needed to apply postselection all use
two-block thick spacing, so we have shown that postselection is available for Push-1 gadgets.
Unfortunately, our postselected constructions for Push-1F critically use one-block-thick
spacing.

Another question we do not address is the related block storage question for ---Dude
puzzles, named - - - Duderino in [5], in which the blocks have target locations to occupy. This
is comparable to the difference between Push-1F and Sokoban. It is generally expected that
the storage version of block-pushing puzzles is at least as hard as reaching a single goal
location; however, this result does not directly follow. We believe using the reconfiguration
version of the gadgets framework from [4] may help build a gadget-based proof.

We have another open question related to the technique of postselected gadgets. When
defining a postselected gadget, we only specified a single traversal sequence to be checked. It
seems likely that one could enforce the choice of one of several possible sequences using more
complex constructions like those found in the SAT reduction for DAG gadgets in [11]. Are
there cases where this sort of flexibility is useful?
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—— Abstract

Fun Slot Machines are a variant of the classical ones. Pulling a lever, the player generates a sequence

of symbols which are placed on the reels. The machine pays when a given pattern appears in the
sequence. The variant consists in trying to transform a losing sequence of symbols in another one,
in such a way that the winning pattern does not appear in any intermediate step. The choice of
the winning pattern can be crucial; there are “good” and “bad” sequences. The game results in
a combinatorial problem on transformations of words avoiding a given pattern as a factor. We
investigate “good” and “bad” sequences on a k-ary alphabet and the pairs of words that witness
that a word is “bad”. A main result is an algorithm to decide whether a word is “bad” or not and to
provide a pair of witnesses of minimal length when the word is “bad”. It runs in O(n) time with a
preprocessing of O(n) time and space to construct an enhanced suffix tree of the word.
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1 Introduction

Everybody knows what a slot machine is, some more, some less. In a simple model, there is
a screen where a certain number of symbols appears in a line. Every symbol is placed on
some reel that “spins” when the game is activated. The machine pays out according to the
pattern of symbols displayed when the reels stop spinning, e.g., whether or not it contains a
given factor. One of the first model was composed of three spinning reels containing a total
of five symbols each: horseshoes, diamonds, spades, hearts and a Liberty Bell; the bell gave
the machine its name. Three consecutive bells in a row produced the biggest payoff, ten
nickels. Later on, fruit symbols were placed on the reels besides the original bell to refer to
the fruit-flavoured gums offered.

Recently, the designers of the MMM company, leader in the field of fun machines, have
designed a new machine, called Fun Slot Machine, and they are evaluating the product. The
machine offers a variant to the usual game. After the player has pulled the lever twice without
having found the winning pattern, she/he can take the last two sequences of symbols that
have appeared - both of which do not contain the winning pattern - and try to transform the
first into the second, so that the pattern does not appear this time either in any intermediate
step. When the player succeeds, the slot machine pays a consolation prize. The game has
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Fun Slot Machines

rules to follow. Only the symbols where the two sequences differ can be exchanged and
the exchange must be done step by step, following the sequence of symbols on the reels.
The MMM’s designers claim that this game is not just a gamble. There are “good” and
“bad” patterns, “good” and “bad” numbers of reels. They propose the following examples to
support their claim.

Suppose that the fun slot machine has 6 reels, each with 4 symbols on, A, C,T, G, which
stand for the favourite fruit flavours, Apricot, Cherry, Tamarind, and Grape. The symbols
are placed on each reel in this cyclical order A, C,T,G. Consider the case that the winning
pattern is AGAC and the displayed sequence is AGAAAC the first time and AGAT AC the
second time. The player has lost both times, because AGAC has not appeared. Hence, the
player can try the variant to the game, that is, to transform AGAAAC in AGAT AC so that
AGAC does not appear either. The sequences differ only in their fourth position, where
the first sequence contains A, while the second one T'. In the first step, symbol A can be
swapped either in C' or in G, its neighbourhoods on the reel. Unfortunately, for the player
(but not for the owner), in both cases AGAC will be displayed. There is no way to win in
this case.

The situation would have been different if the number of reels was 5, and not 6. If the
displayed sequences were AGAAA and AGAT A, the exchange of A in the fourth position
to C, would have yield AGAC, but there is a winning transformation, AGAAA in AGAGA
and then in AGATA.

Consider now a different scenario. The symbols on the reels are as before, but the
winning pattern is AAA. Suppose there are 5 reels and the losing sequences are ACAGA
and AGATA. The player wants to transform ACAGA in AGAT A, which differ in their
positions 2 and 4. The swap of G into T' in the fourth position is safe, no AAA is displayed.
Then, there are two possibilities to swap C into G in the second position; either through A
or through 7. While the first choice would display AAA, the second one would be winning;
the transformation of ACAGA in ACATA, then in ATAT A and finally in AGAT A, never
let AAA appear, and the player will gain the consolation prize. One can show (and we will
prove it in the sequel) that when the pattern is AAA, for any number of reels and any pairs
of losing sequences, the player has always a possibility to gain.

In some sense, the pattern AAA is “good”, because it always leaves a chance of winning,
while AGAC is “bad”, since, in some situations, it leaves no chance of winning. Now, the
question of the MMM’s designers is: how should the number of reels, the number and the
order of symbols on, and the winning pattern be chosen, whether I am a player or the owner
of the machine?

Bad and good sequences of symbols have been investigated in the literature. They were
introduced in the binary case, that is when only two symbols are available. A binary word
(i.e., a sequence of symbols in a finite set of two symbols) f is called d-good if for any pair of
words u and v of length d which do not contain the factor f, u can be transformed in v by
exchanging one by one the bits on which they differ and generating only words which do
not contain f. It is good if it is d-good for all d. A binary word f is bad if it is not good.
The index of a binary bad word is the threshold d from which the word is no longer d-good,
and a pair of words (u,v) showing that the word is not good is called a pair of witnesses for
the bad word. Recently, good and bad words have been considered in the case of larger sets
of symbols where they are referred to as isometric and non-isometric words; see [1], and [2]
on quaternary words. Also, binary bad words have been considered in the two-dimensional
setting, and bad pictures have been investigated [3].
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The fun slot machine problem thus concerns transformations of words that avoid a given
factor. Actually, it is not only a problem in combinatorics of words. It can be stated as
a problem on some graphs, called k-ary n-cubes, introduced in [12], and their isometric
sub-graphs. More specifically, it concerns a problem on k-ary n-cube avoiding a k-ary word
f 12l

Let us mention such framework in this introduction, while it will be no more considered in
k

n’

the rest of the paper. The k-ary n-cube, Q7. is a graph with k" vertices, each associated to
a word of length n over a k-ary alphabet identified with Z; = {0,1,...,k — 1}. Two vertices
in Q% are adjacent whenever their associated words differ in exactly one position, and the
mismatch is given by two symbols z and y, with = (y £ 1) mod k. Special cases include
rings (when n = 1), hypercubes @,, (when k = 2) and tori. They have been introduced in
[12], in the context of interconnection networks. The binary case (k = 2) has been extensively
investigated [6]. In order to obtain some variants of hypercubes such that the number of
vertices increases slower than in a hypercube, Hsu introduced Fibonacci cubes [7]. They
received a lot of attention afterwards (see [9] for a survey). These notions have been then
extended to define the generalized Fibonacci cube Q,(f) [8]. It is the subgraph of the
hypercube @, obtained by considering only vertices associated to binary words that do not
contain a given word f as a factor. In this framework, a binary word f is good when, for
any n > 1, Q,(f) can be isometrically embedded into @, and bad, otherwise [10]. More
generally, given a k-ary word f, the k-ary n-cube avoiding f, Q¥ (f), is obtained from Q¥ by
elimination of the vertices containing f as a factor. Good and bad words are investigated in
this more general setting in [2], where they are referred to as isometric and non-isometric
words.

Coming back to the fun slot machines, f represents the winning pattern, u and v the
displayed losing sequences, and their length is the number of reels. The goal is to find a
transformation of u in v that changes only the positions where u and v differ and f is never
displayed. If f is good then there is always a chance of winning. If it is bad, in the situation
where the number of reels is greater than or equal to the index, and v and v are witnesses
for f, then there is no chance of winning!

The main result in this paper is an algorithm to test whether a word is good or not.

Further, in case the word is bad, the algorithm provides its index and a pair of witnesses of
length equal to the index. Note that, when k£ > 4, no good word exists and any bad word has

index equal to its length [1]. Therefore, the computation of the index is given for k = 2,3, 4.

It is based on the construction of the pairs of witnesses for f given in [1, 2] to show Theorem
4. The construction generalizes to k-ary words the one given for binary words in [13]. We
will revisit it, while highlighting some valuable features and adding some more results. We
will show that the index is the minimal length of the above constructed witnesses. Moreover,
the index of a quaternary word can be directly computed from the word, without going
through its binary representation, as it was in [2].

The algorithm presented in this paper runs in linear time and space, for k-ary words
(with k = 2,3,4). This complexity can be achieved thanks to a preprocessing of linear time
and space for computing the suffix tree of the word and enhancing it in order to answer
Lowest Common Ancestor (LCA) queries in constant time. An example of execution of the
algorithm is provided. The first part of the algorithm follows the one provided in a very recent
paper [4] to efficiently check whether a word is isometric. This algorithm is based on the

characterization in [2] and applies some methods of the pattern matching with mismatches.

Note that the algorithm in this paper not only checks whether a word is isometric, but it also
provides its index and a pair of witnesses of minimal length, while keeping the same linear
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complexity. A cubic time algorithm for the computation of the index and some related words
was given in [13] for binary words. The algorithm presented here works for k-ary words, with
k = 2,3,4, while improving the time complexity.

To conclude, observe that in the previously mentioned examples, AGAC' is a bad word, 6
is its index, and AGAAAC and AGAT AC are witnesses for AGAC that’s why there is no
possibility of winning the game. On the other hand, AAA, or more generally a sequence of
(three) equal symbols, is good. Could it have been for this reason that, more than a century
ago, the Liberty Bell machine paid the maximum when three bells in a row were displayed?

2 Fun Slot Machines and Isometric Words

A Fun Slot Machine is composed of d reels that can spin in both directions. Each reel carries
k symbols, s1, So, ... , Sk. Let X be the set of all symbols, and s1, so, ... , s§ be the order in
which symbols follow in each reel. This means that when a reel is spinning in a clockwise
direction, s; appears after s;_1, for ¢ = 2, ..., k, and s; after s;; vice versa in the opposite
direction. The unique winning pattern is f of length n < d. The player inserts the coin and
then pulls the lever. The displayed sequence u of d symbols is called a word or string over %
of length d. The problem is whether the shorter word f is a factor of u or not. If f is not a
factor of u, we say that u is f-free or that u avoids the factor f.

Let us formalize the problem with the terminology of the combinatorics of words. First,
let us recall some preliminary notions.

Let ¥ be an alphabet and || = k. Throughout the paper, ¥ will be identified with
Zr ={0,1,...,k — 1}, the ring of integers modulo k. A word (or string) f € ¥* of length
nis f = x1x9---x,, where x1,x2,...,x, are symbols in 3. The set of words over X of
length n is denoted X™. Let f[i] denote the symbol of f in position i, i.e. f[i] = z;. Then,
fli.g) =iz, for 1 <i < j<mn,isafactor of f. A word s € £* is said f-free if it does
not contain f as a factor. The prefix of f of length [ is pre;(f) = f[1..1]; while the suffix of f
of length I is sufi(f) = fl[n — 1+ 1..n]. When pre;(f) = sufi(f) then pre;(f) is referred to
as an overlap of f of length [.

Let u,v € ¥* be two words of the same length. Then, the Hamming distance dist g (u,v)
between u and v is the number of positions at which u and v differ. The Lee distance between
two words u,v € Zy, u =21 Tp and v =y - - -y, is

n
distr(u,v) = me(|$z —yils k — |z — yil)-
i=1

In the sequel, ¥ will denote a generic alphabet of cardinality k, while A to denote the
quaternary alphabet A = {A,C, T, G}, referred to as the genetic alphabet. Symbols A and
T (C and G, resp.) will be called complementary symbols, in analogy to the Watson-Crick
complementary bases they represent. The alphabet A will be identified with Z,4, in such a
way that A, C, T, and G will be identified with 0, 1, 2, and 3, respectively. Therefore, pairs
of complementary symbols have Lee distance 2, whereas pairs of distinct non-complementary
symbols have Lee distance 1.

Let us now define what we have called “good” and “bad” word in the Introduction. To
be more precise and to avoid ambiguity with similar definitions in other papers, from now on,
“good” and “bad” words will be referred to as “Lee-isometric” and “Lee-non-isometric” words,
respectively. The definitions are based on the process of transforming a word in another one
of equal length, changing one symbol at a time.
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Figure 1 The word f and its 2-error overlap of length I.

Let f be a word in ™. A Lee-transformation of length h from u to v is a sequence of words
wg, Wi, . .., wp, such that wg = u, wp = v, and for any i = 0,1, -+ ;h—1, disty (w;, w;41) = 1.
The Lee-transformation is f-free if for any ¢ = 0,1,--- , h, the word w; is f-free. The word
f € ¥™ is Lee-isometric if for all d > n, and f-free words u, v € L%, there is an f-free
Lee-transformation from w to v of length equal to distr,(u,v). A word is Lee-non-isometric if
it is not Lee-isometric. Note that there exists an f-free Lee-transformation from v to v if
and only if there exists an f-free Lee-transformation from v to u.

A pair (u,v) of words u, v € £ is referred to as a pair of Lee-witnesses for f, if u and v
are f-free words and there does not exist an f-free Lee-transformation from u to v of length
equal to disty,(u,v). If f is Lee-non-isometric then its Lee-index, denoted by I (f), is the
shortest length d of u,v such that (u,v) is a pair of Lee-witnesses for f. The Lee-index of a
Lee-isometric word is defined oo.

» Example 1. Let A be the quaternary genetic alphabet, f = ACT, u = ACCCT, and

v =ACGCT. Observe that disty,(u,v) = 2, since they differ in their third position only and

distr,(C,G) = 2. The sequences ACCCT, ACACT, ACGCT and ACCCT, ACTCT, ACGCT
are two Lee-transformations from u to v of length equal to disty (u,v) = 2; they are not

f-free. Actually, no f-free Lee-transformation exists from u to v. This shows that ACT is

Lee-non-isometric and that (u,v) is a pair of Lee-witnesses for ACT.

Let us state the following definition (see Figure 1).

» Definition 2. Let 3 be a k-ary alphabet, f € X", and q be an integer 1 < g < n. The word
f has a g-Lee-error overlap of length 1, if disty,(pre;(f), sufi(f)) = q. Its shift isr =n —1;
its error positions are the m positions where pre)(f) differs from sufi(f).

» Remark 3. Using the notations in the previous definition, if f has a g-Lee-error overlap of
length [, then m <, q. In particular, when k =4 and ¢ = 2, then m = 1 or m = 2. The case
m =1 holds if pre;(f) and suf;(f) differ in exactly one position and the error is given by a
pair of complementary symbols. For example, f = AGAC € A* has a 2-Lee-error overlap of
length { = 2. Indeed, m = 1 and disty,(AG, AC) = 2.

If m = 2 then pre;(f) and suf;(f) differ in two different positions ¢ and j and the errors are
given by pairs of non-complementary symbols.

Next theorem, proved in [1, 2], provides a characterization of Lee-isometric words, which
is fundamental to test whether a word is Lee-isometric or not. Furthermore, it allows us to
restrict the investigation to k-ary alphabets with £ = 2,3, 4.

» Theorem 4 ([1, 2]). Let X be a k-ary alphabet and f € ¥*.
f is Lee-isometric if and only if it has no 2-Lee-error overlap, when k = 2,3,4
f is never Lee-isometric, when k > 4.
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The proof of Theorem 4 is constructive. In the case that k = 2,3,4 and f has a 2-Lee-
error overlap, the proof provides a pair of Lee-witnesses showing that f is Lee-non-isometric.
Applying Theorem 4, one can show that, when k = 2, 3, 4, the Lee-index of a Lee-non-isometric
word f satisfies n +1 < I (f) <2n—1 [2].

3 Computing the Lee-index of a Lee-non-isometric Word

The Lee-index of a “bad” word has been introduced as a threshold on the length of words that
witness the “badness” of the word. In this section, we are going to show how to compute the
Lee-index of a “bad” - actually, Lee-non-isometric - word. The results prove the correctness
of the algorithm in the next section.

Let ¥ ={0,1,....,k — 1}, f = fifo--- fn be a word over ¥, u,v € % be f-free words,
and h,j € ©. The reverse of f is f = f, --- fofi. The h-shift of j is 75 = (j 4+ h) mod k,
while the h-shift of f is f5M) = fls(h)fzs(h) e f(h). When k = 2, the 1-shift of f is its
complement. Next result allows us to restrict the domain of strings to be studied.

» Lemma 5. Let ¥ be a k-ary alphabet and f € X*. Then
f is Lee-isometric if and only if f is Lee- isometric
for any h € X, f is Lee-isometric if and only if f5") is Lee-isometric.

Proof. Suppose that f is Lee-isometric and let u, v € £ be ff-free words, for some
d > n. Clearly, u®, vt € 2% are f-free words and distr,(u,v?) = distr,(u,v). Since f is
Lee-isometric, then there is an f-free Lee-transformation from u?® to v® of length equal to
distr,(uft v, say wo = uf,wy, ..., w, = v®. Since w; is f-free, for 1 <4 < h, then wk is
fB-free, for 1 <i < h and wlt, wl, ... ,w}f is an fF-free Lee-transformation from u to v of
length equal to distr(u,v). The same reasoning applied to f shows that the converse is
true, since (%) = f. The second claim can be proved by a similar reasoning, noting that,
for any u,v € %%, disty (u,v) = distr,(u$™ v3") and that u is f-free if and only if u%(") is
5 _free. <

Let us show how to compute the Lee-index of a Lee-non-isometric k-ary word f. Recall
that, when k > 4, any word is Lee-non-isometric and its Lee-index is equal to its length
[1]. Therefore, from now on, all considerations are done only for alphabets of cardinality
k = 2,3,4. The computation of the Lee-index is based on the construction of the pairs of
witnesses for f given in [1, 2] to show Theorem 4. The construction generalizes to k-ary
words the one given for binary words in [13]. It will turn out that the Lee-index is the
minimal length of such witnesses. Let us revisit this construction of pairs of witnesses, while
highlighting some valuable features and adding some more results. First, let us state the
following notation. Refer to Figures 2 and 3 for the construction of a., £, 9, and ~,.

Notation. Let X be a k-ary alphabet and f € X" have a 2-Lee-error overlap of length [ and
shift r =n —I. Let 4,4, with 1 <4 < j <1, be error positions in f (possibly, i = j). Then,
f@ is the word obtained from f replacing f[i] by f[r -+ i]
if 7 is even, t = j +7/2, and i # j then f(*) is the word obtained from f replacing f[;]
with f[r+ j], and f[t] by f[i]
f=) is the word obtained from f replacing f[i] with (f[i] — 1) mod k
1) is the word obtained from f replacing f[i] with (f[i] + 1) mod k
a(f) = pre.(f)fD and B,(f) = pre.(f)fV
a,.(f) = pre.(f)f@7) and B/(f) = pre,(f) 1)
if 7 is even, . (f) = pre.(f) fDsufr/o(f)
if 7 is even, v,(f) = pre.(f) f9Vsufr/o(f).



M. Anselmo, M. Flores, and M. Madonia 4:7

prer (f) f(i)

ar(f):

=
<

|
B.(f) | |
- pre(f) ! f

r n

Figure 2 The words a.(f) and B-(f).

¥(f):]
- pre.(f) fU sufr/a(f)
T n r/2

Figure 3 The words 7-(f) and ~v-(f).

The words introduced in the previous notation will constitute the pairs of witnesses
for f. Note that such words are constructed in such a way to be f-free, unless for §,.(f).
When §,.(f) is f-free then (c..(f), B-(f)) is a pair of witnesses for f. Otherwise, it becomes
necessary to consider the other words as above introduced. It turns out that 5,.(f) contains
f as a factor if and only if the following Condition™ holds [2].

» Definition 6. Let ¥ be a k-ary alphabet and f € X™ have a 2-Lee-error overlap of
length 1, shift r = n — 1 and error positions i,j, with 1 < i < j < [. We say that the
2-Lee-error overlap satisfies Condition™ if r is even, j —i =1/2, fl[r +1i] = f[r + j], and
flici+r/2=1]=f[j..j+r/2-1].

Let us start considering the case k = 2,3. In this case, the Lee distance of two words
coincides with the number of positions where they differ. Then, a 2-Lee-error overlap is given
by two distinct error positions. This is no more true when k = 4; the quaternary case will be
treated later.

Consider a Lee-non-isometric word f € X", with |X| = k and k¥ = 2,3. Then, f has
a 2-Lee-error overlap. Actually, it may have more than one 2-Lee-error overlap. For any
2-Lee-error overlap, it is possible to construct a pair of witnesses for f as follows.

» Proposition 7 ([2]). Let f be a Lee-non-isometric k-ary word, k = 2,3. Consider a 2-Lee-
error overlap of f, of length I, shift r =n — 1, and error positions i,j, with 1 <i < j <.

1. If the 2-Lee-error overlap does not satisfy Condition™ then (o, (f),8-(f)) is a pair of
witnesses for f

2. If the 2-Lee-error overlap satisfies Condition™ and 1 < i <r/2 then (n.(f),v(f)) is a
pair of witnesses for f

3. If the 2-Lee-error overlap satisfies Condition™ and i > r/2 then f has a 2-Lee-error
overlap of shift r' > r, which does not satisfy Condition™ and (a,(f), B (f)) is a pair
of witnesses for f.

Let us show some examples of the construction in Proposition 7 for a ternary and a
binary alphabet, respectively.

FUN 2022
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» Example 8. Consider the ternary alphabet ¥ = {0,1,2}. Let f = 021 € ¥3. The word
f has a 2-Lee-error overlap of length 2; here n =3, r =1, and n — r = 2. Hence, f = 021
is Lee-non-isometric from Theorem 4. Following the proof of the same theorem, let us
exhibit a pair (a, 8) of Lee-witnesses for f. We have that pres(f) disagrees from sufs(f)
in positions ¢ = 1 and j = 2, and f[i] =0, f[j] =2, f[r +4 = 2 and f[r + j] = 1. Then,
ar(f) = pre.(f) f@ = 0221 and B,.(f) = pre,(f)fU) = 0011. The words a,.(f) and S,(f) are
f-free words and distr (o (f), B-(f)) = 2. Moreover, there is no f-free Lee-transformation
from a,-(f) to B,(f) of length distr(a-(f), B-(f)) = 2. Indeed, if we replace a..(f)[2] with
Br(f)[2] = 0 then f occurs at position 2 of ., (f); if we replace «..(f)[3] with 5,.(f)[3] =1
then f occurs at position 1.

» Example 9. Consider the binary alphabet B = {0,1}. Let f = 0011 € B*. The word f
has a 2-Lee-error overlap of length 2. Hence, f = 0011 is Lee-non-isometric from Theorem
4. Note that the 2-Lee-error overlap of f satisfies Condition™. Indeed, we have i = 1,
j=2,r=2, fl[r+i = f[38] =1 = f[4 = flr +j] and f[i] = 0 = f[j]. Therefore,
following the proof of Theorem 4 in the case that the 2-Lee-error overlap of f satisfies
Condition™ and 1 <14 < /2, let us set t = (r/2) + j = 3 and let us consider the two words
0 (F) = prea () fOsuf,s(f) = 0010111 and () = pre,(£)f50suf, o(f) = 0001011 The
words n,(f) and v, (f) are f-free words and distr(n,(f),v-(f)) = 3. Moreover, there is no
f-free Lee-transformation from 7, (f) to ~,(f) of length distr(n,(f),~v-(f)) = 3. Indeed, if we
replace n,.(f)[3] with ~,.(f)[3] = 0 then f occurs at position 3 of n,.(f); if we replace n,(f)[4]
with v,.(f)[4] = 1 then f occurs at position 1 and if we replace n,.(f)[5] with ~.(f)[5] = 0
then f occurs at position 4.

Consider now the case of the quaternary alphabet A = {A,C,T,G}.

The construction of a pair of witnesses for a Lee-non-isometric quaternary word f is
obtained in [2] referring to the binary representation of f. Actually, there is an isomorphism
between quaternary words and binary words of even length. It is given by the map which
associates to A, C, T, G the binary words 00, 01, 11, 10, respectively. Hence, a word f € A"
will be possibly denoted as (f)4 to stress its belonging to the quaternary alphabet, while its
binary representation in {0,1}?" will be denoted as (f)2. The correspondence preserves the
Lee distance.

Let (f)4 € A™ be a Lee-non-isometric word, r be the shift of a 2-Lee-error overlap of
(f)a and m the number of its error positions. Recall that m = 1 or m = 2; see Remark 3.
Note that (f)2 has 2-Lee-error overlap of shift 2r. A pair of witnesses for (f), is obtained
in [1, 2] considering the pair of witnesses for (f)2, constructed as in Proposition 7, and
representing it in quaternary. Recall that (A)e = 00, (C)y =01, (T)2 = 11, and (G)2 = 10.
For example, if the 2-Lee-error overlap of shift 2r of (f)s fills case 1 of Proposition 7 then
(a2 ((f)2), B2r((f)2)) is a pair of witnesses for (f)2. Thus, the quaternary representation of
this pair of witnesses for (f)a, that is ((a2-((f)2))4, (B2r((f)2))4), is a pair of witnesses for
(f)a

Next proposition shows that, indeed, the pair of witnesses for (f)4 as just obtained from
a 2-Lee-error overlap can be directly constructed from (f)4, without going through its binary
representation. Therefore, let us simply denote by f the quaternary word. Example 11 shows
both constructions.

» Proposition 10. Let f be a Lee-non-isometric k-ary word, k = 4. Consider a 2-Lee-error
overlap of f, of length 1, shift r =n — 1, and error positions i,j, with 1 <i < j <1l (i=7j if
m=1).

1. If m =1, then (al.(f), BL(f)) is a pair of Lee-witnesses for f.
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2. If m =2 then

a. if the 2-Lee-error overlap does not satisfy Condition™, then (c.(f), Br(f)) is a pair of
Lee-witnesses for f.

b. If the 2-Lee-error overlap satisfies Condition™ and i < r/2, then (n,(f),7-(f)) is a
pair of Lee-witnesses for f.

c. If the 2-Lee-error overlap satisfies Condition™ and i > r/2, then f has a 2-Lee-error
overlap of shift v’ > r, which does not satisfy Condition™ and (c.(f), B (f)) is a
pair of Lee-witnesses for f.

Proof. Consider (f)2, the binary representation of f. Since f has a 2-Lee-error overlap
of shift r, then (f)2 has a 2-Lee-error overlap of shift 2r; let 4, j, with ¢ < j, be its error
positions.

In the case m = 1, we have that ¢ = j and that f[i] and f[r + 7] are two complementary
symbols. Moreover, we have s = 2i —1 and z = s+ 1 = 2i. Suppose f[i]| = A and f[r+i] = T;
the other cases can be treated analogously. We have (f)a[s] =0, (f)2[2r+s] =1, (f)2[z] =0,
(f)2[2r + 2] = 1. Therefore, the quaternary representation of (f)$* ((f), resp.) coincides
with the word obtained from f by replacing the symbol A in position 7 with the symbol
G (C, resp.), that is ((f)$)a = £&) (((H)$)s = FG1), resp.). Moreover, prea.((f)2),
represented in the quaternary alphabet, coincides with pre,.(f). Hence, (a9,((f)2))s =
pre.(f)f5) and (Bor((f)2))a = pre.(f) &) In [2], it is proved that the quaternary
representation of (ag,-((f)2), B2-((f)2)) is a pair of Lee-witnesses for f. Hence the thesis
follows.

In the case m = 2, we have that ¢ < j, f[i] and f[r + ] (f[j] and f[r + j], resp.) differ
because of two non-complementary symbols.

a. If the 2-Lee-error overlap does not satisfy Condition™ then the quaternary representation
of (a2, ((f)2), B2r((f)2)) is a pair of Lee-witnesses for f; see [1]. Suppose f[i] = T,
flr+i =C, flj] = G and f[r + j] = A; the other cases can be treated analogously. We
have s=2i—1and z =25 — 1, (f)a[s] = 1, (f)2[2r +s] =0, (f)2[2] =1, (f)2[2r + 2] = 0.
Therefore, ( f)gs) (( f)gz), resp.), represented in the quaternary alphabet, coincides with
the word obtained from f by replacing T (G, resp.) in position ¢ (j, resp.) with C' (A,
resp.), that is ((f)és))z; =f® (((f)éz))4 = fU) resp.). Moreover, prea,.((f)2), represented
in the quaternary alphabet, coincides with pre,(f) and the thesis follows.

b. If the 2-Lee-error overlap of f of shift r satisfies Condition™ and i < r/2 then the 2-Lee-
error overlap of (f)z of shift 2r satisfies Condition™. The proof is given for f[i] = f[j] = A
and f[r+i] = f[r + j] = C; the other cases can be treated analogously. Then, s = 2¢ and
z = 2j. Since the 2-Lee-error overlap of f of shift r satisfies Condition™, then r is even,
j—1i=r/2. Therefore, z—s = 2(j —i) = r is even and it is equal to the half of 2r, the shift
of the 2-Lee-error overlap of (f)s. Moreover, from f[r+i] = flr+j] and f[i.i+r/2—1] =
flj.j +r/2—1], it follows f[2r + s] = f[2r + 2] and f[s.s +r —1] = flz.z +r —1].
At last, ¢ < r/2, implies s < r. In this case, from [1], 72, ((f)2), Y2-((f)2), represented
in the quaternary alphabet, is a pair of Lee-witnesses for f. Recall that ne.((f)2) =
presr((£)2)(f2) S sufrs2((£)2) and Yo, ((f)2) = preac((f)2)(f2)* D sufr2((f)2). Then,
((£)2)®) will be obtained from (f)2 by replacing (f)a[s] = 0 with (f)a[2r + 5] = 1.
Therefore, its quaternary representation coincides with the word obtained from f by
replacing A in position i with C, that is (( f)gs))4 = f(. Analogous considerations show
that (112, ((f)2))a = pre.(f) fDsufr/a(f) and (var((f)2))a = pre.(f)f9Dsufrjo(f) and
the thesis follows.

c. This case can be treated as case a. |
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» Example 11. Let (f)4 = AGCT € A* and, hence, (f)2 = 00100111 € (B?)*. Then, (f)4
has a 2-Lee-error overlap of length [ = 1 and shift » = 3. In this case m =1 and i = 1 is
the unique error position with (f)4[1] = A and (f)4[4] = T, that is the error is caused by
two complementary symbols. A pair of witnesses for (f)4 can be constructed from a pair
of witnesses for (f)2, as follows. Consider the 2-Lee-error overlap of (f)2 of even length
2l = 2 and shift 2r = 6. It is caused by two different error positions, s = 1 and z = 2, since
()201] = (f)2]2] = 0, while (f)2[7] = (f)2[8] = 1. Starting from this 2-Lee-error overlap
of (f)2, the pair (as((f)2), Bs((f)2)) of Lee-witnesses for (f)2 can be obtained. The pair is
composed of ag((f)2) =00100110100111 and SBe((f)2) = 00100101100111. In this case, the
2-Lee-error overlap of (f)2 does not satisfy Condition™, since z — s = 1 is different from
r = 3. Therefore, coming back to the quaternary representation, (a3(AGCT), f5(AGCT)) =
(AGCGGCT, AGCCGCT) is a pair of Lee-witnesses for (f)4.

On the other hand, this pair of witnesses for AGCT can be directly constructed from AGCT,
without going through the binary representation. Following Proposition 10 in the case
m =1, as(f) = pres(f) &), Bs(f) = pres(f)f&1). Observe that f(7) = GGCT and
fH) = CGCT. Hence, as(f) = pres(f)f) = AGCGGCT and Bs(f) = pres(f)f0+) =
AGCCGCT. Finally, (as(AGCT), 3(AGCT)) = (AGCGGCT, AGCCGCT) is the same
pair of Lee-witnesses for (f)4, as previously computed using the binary representation.

Let us come back to the computation of the Lee-index in the general case of a k-ary
word with k = 2, 3,4. Proposition 14 proves that the Lee-index is the minimal length of the
Lee-witnesses as constructed in Propositions 7 and 10.

» Remark 12. Let f € ¥* and let u,v € ¥* be two f-free words. Consider any f-free
Lee-transformation from u to v of length equal to disty,(u,v). Then, only symbols in the
positions where u and v differ are modified in this transformation. Moreover, at each step of
the Lee-transformation, a symbol  can be replaced by y ouly if disty, (z,y) = 1. Hence, each
position 4 such that disty, (u[i],v[i]) = d is replaced exactly d times.

» Remark 13. Let f € ¥* be a Lee-non-isometric word and (u,v) be a pair of Lee-witnesses
for f with u,v € X¢ be f-free words. Let h = disty, (u,v) and suppose h to be minimal. Let
V ={i1,d2,...,im}, with 1 < iy <is < -+ < i, < d, be the set of all the positions where u
and v differ; m < h. Consider a Lee-transformation of length h, u = wg, w1, ..., wp = v.
Then, for any j =1,2,...,h—1, w; has f as a factor. Moreover, for any error position ¢ € V,
and any Lee-transformation of u in v of length h which starts changing u[i] (cfr. Remark 12),
the word obtained after this first replacement contains an occurrence of f including position
i.

» Proposition 14. Let f be a Lee-non-isometric k-ary word, k = 2,3,4. Then, the Lee-index
of f, IL(f), is the minimum length of words a-(f), n-(f), or al.(f), as appropriate, where r
1s taken over the shifts of all 2-Lee-error overlaps of f.

Proof. Let f be a Lee-non-isometric k-ary word and |f| = n. Let (u,v) be the pair of
witnesses of minimal distance dr,(u,v) among all witnesses of minimal length. Note that
(u,v) is also of minimal distance. Then, Ir,(f) = |u|. Let V be the set of all error positions.
The minimality of the distance of u and v implies that, when changing in u the symbol in any
position ¢ € V', as in a Lee-transformation from wu to v, then an occurrence f; of f appears
as a factor; see Remark 13. This f; covers ¢ and another error position (the same, if |V| = 1).
The minimality of the length of w implies that the occurrences of f; for all ¢ € V' completely
cover u. Hence, let f;, be the occurrence that covers position 1 and f;, be the occurrence
that covers position n.
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If f;, and f;, contain both positions i1 and iz, then f has a 2-Lee-error overlap of shift
r = |u| — n and error positions ¢; and is. Then, u will eventually be «,.(f), ol(f), B8-(f), or
BL(f), and the claim is proved.

Otherwise, there is another error position i3 € V and a corresponding intermediate
occurrence f;, of f. Each occurrence of f must contain two of these error positions. Observe
that if an occurrence of f contains the first and the last error position (in non-decreasing
order) then it also contains the second one. Then, there are two occurrences of f, say f; and
f; which contains both error positions ¢ and j; note that ¢ and j cannot be the first and the
last error position in this case. Then f has a 2-Lee-error overlap with error positions ¢ and j;
let 7 be its shift. Consider the pair (a.-(f), 8-(f)), if ¢ # j, or (a.(f), BL.(f)), if i = j. The
length of such words is strictly less than |u|. Then, this pair cannot be a pair of witnesses
for f, because of the minimality of the length of u. This means that 8,.(f) (8.(f), resp.) is
not f-free. Hence, Condition™ holds for the 2-Lee-error overlap with shift 7 and f occurs
at position r/2 in 8,.(f) (BL.(f), resp.). Further, the shortest pair of witnesses that can be
constructed in such situation with three occurrences of f covering u is (n.-(f),7-(f)) and

finally u = n.(f) or u = .(f). <

Proposition 14 suggests to compute the Lee-index of a word considering all its 2-Lee-error
overlaps, obtaining for each 2-Lee-error overlap the corresponding pair of witnesses as in
Proposition 7 (if k = 2,3) or in Proposition 10 (if ¥ = 4), and then computing the minimal
length of a so obtained witness. The algorithm in next section will analyse the possible
2-Lee-error overlaps in increasing order of their shift. Nevertheless, note that it is not possible
to stop at the first found 2-Lee-error overlap. The 2-Lee-error overlap that corresponds to
the witnesses of minimal length can be a subsequent one, as shown in Example 15.

» Example 15. Consider the ternary alphabet ¥ = {0,1,2}. For any h > 0, let w = 2"
and f = OwOwlwl, with |f| = n = 3h + 4. It can be observed that, for any h > 0, f
has two 2-Lee-error overlaps, one of length h + 2, for which dy(0w0,lwl) = 2 and one
of length h + 1, for which dp (w0, lw) = 2. Then, for any h > 0, f is Lee-non-isometric
applying Theorem 4. The first pair of Lee-witnesses for f can be constructed starting from
the 2-Lee-error overlap of length | = h 4 2 and shift r = n — [ = 2h 4 2, following the proof of
Theorem 4. This overlap satisfies Condition™ and the corresponding pair of Lee-witnesses

for fis (0 (f), v (f)), with n,(f) = 0OwOw(lwlwlwl)wl and ~,(f) = 0wlw(0wlwdwl)wl.

The length of this pair of Lee-witnesses is |n-(f)| = |7-(f)] = 6h + 7. The second pair of
Lee-witnesses for f can be constructed starting from the 2-Lee-error overlap of length h + 1,
following the proof of Theorem 4 again. This overlap does not satisfies Condition™ and the
corresponding pair of Lee-witnesses for f is (a,(f), 5-(f)), with o, (f) = 0OwOwl(2wlwlwl)
and B,(f) = 0wOw1 (02"~ 110wlwl). The length of this pair of Lee-witnesses is |a,.(f)| =
|B-(f)] = 5h + 7. Thus, the 2-Lee-error overlap that corresponds to the witnesses of minimal
length is the second one and then it provides the Lee-index I (f) = 5h + 7.

4 The Algorithm

In this section, the results provided in Section 3 are applied to design an algorithm that
computes the Lee-index of a word and yields a pair of Lee-witnesses of minimal length.
It is assumed that X is a k-ary alphabet, with £ < 4 and f € X* is a finite sequence

fIO]f[1] - -+ fIn — 1] of symbols in ¥, where n is the length of f and f[i]’s are its symbols.

Note that now the indices of f start from 0, and not 1, in view of an implementation of the
algorithm in the main programming languages. Recall that if f is Lee-isometric then its
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Lee-index is oo, else it is the minimal length of two words u, v, such that (u,v) is a pair of
Lee-witnesses for f. Observe that an algorithm to compute the Lee-index and its witnesses
is given for binary alphabet in [13]; it runs in O(n3) time. The algorithm designed in this
section runs in O(n) time and space. Finally, note that this algorithm can be easily modified,
without changing its complexity, to compute the index and related witnesses of a word,
referring to Hamming distance, as considered, for example, in [13], or to other distances,
instead of Lee one.

Let us sketch an algorithm which inputs a k-ary non-empty word f of length n, with
k = 2,3,4, and outputs an integer I, that is the Lee-index of f, and a pair (u,v) of Lee-
witnesses for f of length I. Its pseudo-code is given by Algorithm 1 and an example follows.
The algorithm starts looking for all 2-Lee-error overlaps of f and saving them into a list.
This is done by function TwoErrorOverlaps which can be computed in time and space
O(n), thanks to a preprocessing step which uses an enhanced suffix tree to answer Lowest
Common Ancestor (LCA) queries in constant time. If there are not 2-Lee-error overlaps,
then the algorithm sets the Lee-index I to oco. Otherwise, for each 2-Lee-error overlap, it
constructs a pair of Lee-witnesses calling the function WitnessesConstructor. According
to Propositions 7 and 10, the construction depends on whether the Condition™ is satisfied;
function CondPlus checks this. Then, it outputs the Lee-index I as the minimal length
of all these pairs of Lee-witnesses, following Proposition 14. It also outputs a pair (u,v) of
Lee-witnesses of length I. Note that the Lee-index of f is upper bounded by I (f) <2n —1
in [2]; then I can be initialized as I = 2n (in Line 6). Since the 2-Lee-error overlaps are at
most n — 1, there are O(n) calls to WitnessesConstructor, each running in time O(1).
The overall time and space complexity of Algorithm 1 is thus O(n).

» Proposition 16. Let X be a k-ary alphabet, with k < 4 and f € X" be a non-empty word
of length n. The Lee-index of f and a pair of Lee-witnesses of minimal length for f can be
computed in time O(n) with additional O(n) space.

Proof. Let us analyse the main functions in Algorithm 1.

TwoErrorOverlaps inputs the word f and outputs all lengths of its 2-Lee-error overlaps
in the list 2eolens and all corresponding error positions in the list allerrpos. It is similar
to Algorithm 3 in [4], with the difference that Algorithm 3 in [4] checks only if a word f
has at least one 2-Lee error overlap, while this function finds all 2-Lee error overlaps of
f and stores their lengths in the list 2eolens. Further, it stores all corresponding error
positions in the list allerrpos, which is, therefore, a list of lists. It is based on a technique
called the Kangaroo method [5, 11], used in designing efficient pattern matching with
mismatches algorithms. It computes the number of mistakes in a given alignment by
“jumping” from one error to the next. It allows to check, for a given position ¢ in f,
whether f has a 2-Lee-error overlap of length n — ¢ in time O(1). To do this, it first
computes in time and space O(n) the suffix tree of f enhanced to answer to Lowest
Common Ancestor (LCA) queries in time O(1). A call to LCA(4, j) returns the length of
the longest common prefix between the suffix of f starting from position ¢ and the one
starting from position j. The function TwoErrorOverlaps checks whether the suffix
starting at ¢ has two mismatches with its prefix of the same length. It uses a variable [
which gives the length of the current overlap and a variable d which contains the current
Lee distance. They are increased when a mismatch has been found. Since there are at
most two LCA queries for a given ¢, this can be done in O(1) time. Thus, the time and
space complexity of TwoErrorOverlaps is O(n).
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Algorithm 1 Computing the Lee-index and Lee-witnesses for f.

Input: a k-ary non-empty word f of length n, with k < 4
Output: an integer I, Lee-index of f, and a pair of words (u,v), Lee-witnesses for f of length T

(2eolens, allerrpos) < TwoErrorOverlaps(f);
(u,v) < (empty, empty);
if 2eolens is empty then
| I+ oo;
else
T < 2(len(f));
for i «+— 0 to len(2eolens) — 1 do
(utmp, vtmp) < WitnessesConstructor(f,2eolens[i], allerrpos[i]);
if len(u) < I then
I + len(u);
(u, v) < (utmp, vitmp);
return I, (u,v);

o
H O © o NO 0NN

[
N

13 function TwoErrorQOverlaps(f):

14 (2eolens, allerrpos, n) < ({1, [], len(f));
15 for i<+ 1ton—1do

16 (1, d, allerrpostmp) < (0,0, []);

17 while d < 2 do

18 I+ 1+ LCA(,i+1);

19 if | <n — i then

20 | allerrpostmp.append(l + 1);
21 ifd=2 and | =n —1i then
22 2eolens.append(l);

23 allerrpos.append(allerrpostmp);
24 if d <2 and [ <n —ithen
25 l+—1+1

20 d < d+dp (f[l), £ + )
27 else

28 | BREAK

29 return (2eolens, allerrpos);

30 end function

31 function WitnessesConstructor(f,!l, errpos):

32 (n,r,i) < (len(f),n — 1, errpos[0]);
33 if len(errpos) = 1 then

sa (falfal, fbetal) « (f, f);

35 alfalli) = (falfalli] — 1) mod 4;
36 betalli] = (fbetalli] + 1) mod 4;
37 u < pre,(f) + falfal;

38 v < pre,(f) + fbetal;

39 else

40 j « errpos[1];

41 cplus < CondPlus(f, r, errpos(0], errpos[1]);
42 if c¢plus = False then

as (falfa, fbeta) « (f, f);

a4 falfali] = flr + i;

as foetalj] = Flr + jl;

46 u < pre,(f) + falfa;

a7 v < pre,(f) + fbeta;

48 else

49 if : <r/2 then

50 (feta, fgamma) « (f, f);
51 fetali] = flr +1];

52 fgammalj] = flr + jl;
3 fgammalr/2 + ] = 13
54 u  pre,(f) + feta;

55 v+ pre,(f) + fgamma;
56 return (u,v);

57 end function

58 function CondPlus(f,r,i,j):

59 (condl, cond2, cond3) <+ (False, False, False);
60 if 7 mod 2 = 0 then

61 if j —i=1r/2 then

62 condl < True;

63 if f[r +1i] = f[r + j] then

64 cond2 < True;

65 if LCA(i,7) > r/2 then

66 ‘ cond3 < True;

67 return (condl and cond2 and cond3);

68 end function
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WitnessesConstructor inputs the word f, the length [ of a 2-Lee error overlap of f, its
corresponding error positions in the list errpos and outputs a pair (u,v) of Lee-witnesses
for f. This function constructs the pair (u, v), according to Proposition 10, in two different
ways, following that the 2-Lee-error overlap is caused by two complementary symbols
(i.e., m = 1 and the list errpos has only one element) or by two non-complementary
symbols (i.e., m = 2 and the list errpos has two elements). Note that the first case may
occur only if the alphabet cardinality is k£ = 4. In this case, the function constructs u by
appending to the prefix of f of length 7 = n — [ the word f(»~) as defined in the list of
Notation given in Section 3. Similarly, it constructs v, this time appending f*). The
second case follows case m = 2 in Proposition 10. It has other two subcases following
that the function CondPlus returns False or True. In the first subcase, the pair (u,v)
may be constructed according to case 2.a of Proposition 10. In the second case, if i < r/2,
it may be constructed as case 2.b. Otherwise, it is case 2.c, and there is nothing else to
do because it is proved that f always has another 2-Lee-error overlap of (even) length
smaller than [, and thus the pair (u,v) will be constructed as in case 2.a in a subsequent
call of the function. Since CondPlus runs in O(1) time, all these instructions can be
executed in constant time. Thus, the time complexity of WitnessesConstructor is
o(1).

CondPlus inputs the word f, the integers r, ¢ and j, where ¢ and j are the error
positions in the 2-Lee-error overlap of shift . This function outputs True if Condition™
is verified, False, otherwise. Recall that Condition™ is defined in the list of Notation in
Section 3. Note that Condition™ may be True only if r is even. If r is even, then the
function checks the other conditions in condl, cond2, and cond3. In particular, cond3
is True iff fli.i+r/2 —1] = f[j..j + /2 — 1]. This check is done in O(1) time testing
if LC'A(i,j) > r/2, rather than in O(r) time comparing all the symbols. Thus, all the
instructions of CondPlus can be done in O(1) time.

In summary, the overall time complexity of Algorithm 1 can be obtained as the sum of the
cost of TwoErrorOverlaps and at most n—1 times the cost of WitnessesConstructor.
Thus, it is O(n) + O(n) = O(n). The space complexity of Algorithm 1 is due to
TwoErrorOverlaps, thus it is O(n). <

» Example 17. Let us run Algorithm 1 to compute the Lee-index and a pair of Lee-witnesses
for f = f[0]f[1]--- f[5] = AGAT AC. Tt starts calling the function TwoErrorOverlaps
with input f = AGAT AC. This function finds two 2-Lee-error overlaps. The first one is of
length 4, where the errors are in positions 1, 3 and are caused by non-complementary symbols;
in fact, f[1] = G # f[3] =T and f[3] =T # f[5] = C. The second one is of length 2, and
has a unique error position 1; in fact, f[1] = G # f[5] = C and further dist (G, C) = 2, since
G and C are complementary symbols. Thus, TwoErrorOverlaps outputs 2eolens = [4,2]
and allerrpos = [[1, 3], [1]].

Then, coming back to Line 3 of the main algorithm, because 2eolens is not empty, the
algorithm initializes the output variable I = 12. For ¢ = 0 to 1 the algorithm calls twice the
function WitnessesConstructor.

The first call takes as input (AGATAC,4,[1,3]) and sets n = 6,r = 2,4 = 1. Because
len(errpos) = 2, then j = 3 and cplus = False after calling CondPlus(AGATAC,2,1,3).
Thus, the function WitnessesConstructor computes and outputs u = AGAT AT AC and
v=AGAGACAC, obtained as «..(f) and §,.(f); they have two error positions containing
non-complementary symbols. Since len(u) = 8 < I = 12, the algorithm updates I = 8 and
(u,v) = (AGATATAC, AGAGACAC).
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The second call to WitnessesConstructor takes as input (AGATAC, 2, [1]) and sets

n=6,r = 4,i = 1. Because len(errpos) = 1, then the function outputs u = AGATAAAT AC
and v = AGATATATAC, obtained as «,(f) and S,(f); they have one error position
containing complementary symbols. Since len(u) = 10 is greater then I = 8 the algorithm
does not update neither I nor (u,v).

Therefore, the main algorithm outputs the Lee-index I = 8 and the pair of Lee-witnesses

(u,v) = (AGATATAC, AGAGACAC).
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—— Abstract

We introduce a generalization of “Solo Chess”, a single-player variant of the game that can be played

on chess.com. The standard version of the game is played on a regular 8 x 8 chessboard by a single
player, with only white pieces, using the following rules: every move must capture a piece, no piece
may capture more than 2 times, and if there is a King on the board, it must be the final piece. The
goal is to clear the board, i.e, make a sequence of captures after which only one piece is left.

We generalize this game to unbounded boards with n pieces, each of which have a given number of
captures that they are permitted to make. We show that GENERALIZED SOLO CHESS is NP-complete,
even when it is played by only rooks that have at most two captures remaining. It also turns out to
be NP-complete even when every piece is a queen with exactly two captures remaining in the initial
configuration. In contrast, we show that solvable instances of GENERALIZED SOLO CHESS can be
completely characterized when the game is: a) played by rooks on a one-dimensional board, and b)
played by pawns with two captures left on a 2D board.

Inspired by GENERALIZED SOLO CHESS, we also introduce the GRAPH CAPTURE GAME, which
involves clearing a graph of tokens via captures along edges. This game subsumes GENERALIZED
SoLo CHESS played by knights. We show that the GRAPH CAPTURE GAME is NP-complete for
undirected graphs and DAGs.
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1 Introduction

Chess, the perfect-information two-player board game, needs to introduction. With origins
dating back to as early as the 7th century, organized chess arose in the 19th century to
become one of the world’s most popular games in current times. At the time of this writing,
the recent pandemic years witnessed a phenomenal growth of the already popular game,
among spectators and amateur players alike. One of the most active computer chess sites,
chess.com, is reported to have more than 75 million members, and about four million people
sign in everyday.
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Figure 1 An example of a Solo Chess configuration.

As the reader likely knows already, chess is played on a square chessboard with 64 squares
arranged in an eight-by-eight grid. At the start, each player (one controlling the white pieces,
the other controlling the black pieces) controls sixteen pieces: one king, one queen, two rooks,
two bishops, two knights, and eight pawns. The object of the game is to checkmate the
opponent’s king, whereby the king is under immediate attack (in “check”) and there is no
way for it to escape. There are also several ways a game can end in a draw. The movements
of the individual pieces are subject to different constraints. While several chess engines exist
for this classical version of the game, it is also known that the generalized version of chess,
played on a n x n board by two players with 2n pieces is complete for the class EXPTIME [5].
Cooperative versions of chess are also known to be hard [3].

The game of SOLO CHESS is an arguably natural single-player variant of the game. We
consider here a version that can be found among the chess puzzles on chess.com. The game
is played on a regular 8 x 8 chessboard by a single player, with only white pieces, using
the following rules: every move must capture a piece, no piece may capture more than 2
times, and if there is a King on the board, it must be the final piece. Given a board with,
say, m pieces in some configuration, the goal is to play a sequence of captures that “clear”
the board. To the best of our knowledge, chess.com presents its players only with solvable
configurations, even if this may not always be obvious!. The solutions, however, need not be
unique.

While the focus of our contribution here is on computational aspects of determining if a
solo chess instance is solvable, we refer the reader to [2] for a comprehensive and entertaining
introduction to combinatorial game theory at large.

Our Contributions

We introduce a natural generalization of SOLO CHESS that we call GENERALIZED SOLO
Curess(P,d), where P C {# B & A 4} is a collection of piece types and d € N. This version
of the game is played on the infinite integer lattice where we are given, initially, the positions
of n pieces, each of which is one of the types given in P. We are also given, for each piece,
the number of captures it can make — and further, this bound is at most d. The goal is to
figure out if there is a sequence of (n — 1) valid captures such that: a) no piece captures
more than the number of times it is allowed to capture; and b) the sequence of captures,
when played out, “clears the board”, i.e, only one piece remains at the end.

I c.f. “Crazy Mode”.
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We focus on settings where |[P| = 1, i.e, when all pieces are of the same type. When the
game is played only with rooks, we show that the problem is NP-complete even when d = 2,
but is tractable when the game is restricted to a one-dimensional board for arbitrary d.

» Theorem 1 (A characterization for rooks on 1D boards). GENERALIZED SoLo CHESS (E,d)
with 1 rooks can be decided in O(n) time for any d € N.

» Theorem 2 (Intractability for rooks). GENERALIZED SoLo CHESs (E,2) is NP-complete.

When all pieces are queens, note that GENERALIZED SOLO CHESS played on a one-
dimensional board is equivalent to the game played by rooks. On the other hand, on a
two-dimensional board, the game turns out to be hard even when all pieces can capture twice
in the initial configuration, which is in the spirit of the regular game and is a strengthening
of the hardness that we have for rooks.

» Theorem 3 (Intractability for queens). GENERALIZED SorLo CHESS (W,2) is NP-complete
even when all queens are allowed to capture at most twice.

When all pieces are bishops, no piece has a valid move if the game is restricted to a
one-dimensional board. On the other hand, it is easy to check that GENERALIZED SOLO
CHESS played on a two-dimensional board with bishops only can be reduced to GENERALIZED
Soro CHESS played on a two-dimensional board with rooks only, by simply “rotating” the
board 45 degrees. Therefore, we do not discuss the case of bishops explicitly.

We now turn to the case when the game is played only with pawns: as with bishops,
the game is not interesting on a one-dimensional board. However, when played on a two-
dimensional board with pawns that have two captures left, it turns out that we can efficiently
characterize the solvable instances.

» Theorem 4 (A characterization for pawns). GENERALIZED SOLO CHESS (&,2) with n white
pawns, each of which can capture at most twice, can be decided in O(n) time.

When the game is played by knights only, again the game is trivial on a one-dimensional
board. On a two-dimensional board, consider the following graph that is naturally associated
with any configuration of knights: we introduce a vertex for every occupied position, and a
pair of vertices are adjacent if and only if the corresponding positions are mutually attacking.
Note that for all other pieces considered so far, an attacking pair of positions need not
imply that a capture is feasible, since there may be blocking pieces in some intermediate
locations. Knights are unique in that the obstacles are immaterial. This motivates the
GrAPH CAPTURE game: here we are given a graph with tokens on vertices, and the goal is
to clear the tokens by a sequence of captures. The tokens can capture along edges and the
number of captures that the tokens can make is given as a part of the input.

Note that GENERALIZED SOLO CHESS(%), d) is a special case of of GRAPH CAPTURE(d).

We show that solvable instances of the latter on undirected graphs are characterized by the
presence of a rooted spanning tree with the property that every internal node has at least
one leaf neighbor. However, we also show that finding such spanning trees is intractable. We
also show that GRAPH CAPTURE(d) is NP-complete on DAGs.

» Theorem 5 (Intractability of the graph capture game). GrRaPH CAPTURE(2) is NP-complete
on undirected graphs and DAGs even when every token can capture at most twice.

We remark that Theorem 5 has no immediate implications for Generalized Solo Chess

(&, d).
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The rest of the paper is organized as follows. We establish the notation that we will use
in Section 2. The proof of Theorems 1 and 2 is given in Section 3.1.1 and Section 3.1.2,
respectively. The proof of Theorem 3 is discussed in Section 3.2 and the proof of Theorem 4
is given in Section 3.3. Finally, the proof of Theorem 5 is shown separately for undirected
graphs and DAGs in Sections 4.1 and 4.2.

2 Preliminaries

We use [n] to denote the set {1,2,...,n}. We consider the following generalization? of Solo
Chess. We fix a subset P of {# X & A A} and a positive integer d. The generalized game
is played on an infinite two-dimensional board with n pieces. For each piece, we are given an
initial location and the maximum number of captures the piece is permitted to make. Such
an instance is solvable if there exists a sequence o of (n — 1) valid captures with each piece
making at most as many captures as it is allowed to make. We note that a capture is valid if
it respects the usual rules of movements in chess. The formal definition of the problem is the
following.

GENERALIZED SoLO CHESs(P,d):

Input: A configuration C, which is specified by a list of n triplets (p,z, m), where
peP,zeNxN,and 0 <m < d. We use C; to refer to the ith triplet in C.
Output: Decide if there exists a sequence of (n— 1) captures starting from the board
position described by C, such that the piece corresponding to C[i][0] moves at most
C[i][2] times for all 1 < i< n.

J

We note that GENERALIZED SOLO CHESS(P, d) is interesting when d > 2. Indeed, when
d =1, it can be efficiently determined if an instance of GENERALIZED SOLO CHESS(P, 1) is
solvable:

» Observation 6. When d =1, a configuration C is winning if and only if there’s a square
z containing a piece, such that z is reachable in one move from every other piece.

Proof. The sufficiency of this condition is clear; to see the necessity, for each square y on
which a capture was made, let p(y) be the last piece to capture on y. Then p(y) must be
the last piece standing (as it can neither move again nor be captured), and further, y is the
occupied square at the end of the game. Since there is exactly one occupied square at the
end, this shows that all captures were made to the same square. |

Most of our results rely only on elementary graph-theoretic terminology and the notions
of polynomial time reductions and NP-completeness. We refer the reader to the texts [6, 7]
for the relevant background. The well-known [6, 4] NP-complete problems that we use in our
reductions are the following:
1. RED-BLUE DOMINATING SET. Given a bipartite graph G = (R@W B, E) and a positive
integer k, determine if there is a subset S C R, |S| < k such that N[v]N'S # @ for all v € B.

2 Since our focus us on the case when the game is played by pieces of one type only, we do not involve
the ¥ in our set of pieces. Note that because of the convention that kings are never captured, any such
involving only kings is trivial.



N. Aravind, N. Misra, and H. Mittal

2. COLORFUL RED-BLUE DOMINATING SET. Given a bipartite graph G = (R& B, E) where
the red vertices are partitioned into k disjoint parts, determine if there is a choice of
exactly one vertex from each part such that every blue vertex has at least one neighbor
among the chosen vertices.

3. 3-SAT. Given a CNF formula with at most three literals per clause, determine if there is
a truth assignment to the variables that satisfies the formula.

3 Solo Chess with a single piece

3.1 Rooks
3.1.1 1-Dimensional boards

In this section we consider GENERALIZED SOLO CHESS restricted to one-dimensional board
played by rooks. It will be convenient to reason about such instances by using strings to
represent game configurations; to this end we introduce some terminology.

» Definition 7 (Configuration). A configuration is string s over {0,1,2,...,d,00}. It denotes
a board of size 1 x N, where N is the length of the string. The cell (1,j) is empty if s[jl = O,
and is otherwise occupied by a rook with b moves left where b := s[j].

We refer the reader to Figure 2 for an example and how a given board position translates
to a configuration as defined above. Informally, a configuration is solvable if there is a valid
sequence of moves that clears the board.

» Definition 8 ({-solvable configuration). Let s be a configuration of length N and let
1 << N. We say that s is L-solvable if there exists a sequence of moves that clears the
corresponding board with the final rook at the cell (1,4).

Our main goal in this section is to establish the following:

» Theorem 1 (A characterization for rooks on 1D boards). GENERALIZED Soro CHESs (E,d)
with n rooks can be decided in O(n) time for any d € N.

Note that for any sequence (say o) of moves that clears the board with final rook at the
cell (1,¢£), no move of o empties the cell (1,£) and thus, there’s no move of ¢ wherein the
cells containing the captured piece and the capturing piece are at different sides, i.e., one
at left and the other at right, of the cell (1,{). So, note that s is £-solvable if and only if
there is a position such that the sub-configurations to the left and right of location { are
independently solvable. We now develop a criteria for solving 1D configurations where the
target piece is one of the extreme locations on the board. Note that when d = 2, the first
criteria below amounts to saying that s is N-solvable iff s[N] £ [0 and s[1,...,N — 1] has at
least as many 2’s as 0’s; and the second criteria states that s is 1-solvable iff s[1] # O and
s[2,...,N] has at least as many 2’s as 0’s. A direct proof of this simpler statement is given
in the Appendix [1].

» Lemma 9. For every configuration s of length N,
1. s is N-solvable iff s[N] # 0O and > (s[i]—l) > number of 0’s in s[1,...,N —1]

1<i<N—1:
s[ilg{o,0}
2. s is 1-solvable iff s[1] #0 and  _ (s[i] — 1) > number of 0’s in s[2,...,N]
2<i<N:
S[i]é{oﬂ}
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Figure 2 An example of a valid sequence of captures that clears the board. The initial configuration
corresponds to the string 0212112100. In other words, the red, blue, and green rooks denote rooks
with zero, one, and two moves left, respectively. Notice that this is not a unique solution — there are
several other valid sequences that also successfully clear this board.
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Proof. We argue the first claim since the proof of the second is symmetric. For the forward
implication, we show (using induction on m) that the following statement is true for all

integers m > 0: For every configuration s such that > (s[i] — 1) =m, if s is N-solvable,
1SIKN—1:
s[ilg{o,00}

then s[N] # [0 and m > number of 0’s in s[1,...,N — 1]. For the base case, consider m = 0.

The only configurations s with > (s[ﬂ — 1) = 0 are the ones for which s[1,...,N —1]
IKIKN-1:
s[ilg{o,00}
is a string over {0, 1,[0}. Among these, the only N-solvable configurations s are the ones for
which s[1,...,N — 1] is a string over {1,} and s[N] # . Thus, the statement is true for

m = 0.

As induction hypothesis, assume that the statement is true for all integers 0 < m < p,
for some integer p > 0. Let’s argue that the statement is true for m =p + 1. Let s be a

configuration such that > (s[i] — 1) =7p +1 and s is N-solvable. As s is N-solvable,
1Ki<N—1:
slilg{o,ld}
there exists a sequence of moves (say o) that clears the corresponding 1 x N board with
the final rook at the cell (1, N). Clearly, s[N] £ 0. Let t > 1 be the least integer such
that the capturing piece in t'™ move of o is not a 1-rook. Let § denote the configuration

corresponding to the board obtained after t** move of 0. Note that § is N-solvable and

> (8[il —1) € p. Using induction hypothesis, p > number of 0’s in §[1,...,N —1].

IIKN—1:
slilg{o,00}
Also, number of 0’s in §[1,...,N — 1] > number of 0’s in s[1,...,N — 1] — 1; this is because
the number of 0-rooks at the cells (1,1),...,(1,N — 1) doesn’t decrease in the first t — 1
moves of o, and decreases by at most 1 in the t'" move of . Therefore, we have p +1 >

number of 0’s in s[1,..., N — 1], as desired.

For the converse, we show (using induction on m) that the following statement is true for all
integers m > 0: For every configuration s such that s[N] #£ O, if s[1,..., N — 1] has exactly

moO0’sand ) (slil—1) >m, then s is N-solvable.
1<i<N—1:
s[ilg{o,00}
For the base case, consider m = 0. Let s be a configuration such that s[N] # [0 and

s[1,...,N —1] has no 0’s. For each 1 <1 < N, the cell (1,1) in the corresponding board
is either empty or has a 1/2/.../d-rook. The board can be cleared with the final piece at
(1,N) by making the 1/2/.../d-rooks (if any) to capture rook at the cell (1,N). Thus, s is
N-solvable. So, the statement is true for m = 0.

As induction hypothesis, assume that the statement is true for all integers 0 < m < p, for some
integer p > 0. Let’s argue that the statement is true for m = p + 1. Let s be a configuration

such that s[N] # 0, s[1,...,N — 1] has exactly (p+1) 0’sand Y} (slil—1) >p+1.

1I<N-1:

s[ilg{o,00}
While there is a 1-rook in the cells (1,1),..., (1, N —1) that can capture a 0-rook in the cells
(1,1),...,(1,N—1), make such a move. Once no such move can be made, there exist integers

1 < u< v < N such that s[u,...,v] = 00 or slu,...,v] = xOM0, for some A > 0 and
some 2 < x < d. In the former (resp. latter) case, the x-rook at the cell (1,v) (resp. (1,u))
can be made to capture the 0-rook at the cell (1,u) (resp. (1,v)), and the configuration
corresponding to the resulting board is N-solvable by induction hypothesis. |

We conclude that a configuration s of length N is solvable iff there exists 1 < £ < N such
that
slf] # 0,
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Figure 3 An instance of Red-Blue Dominating Set.

> (s[i] — 1) > number of 0’s in s[1,...,{— 1], and
1<i<l—1:
s[i]¢{0,00}

> (s[i]—l) > number of 0’s in s[{ +1,..., N].
+1<AKN:
s[i]¢{0,00}

3.1.2 2-Dimensional boards

» Theorem 2 (Intractability for rooks). GENERALIZED SoLO CHESS (E,2) is NP-complete.

Proof. We reduce from the RED-BLUE DOMINATING SET problem. Let J:= (G = (N U
T,E); k) be an instance of RED-BLUE DOMINATING SET. Recall that G is a bipartite graph
with bipartition N and T; and J is a YES-instance if and only if there exists a subset S C N
of size at most k such that every vertex v in T has a neighbor in S. We let the vertices
in N be denoted by [n] and let T :={vy,...,v;,}. We refer to the vertices of N and T as
non-terminals and terminals, respectively.

We first describe the construction of the reduced instance of GENERALIZED SOLO CHESS
(E,2) based on J. The game takes place on a (2m+1) x (n+m+ k+ 1) board. The initial
position of the rooks is as follows:

Non-terminal rooks. For all 1 € [n], we place a 1-rook in the cell (2m + 1,1).

Terminal rooks. For all j € [m], we place a 1-rook in the cell (2j — 1,¢) for each £ such

that £ € N(vj).

Collector rooks. For all j € [m], we place a 2-rook in the cell (2j — 1,n+j).

Cleaner rooks. For all £ € [k], we place a 2-rook in the cell (2m + 1,n+ m + ().

Target location. Finally, we place on 1-rook at the location (2m + 1,n+m+k+ 1).

The non-terminal and terminal rooks correspond to the non-terminal and terminal vertices
in the graph, and their relative positioning as described above captures the graph structure.
The rooks on every row are expected to “clear to one of the columns corresponding to a
vertex they are dominated by”, and the other auxiliary rooks added to the board above help
with clearing the board after this phase, as explained further below.

Forward Direction

Assume that J is a YES-instance. That is, there exists S C [n] of size at most k such that

every vertex in T has a neighbour in S. For each j € [m], let f(j) denote an arbitrary but

fixed i € S such that i € N(v;). Consider the following sequence of moves (c.f. Figure 5):
For each j € [m] and each £ € N(vj) \ {f(j)}, the terminal 1-rook at the cell (2j —1,¢)
captures rook at the cell (2j — 1,f(j)).
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” ¢ =t =t
V2 =t =g =
= =g =qp=t

Figure 4 The reduced instance of GENERALIZED SOLO CHESS played by rooks corresponding to
the instance shown in Figure 3.

= For each j € [m], the collector 2-rook at the cell (2j — 1,n +j) captures the rook at the
cell (2j —1,f(j)), and the 1-rook at the cell (2j — 1,f(j)) so obtained then captures rook
at the cell (2m + 1, f(j)).

= For each i € [n], if there’s a non-terminal 1-rook at the cell (2m + 1,1), then it captures
one of the 0-rooks at the cells (2m + 1,f(1)),..., (2m + 1, f(m)).

Now, the board is empty except for the top row which has one 1-rook at the target location, k

cleaner 2-rooks and at most k 0-rooks, i.e., the O-rooks at the cells (2m + 1,f(1)),...,(2m +

1,f(m)). Using Lemma 9, this corresponds to a (n + m + k + 1)-solvable configuration.

Reverse Direction

Suppose the reduced instance is solvable. We first make some claims about any valid sequence
of s moves, denoted by o, that clears the board. Let ps((x,y),{) denote the type of the piece
at the location (x,y) after £ moves of o have been played. If (x,y) is an empty location after
¢ moves of o have been played, then we let ps((x,y),¢) = 0.

Let ¢(t) denote the set of locations (2m+ 1, ) occupied by red rooks on the top row of the

board after t moves of o have been made, in other words: ((t) ={i | po((2m + 1,1),t) = Z}.

> Claim 10. |U1<t<s C(t)| < k.

Proof. Let i€ |J ((t). That is, there exists 1 < t < s such that the cell (2m + 1,1) has
1<t<s
a 0-rook after t moves of 0. Let p > t denote the first move of o that empties the cell

(2m + 1,1). Note that the cell (2m + 1,1) has a 1-rook before the p*"™ move of o. So, there

exists t < g < p such that a 2-rook captures 0-rook at cell (2m 4+ 1,1) in q*" move of o.

Also, such a 2-rook is one among the k cleaner rooks. Thus, | U C(t)| < k. <
1<t<s
Let j € [m] and i € [n]. We say that i is an j-affected index if there is some t € [s] such
that the rook at position (2j — 1,1) was captured by the green rook originally at position
(2j — 1,n +j) in the t*™ move of o.
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(a) All blue rooks on rows corresponding to blue vertices clear row-wise to the dominating set vertices.
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(b) The green rooks on the rows corresponding to blue vertices “pick up” the red rooks and capture along
the column to get the rook on the top row.
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(c) All blue rooks on the top row capture one of the red rooks leaving us in a solvable state with the two
green rooks making the final captures.

Figure 5 All illustration of the forward direction.

> Claim 11. For a fixed j € [m], there is exactly one i € [n] such that i is a j-affected index.

Proof. Let j € [m]. Let t € [s] denote the first move of o wherein the collector 2-rook (say g)
at the cell (2j —1,n+j) either gets captured (Case 1) or captures (Case 2).

In Case 1, a terminal 1-rook in the row 2j — 1 captures g in the t'" move of 0. After the
t'" move of o, the cell (2j — 1,n +j) has a 0-rook. Let p > t denote the first move of o
that empties the cell (2j —1,n+j). Note that the cell (2j — 1,1+ j) has a 1-rook before the
p-th move of 0. So, there exists t < q < p such that a 2-rook captures 0-rook at the cell
(2j —1,n +j) in q*" move of 0. However, no such 2-rook exists on the board. Thus, Case 1
does not arise.
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In Case 2, there exists i € [n] such that g captures the rook at the cell (2j — 1,1) in the t'"
move of 0. Note that 1 is the unique j-affected index. <

We call 1 € [n] an affected index if there is some t € [s] such that the position (2m + 1,1)
was occupied by a red rook after t moves of o.

> Claim 12. If i € [n] is a j-affected index for some j € [m], then 1 is also an affected index.

Proof. Assume that i € [n] is a j-affected index for some j € [m]. That is, there exists t € [s]
such that in the t'" move of o, the collector 2-rook at the cell (2j —1,n+j) captures the
rook at the cell (2j —1,1). After the t*™ move of o, the cell (2j — 1,1) has a 1-rook. Let
t’ > t denote the first move of o wherein the 1-rook at the cell (2j —1,1) either gets captured
(Case 1) or captures (Case 2).

In Case 1, a 1-rook captures the 1-rook at the cell (2j — 1,1) in the move of 0. After
the t*" move of o, the cell (2j —1,1) has a 0-rook. Let p > t’ denote the first move of o that
empties the cell (2j — 1,1). Note that the cell (2j — 1,1) has a 1-rook before the p*" move of

0. So, there exists t' < q < p such that a 2-rook captures 0-rook at the cell (2j — 1,1) in the
qth

In Case 2, in the t"*™ move of o, the 1-rook at the cell (2j — 1,1) captures either rook at the
cell (2m+1,1) (Subcase 1), or rook at the cell (2j' —1,1) for some j’ € [m]\ {j} (Subcase 2).

t/th

move of 0. However, no such 2-rook exists on the board. Thus, Case 1 does not arise.

In Subcase 1, the cell (2m + 1,1) has a 0-rook after t’ moves of 0. So, i is an affected index.

In Subcase 2, the cell (2j’ —1,1) has a 0-rook after t’ moves of 0. Let p’ > t’ denote the first
move of o that empties the cell (2j — 1,1). Note that the cell (2j’ — 1,1) has a 1-rook before
the p’t" move of 0. So, there exists t’ < q’ < p’ such that a 2-rook captures 0-rook at the
cell (2j’ —1,1) in the q’*" move of o. Note that this 2-rook is the collector rook at the cell
(2j’ —1,n+j"). After the q’*™ move of o, the cell (2j’ —1,1) has a 1-rook. Let t” > q denote
the first move of o wherein the 1-rook at the cell (2j’ — 1,1) either gets captured or captures.
As before, it can be argued that in the t”*F move, the 1-rook at the cell (2j’ —1,1) is not
captured, and it either captures rook at the cell (2m + 1,1) (in which case we are done), or
rook at the cell (2j” —1,1) for some j” € [m]\{j,j’} (in which case the collector 2-rook at the
cell (2" —1,n+3j") captures the O-rook at the cell (2j” — 1,1) in some subsequent move).
Repeatedly using the same argument proves the claim. <

Consider S:={{ | £ € [n] and { is an affected index}. We claim that S is a dominating set
in G. Indeed, consider any non-terminal vertex v; € B. If 1 is the unique j-affected index,
then 1 is also an affected index, and therefore belongs to the dominating set. Note that

i € N(vj) by construction, therefore we are done. Also, by Claim 6, we have that [S| < k.

This concludes the proof in the reverse direction. |

3.2 Queens

Recall the reduction described for the proof of Theorem 2. It is straightforward to check that
if we introduce a large number — say O(n?) many — empty columns between every pair of
consecutive columns of the original board, then we can also replace the rooks by queens and
the reduction will remain valid. This is because the vast empty spaces essentially “nullify” the
additional diagonal moves of the queens, thereby reducing their behavior to being equivalent
to rooks. Also note that the operation of adding empty columns does not affect the forward
direction: all pairs of mutually attacking locations remain mutually attacking even after this
modification.
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We now present the following strengthening of this hardness result. Recall that in the
previous reduction, we had pieces that were allowed to capture twice and others that were
allowed to capture once. With queens, however, we can adapt the reduction so that every
piece is allowed to capture twice, bringing this closer to the spirit of traditional solo chess:

» Theorem 3 (Intractability for queens). GENERALIZED SoLO CHESS (W,2) is NP-complete
even when all queens are allowed to capture at most twice.

We note that this result can be achieved by replacing every queen that is allowed to
capture once with the following pair of queens that are both allowed to capture twice, with
the queen on the bottom right replacing the “original” 1-queen:

w
w

Figure 6 The reduced instance of GENERALIZED SOLO CHESS played by rooks corresponding to
the instance shown in Figure 3.

We call the queen on the top-left corner the supporting queen, and refer to the other
queen as its partner. Once all the 1-queens of the reduced instance are replaced in this way,
we ensure that all supporting queens have the property that they do not attack any queen
other than their partner. To achieve this, we shift them north-west along their diagonals
appropriately if required. Note that the fact that the supporting queens attack only their
partners forces that they are never captured by another piece, and that they capture their
partner queen, which replaces the partner with a 1-queen, as desired. We omit the details
here.

3.3 Pawns

In contrast to the cases of Rooks, Queens and Bishops, we show that GENERALIZED SOLO
CHESS(8,2) can be decided by an algorithm whose running time is linear in the number of
pawns when all pawns are allowed to capture at most twice in the initial configuration.

» Theorem 4 (A characterization for pawns). GENERALIZED SOLO CHESS (&,2) with n white
pawns, each of which can capture at most twice, can be decided in O(n) time.

We denote by V the set of squares that initially contain a pawn, and by t the location of
the target pawn. For u,v € V, we say that u is a parent of v (and that v is a child of u) if u
is diagonally one capture move away from v. We denote by C(v) the children of v. Further if
two vertices share a common parent, then we call them siblings of each other. We say that
an initial configuration of pawns is super-solvable if the final capturing pawn has one move
remaining after the final capture.

» Definition 13. We say that a configuration of GENERALIZED SOLO CHESS(&,2) with

position set V is a skewed binary tree rooted at square v if the following are true:

(a) All pawns are on squares of the same color.

(b) All squares in V\ {v} are below v.

(c) Every square in V\{v} has a parent in V.

(d) Every non-empty row below v contains exactly two squares of V with a common parent,
except possibly the last (bottom-most) row which may contain one square of V.
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Figure 7 The initial configuration in this example is a skewed binary tree. Note that it is
super-solvable because the shown sequence of moves clears the board such that the final pawn has
one move left - here, the 2-pawn at the cell (2,4) does the final capture and becomes a 1-pawn.

g

.ﬁ .%-
. .

Figure 8 The initial configuration in this example is not a skewed binary tree. Note that it is not
super-solvable because any sequence of moves that clears the board (one such sequence is shown) is
such that the final pawn has no moves left.

The following result is the key to the characterization of solvable instances.

» Lemma 14. An instance of GENERALIZED SOLO CHESS(£,2) is super-solvable if and only
if the initial configuration is a skewed binary tree.

In particular, we can verify in linear time whether a given configuration of GENERALIZED
SoLo CHESS(&,2) is super-solvable, as each of the properties (a)-(d) can be checked in linear
time.

We first observe that pawns can capture only in the forward direction (upward for W
pawns) and only pawns on squares of the same color. Thus, we shall henceforth assume
that all pawns are on squares of the same color and also that there is exactly one pawn
whose initial square has the largest y co-ordinate; we shall call this the target pawn. If our
assumption is false, we report the instance as a NO instance, and do not proceed further.
We now describe the proof of Lemma 14.

Proof. We prove the claim by induction on |V|. If |[V| = 1, the instance is trivially super-
solvable and also satisfies the definition of a skewed binary tree. If |V| = 2, then the instance is
super-solvable if and only if the unique vertex v € V\ {t} is a child of t, and this configuration
is a skewed binary tree.

Thus, we suppose that [V| > 3. The necessity of conditions (a), (b), (c) has already been
noted so that in the rest of this section we consider only configurations that satisfy (a), (b)
and (c). We shall now establish the necessity of condition (d).

Firstly, we claim that t has two children. Suppose not, and let v be the only child of t.
Then the last capture must be from v to t, and the last but one capture must be at v, so
that the token at v has only one move remaining. When this token captures at t, it has zero
moves left after the capture.

Thus, we can assume that t has two children u,v. Consider a valid super-solvable sequence
0; let u be the vertex from which the final capture was made at t. Then the token at u must
have had two moves left before this capture and therefore no capture in ¢ was ever made
at uw. Also, the last but one capture in 0 must have been made from v to t. This implies
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that the sequence obtained from o by excluding the final capture is a valid super-solvable
sequence for V\ {t,u}. Since V\{t, u} is super-solvable, by the induction hypothesis, property
(d) holds; i.e. there are exactly two squares in every row below v, except possibly for the
bottom-most non-empty row. This shows that property (d) holds for V as well.

For the other direction, suppose that a given configuration with V as the set of squares
is a skewed binary tree, and that |V| > 3. Then by definition t has two children u,v and
it must be the case that one of u,v, say u has no child outside C(v). Then V \ {u, v} must
induce a skewed binary tree; let o be a super-solvable sequence for V' \ {u,v}. Appending the
captures u — t,v — t yields a super-solvable sequence for the original configuration.

This completes the proof of Lemma 14. <

We now proceed to the proof of Theorem 4.

Proof. Let V be the initial position set and t be the target square.

Case 1: t has a single child x. In this case, we note that the instance is solvable if and only if
the configuration restricted to V \ {t} with x as target is super-solvable, which by Lemma
14 in linear time.

Case 2: t has two children x,y, and one of them, say y, has no child other than the common
child of x,y. In this case, the instance is solvable if and only if the configuration restricted
to V\ {t,y} with target x is super-solvable, which we can verify in linear time.

Case 3: t has two children x,y, and |C(x) U C(y)| = 3; let C(x) UC(y) ={a,b,c}. Then
the instance is solvable if and only if there’s a re-labeling u,v,w of {a, b, c} such that
C(u) U C(v) € C(w) and the configuration restricted to V \ {t, x, y, u, v} with target w is
super-solvable. This can again be verified in linear time.

This completes the proof of Theorem 4. |

4 Graph Capture Game

We introduce a game on graphs, which generalizes GENERALIZED SoLO CHESS(%),d) when
played on undirected graphs and GENERALIZED SOLO CHESS(&,d) when played on directed
graphs.

GRrAPH CAPTURE(G,d):

Input: A graph G = (V,E).

Output: Decide if there exists a sequence of token captures (along the edges of
G) such that only a single token remains, with the constraint that each token may
capture at most d times.

Our main result in this section is the following:

» Theorem 5 (Intractability of the graph capture game). GRAPH CAPTURE(2) is NP-complete
on undirected graphs and DAGs even when every token can capture at most twice.

In the rest of this section, we say that G is solvable if GRAPH CAPTURE(G,?2) is a
YEs-instance.
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4.1 Undirected Graphs

We prove Theorem 5 for undirected graphs.

A rooted tree is a pair (T,v), with v denoting the root vertex; given a rooted tree (T,v)
and a vertex w of T, we denote by C(w) the children of w, and by T(w) the subtree rooted
at w.

» Lemma 15. A graph G = (V,E) is solvable if and only G contains a vertex v and a
spanning tree T such that every internal node of the rooted tree (T,v) has a leaf neighbor.

We prove Lemma 15 in the Appendix [1] and now turn to a proof of part (a) in Theorem 5.

Proof. We proceed by a reduction from COLORFUL RED-BLUE DOMINATING SET. Let
(G = (RWB,E); k) be an instance of COLORFUL RED-BLUE DOMINATING SET with color
classes V7 U --- U Vy. We assume, without loss of generality, that [Vi| =--- = |Vi| =n and
let Vj == {vgj), e ,v;”}. We begin by describing the construction of the reduced instance.
We begin with the graph G and make the following additions:

0) and make it adjacent to v . We call

1. For all i € [n] and j € [k], introduce a vertex u;
these the red partner vertices.

2. For each uim, introduce two neighbors pgj) and qim, and finally, introduce two vertices
ng) and s(j) that are adjacent only to p(j) and q(j) respectively. In other words, each um
has two degree two neighbors, which in turn have a leaf nelghbor each. Combined, we
refer to the collection of vertices S; := {u1 ,p1 ,ql , EJ ,sU) i€ ]} as the selection
gadget for Vj.

3. For all j € [k], introduce a vertex w; and make it adjacent to u ) for all i € [n]. We call
these vertices the guards.

4. We finally add a vertex * that is adjacent to all the red partner vertices. We also add the

vertices p and ¢ and the edges (x,p) and (p, q).

We let H denote the graph thus constructed based on G and ask if H has a rooted
spanning tree for which every internal note has a leaf neighbor. This completes a description
of the construction. We briefly describe the intuition for the equivalence of the two instances.
Because of the vertices selection gadgets, the partner vertices are forced to find their leaf
neighbors in any spanning tree among the red vertices that they partner — except for at most
one, which can use the guard vertex as the leaf neighbor. This leads to one red vertex being
left “free” of being a leaf neighbor to a partner vertex in each color class, hence we have a
selection of one blue vertex per color class. Since these are the only possible entry points for
the blue vertices into the spanning tree, the vertices “chosen” by the selection gadget must
correspond to a dominating set. We now formalize this intuition.

Forward Direction

Assume that (G = (RWB,E); k) is a YES instance. That 15 there exist 1 <j1,...,jk <N
such that every vertex in B has a neighbour in {Vn e, Jk } For each b € B, let f(b)
denote an arbitrary but fixed £ € [k] such that v e N(b).

Let T denote the spanning tree of H with the following edge set:

T contains all the edges of H [{*,p, qQJURU U Sz:|
1<I<k

For every b € B, T contains the edge {V]q((f))),b}

For every 1 < £ < k, T contains the edge {uj(f),we}
Note that every internal node of the rooted tree (T, *) has a leaf neighbour.
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o @) o o o o

Figure 9 An illustration of the reduction from Red-Blue dominating set. The solid lines belong
to the spanning tree. The “spikes” from the selection gadget are omitted for clarity.

T S1 T2 S Ty Si Tn Sn
(] ® [ ) [ ) ® ® ® °
P1l lql le lq2 pll qu pnl lqn
N NN N\

v

Figure 10 A schematic showing the selection gadget for one color class.
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Reverse Direction

Assume that there exist r € V(H) and a spanning tree (say T) of H such that every internal
node of the rooted tree (T, ) has a leaf neighbour. In T, x is adjacent to p and at least one
red partner vertex. So, x has at least two neighbours in T. Thus, * is not a leaf node of
(T,r).

The only neighbours of x in T are p and some vertices of {ug) |1 <<k, 1<1i<n}. Note
that p is not a leaf node of (T,r) as p has two neighbours, i.e., x and q, in T. Also, for every
1<{<kandevery 1 <i<n, uim is not a leaf node of (T, r) because ugu has at least two
neighbours, i.e., pg) and qi((%)’ in T. Therefore, * has no leaf neighbours in (T,7). So, * is
not an internal node of (T,r). Hence, we have r = *.

Let 1 < £ < k. The only neighbours of wy in T are some vertices of {uf |1 <1< n} As
argued earlier, no red partner vertex is a leaf node of (T, 7). So, w¢ has no leaf neighbours in
(T,r). Thus, wg is not an internal node of (T,r). That is, wy is a leaf node of (T,r). Hence,
there exists a unique integer (say g(¢)) in [n] such that ug{)“ is the neighbour of wy in T.

Now, it suffices to show that every vertex in B has a neighbour in {vgl()l), . ,vgﬂc)}. Let

b € B. There exist 1 <{ <k and 1 <1< n such that vg) € Nt(b). As shown above, uie)
ge) is an internal node of (T,r). So, uge) has a leaf

()

i

is not a leaf node of (T,r). That is, u

neighbour (say z) in (T,r). No vertex of V(T)\ {pé“7 qge),*, Wg,vg)} is adjacent to w; ’ in

T. Note that
(£)

(€) (¢

p; ~ is not a leaf node of (T,7) as pgz) has at least two neighbours, i.e., u; ’ and r; ), inT.
) .
,in T.

1 1

4 4

qg) is not a leaf node of (T,r) as qge) has at least two neighbours, i.e., u; ) and s:

(€)

If vg) is a neighbour of ugm in T, then v; " is not a leaf node of (T,r) because in such a

case, vg) has at least two neighbours, i.e., b and ugu, inT.
Therefore, we have z = wy and hence, i = g(£).

This completes the argument for equivalence. |

4.2 Directed Acyclic Graphs

We now prove Theorem 5 for DAGs.

Proof. Let @ be a given instance of 3-SAT, with clauses Cy, Cs, ..., Cy, over variables
X1,X2y 00y Xne

We construct the following directed graph G = (W, E), where W = UUV U{w} U =
{up, ug, . umtand Vo= (v, vo, ..., v JUVT vd o vITUVE VE L VE L Intuitively, each

vertex in U represents a clause and vertices v.T,viF correspond to an assignment of T,F

1
respectively to xi.
The edge set is E = E; U Eg, where

E; :{(ui,v]-T)lxj eC,l<i<mlgjig<n}
U
{(u, V)% € Ci,1<i<m1<j<n}

and

Er={v{,vwli<i<n} U {vwli<i<n} U {vi,wll<i<n}

5:17
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U Uz us Uy

Figure 11 The DAG corresponding to the set of clauses C; = {x1, 7x2,x3}, Co = {x2,x3},C3 =
{=x1,%2,7x3}, C4 = {—x2, ~x3}. The blue edges indicate the captures in Phase 1 for the satisfying
assignment x; =T, xo =T, x3 = F.

The graph G can clearly be computed in time polynomial in the input size (number of
variables and clauses).

It thus suffices to show that ¢ is satisfiable iff G is solvable.

First, suppose that @ is satisfiable and let A be a satisfying assignment for ¢. Consider
the following sequence of captures:

Phase 1: For each i € {1,2,...,m}, let j be the least index such that Cj is satisfied by x;j or
—x;j in A. Then the token at u; captures the token at va (if x; =T) or the token at ij
(lf Xy = F)

Phase 2: Now, for each 1 € {1,2,...,n}: if x; = T, then the token at viT captures the token
at vi, and then the token at viF captures the token at vi; otherwise vi = F and the token
at v'f captures the token at x, and then the token at viT captures the token at vy;

Phase 3: For each i € {1,2,...,n}, the token at v; captures the token at w.

We show the validity of this capture sequence by considering each phase.

At the end of Phase 1, there are no tokens remaining at any of the u;s, and further for

T F

v} has 1 move remaining, and

each i € {1,2,...,n}, exactly one of the tokens among {v; ,v{

the other token has 2 moves remaining.

In Phase 2, the token among {viT,v'iE } with 2 moves remaining is the last to capture at
vi; thus at the end of Phase 2, there is one token at each v; with one move remaining and
further one more token at w; there are no other tokens.

In Phase 3, it is thus feasible for each token at v; to successively capture at w and finally
there is exactly one token remaining - at the vertex w.

Now, we suppose that G is solvable; let o be a valid sequence of captures. We claim that
for each 1 € {1,2,...,n}, captures were not made at both viT and viF in 0. For contradiction,
suppose that captures were made both at v;r and at v'f ; let the last of these captures be

at move t; of 0. Since all the tokens in {v!, v} must make their last capture at v;, there

177
must be a capture from {viT,viF} to z that appears in o later than t; let the last such capture
happen at move ty > t;. After move tg, there are no tokens in {viT,viF} and the token at v;
has zero moves remaining; this implies that the token at v; cannot be cleared, which is the
desired contradiction.

Now, let I be the set of indices i1 such that a capture was made at viT. Consider the
assignment: for each 1 € {1,2,...,n}, we set x; =T if i € I and x; = F otherwise. We claim
that every clause is satisfied by this assignment. Let C; be an arbitrary clause; if the token

at u; made a capture at some va, then C; contains the literal x;, and j € I so that x; =T
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and Cj is satisfied. If the token at 1y made a capture at some v}c , then C; contains the literal
—x;. Also, by the claim in the previous paragraph, no capture was made at va7 therefore
j ¢ I and x; =T, so that C; is satisfied. <

5 Concluding Remarks

We introduced GENERALIZED SOLO CHESS based on the Solo Chess game that is played
on a 8 x 8 board. We focused mostly on scenarios that involve only pieces of one type, and
showed that determining if a given instance is solvable is intractable when playing with rooks,
bishops, and queens; while it is tractable for pawns. While we leave the case of knights open,
we do show that a natural generalization of GENERALIZED SOLO CHESS restricted to knights,

GRAPH CAPTURE, is hard even on DAGs and general undirected graphs. We also show that

solvable instances of GENERALIZED SOLO CHESS played by rooks only admits an efficient

characterization when the game is restricted to one-dimensional boards.
Our work leaves open a few concrete open problems, which we enlist below:

1. What is the complexity of GENERALIZED SOLO CHESS played by rooks only, for the
special case when all rooks are allowed to capture at most twice initially? Notice that if
we replace rooks by queens in this question, we show NP-completeness (Theorem 3).

2. What is the complexity of GENERALIZED SOLO CHESS played by pawns only, when the
pawns are allowed at most a designated number of captures? Recall that if all pawns can
capture at most twice, we have an efficient characterization (Theorem 4).

3. What is the complexity of GENERALIZED SOLO CHESS played by knights only?

There are also several broad directions for future work, and we suggest some that we think

are both natural and interesting problems to consider:

1. For NO-instances of GENERALIZED SOLO CHESS, a natural optimization objective is to
play as many moves as possible, or, equivalently, leave as few pieces as possible on the
board. It would also be interesting to find the smallest d for which a board can be cleared
if every piece was allowed to capture at most d times. These are natural optimization
versions that we did not explicitly consider but we believe would be interesting to explore.

2. Does GENERALIZED SOLO CHESS become easier if the number of pieces in every row or
column is bounded? Note that the reduction in Theorem 2 can be used to show that
GENERALIZED SOLO CHESS(E, 2) is NP-complete even when the number of rooks per
column is a constant, if we initiate the reduction from an instance of Red-Blue Dominating
Set where every red vertex has constant degree.

3. What is the complexity of GENERALIZED SOLO CHESS when played on boards of dimension
M x N, where one of M or N is a constant? It is not hard to generalize Theorem 1 to
2 x N boards, however, a general result — say parameterized by one of the dimensions —
remains open.

4. Variants of GENERALIZED SOLO CHESS where the pieces are limited not by the number of
captures but the total distance moved on the board, or the distance moved per step, are
also interesting to consider. Note that if the distance moved per step is lower bounded,
then this forbids “nearby captures”, while if it is upper bounded, then “faraway captures”
are disallowed.

5. It would also be interesting to restrict the number of capturing pieces instead of the
number of captures per piece. For example, it seems intuitive to posit that if we are
permitted only one capturing piece, then it must trace a “Hamiltonian path” of sorts
among the pieces on the board.
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Rolling Polyhedra on Tessellations

Figure 1 Screenshot from an interactive 3D rolling visualization program on the subject of this
paper [3].

Acknowledgements Part of this work appeared in the first author’s Master’s Thesis. Part of this
work was done at the 1st and 2nd Virtual Workshops on Computational Geometry (2020 and
2021). The authors would like to thank all participants of those workshops. Renders of prisms and
antiprisms are by Robert Webb’s Stella software. Other polyhedron renders are from Wikimedia

Commons under Creative Commons Attribution license.

1 Introduction

Dice rolling puzzles feature a cube rolling around on the square grid. The goal is often to
match a given face with a given tile. Such puzzles were popularized by Martin Gardner
[11, 12, 13], and are featured in a variety of computer games, such as Korodice (Gameboy,
1990), Super Mario 64 (Nintendo 64, 1996), Dewvil Dice (Playstation, 1998), Legacy of
Kain: Soul Reaver (Playstation, 1999), Legend of Zelda Oracle of Ages (Gameboy Color,
2001), Bombastic (Playstation 2, 2002), Legend of Zelda Spirit Tracks (Nintendo DS, 2009),
Rubek (Windows, 2016), Roll The Box (Mobile, 2021), and The Last Cube (Windows,
2022); see Figure 2. Cube rolling puzzles have been occasionally generalized to rolling
other polyhedra on other grids. For example, computer game HyperRogue (Windows, 2015)
involves hexagonal and heptagonal tiles in a hyperbolic space, and in its 2021 update, rolling
tetrahedron, octahedron, or icosahedron dice on a triangular lattice; see Figure 2e. With
various constraints, rolling puzzles can be NP-complete [6, 18], and when rolling multiple
shapes, they can be PSPACE-complete [5, 16].

Previous work has explored rolling a polyhedron to reach any position and orientation in
the plane [8, 4]. Akiyama [1] defined a frame-stamper as a regular polyhedron that covers the
whole plane with a tiling by rolling the polyhedron in arbitrary directions, and a tile-maker as
a polyhedron whose unfoldings all tile the plane. A more relaxed definition in [2] determines
all tessellation polyhedra — regular-faced convex polyhedra that have at least one unfolding
that tiles the plane.

1.1 Rolling Rollers

We formalize the concept of rolling any convex 3D polyhedron P on any tessellation T,
which we imagine as lying in the (horizontal) zy-plane; refer to Figure 3. Recall that a
plane tessellation is a partition of the plane into a collection T" of polygons called tiles [15].
We restrict our attention to edge-to-edge tilings where two touching tiles share either a
whole polygon edge or a vertex. When a tile of T is congruent to a face of P, we call them
compatible.


http://www.software3d.com/Stella.php
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Figure 2 Cube and dice-rolling puzzles in video games.
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Figure 3 A polyhedron and a tessellation with compatible faces are required for rolling.

To start, we place the polyhedron P on the tessellation so that one of its faces rests on
(i-e., coincides exactly with) a compatible tile. In a rolling step, we rotate the polyhedron
about one of the edges of its resting face, until another face rests on the tessellation. For the
roll to be wvalid, we insist that, at the end of the motion, the adjacent face of P across the
rolling edge rests on another (adjacent) compatible tile. See Figure 4 for an example.

Valid sequences of rolls form paths in the rolling graph of possible configurations; see
Section 2.2 for a formal definition. If the rolling graph contains a connected component that
includes every tile of T, then we call the polyhedron a plane roller (denoted by the M icon)

for that tessellation and starting position, as it can eventually roll to cover the entire plane.

Other possibilities are @8 hollow-plane rollers, which cover a constant fraction of the plane
while leaving holes; & band rollers, which cover an infinite area that is a vanishing fraction
of the plane; and ® bounded rollers, which are confined to a finite area.

1.2 Our Results

In this paper, we develop a polynomial-time algorithm to identify whether a polyhedron is a
plane roller, hollow-plane roller, band roller, or bounded roller for a given plane tessellation and
starting location, provided the tessellation is periodic meaning that its tiles have two linearly
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|

"' Figure 4 Valid and invalid rolls, marked by green checks and red Xs respectively.

independent translational symmetries. The running time of our algorithm is polynomial in
the number of faces of the polyhedron and the number of tiles in the fundamental domain of
the the two translational symmetries. We essentially take advantage of the periodicity of the
tessellation, coupled with the structure of the polyhedron, to prove that the resulting rolling
graph also has a periodic structure that we can exploit.

We then apply this algorithm to completely categorize a natural finite set of interesting

"/ Figure 5 Screenshot of the rolling-pair reachable-area classification interactive table available at
https://akirabaes.com/polyrolly/resulttable/.
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special cases, compiled on the website https://akirabaes.com/polyrolly/resulttable/
shown in Figure 5. For polyhedra, we consider the reqular-faced convex polyhedra where every
face is a regular polygon: the 5 Platonic solids [9], the 13 Archimedean solids [10], the 92
Johnson solids and their chiral variations [14, 17, 19], the n-prisms for n € {3,5,6,8, 10,12},
and the n-antiprisms for n € {4,5,6,8, 10,12}, as higher-sided polygons cannot be used to
tile the plane [15]. For periodic plane tessellations, we consider all “k-uniform” tilings for
k > 4, as listed in [7]. A plane tessellation is k-uniform if its tiles are regular polygons and it
is k-isogonal, meaning that there are k equivalence classes of vertices (called orbits) formed
by applying all transformations in the symmetry group to the vertices. All k-uniform tilings
are periodic [15].

Including chiral variations of polyhedra that have one, these cases consist of 129 polyhedra
and 131 tilings. For each case, we tried all possible starting positions to find the largest
connected reachable area, thereby characterizing every pair of polyhedron and tiling as
plane roller, @ hollow-plane roller, band roller, or bounded roller. See Figures 6, 7, 8, and
9 for examples of each respective type, and Tables 2, 3, and 4 in Appendix A for a condensed
view of all results.

The figures and tables use standard notation for k-uniform tilings based on vertex types
[7]. The type of a regular-polygon tile is the number of its sides, and the type of a vertex is
the clockwise cyclic order of tile types that surround a vertex. For a k-uniform tiling, there
are finitely many vertex types, so the tiling can be labeled by the list of vertex types, with
duplicate names differentiated by a subscript. See Figure 10.

The rest of this paper is organized as follows. Section 2 describes our algorithm. Section 3
shows how the results from this algorithm can also assist puzzle designers. Section 4 describes
our implementation.

2  The Algorithm
2.1 Tilings

First we review some basics about tilings, following Griinbaum and Shephard [15].

There are uncountably infinitely many tilings, even when restricted to edge-to-edge tilings
with regular polygons. For example, the tiling in Figure 6b can be modified to follow any
binary sequence of triangle and square rows, and there are uncountably many such binary
sequences. We restrict our attention to periodic tilings T', which have two linearly independent

-,

translational symmetries (say, @ and b) that act on the tiles of 7. What this means is that

-,

applying the translation vector @ (respectively b) on any tile ¢ € T' produces another tile of T'.

The symmetry group generated by @ and b decomposes the set of tiles of T into equivalence
classes, also called orbits, where two tiles are in the same class if there is a symmetry in the

group (an integer linear combination i@ + j b for some i,j € Z) that matches one to the other.

The tiling can then be described by a fundamental domain for the action of these
symmetries. Figure 11 shows an example. The fundamental domain is a connected subset of
the tiles (one tile for each orbit), which glued together form a supertile S. We denote by |S|
the number of tiles in the supertile. The supertile (and the tiles that compose it) can be
repeated by the action of the two translations to obtain the original tiling. As S tiles the
plane isohedrally by translation, its boundary can be decomposed into six pieces, denoted by
A, B,C, A, B,C, counterclockwise, where A, B, and C are translations of A by the action of
a, B by the action of g, and C' by the action of b— a, respectively. See Figure 16 (right).
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(a) hexagonal antiprism on (35;3%.6)2. (b) J87 on (3%;3%.4%),.

Figure 6 Examples of reachable-area patterns generated by ™ plane rollers which can reach the
entire plane.
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Figure 7 Examples of reachable area patterns generated by @® hollow-plane rollers which reach a
constant fraction of the plane while leaving holes.
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(a) J90 on (3%.4%;3%.4.3.4);. (b) snub cube on (3%.42;3%2.4.3.4),.

Figure 8 Examples of reachable areas patterns generated by & band rollers which reach an
infinite area but a vanishing fraction of the plane, being restricted to an infinite band.

A copy of the supertile can be identified by its integer coordinates in the basis formed by
the translation vectors @ and b. That is, the copy (7, ) corresponds to the application of the
translation i@ + jb to S. An individual tile ¢ of the tiling T’ can then be uniquely identified
by ((4,7), s): the coordinates (4, j) of the copy of S it is located in and its representative tile
s within S. See Figure 12(a),(c)
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(a) J44 on (3%.4%;3%.4.3.4)1. (b) J22 on (3% 3".6)-.

Figure 9 Examples of reachable area patterns generated by ® bounded rollers which are restricted
to a finite area containing the start.
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3-uniform tiling.

(a) (32.4.3.4)
1-uniform
(archimedean).

tiling

(b) (3%:3%.4.3.4)
2-uniform tiling.

Figure 10 Examples of the naming convention of uniform tilings in the standardized “isogonal
vertex type” notation, each point belonging to an orbit describing vertex types around it.

A tiling T can also be represented by its (infinite) dual graph G,' where each tile is
a vertex of G, and two vertices are connected by an edge if the two corresponding tiles
are adjacent. When T is a periodic tiling, it is represented by the dual multigraph Gg of
its supertile S. For tiles touching the boundary of S, we connect them to the tiles to which
they are adjacent in the other copy or copies of the supertile, and mark the dual edges by
A,B,C,A,B, or C depending on the portion of the boundary they cross, see Figure 12(b).
The graph Gg is in fact the quotient of G by the action of the symmetries @ and b (also
denoted Gr/{d, 5}) The graph G can be used to navigate the tiling T" or the graph G by
updating the representation ((4,j), s) when moving to an adjacent tile. The tile s is updated
to the adjacent tile s’ in Gg, and the coordinates (i, j) need to be updated when crossing a
boundary of the supertile S, using the edge marks.

2.2 Rolling Graphs

Let P be a convex polyhedron in R3. We denote by |P| the number of faces of P. The face
structure of P can be represented by its dual graph Gp where each face of P is a vertex in

Gp and two vertices are connected by an edge if the two corresponding faces of P share an
edge (Figure 14).

L This can be a multigraph, with parallel edges when two tiles are adjacent on more than one edge; see
Figure 13.
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(o) Skewed

(a) The periodic tiling and ~ (b) The supertile = 1.\ system

the supertile described on it. ~ graph. over supertiles. Figure 13 Tiling where a
multigraph is necessary; see
Figure 12 Infinite tiling to supertile multigraph. tiles 3 and 2.

For a face f € P or a tile t € T, denote by |f| and [¢| its number of edges. We number
the edges of every face f of polyhedron P counter-clockwise starting from one arbitrary edge
that will serve as the reference edge. We do the same for every tile ¢ of the supertile S (and
the corresponding tessellation T'), with one edge being the reference edge, and the next edges
being numbered in clockwise order. A face f € P is compatible with ¢ € T in the orientation
o if | f| = |t| and the counter-clockwise sequence of edge lengths and angles in f starting
at edge number o matches exactly the clockwise sequence of edge lengths and angles in ¢
starting from the reference edge. This means that f can be placed in the plane with edge
number o overlapping with the reference edge of ¢ so that the two polygons overlap perfectly.

We say polyhedron P rests on the tile t in the tessellation T with its face f at orientation
o if f and t completely overlap and the edge number o of f overlaps the reference edge of .
The position of P is then represented by the tuple (¢, f,0). When T is a periodic tiling with
supertile S, and t = ((4, ), s) for s € S, then this position can be written as ((¢,5), s, f,0)
(Figure 15). The state associated with this position is the tuple (s, f,o).

The rolling graph Gpr for P and T is an infinite graph whose vertex set is the set of all
possible positions (¢, f,0), and two nodes are connected by an edge if there is a valid roll
between them. The positions adjacent to (¢, f,0) can be easily explored by using the dual
graphs of P and T. We write (t, f,0) ~ (t', f',0") if the two positions are connected by a
path in the rolling graph. In that case, we say that the two positions are reachable from one
another.

&5 saaa A442
SR AbAA
N . “AA A

[6][s ][]
Figure 14 Dual graph of a

pyramid with information about the Figure 15 A vertex of the rolling graph is composed of
relative orientations of its faces. ((4,7), (tile, face, orientation))
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Figure 16 By finding the symmetry vectors in a connected component, we can describe a compact
representation of the connected component’s periodic graph (over the rolling graph).

2.3 Symmetries of Rolling Graphs

In this section, we show that any large connected subgraph of the rolling graph G'p 7 has a
translational symmetry. We start by bounding the number N of possible states (s, f,0) of a
rolling graph.

N = Z Z(number of compatible orientations between f and s)
ses fep

<D D IfI<els|pl.

seS fepP

The last inequality is by Euler’s formula. Note that the rolling graph in itself has the
same translational symmetries as the tiling T', because the validity conditions are the same
in both positions.

» Fact 1. If<(i7j)7507f0700> has a valid roll to <(i+7;17j+j1),317f1701>7 then <(i/7j,),807f0700>
has a valid roll to {(i' 4+ i0,5" + jo), s1, f1,01) for all ', j' € Z.

This however does not mean that the same symmetries apply to the connected components
of the rolling graph, that is, ((4, 5), S0, fo,00) and ((¢’, j'), s0, fo, 0o) might not be reachable,
even if the connected components are infinite. However, the following lemma shows that if
two distinct reachable positions have the same state, then we obtain a translational symmetry
on their connected components in the rolling graph.

» Lemma 1. If ((3,j),s, f,0) ~ ((i +u,j +v),s, f,0), then for all {(¢',7"),s, f',0) ~
(027, 5, £,0), we have {(7.7"), ', ~ (' +u, 7 +0), 8, /).

That is, ua + vb defines a translational symmetry on the connected component of
((,4), s, f,0) in the rolling graph.

Proof. Write the path from ((¢',j'), s, f',0') to ((i,4), s, f,0) in the rolling graph as ((i, j), s,
f7 O> = <(i+7:07j+j0)7 50, an 00>7 ce <(Z+'Lka]+.7k>> Sk fk:7 Ok> = <(i/7j/>’ 317 f170/>' Since7 by
Fact 1, <(i+u—|—ie,j—|—u+jg), se, fe,00) to ((i+u—|—i4+1,j+u—|—je+1), Se41, for1, Og+1> is a valid
roll, we can construct the path ((¢',5"), s, f', 0"y = ((i + ik, 7+ k), Sk, frs Ok )y« o, ((i + 90,5 +
Jo), Sos fo,00) = (4, 4), s, f, 0) ~ {(i+u, j+v), s, f,0) = ((i+utig, j+v+jo), So, fo,00), - .- {(i+
Uik, J+ 0+ Jr)s Sk, fr,06) = (0" +u,j +v), f,0) <
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» Lemma 2. There is an algorithm which, in O(|P||S|) time either finds a base of the
translational symmetries of the connected component of the rolling graph containing a given
position ((i,7), s, f,0), or decides that the connected component is of finite size.

Proof. Run a depth first search on the rolling graph starting from ((, j), s, f,0), for N steps.
If the depth first search stops, then the connected component containing ((, j), s, f,0) in
the rolling graph is of finite size. Otherwise, by the pigeonhole principle, we have found two
positions with the same state. By Lemma 1, we obtain a translational symmetry ua + vb of
the connected component.

Next, factor the rolling graph by this symmetry vector, that is, Gpr/{ud + vb} identifies
any pair of positions ((4,7), s, f,0) and ((i + ku,j + kv), s, f,0) for all k € Z. Run again a
depth first search in Gpr/{ud + vb} starting from ((i, §), s, f, 0), for N steps. If the depth
first search stops, then there are only a finite number of orbits for this symmetry vector, and
so only one translational symmetry in this connected component. Otherwise, again by the
pigeonhole principle and Lemma 1, we have found a second linearly independent translational
symmetry u/@ + v'b for this connected component. <

The algorithm in the above lemma finds a basis of two, one or zero translational symmetries
in the connected component. We can factor the rolling graph by those symmetries by
identifying symmetric tiles. As the symmetries are multiples of the supertile symmetries, this
is easily done by performing a coordinate change from the (7, j) coordinates to coordinates
in the new basis. When there is no symmetry, the algorithm identifies a bounded connected
component in Gpr. When there is one symmetry vector, the algorithm finds a finite number
of orbits for this symmetry. Finally, when there are two symmetry vectors in the basis, the
factored rolling graph Gpr/{ud+ vl?, u'd—+v' 5} is of size polynomial in N and the connected
component can be explored completely by depth first search. In all three cases, a compact
representation of the connected component has been found. In the two latter cases, it takes
the form of a polynomially-sized fundamental domain and one or two translational symmetry
vectors.

2.3.1 Results on reachability

The arguments above show how to identify the connected components in the rolling graph.
In order to find the set of tiles that can be reached from a starting position, we only need to
look at the first part (4, 7), s of the positions in the connected component. Because this is a
projection, it preserves the symmetry vectors. We obtain the following classification for the
reachable area.

~
» <
P x +

¥ v

\

\

Figure 17 No vector, one vector, two vectors but fail to cover, two vectors and full cover.

If the rolling graph does not have symmetry vectors, the reachable area is bounded and
P on T starting at (t, f,0), is a ® bounded roller.



A. Baes et al.

If the rolling graph only has one linearly independent vector, the reachable area is a band
and P on T starting at (t, f,0) is a & band roller.

If the rolling graph has two linearly independent vectors, the reachable area extends
infinitely in all directions. If not every tile ¢ is present in the reachable supertiles, the
reachable tiles forms a plane with holes and P on T starting at (¢, f, o) is a @& hollow-plane
roller.

If every tile t is present in the reachable supertiles, the reachable tiles cover the entire
plane and P on T starting at (¢, f,0) is a B plane roller.

3 Toolbox for Puzzle Designers

As mentioned in the Introduction, a rolling puzzle game typically includes a playing area with
obstacles and/or paths, a polyhedron that will navigate that space, a starting position, and
a goal position. The starting and/or goal positions sometimes specify a specific polyhedron
face to match with a specific tile, in addition to just the tile. Once a polyhedron and a
tessellation have been selected, there are several additional properties that can facilitate
puzzle design. The rolling graph defined above can also be used to compute them.

3.1 Properties
Unused tiles in the playing area

The first and most crucial piece of information is provided directly by the reachability
computed in the previous section. For the puzzle to be solvable, the goal tile should be in
the reachable area from the start tile. Also, when the game includes interactive elements,
they cannot not be usefully placed on tiles that cannot be reached (except as misdirection).

Unused faces on the polyhedron

For face-matching puzzles, determining which faces of the polyhedron are usable in the
puzzle is also important. Some faces might not be compatible with the tiling, while others
might not appear in the connected rolling graph despite being compatible. For example,

puzzle designers should avoid placing the goal on a polyhedron face that cannot be rolled on.

Unused faces of the polyhedron can easily be detected while computing the reachable area.

Guaranteed starting points

When using a plane roller, we must select a starting state (tile, face, and orientation) from
which the polyhedron can reach the whole plane. This task can be simplified by selecting a
guaranteed starting point, which has the property that every tile in the plane is reachable
from that starting tile, no matter what polyhedron face and orientation is used as a starting
state.

» Definition 3. Given a plane roller pair (P,T), a tile t € T is a guaranteed starting point
if, for every f € P with |f| = |t|, and for every o € f, we have P on T starting at {t, f,0) is
a plane roller.

» Definition 4. Given a rolling pair (P,T) with reachable area RA, a tilet € T is a
guaranteed starting point if, for every f € P with |f| = |t|, for every o € f, and for every
t; € RA, there is a face f; and orientation o; such that (t, f,0) ~ (t;, fi, 0;).

6:11
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Which faces reach which tiles: face-completeness

In a face-matching rolling puzzle game, the objective is to reach a specific tile with a specific
face on the polyhedron (often marked by a different color). In some cases, not every face of a
particular shape can reach every tile. When using a polyhedron/tiling pair in a puzzle game,
it can help to know which face can reach which tile. We can track specific tiles that can be
reached by every compatible face during our computation. We call such tiles face-complete
tiles. Refer to Figure 18.

» Definition 5 (face-complete tile). A rolling pair (P,T) with starting state (to, fo,00)
has a face-complete tile t € T if all compatible faces of the polyhedron can roll on t with
some orientation, that is, for all f € P with |f| = |t|, there is an orientation o such that

<ta fv 0> ~ <t0v f07 00>~
» Definition 6 (face-orientation-complete tile). A tile is face-orientation-complete if it can be

visited with all compatible faces in every orientation within a connected component.

3.2 Puzzlemaker’s Reference Image

We can combine all of the above results into one image that serves as a reference point for
puzzlemakers. Figure 18 shows an example. This image allows one to select a tessellation/
polyhedron pair very easily depending on the puzzle’s needs.

J1 Plane roller on 2u05 (376;3/2x4x3x4) .. . ... .

Figure 18 Puzzlemaker’s reference image: Left: polyhedron and its used faces (net). Right:
Tiling and tile properties.

B Reachable

B with all faces

[ in all orientations

@ guaranteed starting point

The full set of reference images can be found on our website: https://akirabaes.com/
polyrolly/.

4 Implementation

The roller classification algorithm was implemented in Python 3.8 and is available on
GitHub at https://github.com/akirbaes/RollingPolyhedron/. It uses NumPy and
SymPy for creating a minimal linearly independent base, and pygame to produce images. The
implemented version performs further manipulations, such as aggregating connected rolling
graph states grouped by supertile into superstates, to lower processing time and avoid dealing
with individual tile positions calculations by only looking at the supertile cartesian coordinates.
The result table can be consulted at https://akirabaes.com/polyrolly/resulttable/.


https://akirabaes.com/polyrolly/
https://akirabaes.com/polyrolly/
https://github.com/akirbaes/RollingPolyhedron/
https://akirabaes.com/polyrolly/resulttable/
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We defined the supertiles of each tiling by hand in a custom periodic tessellation drawing

tool, as we lacked code to automatically convert vertex-type orbits (isohedral, edges) notation
to dual-graph supertile (isogonal, tiles) notation, but we did have a list of n-uniform

tessellation drawings [7].

An interactive 3D visualization of the rolling logic was implemented by Université libre

de Bruxelles Computer Science Bachelor students [3]; see Figure 1.

5

Open Problem

It is left to determine, for the 87 polyhedra out of the 129 considered that did not generate a
plane roller with the 131 considered tilings, if there exists a tiling on which they would be
able to roll on the 2D plane.

Table 1 Considered polyhedra which did not generate a plane roller with considered tilings.

dodecahedron, truncated cube, truncated octahedron, rhombicuboctahedron,
truncated cuboctahedron, snub cube, snub cube ¢, icosidodecahedron,
truncated  dodecahedron,  truncated icosahedron, rhombicosidodecahedron,

truncated icosidodecahedron, snub dodecahedron, snub dodecahedron c, j2, j4,
i, j6, j7, 39, j18, j19, j20, j21, j23, j24, j25, j32, j33, j34, j35, j36, j38, j39, j40, j41, j42,
j43, j45, j45 c, j46, j46 c, j47, j47 c, j48, j48 c, j49, j52, j53, j55, jb7, jb8, j59, j60, j61,
j63, j64, j66, j67, j68, j69, j70, j71, j72, j73, j74, 75, j76, j77, j78, j79, j80, j81, j82,
j83, j91, j92, triangular prism, pentagonal prism, hexagonal prism, octagonal prism,
decagonal prism, dodecagonal prism, pentagonal antiprism, octagonal antiprism,

decagonal antiprism, dodecagonal antiprism
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A Result Tables

tetrahedron with (35) e cube with (4*) e octahedron with (3°) e icosahedron
with (3°) e truncated tetrahedron with (3°;3%.6°) e cuboctahedron with
(32 4.3.4), (35;32.4.3.4), (3%.4%;32.4.3.4)1, (3%;32.4.3.4;32.4.3.4) e j1 with (32.4.3.4),
(3%;32.4.3.4), (3%.42;32.4.3.4)1, (36,33.42,32.4.3.4), (3%;32.4.3.4;32.4.3.4) e j3 with
(39:32.4.3.3.4;3.42.6), (3%,32.4.3.4;3.4%2.6;3.4.6.4) e j8 with (4%), (3%;33.42;4%)1,
(36,33.42;,44)3, (35:33.4%,32.4.3.4;4%) e j10 with (39), (3%;3%.4%)1, (35;33.42)2,
(3%;32.4.3.4), (35;33.42;32.4.3.4), (3%;35;33.42)1, (3%;3%;33.4%)2, (3%;3%.4%,3%2.4.3.4;4%) e
j11 with (3%) @ j12 with (35) e j13 with (3°) e j14 with (35;33.42)1 e j15 with (3%;3%.42)1
e j16 with (3%;,3%.4%)1 e j17 with (3%) e j22 with (3%;3%.6)1, (3% 3%.6;3.6.3.6)2,
(3%,34.6;3.6.3.6)3, (35:35:31.62) e j26 with (32.4.34), (3%.4%;3%2.4.3.4)2,
(36;32.4.3.4;3%.4.3.4) o j27 with (3%.4%), (33.4%32.4.3.4)1, (35;33.4%;32.4.3.4),
(33.4%;32.4.3.4;32.4.3.4) o j28 with (33.42), (3%.42;4%4")1 e j29 with (32.4.3.4),
(3%,32.4.3.4;32.4.3.4) e j30 with (33.42) e j31 with (32.4.3.4), (35;32.4.3.4;32.4.34)
j37 with (4%) e j44 with (35;32.4.3.4;3%.4.3.4), (33.42;32.4.3.4;32.4.3.4) e j44 chiral
with (39;32.4.3.4;3%2.4.3.4) e j50 with (35), (35;3%.4%)1, (3%;33.42)2, (3%;32.4.3.4),
(3%;3;3%.42)1, (35;35;33.42)2, (35;33.42;32.4.3.4; 4%) e j51 with (35) e j54 with (3.4.6.4)
e j56 with (3.4.6.4) e j62 with (3°) e j65 with (3.6.3.6) e j84 with (3%) e j85 with (3°),
(3%;3%.42)1, (3°;3%.4%)2, (3%;32.4.3.4), (35;35;33.42)1, (3°;3°;3%.42)2, (3°;33.42;33.42)1,
(36;33.4%;33.42)2, (36;33.42;32.4.3.4;4%) e j86 with (3°), (3%;3%.4%)1, (35;33.4%)2,
(36;32.4.3.4), (35;33.4%;32.4.3.4), (35;33.4%;4%)1, (3%;3%.42;4%)2, (35;35;33.42)1,
(36;35:33.4%)2, (39;33.4%;3%2.4.3.4;4%) e j87 with (3%), (3%;3%.42)1, (35;3%.42)2,
(3%,32.4.3.4), (35;35;33.42)1, (3%,3%,3%.42)2, (3%;3%.4%,32.4.3.4;4*) e j88 with
(36 ), (36,33.42)1, (35;33.4%)2, (3%;3%.42;32.4.3.4), (3%;3%.42;4M)1, (35;33.4%;4%)2,
(30;35:33.4%)1, (39;35;3%.4%)2, (3%;33.4%;33.4%)1, (3%;3%.42;3%.42)2 e j89 with
(36 ) (3%;3%.42)1, (3%;3%.4%)2, (35;32.4.3.4), (3%,3%.42;32.4.3.4), (3%;3%.4%;4%)3,
36:33.4%;4%4)4, (35,36,33.42)1, (35;35:33.42)2, (3%;3%.4%;33.42)1, (35;33.42;3%.42)2
. 390 with (3%), (3%;3%.4%)1, (3%;3%.4%)2, (3%;32.4.34), (3%;3%.4%;32.4.34),
(36;3%.42;44)1, (3%;3%.4%;4%)2, (35:35:33.42)1, (36;36;33.42)2, (36;33.42;33.42)1,
(35;33.42; 33 42) , (35:32.4.3.4;3%.4.3.4), (35;3%.42,32.4.3.4;4*) e square antiprism
with (33.42) e hexagonal antiprism with (3*.6), (3%;3%.6)1, (3%;3%.6)2, (3%.6;32.62),
(3%:34.6;32.62)2, (35;3%.6;3.6.3.6)1, (3%;3%.6;3.6.3.6)2, (3%;3%.6;3.6.3.6)3, (3%;3%;3%.62),
(3%;3%.6;3%.6), (3%.6;3%.6;3.6.3.6)1, (3%.6;3%.6;3.6.3.6)2, (35;3%.6;32.6%;3.6.3.6),
(3%.6; 32.6%; 32.62; 3.6.3.6)

Table 2 ¥ Plane-roller polyhedra and tilings (42 polyhedra and 145 pairings).
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tetrahedron (x7) e octahedron (x7) e icosahedron (x7) e truncated tetrahedron (x12)
e cuboctahedron (x4) e truncated cube e truncated octahedron (x10) e
rhombicuboctahedron (x8) e truncated cuboctahedron (x6) e snub cube (x13)
e snub cube chiral (x12) e truncated icosahedron (x4) e rhombicosidodecahedron (x4)
e truncated icosidodecahedron (x5) e snub  dodecahedron (x5) e
snub dodecahedron chiral (x4) e j1 (x6) e j3 (x8) e j7 (x5) e j8 e jl0 (x15) e
jl1 (x6) e j12 (x7) e j13 (x7) e j14 (x15) @ j15 (x15) e j16 (x15) e j17 (x7) @ j18 (x7) @
j19 (x4) @ j22 ¢ j26 (x2) e j27 (x13) e j28 (x8) @ j29 (x2) e j30 (x6) e j31 @ j35 (x11) e
j37 (x3) @ j38 (x7) e j44 (x6) e j44 chiral (x5) e j45 (x2) e j45 chiral (x2) e j49 (x8)
® j50 (x16) e j51 (x7) e j53 (x6) e j54 (x14) e j55 (x10) e j56 (x16) e j57 (x14) e
j62 (x4) e j65 (x3) e j66 e j72 (x4) e j74 (x10) e j75 (x6) e j76 (x4) e j78 (x4) e
j79 (x6) e j81 (x4) e j84 (x7) e j85 (x16) e j86 (x16) e j87 (x18) e j88 (x18) e j89 (x20)
e j90 (x16) e triangular prism (x12) e hexagonal prism (x18) e octagonal prism
e dodecagonal prism (x4) e square antiprism (x5) e hexagonal antiprism (x2) e
dodecagonal antiprism (x2)

Table 3 ¥ Hollow-plane-roller polyhedra and tilings (76 polyhedra and 588 pairings).

tetrahedron (x35) e cube (x41) e octahedron (x35) e icosahedron (x35) e
truncated tetrahedron (x34) e cuboctahedron (x3) e truncated octahedron (x15)
e rhombicuboctahedron (x43) e snub cube (x7) e snub cube chiral (x8) e
truncated icosahedron (x13) e rhombicosidodecahedron (x2) e snub dodecahedron (x7)
e snub dodecahedron chiral (x7) e j1 (x7) e j3 (x2) e j7 (x43) e j8 (x39) e j9 (x42) e
j10 (x29) e j11 (x31) @ j12 (x35) @ j13 (x35) @ j14 (x42) e j15 (x42) e j16 (x42) e j17 (x35)
o j18 (x43) @ 19 (x41) @ j20 (x42)  j21 (x42) ® j22 (x30) ® 123 (x30) ® }24 (x30) ® }25 (x30)
© j26 (x7) @ j27 (x17) ® 28 (x46) @ j29 (x4)  j30 (x15) @ j31 (x3) @ j35 (x44) ® j36 (x49) e
j37 (x46) @ j38 (x44) @ j39 (x47) @ j40 (x42) e j41 (x42) e j42 (x42) e j43 (x42) e j44 (x32)
e j44 chiral (x33) e j45 (x31) e j45 chiral (x32) e j46 (x32) e j46 chiral (x32) e j47 (x30)
j47 chiral (x30) e j48 (x30) e j48 chiral (x30) e j49 (x20)  j50 (x27) e j51 (x35) e j54 (x8)
o j55 (x10) e j56 (x15) e j57 (x11)  j62 (x17)  j65 (x25) ® j67 e j72 ® j73 (x5) ® jT6 e
77 (x5) ® j80 (x5) ® j84 (x35) e i85 (x32)  j86 (x27) ® j87 (x28) e j88 (x23) e j89 (x21)
© j90 (x25) e triangular prism (x45) e pentagonal prism (x42) e hexagonal prism (x36)
e octagonal prism (x42) e decagonal prism (x42) e dodecagonal prism (x43) e
square antiprism (x37) e pentagonal antiprism (x30) e hexagonal antiprism (x40) e
octagonal antiprism (x30) e decagonal antiprism (x30) e dodecagonal antiprism (x30)

Table 4 & Band-roller polyhedra and tilings (94 polyhedra and 2623 pairings).
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—— Abstract

Bee extinction is a great risk for humanity. To circumvent this ineluctable disaster, we propose

to develop beedroids, i.e., small UAVs mimicking the behaviors of real bees. Those beedroids are
endowed with very weak capabilities (short-range visibility sensors, no GPS, light with a few colors,
...). Like real bees, they have to self-organize together into swarms. Beedroid swarms will be
deployed in cuboid-shaped greenhouse. Each beedroid swarm will have to indefinitely search for
flowers to pollinate in its greenhouse. We model this problem as a perpetual exploration of a 3D
grid by a swarm of beedroids. In this paper, we propose two optimal solutions to solve this problem
and so to save humanity.
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1 Introduction

Bees are crucial for human beings. They have limited life span: only few weeks for the
workers and up to 6 years for the queen. The United Nation (UN) dedicates the 20th of May
as the “Bee day”.! UN says that “we all depend on the survival of bees”. Indeed, pollination
is a fundamental process for the survival of our ecosystems. Nearly 90% of the world’s wild
flowering plant species depend on pollination. There are more than 800 wild bee species,
seven of which are classified by the International Union for Conservation of Nature? (IUCN)
as critically endangered. A further 46 are endangered, 24 are vulnerable, and 101 are near
threatened. Many associations like Greenpeace® or World Wild Foundation* (WWF) are

protecting bees and helping to avoid their extinction.

https://www.un.org/en/observances/bee-day

https://www.iucn.org/
https://cdn.buglife.org.uk/2019/08/CM-EofE-bee-report-2019-Headlines-FINAL-CJ.pdf
https://www.greenpeace.org/static/planet4-international-stateless/2013/04/
66f3eb6b-beesindecline.pdf
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Our goal here is to anticipate by considering the worst-case: the bee extinction. We
propose solutions to save humanity using Beedroids. Beedroids are artificial bees that aim at
pollinating flowers autonomously in a greenhouse. Such a technology can also be used in
the Mars colonization. For example, the Biosphere 2 project® was meant to demonstrate
the viability of closed ecological systems to support and maintain human life in outer space.
Beedroids are mandatory to implement such a project since it is not yet clear whether bees
can survive interstellar trips.

A beedroid is a small autonomous Unmanned Aerial Vehicles (UAV) that mimics the
behavior of a real bee. A famous ability of bees is stigmergy, i.e., indirect communication
through the movements. Implementing stigmergy requires perfect synchronization and
visibility sensors. Consequently, we consider here a fully synchronous look-compute-move
model of computation [20] (FSYNC). As explained before, beedroids will be deployed in
greenhouses. So, each beedroid swarm will have to perpetually explore its greenhouse to find
flowers and pollinate them. We assume greenhouses are finite cuboids. Each of these cuboids
should be divided into cells to visit. Thus, we conveniently discretized a cuboid-shaped
greenhouse as a finite 3D grid. Then, the problem we have to solve consists in coordinating a
swarm of beedroids to perpetually explore a finite 3D grid in an exclusive manner (meaning
that two beedroids cannot occupy the same place simultaneously).

The world bee population constantly decreases but is still incredibly huge as compared
to human population. As a matter of facts, a bee colony is constituted of around 50 000
bees and in 2018 it was estimated that there were around 800 000 bee colonies in Canada
for example. So, to eventually be able to replace bees, we should (1) solve pollination of
greenhouses with the smallest possible number of beedroids and (2) also be able to massively
produced them. Consequently, the design of beedroids should be as simple as possible. Below
we list and motivate our main design choices.

Visibility Sensors: To maximize their flight time, we should save energy. Hence, the visibility
range of beedroids should be as small as possible.

Communication: As previously explained, the communication between beedroids, like real
bees, is indirect and based on positions of other bees. To vastly increase stigmergic
communication, without compromising production cost and energy consumption, we have
only endowed them with LED lights of a few colors that can be sensed by other beedroids
within a short distance.

Memory: Still to save energy and manufacturing costs, beedroids have no permanent memory,
except the color of their lights. They only have a short-term working memory allowing
them to compute a decision (destination and new light color) at each step of their
algorithm.

Orientation: Manufacturing costs and energy consumption also prevent us from endowing
beedroids with GPS. Instead, we use chirality facilities making beedroids able to distinguish
the two sides of a symmetrically reflexive panorama.

Contribution. To bring our own stone to the world safeguarding, we propose to implement
pollination into cuboid-shaped greenhouses using swarms of artificial bees, so-called beedroids.
Solving this problem requires to coordinate each swarm so that it perpetually explores a 3D
grid. As motivated before, we should both minimize the size of the swarm (i.e., the number
of beedroids that compose it) and the capabilities used by those beedroids.

5 https://biosphere2.org
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We first study the problem in the FSYNC model assuming the optimal visibility range
one. Under this assumption, we show that three beedroids are necessary and sufficient to
solve the problem. For the sufficient part, we propose an algorithm that requires only five

colors. Then, we look for another solution optimal in terms of colors, still in FSYNC model.

Actually, the solution we propose works with oblivious beedroids, i.e., beedroids endowed
with only one light color. This second solution requires five beedroids and visibility range
two.

In order to help the reader, online animations illustrating the behavior of our algorithms
are available for our two solutions: [3] and [4].

Roadmap. In the next section, we formally define the model, the beedroid skills, and the
problem to solve, so-called the Perpetual Flower Pollination Problem (PFPP). In Section 3,
we present the lower bound on the number of beedroids necessary to solve the PFPP under
visibility range 1. In Sections 4 and 5, we present two algorithms solving the PFPP. Section 6
is dedicated to related work. Finally, we make concluding remarks in Section 7. Due to the
lack of space, several proofs have been omitted.

2 Preliminaries

We consider a swarm of n > 0 beedroids (n.b., n is a priori unknown by beedroids) evolving
in a greenhouse modeled as a finite 8D grid of size S, x Sy x S, with S > n, Sy > n, S; > n,
i.e., an undirected graph G(V, E) where V = {(¢,4,k) : i €[0,5, —1],5 € [0,S, — 1],k €
[0,5. — 1]} and E = {{(i,4,k), (', 5/, k')} : |i—#|+|j—j'| +|k—K|=1}. Note that
coordinates are used for the analysis only, i.e., beedroids cannot access them.

We assume discrete time and at each round, the beedroids synchronously perform a
Look-Compute-Mowve cycle. In the Look phase, a beedroid gets a snapshot of the subgraph
induced by the nodes within distance ¢ € N* from its position. ® is called the wvisibility
range of the beedroids. The snapshot is not oriented in any way as the beedroids do not
agree on the orientation of any of the three axes of the coordinate system. However, it is
implicitly ego-centered since the beedroid that performs a Look phase is located at the center
of the subgraph in the obtained snapshot. Then, each beedroid computes a destination in its
local coordinate system (either Front, Back, Left, Right, Above, Below, or Idle) based on the
received snapshot only. Finally, it moves towards its computed destination.

We forbid any two beedroids to occupy the same node simultaneously. A node is occupied
when a beedroid is located at this node, otherwise it is empty. Beedroids have lights with
maybe different colors that can be seen by beedroids within distance ® from them. We
denote by CI the set of all possible colors (|Cl| = 1 corresponds to the case of oblivious
beedroids).

The state of a node is either the color of the light of the beedroid located at this node,
if it is occupied, or L otherwise. In the Look phase, the snapshot includes the state of the
nodes (within distance ®). During the compute phase, a beedroid may decide to change the
color of its light (of course, if |Cl| > 1).

In all our algorithms, we also prevent any two beedroids from traversing the same edge
simultaneously. Since we already forbid them to occupy the same position simultaneously,
this means that we additionally prevent beedroids from swapping their positions. Algorithms
verifying this property are said to be exclusive. However, to be as general as possible, we do
not make this additional assumption in our impossibility result.
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Configurations. A configuration C in a 3D grid G(V, E) is a set of pairs (p, ¢), where p € V
is an occupied node and ¢ € CI is the color of the beedroid located at p. A node p is empty
if and only if Ve, (p,c) ¢ C. We sometimes just write the set of occupied nodes when the
colors are clear from the context.

Views. We denote by G, the globally oriented view centered at the beedroid r, i.e., the
subset of the configuration containing the states of the nodes at distance at most ® from
r, translated so that the coordinates of r is (0,0). We use this globally oriented view in
our analysis to describe the movements of the beedroids (see, for example, Figure 1): when
we say “the beedroid moves Left”, it is according to the globally oriented view. However,
since beedroids do not agree on any axis, they have no access to the globally oriented view.
When a beedroid looks at its surroundings, it instead obtains a local view. To model this,
we assume that the local view acquired by a beedroid r in the Look phase is the result of
an arbitrary indistinguishable transformation on G,. Here, we assume that beedroids are
self-inconsistent, meaning that different transformations may be applied at different rounds.
An indistinguishable transformation consists of applying to each of the three axes (z-axis,
y-axis, and z-axis) passing through r a rotation (maybe different for each axis) picked in the
set {0, 5,7
Nevertheless, beedroids share a common chirality, which means that their local view is not

3%}, We denote by Z7T the set of all possible indistinguishable transformations.

a reflection (also called mirroring) of the global view. Having a common chirality allows a
beedroid to distinguish a local view from its reflection and so take different decisions in such
cases (e.g., chirality allows to discriminate Above from Below in Rule Ry of Figure 1). In
other words, having a common chirality allows, given two axes, to determine a third one
using the right-hand rule.

It is important to note that when a beedroid r computes a destination d, it is relative to
its local view f(G,), which is the globally oriented view transformed by some f € ZT. So,
the actual movement of the beedroid in the globally oriented view is f~1(d). For example,
if d = Above but the beedroid sees the 3D grid upside-down (f is the m-rotation along the
y-axis), then the beedroid moves Below = f~!(Above). In a configuration C, V¢ (i, j) denotes
the globally oriented view of a beedroid located at (i, 7).

A beedroid is said to be lost when it sees no wall and no other beedroids. Observe that
in this case, if the beedroid decides to move, the destination is entirely determined by the
choice of the transformation f done by the adversary.

Algorithm. An algorithm A is a tuple (Cl, Init,T") where Cl is the set of possible colors,
Init is a mapping from any considered 3D grid to a non-empty set of initial configurations
in that 3D grid, and T is the transition function Views — {Idle, Front, Back, Left, Right,
Above, Below} x Cl, where Views is the set of local views. When the beedroids are in
Configuration C, a configuration C’ obtained after one round satisfies: ((4,j,k),c’) € C’, if
and only if there exists a color ¢ € Cl and a transformation f € Z7T such that one of the
following conditions holds:
((i,4,k),c) € Cand f~toT o foVcl(i,j, k) = (Idle,c),

(i —1,j,k),c) e Cand f~toTo foVo(i—1,j,k) = (Right,c’),
((z—i—l ], k),e)e Cand f~1oTo fo V(i +1 ], k) = (Left, ),
((i,j —1,k),e) e Cand f~toTo foVc(i,j—1,k) = (Front,c),
(4,7 —|—1 k),c) € Cand f=*oT o foVc(i,j +1 k) = (Back, '),
((i,4,k —1),c) € Cand f~*oTo foVqo(i,j k—1) = (Above, '), or
((i,j,k+1),c) e Cand f~*oTo foVqs(i,j, k + 1) = (Below, ).
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We denote by C' ~ C’ the fact that C’ can be reached in one round from C (n.b., ~ is then
a binary relation over configurations). An ezecution of Algorithm A in a 3D grid G is then a
sequence (C;);en of configurations such that Cy € Init(G) and Vi > 0, C; ~ Cj41.

The Perpetual Flower Pollination Problem. An execution (C;);en in a 3D grid G = (V, E)
achieves the Perpetual Flower Pollination Problem (PFPP) in 3D grids if for every node
u € V and for every time ¢, there exists a time ¢’ > ¢ such that u is occupied in Cy .

An algorithm A that uses n beedroids solves the PFPP problem if, for every finite 3D
grid G = (V, E) of size at least n x n X n and every initial configuration Cy € Init(G), we
have every execution of A in G starting from Cy that achieves the PFPP.

An Algorithm as a Set of Rules. We write an algorithm as a set of rules, where a rule is a
triplet (V,d, c¢) € Views x {Idle, Front, Back, Left, Right, Above, Below} x Cl. We say that
an algorithm (Cl, Init, T) includes the rule (V,d,c), if T(V) = (d, ¢). By extension, the same
rule applies to indistinguishable views, i.e., Vf € ZT,T(f(V)) = (f(d),c). Consequently,
we forbid an algorithm to contain two rules (V,d,c) and (V',d’, ') such that V' = f(V) for
some f € IT.

As an illustrative example, consider the rule R; given in Figure 1. This rule is defined
for beedroids having a visibility range of one. This rule means that, when a beedroid sees
two beedroids, one with Color B on its left and the other with color green in front of it, then
the red beedroid is dictated to move Above and change its color to O. By extension, the
same rule applied if the view is rotated by 7 on the z-axis, but in that case, the destination
would be Below.

In the same figure, Rule R; is a rule where a black node represent a part of the outer
boundary of the 3D grid, that we call a wall in the remaining of the paper. In our algorithms,
we often define similar rules that apply regardless of the presence of a wall in some part of
the view. Thus, to avoid defining several time rules with very similar views, we propose a
notation to represent several rules in just one picture. For example, Rule R3 in Figure 1 has
one node hatched with vertical lines, which means that the rule applies regardless of the
presence of a wall located at this node. In practice, every rule that contains such vertical
(resp. horizontal) hatched lines, represents a set of rules obtained by replacing each of those
lines either by walls, or by empty nodes. For example, Rule R3 in Figure 1 is a concise
representation of Rules Ry and Rs.

Figure 2 shows an ambiguous rule. The beedroid has a symmetric view so that, depending
on the transformation f chosen by the adversary, the beedroid executing this rule moves either
above, or below. In the following, we represent in ambiguous rules all possible destinations
that can be dictated by the adversary.

Ry Ry R

®. ...... ....... O D ....... ® @ ...... ....... )

Figure 1 Examples of rules. Colored letters inside nodes indicate the color of the beedroids
occupying the nodes. The arrow indicates the destination and when a colored letter is given next to
an arrow, this means that the rule dictates the beedroid to switch to that color.
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py,x(R1) Pzm)2 © Py,x(R1)
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Figure 2 An ambiguous rule. Since the destination depends on the choice of the adversary, we
represent the rule abusively with multiple destinations, as illustrated on the right. Observe that if
blue beedroids had different colors (as in Figure 1) the rule would not have been ambiguous. Indeed,
having a common chirality allows the beedroid to determine a third direction, given two direction
obtained from the view.

3 Impossibility Result

In this section, we establish that there is no algorithm solving the PFPP problem in 3D grids
using two beedroids with visibility range one, whatever the finite number of available colors.

We first observe that in large enough grids, if beedroids travel a long distance without
seeing a wall, then they execute a periodic sequence of movements. Indeed, in our settings,
there are at most B = (‘g”) = w different views without wall, and so at most B
associated rules, where C1 is the set of available colors. Thus, if the two beedroids travel a
distance at least B without seeing a wall, then they are executing a periodic sequence of
movements. The definition of B, which depends on the algorithm, will be used throughout
this section.

The above observation is important to prove our impossibility results. Actually, the
outline of our proof is similar to the 2D case for luminous non-chiral robots studied in [19].
However, the existence of an axis of symmetry is replaced here by an axis of rotational
symmetry. Indeed, robots in a 2D grid that do not agree on a common chirality cannot
distinguish between two destinations that are symmetric with respect to an axis of symmetry.
Similarly, two beedroids that do not agree on a common coordinate system, but agree on
a common chirality, cannot distinguish between four destinations that are symmetric with
respect to a rotational symmetry. Nevertheless, the proof of the main argument, given in
Lemma 6 of [19], cannot be adapted directly since it is more complex than in the 2D case.

The overview of the proof is as follows. We proceed by contradiction assuming that an
algorithm solving the PFPP in 3D grids exists. Then, we show that once beedroids move far
away from the walls, their possible movements are restricted. In more details, they can only
move straight, otherwise they may not explore the whole grid. Next, we show that, once the
exploration has reached specific places, the beedroids must always stay close to at least one
wall (Lemma 6), leading to the final contradiction (Theorem 7).

The two first lemmas are technical results that are in particular used in the main lemma,
Lemma 6. The first one states that to explore the 3D grid, beedroids should stay neighbors
when they do not see any wall. The second one shows that if a beedroid by is lost, at distance
2 from a wall, and at distance at least 4 from other walls, then the other beedroid by should
be adjacent to a wall; moreover b; should wait for b which, in turn, should eventually leave
the wall to meet b;.

» Theorem 1. Let A be an algorithm solving the PFPP in 3D grids using two beedroids
under visibility range one. In a 3D grid of size at least 4 X 4 X 4, no execution of A reaches
a configuration where the two beedroids are lost.
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Figure 3 If beedroids are on a line L, the adversary can decide from which side of the square
cuboid the beedroids will exit. In particular, we can decide that the beedroids will exit toward Ri,
the blue area.

» Theorem 2. Let A be an algorithm solving the PFPP in 3D grids using two beedroids
under visibility range one. Consider an execution E of A in a 3D grid of size at least 8 X 8 X 8.
If E contains a configuration C where a beedroid by is lost, at distance 2 from a wall, and at
distance at least 4 from the other walls, then

by is idle, moreover

the other beedroid by is adjacent to a wall and is either idle or moves away from the wall

during the next step.

The two next lemmas are also technical results used in the proof of Lemma 6. They
establish important properties related to long-term travels during which beedroids see no
wall.

» Theorem 3. Let A be an algorithm solving the PFPP in 8D grids using two beedroids
under visibility range one. If there exists an execution that reaches a configuration C where
beedroids are at distance at least 2B from any wall and, from C, the beedroids perform a
periodic sequence of movements without ambiguous rules, then there is a straight line of the
3D grid that contains the two beedroids while none of them sees a wall.

» Theorem 4. Let A be an algorithm solving the PFPP in 3D grids using two beedroids
under visibility range one. There exists no execution that reaches a configuration C where
beedroids are at distance at least 2B from any wall and, from C, the beedroids perform a
periodic sequence of movements that includes an ambiguous rule.

The next lemma states that if two beedroids are on the same line and inside an area
that is rotationally symmetric, then they cannot break this symmetry without executing
an ambiguous rule (due to the lack of agreement on the coordinate system). Hence, the
adversary can decide on which side of the line the beedroids move. More formally, if beedroids
move out of the area through a node wu, then there exists an execution where the beedroids
move out of the area through another node v’ that is symmetric to u.

We need to define a few concepts beforehand; see Figure 3 for an illustration. Consider a
configuration C' where the two beedroids are located in some line of the 3D grid. We call
blurred area of L in C' any subset S of nodes including the two nodes where beedroids are
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located and such that the subgrid induced by S shapes a square cuboid for which L is an
axis of rotational symmetry. A blurred area is non-trivial if it does not contain all nodes
of the 3D grid. We denote by EH(S) the external hull of a blurred area S, i.e., the set of
nodes in V\S at distance one from a node of S.

» Theorem 5. Let A be an algorithm solving the PFPP in 3D grids using two beedroids
under visibility range one. Consider an execution E reaching a configuration C' where the two
beedroids are on the same line L. Let S be a blurred area of L in C. Let Ry C EH(S) such
that the union of Ry and its symmetrics w.r.t. the rotations around L is equal to EH(S). If
S is non-trivial and L is also an axis of rotational symmetry of EH(S), then there exists an
execution from C where a beedroid reaches EH(S) for the first time al a node u € Ry.

In particular, we can choose R; to be the union of one side and two triangles, as shown
in Figure 3 (page 7), where Ry and its symmetrics form the red external hull of the square
cuboid. Assume the square cuboid leans against a wall (as illustrated in Figure 5 if the gray
plan is a wall). Then, R; can consist only in one face and one triangle. By applying the
lemma, we obtain that there is an execution where the beedroids escape from the blurred
area either through a rectangular face or the top triangle.

The lemma below is the cornerstone of our impossibility result. It states that there are
configurations from which the two beedroids can remain forever at bounded distance from
walls. To see this, we need to define a few concepts beforehand. We say that a beedroid is
2-close if it is at distance at most 2B from at least two walls. We say that beedroids are in a
T-configuration if there is a line L of the 3D grid such that

L contains the two beedroids,

one of them is adjacent to a wall that is orthogonal to L, and

robots are at distance at most 4B from another wall.

» Theorem 6. Let A be an algorithm solving the PFPP in 3D grids using two beedroids under
visibility range one. Assume some execution E reaches at a given time t (i) a configuration
where a beedroid is 2-close or (ii) a T-configuration. Let C be the configuration of E at time
t. Then, there exists an evecution E' and a time t' > t such that

C is reached in E' at time t,

at time t' in E’, a beedroid is 2-close or the system is in a T-configuration, and

between time t and t' in E’, the beedroids remain at distance at most 4B from a wall.

Proof. We consider a 3D grid whose size is more than 8 B x 8 B x 8 B. The lemma otherwise
trivially holds: by definition of A, a beedroid is infinitely often 2-close; moreover every
beedroid is always at distance at most 4B from a wall in a 3D grid where at least one side is
less or equal to 8B.

Assume first that a beedroid is 2-close in a configuration C' (the case where beedroids are
in a T-configuration will be treated in the last paragraph of this proof). To explore the 3D
grid, the two beedroids must sometimes be not 2-close. Indeed, if a beedroid remains 2-close
forever, the other beedroid should in particular explore nodes at distance more than 2B + 2
from every wall. In this case, it would be lost and consequently, the adversary can make it
alternating between two nodes forever, making the exploration fail.

Consider now an execution E’ such that, whenever a beedroid executes an ambiguous
moves that could make it not 2-close, then the adversary chooses a destination that is 2-close.
This is possible because, in case of an ambiguous move, the adversary can chose among at
least 4 destinations and if one destination would make the beedroid not 2-close, then the
opposite destination (with respect to the beedroid’s position) would keep it 2-close (because
when a beedroids makes a move, only the distance to one wall increases).
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In E', let tg > t be the first time when no beedroid is 2-close. By assumption, at least
one beedroid that is 2-close at time ty — 1, say bs, makes an unambiguous move. To make

this unambiguous move, bs necessarily moves toward the other one, b; that is not 2-close.
So, at time tg — 1, only bs is 2-close, i.e., at distance at most 2B from two walls W7 and Whs.

Without loss of generality, at time tg, by is at distance 2B + 1 from wall W; and at distance

at most 2B from W5 (b is at distance more than 2B from other walls).

Since at time ty — 1, by is moving towards b1, then, at time ¢ty — 1, the two beedroids are
on a line parallel to the wall W5. Assume first that beedroids are not adjacent to Ws. Two
cases can occur (both cases are represented in Figure 4) (page 10).

Case (1): They remain on the same line parallel to W5, moving away from Wi, until a
beedroid is at distance 3B + 1 from Wj.

If they do so, since they traveled a distance B since ¢ty — 1, they are executing a periodic

sequence of movements, hence, they continue to move on the same line until reaching the

wall opposite to W (Lemmas 3 and 4), in a T-configuration, while remaining at distance
at most 2B from W5, and the lemma holds in this case.

Case (2): Before being at distance 3B + 1 from W, one or two beedroids move away from

the line they were traveling through.
These moves are necessarily ambiguous. If two beedroids moves away simultaneously,
we get a contradiction because the adversary can choose the destination so that the two
beedroids become lost (Lemma 1). So, only one beedroid, say by, moves away from the
line. Again, since beedroids cannot become lost (Lemma 1) and the destination of b is
chosen by the adversary, we can consider the case where the two beedroids end up, at
time t; > tp, in a line L orthogonal to Ws.

Consider now the case where the beedroids are adjacent to W5 at time tg — 1 when moving

away from Wj. Similar things occur.

Case (a): They perform a periodic movement while remaining adjacent to Wy and travel
along the wall (but not necessarily in straight line) until reaching another wall (so they
become 2-close), and the lemma holds in this case;

Case (b): a beedroid moves away from W5 and forms with the other beedroid a line L
orthogonal to W5 before being at distance 3B + 1 from W7y; or

Case (c): both beedroids move away from Ws (simultaneously or one after the other, as a
lost beedroid must wait the other beedroid, by Lemma 2) and they end up in a line L
parallel to Ws.

In this case, since they traveled at most B from ¢, they can travel again a distance at

most B before either performing a periodic movement (Case (1)) while staying at distance

2 from W5 ( and the lemma holds in this case), or making an ambiguous move to end

up in a line L orthogonal to W5 (Case (2)). In this latter case, the beedroids end up at

distance at most 4B from Wj.

So, the only cases that remains to consider are those where the beedroids are in a line L

orthogonal to Wy at distance at most 4B from Wj.

Consider the set of nodes Ry = R;e“'n9!e y Ririandle where RTC'M9° ig a rectangle of
nodes at distance 2B from the wall W and R 4 triangle of nodes at distance 2B from
Wy and at most 4B from W7, such that the union of Ry and its image by the three rotations
around L form the external hull of a square cuboid containing the two beedroids for which
(1) one face is at distance 1 from W5 and (2) L is axis of rotational symmetry; see Figure 5
for an illustration (page 10). Using Lemma 5, there exists an execution such that a beedroid
reaches R;.
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Figure 4 Position of the beedroids when ’94‘ . /'
they become not 2-close. \

Figure 5 Position of the beedroids if they
execute an ambiguous move after becoming not
2-close.

If a beedroid reaches RIEthyle, then a beedroid becomes 2-close and the lemma is proven.
If a beedroid reaches RY“™9'  then the beedroids have traveled a distance at least B without
seeing a wall, hence are executing a periodic sequence of movements. The sequence cannot
contain an ambiguous rule (using Lemma 4) because the beedroids are at distance at least
2B from any wall, so they are moving in a straight line (by Lemma 3), and they end up in
the wall opposite to W5 and reach a T-configuration, while remaining at distance at most
4B from Wj.

Now we consider that the beedroids are in a T-configuration in configuration C'. Then,
they are on a line L orthogonal to a wall, say W5, and at distance at most 4B from another
wall, say W7. Using a similar argument, we know that either the beedroids become 2-close,
or move in a straight line to the opposite wall until they reach a T-configuration (while
remaining at distance at most 4B from W). |

Using the previous lemma, we can now conclude.

» Theorem 7. The PFPP is not solvable using two beedroids under visibility range 1 and
any finite number of colors.

Proof. Assume that algorithm A solves the problem. Consider a grid of size 10B x 10B.
Since the beedroids explore the entire grid, there exists a round where a beedroid is 2-close.
By applying Lemma 6 repeatedly, we can construct an execution from there where beedroids
forever remain at distance at most 4B from a wall, so that nodes at distance more than 4B
from all the walls are not visited anymore, a contradiction. |

4 Visibility range one: Voneg

In this section, we address the PFPP using beedroids under visibility range one. We present
an algorithm, denoted by Voneg, that solves the PFPP using three beedroids endowed with
five colors. By Theorem 7, under visibility range one, Voneg is optimal with respect to the
number of beedroids. We encourage the reader to follow the overview of Vone? while looking
at the animations available online [3], published as an additional material.
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Figure 6 Initial configuration of the beedroids.

Figure 7 Overview of the journey
made by the exploring beedroids.

The 3D grid can be seen as a building with several floors. The overall idea of the proposed

algorithm is to make the beedroids explore the 3D grid floor by floor, as illustrated in Figure 7.

On a given floor, two beedroids will be in charge of exploring the floor line by line while the
third one will be used as a landmark to keep track of the exploration direction: it will either
designate the next line or the next floor to explore. Thus, the algorithm defines three main
roles for the beedroids using colors: Leader (L), Follower (F) and Landmark. We use three
different landmarks A, B, and C to distinguish different situations. Notice that a beedroid
can change its role several times during the execution.

Initially, beedroids respectively have colors C, C, and A, as shown in Figure 6. They are
aligned and one beedroid with color C should be adjacent to the two others. This pattern can
be arbitrary placed on the 3D grid. In that sense, the set of all possible initial configurations
is locally-defined [6]. Starting from any such locally-defined initial configuration, beedroids
first move towards a wall. If they are aligned along an edge of the 3D grid, they do so
while keeping their respective color. Otherwise, they first switch to the color sequence A,
L, F. Once a wall is reached, beedroids coordinate together to reach a particular kind of
configurations, denoted by C), in the following, which will correspond to the effective start of
the exploration. In other word, the initial prefix leading to a configuration C, occurs only
once. Then, the system periodically goes through Configurations C}, and all nodes are visited
between two occurrences of them in the execution.

A configuration is of type C), if the beedroids are located on two adjacent lines ¢; and
l;4+1 of the 3D grid such that ¢; hosts two adjacent beedroids colored F and L respectively
at distance 2 and 3 from the same wall W; and ¢; 1 hosts a single beedroid that is colored
A and adjacent to W. The rules to reach a configuration C, from a locally-defined initial
configuration are given in Figure 8.

As explained before, from Configuration C)p, the beedroids will perform a periodic
exploring journey around the 3D grid visiting all nodes floor by floor. As each floor of the
3D grid is a finite 2D grid, the strategy used to explore a given floor is similar to the one
of [19], i.e., two beedroids move and explore a given line while the third one remains idle
next to a wall to indicate the next line to explore. More precisely, let ¢; be the current line
of the floor f; being explored. The leader moves away from the follower and the follower just
follows the leader using the rules given in Figure 9. At the beginning, both the leader and
the follower move away from the landmark which has color A, and move along the nodes of
¢; until reaching a wall. When the leader sees the wall, it does not see the landmark (since
the landmark was left on the opposite wall), then the leader and the follower exchange their
respective roles and move back along the same line ¢;. This role exchange is done in two
rounds: first, the leader moves to one of its adjacent nodes changing its color to A to notify
the follower that they have to change their role. As the follower does not sense the wall yet,
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Figure 8 Rules executed to reach a configuration C}, from a locally-defined configuration. Colored
letters inside nodes indicate the color of the beedroids occupying the nodes. The arrow indicates the
destination and when a colored letter is given next to an arrow, this means that the rule dictates
the beedroid to switch to that color. Finally, self-loops indicate when a beedroid stays idle.

it continues to follow the leader and hence it becomes neighbor to a wall. Next, by observing
a beedroid with color A, the follower moves back to its previous position and changes its
color to the leader’s one L, while the ex-leader, the beedroid with color A, starts following
the new leader and updates its color to become a follower. This u-turn is done by executing
the rules of Figure 10.
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Figure 9 Moving in a straight line. Figure 10 U-turn.

As the beedroids have switched their roles, they proceed again at the exploration of ¢;
but this time, in the reverse direction. When the leader reaches the opposite wall, it sees
this time the landmark and hence knows that the current line ¢; has been fully explored. Let
l;+1 be the line that hosts the landmark. Line ¢; 1 is the next line to be explored. For this
purpose, both the leader and the follower need to move to line ¢;; while the landmark moves
to another line ¢;1, the line to visit after £, 1. This line switch is done in three rounds by
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Figure 13 Sequence of configurations during a line change on a floor.
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executing the rules of Figure 12. Figure 13 illustrates the sequence of configurations reached
during this latter process. The leader and the follower then simply proceed at the exploration
of line ¢;11 in the same manner as line ¢;.

alttedr ol b i ol ool

PG G el =it seitc A g it

Figure 14 Sequence of configurations during a change of floor. The three first configurations
replace the line change that cannot occur because the beedroid A is in a corner, then the moving
group explore the last line of the floor. The three last configurations occurs when the moving group
comes back.
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Figure 15 Changing line on a roof.

In the case where £; 4 is the last line to be explored on f;, the landmark moves to the
next floor f; 1 to be explored when the leader moves to ¢;;1. Note that f;;; is determined
thanks to chirality. Indeed, as the landmark is at a corner and sense the leader at one side,
it can identify the upper floor from the lower floor. Both the leader and the follower then
proceed in the same manner as previously. That is, they explore the nodes of ¢;,1, exchange
their roles and then move back on ¢;;1 until they reach the wall again. When the leader and
the follower reach the wall after exploring ¢;,1, they also move to Floor f;11 indicated by
the landmark. This is done by executing the rules of Figure 11. The beedroids will repeat
the same process to explore Floor f;;1. Note that in order to keep the same exploration
direction, the landmark moves to the line such that the leader remains on the same side.
This direction is again chosen using the chirality (recall that the beedroid is at the corner
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and senses a beedroid at Floor f;). Figure 14 shows the sequence of configurations of this
floor change.
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Figure 17 Sequence of configurations occurring when the landmark initiates a change of the
exploration direction.

By doing so, the beedroids eventually explore each floor until they reach the last floor,
called a roof in the sequel. This latter is explored similarly except that the beedroids update
their respective color differently at line changes using the rules shown in Figure 15. This is
done to ensure the beedroids remain on the roof without using additional colors.

The beedroids then change the exploring direction to explore the 3D grid in the reverse
direction. This is done by executing the rules of Figure 16. Figure 17 presents a sequence of
configurations occurring when the landmark initiates a change of the exploration direction.
Figure 18 presents the sequence of configurations occurring at the termination of this process,
i.e., when the leader and the follower come back from exploring the last line of the roof.

We have validated several base cases using our simulation tool [3]. Then, we have
generalized the reasonning by induction to show that Voneg solves the PFPP.

» Theorem 8. Under visibility range one, Voneg solves the perpetual flower pollination
problem with three beedroids endowed with five colors.
5 Visibility range two: Vtwo?

In this section, we present an algorithm that uses five oblivious beedroids to solve the PFPP.
The beedroids are oblivious in the sense that the lights of all the beedroids have the same
color and cannot change, so they do not have any bit of persistent memory.
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Figure 18 Sequence of configurations occurring when the leader and follower come back to
complete the exploration direction change.

Figure 19 In the initial configuration, beedroids should be near a wall, as in the leftmost
configuration. The beedroids then start a line change.

This algorithm works with a specific set of initial configurations that are not locally-
defined. The initial configurations are those where the beedroids are close to a wall, like in
the first configuration of Figure 19 but they must not be all adjacent to the same wall. Then,
the principle is similar to Voneg , i.e., beedroids explore the 3D grid floor by floor. Within
a given floor, beedroids are able to fly in straight line when they form a | pattern, called
moving group, composed of four beedroids. Initially, the moving group makes a U-turn while
changing line (Figure 19). Then, they explore one line leaving a landmark beedroid adjacent
to the wall. Upon reaching the opposite wall, they make a U-turn again and explore the
same line again (Figure 20). When they meet the landmark again, beedroids are in the same
configuration as initially, translated by one node.
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Figure 20 Sequence of configuration during a U-turn.

Once they reach the corner, they move one floor above and explore this floor with the
same pattern, rotated by 7 (refer to Figure 22). Eventually, the beedroids finish exploring
the roof and then switch the exploring direction to start exploring the floors of 3D grid in the
reverse sense (refer to Figure 21). The animation illustrating beedroids’ behavior is available
online [4].

» Theorem 9. Under visibility range two, Vtwo‘f solves the perpetual flower pollination
problem with five oblivious beedroids.

The proof of Theorem 9 is an induction similar to the one of Theorem 8.

Figure 21 Sequence of configurations when beedroids switch the exploring direction.

6 Related Work

The problem of perpetual flower pollination by a beedroid swarm is actually known in the

literature as the perpetual exploration of a 3D grid by a swarm of luminous robots [18].

Exploration of discrete environment by a robot swarm has been widely studied. Various
topologies have been already considered including lines [15], rings [1, 8, 11, 16, 17], trees [14],
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Figure 22 Sequence of configurations when beedroids move to the next floor.

torus [10], finite [2, 6, 9, 19], infinite 2D grids [5, 7], and even infinite n-dimensional grids [13].
(In the infinite case, the exploration problem requires that each node is visited within finite
time by at least one robot.) In the context of finite graphs, two main variants of the
exploration problem have been studied: the terminating and perpetual exploration. The
terminating exploration requires every possible location to be eventually visited by at least
one robot, with the additional constraint that all robots stop moving after task completion.
In contrast, the perpetual exploration requires each location to be visited infinitely often by
all or a part of robots. Terminating exploration has been tackled in [8, 9, 10, 11, 14, 15, 16],
while [1, 2, 6, 19] deal with the perpetual exploration problem. Notice that Ooshita and
Tixeuil consider the two variants of the problem in [17]. In contrast with the present paper, a
large part of the literature is devoted to “non-myopic” robots, i.e., robots with an unbounded
visibility range, meaning that the snapshot of each robot captures in the whole system
configuration; see [1, 2, 9, 10, 11, 14, 15, 16]. In such a context, robots are always assumed
to be anonymous and oblivious, i.e., they have no state and cannot remember the past.
Furthermore, chirality has never been considered under such settings. Exploration algorithms
satisfying exclusiveness are proposed in both finite [1, 2, 6, 19] and infinite graphs [5, 7].
Assuming a common chirality is pretty usual in the 2D Euclidean plan; see e.g., [12]. However,
up to now only a few works dedicated to discrete environments, e.g., infinite [7] and finite [6]
2D grids, assume robots have a common chirality. Now, the common chirality has an impact
on the number of robots necessary to solve exploration: for example, with visibility range one
and three colors, two (resp. three) synchronous robots are necessary and sufficient to explore
a finite 2D grid with (resp. without) the common chirality assumption [6, 19]. To the best of
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our knowledge, perpetual exploration has been never addressed in finite 3D grids. However,
the exploration of an infinite n-dimensional grid has been investigated in [13]. In that paper,
authors consider robots operating in two models: the semi-synchronous and synchronous
ones. However, they do not impose the exclusivity at all since their robots can only sense
the states of the robots located at the same node (in that sense, the visibility range is zero).
Moreover, in contrast with our work, they assume all robots agree on a global compass, i.e.,
they all agree on the same directions North-South and East-West. They propose several
solutions and bounds, in particular they show that, in the semi-synchronous model, four
deterministic robots are necessary and sufficient to explore an infinite 3D grid.

7 Conclusion

We have studied how typically small swarms of chiral luminous beedroids can solve the
perpetual flower pollination problem in 3D grids assuming the FSYNC model. Under the
optimal visibility range one, we have shown that three beedroids are necessary and suflicient
to solve the problem. For the sufficient part, we have proposed an algorithm that requires
only five colors. Then, we have proposed another solution that is optimal in terms of colors:
an algorithm working with five oblivious beedroids under visibility range two.

However, our industrial partners are still not fully satisfied by our proposal. Even if our
solutions require a very few number of weak beedroids, they believe that we can still achieve
some economies of scale. Like the character Peter Isherwell in the movie “Don’t look up”,
they want to both save humanity and win money... So, we have to study whether we can
reduce the number of colors used by the first algorithm. We should also study whether the
number of beedroids and the visibility range of the second algorithm can be decreased. For
this latter, we are pessimistic: we conjecture that the visibility range cannot be lowered
to one in the oblivious case. Our idea is that skills necessary to solve the perpetual flower
pollination problem in 3D grids with chiral oblivious beedroids are similar to those necessary
to solve the 2D grid exploration problem with non-chiral oblivious beedroids. So, we expect
that the impossibility proof given in [7] can be adapted to the context of chiral oblivious
beedroids evolving in a 3D grid.
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—— Abstract

A priority queue stores a set of items with associated keys and supports the insertion of a new item
and extraction of an item with minimum key. In applications like Dijkstra’s single source shortest
path algorithm and Prim-Jarnik’s minimum spanning tree algorithm, the key of an item can decrease
over time. Usually this is handled by either using a priority queue supporting the deletion of an
arbitrary item or a dedicated DecreaseKey operation, or by inserting the same item multiple times
but with decreasing keys.

In this paper we study what happens if the keys associated with items in a priority queue can
decrease over time without informing the priority queue, and how such a priority queue can be used
in Dijkstra’s algorithm. We show that binary heaps with bottom-up insertions fail to report items
with unchanged keys in correct order, while binary heaps with top-down insertions report items
with unchanged keys in correct order. Furthermore, we show that skew heaps, leftist heaps, and
priority queues based on linking roots of heap-ordered trees, like pairing heaps, binomial queues
and Fibonacci heaps, work correctly with decreasing keys without any modifications. Finally, we
show that the post-order heap by Harvey and Zatloukal, a variant of a binary heap with amortized
constant time insertions and amortized logarithmic time deletions, works correctly with decreasing
keys and is a strong contender for an implicit priority queue supporting decreasing keys in practice.
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1 Introduction

A priority queue is a data structure storing a set of items, where each item has an associated
key. A basic priority queue supports the two operations Insert and ExtractMin, which
insert a new item into the priority queue and extract an item with minimum key from the
priority queue. A classic example of a data structure supporting these operations is the
binary heap by Williams from 1964 [20]. Although many priority queues exist supporting a
more comprehensive list of operations or having better asymptotic bounds, the binary heap
is the standard priority queue implementation in many languages, like in Python (module
heapq) and Java (class java.util.PriorityQueue). The popularity of binary heaps is due
to its simplicity, it can be stored implicitly in an (extendable) array only storing the n items
currently in the heap, and the number of comparisons is relatively low. Insertions require at
most log, n comparisons, and minimum extractions at most 2log, n comparisons, but the
number of comparisons performed are often lower in practice.

Two graph algorithms fundamentally relying on efficient priority queue implementations
are Dijkstra’s algorithm [5] for finding shortest paths from a source node in directed graphs
with non-negative edge weights, and Prim-Jarnik’s algorithm [11, 16] for finding the minimum
spanning tree in a graph. Both maintain a priority queue over the nodes not included yet in
the shortest path tree and minimum tree, respectively. A node in the priority queue has an
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associated key equal to the shortest distance to the node discovered so far and the lightest
edge connecting the node to the minimum spanning tree constructed so far, respectively.
For both algorithms the key of a node in the priority queue can decrease over time, which
challenges the interface of the basic priority queue. One solution is to apply a more specialized
priority queue, like Fibonacci heaps [9], which support a dedicated DecreaseKey operation —
but this structure is more complicated, pointer based, and often not part of a standard library.
Although theoretically worst-case superior, the overhead of supporting DecreaseKey only
pays off when a large fraction of the edges cause a DecreaseKey operation to be performed.
A simpler solution is to stay with a basic priority queue and just insert a node multiple
times, once whenever the key decreases. This leaves outdated copies of nodes in the priority
queue, but these can be skipped whenever they are extracted from the priority, since only
the first extraction of a node is not outdated. Two possible implementations of this idea for
Dijkstra’s algorithm are shown as algorithms Dijkstra; and Dijkstra, in Figure 1. In the
following we do not discuss Prim-Jarnik’s algorithm any further.

In a typical implementation of Dijkstra’s algorithm one maintains an array dist, where
dist[v] is the currently shortest known distance from the source node to node v, and the
items inserted into the priority queue are pairs (dist[v],v), where dist[v] is the key of the
item. In this paper we consider adopting the idea of only storing v as an item in the
priority queue without an explicitly associated key. The comparison between two items in
the priority instead compares the current distances dist[v]. This will reduce the space usage
for the priority queue, e.g., a binary heap only needs to store an array of node ids. The
challenge is now that keys of inserted items can decrease over time, i.e., the ordering of
the items in the priority queue changes over time and potentially invalidates the internal
invariants maintained by a priority queue. In this paper we identify comparison based priority
queues working correctly with decreasing keys. In particular we show that skew heaps [18],
leftist heaps [4], binomial queues [19], pairing heaps [8], Fibonacci heaps [9], and post-order
heaps [10] work correctly even with decreasing keys. For binary heaps [20] we show that the
standard implementation with bottom-up insertions fails to support decreasing keys, whereas
binary heaps work correctly if operations are performed top-down.

Model

We define a priority queue with decreasing keys as follows. It stores a set of items where each
item has an associated key from some totally ordered universe. Over time the key of an item
can decrease an arbitrary number of times. We let the original key of an item refer to the key
when the item was inserted, whereas the current key refers to the key at the current time.
If the current key equals the original key we say that the item has an unchanged key. The
priority queue is not informed when keys decrease, and whenever two items are compared
by the priority queue the comparison is performed with respect to their current keys. The
priority queue has no access to the original keys of the items; it can only compare two items
and get the relative order of their current keys. Note that the answer to the comparison
between two items can vary over time depending on how keys decrease.

A priority queue with decreasing keys should support the following two operations:

Insert(z) inserts an item into the priority queue.

ExtractMin() returns an item from the priority queue with current key less than or equal

to the original keys of all items in the priority queue.

It follows that if ExtractMin returns an item with unchanged key, the item has smallest
key among all items with unchanged key. Furthermore, if several items in the priority queue
have current key less than or equal to the smallest original key in the priority queue, then the
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priority queue is allowed to return any of these items, i.e. its behavior is non-deterministic.
As an example, consider a priority queue with four inserted items A, B, C' and D with
original keys 5, 2, 6 and 4, respectively. Assume C' and D have had their keys decreased to
have current keys 3 and 1, respectively. Then ExtractMin should return either B or D, with
current keys 2 and 1, respectively, since B has smallest original key equal to 2, and A and C
have current keys 5 and 3, respectively. In Section 2 we discuss how an implementation of
Dijkstra’s algorithm can benefit from priority queues with decreasing keys.

Contributions

This paper introduces no new data structure. Only existing data structures are analyzed in

the context of decreasing keys. Our contributions are:
Section 2: We show that Dijktra’s algorithm [5] (Dijkstra, in Figure 1) works correctly
when using a priority queue with decreasing keys, i.e., items in the priority queue only
store a node v instead of the pair (dist[v], v).
Section 3: Binary heaps [20] with bottom-up insertions do not support decreasing keys, in
particular we show that sorting (with interleaved key decreases) and Dijkstra’s algorithm
fail on small examples.
Section 4: Binary heaps with top-down insertions support decreasing keys, i.e., inserting
a new item considers the ancestors of the new leaf top-down until the first ancestor is
found with key greater than or equal to the new key. The central invariant used in the
analysis, and also used in Sections 5 and 6, is decreased heap order requiring that that
any ancestor of a node v in a tree must store an item with current key less than or equal
to the original key of v.
Without decreasing keys, bottom-up and top-down insertions cause the nodes of the
resulting heaps to store identical keys, but for random insertions the number of compar-
isons increases from average O(1) [15] to ©(logn). In Section 7 we do an experimental
comparison of the two variants of a binary heap, and in particular the overhead introduced
by performing insertions top-down.
Section 5: Skew heaps [18], leftist heaps [4], pairing heaps [8], binomial queues [19], and
Fibonacci heaps [9] work correctly with decreasing keys.
Section 6: The post-order heap by Harvey and Zatloukal [10] supports decreasing keys.
The post-order heap is a simple implicit heap based on binary heaps that supports
insertions in amortized constant time and extractions in amortized logarithmic time (like,
e.g., binomial queues). In Section 7 our experimental evaluation shows that the post-order
heap is a strong contender for an efficient implicit priority queue supporting decreasing
keys.
Section 7: We supplement our theoretical results with an experimental evaluation of
priority queues supporting decreasing keys and compare the number of key comparisons
performed to sort and for running Dijkstra’s algorithm on cliques.

Related work

The literature on priority queues is comprehensive, see, e.g., the survey by Brodal [1].
Fibonacci heaps [9] support DecreaseKey in amortized constant time and their discovery
initiated the study of data structures supporting efficient DecreaseKey operations. Subse-
quently, e.g., relaxed heaps [6] were introduced, which support DecreaseKey in worst-case
constant time. In this paper we focus on simpler data structures, not supporting DecreaseKey
operations. Many priority queues can be extended to support an arbitrary Remove operation,
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by having a separate index keeping track of where each item is stored in the data structure.
This introduces a space overhead for the index and a time overhead to keep the index updated,
e.g., swapping two items in a binary heap requires two entries in the index to be updated. If
only Insert and ExtractMin need to be supported, many simple constructions exist — a few
commonly used are mentioned and evaluated in this paper. A special interesting class of
priority queues are those that can be stored in a single array containing the items, known as
implicit priority queues. The classic example is the binary heap [20], but other examples are,
e.g., the implicit binomial trees by Carlsson, Munro and Poblette [2], and the post-order heap
by Harvey and Zatloukal [10] that is our focus in Section 6. Many priority queues maintain
a forest of trees of sizes corresponding to digits in the binary or skew binary representation
of the total number of items stored. Elmasry, Jensen and Katajainen [7] give an overview of
this relationship for various constructions.

Background

The motivation for studying priority queues with decreasing keys arose from experience with
undergraduate students having problems translating Dijkstra’s shortest path algorithm into
correct Java programs based on the description in the standard text book by Cormen et al. [3,
Section 24.3]. Students are challenged by the fact that the priority queue implementation
supported by the Java standard library! does not support DecreaseKey, the Remove operation
requires linear time, and the ordering of values is provided using a comparator (or the natural
ordering of the values). A priority queue with decreasing keys allows Dijkstra’s algorithm to
store node identifiers only in the priority and using a comparator to compare two nodes by
comparing their currently best known distances — the Java solution many students implement,
but fails since their priority queue does not support decreasing keys.

2 Dijkstra’s algorithm with decreasing keys

Assume we are given a directed graph G = (V| E) with non-negative edge weights ¢ and a
source node s € V, and we want to compute the shortest distance from s to all nodes in
the graph. This problem can be solved using Dijkstra’s algorithm [5]. The basic idea of
Dijkstra’s algorithm is to visit nodes in increasing distance from s. For each node v not
visited yet its currently known distance dist[v] is stored in an array dist, i.e., the distance to
v along paths only containing v and already visited nodes. The next node to visit is a node u
not visited so far and with smallest dist[u] value. When visiting a node u we relaz along its
outgoing edges (u,v) by performing the update dist[v] := min(dist[v], dist[u] + 6 (u,v)). To
obtain an efficient solution, the set of nodes not visited yet are stored in a priority queue,
with dist[v] as the key of v. Fibonacci heaps [9] provide a dedicated DecreaseKey operation
to update (decrease) the key of a node whenever the known distance to a node decreases.
Using a Fibonacci heap Dijkstra’s algorithm can be implemented as shown in Dijkstra, in
Figure 1 obtaining running time O(|E| + |V|log|V|). If no DecreaseKey is available, but
an arbitrary item can be removed by a Remove operation, we can simulate DecreaseKey by
first removing the node using Remove and then reinserting the node with its smaller distance
as key using Insert as shown in Dijkstra, in Figure 1. If Remove takes logarithmic time,
the resulting running time is O(|E|log |V]). For sparse graphs, i.e., |E| = O(|V]), the two
running times are asymptotically identical.

! https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/PriorityQueue.
html
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proc Dijkstra,(V, E,d,s)
dist[v] = +oo for all v € V'\ {s}
dist[s] =0
Insert(Q, (dist[s], s))
while Q # 0 do
(d,u) = ExtractMin(Q)
for (u,v) € EN({u} x V) do
if dist{u] + 0(u,v) < dist[v] then
dist[v] = dist[u] + §(u, v)
if v € Q then
DecreaseKey(Q, v, dist[v])
else
Insert(Q, (v, dist[v]))
return dist

proc Dijkstra,(V, E, 0, s)

dist[v] = +oo for all v € V' \ {s}
dist[s] =0
Insert(Q, (dist[s], s))
while Q # 0 do

(d,u) = ExtractMin(Q)

if d = dist[u] then

for (u,v) € EN({u} x V) do

if dist{u] + d(u,v) < dist[v] then

dist[v] = dist[u] + §(u,v)
Insert(Q, (dist[v],v))
return dist

proc Dijkstra,(V, E, 4, s)

dist[v] = +oo for all v € V'\ {s}
dist[s] =0
Insert(Q, (dist[s], s))
while Q # 0 do
(d,u) = ExtractMin(Q)
for (u,v) € EN({u} x V) do
if dist{u] + 0(u,v) < dist[v] then
dist[v] = dist[u] + §(u, v)
if v € Q then
Remove(Q, v)
Insert(Q, (dist[v],v))
return dist

proc Dijkstra,(V, E,d,s)

dist[v] = +oo for all v € V' \ {s}
dist[s] =0
visited = ()
Insert(Q, (dist[s], s))
while Q # () do
(d,u) = ExtractMin(Q)
if u ¢ visited then
visited = visited U {u}
for (u,v) € EN({u} x V) do
if dist[u] + 0(u,v) < dist[v] then
dist[v] = dist[u] + §(u,v)
Insert(Q, (dist[v], v))
return dist

Figure 1 Four variations of Dijkstra’s algorithm for the single source shortest path problem on a
digraph with nodes V', edges E, edge weights §, and source node s. The main result of this paper is
that Dijkstra, still works correctly if we adopt a priority with decreasing keys.

Here we consider a simpler implementation using a binary heap only supporting Insert
and ExtractMin, but also achieving running time O(|E|log|V|). Whenever a shorter distance
is found to a node v, we insert the item (dist[v],v) into the heap, i.e., the same node v can
be inserted multiple times, but with decreasing keys. All instances of v in the heap, except
for the one with key equal to the current dist[v], are outdated and should be ignored/skipped
when extracted from the heap. We can identify nodes to be skipped by either comparing
the extracted distance with the currently best known distance or by keeping a set of all
visited nodes, e.g., a bit-vector. Algorithms Dijkstra, and Dijkstra, in Figure 1 contain
the pseudo code for these implementations of Dijkstra’s algorithm. We will not argue further
about the correctness of these variations of Dijkstra’s algorithm (leaving outdated items in
the priority queue is also a common approach to external memory algorithms for the single
source shortest path problem, see, e.g., [12, Section 4.2]).2

2 In the worst-case the priority queue stores O(|E|) items, but this can be reduced to O(|V]) items by
rebuilding the heap whenever it contains > (1+¢)|V/| items, for some constant € > 0, where all outdated
items are removed. The time for rebuilding the heap can be charged to the removed items, i.e., the
asymptotic running time remains unchanged.
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Crucial to the above implementations of Dijkstra’s algorithm is that each item we insert
into the heap is a pair (dist[v],v), where the key dist[v] is fixed when inserted. These keys
require space in the heap, that could be tempting to save. The (potentially dangerous) idea
is now: Skip storing the keys explicitly in the items and instead use the current value dist[v)
as the current key for all items storing v in the heap.

In the following we argue that Dijkstra, still works correctly if we adopt a priority with
decreasing keys, e.g., those in Sections 4-6. The only changes to Dijkstra, is that Insert
should only take the node to insert (without the distance), and ExtractMin does not return
the key/distance d (that anyway was not used by Dijkstra, after the item was extracted),
and whenever the priority queue compares the keys of two nodes u and v it compares the
currently known distances dist[u] and dist[v].

The invariant maintained by the algorithm is that only nodes v with dist[v] < 400 are
stored in the priority queue, and for all nodes with dist[v] < 400 and v ¢ wvisited, the priority
queue contains an item containing v with unchanged key equal to the current dist[v]. This is
true since we insert an item containing v with original key dist[v] whenever dist[v] decreases.

Whenever an item with a node v is extracted from the priority queue, we have three
cases: 1) v € visited, i) v € visited and the current key of the item equals the original key,
and 4i7) v & visited and current key of the item is less than the original key. In case i) we
extract a node that has already been visited, and therefore should be skipped. In case ii) we
extract an item with current key equal to its original key. Since the priority queue guarantees
that the current key of the extracted item is less than or equal to all original keys stored in
the priority queue, the item has minimum original key among all items in the priority queue.
From the invariant it follows that v has smallest dist[v] value among all nodes not visited yet
— as expected by Dijkstra’s algorithm. Finally, in case 4i¢) an item is extracted containing a
node v not visited yet and with current key less than its original key. By the priority queue
specification, its current key, i.e., dist[v], is less than all original keys in the priority queue,
in particular those stored with unchanged keys. Since v & visited the invariant implies there
must exist another item in the priority queue storing v with original and current key equal to
dist[v] — i.e., v is a node not visited yet with minimum dist value as expected by Dijkstra’s
algorithm. It follows that a priority queue supporting decreasing keys extracts unvisited
nodes in increasing order of distance as required by Dijkstra’s algorithm.

3 Binary heaps fail with decreasing keys

In this section we show how binary heaps with bottom-up insertions [20] fail to support
decreasing keys on two simple examples: Sorting and Dijkstra’s single source shortest path
algorithm.

We first briefly recall the structure of a binary heap. A binary heap stores n items in an
array H[1..n], that can be viewed as a binary tree where node i has children 2i and 2i + 1.3
The items are stored such that heap order is satisfied, i.e., the key of item H[i] is greater
than or equal to the key of its parent H[|i/2]]. A bottom-up insertion places the new item
as the last item in H and repeatedly swaps it with its parent (sift-up) as long as its key is
less than the parent’s current key. A minimum extraction returns the item at the root H[1],
and moves the last item z from H[n] to H[1], and sifts-down z by repeatedly swapping «
with the item with smallest key among its children until no child stores an item with key
less than z.

3 In the paper we assume arrays start at index 1. In our implementation we adapt to Python lists, which
start at index 0.
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Figure 2 Binary heap failing to sort (2,3,4,1) if 3 is decreased to 0 before inserting 1.

S B — a —_— b —_—

0 extract so 1 extract ai 2 extract bs d5 extract ds bg
insert aq / \ insert bo / \ insert c3 / / \
insert bs 5 Cr d5 C7 bg C3 C3 Cc3
insert c7 = = -
insert ds / \ / \ /\ /
insert eg bs eg bg €6 eg C3 €6

E—— C _ C3 _— R — _—
extract by extract c3 - extract c3 extract dg extract eg
- / \ insert dy / \ -
€6 C3 €g d4 €6

Figure 3 Execution of Dijkstra’s single source shortest path algorithm (Dijkstra,), using dist[v]

as keys and a binary heap with bottom-up insertions, incorrectly computing the distance to e as 6.

Top is input graph and below the content of the binary heap. Subscripts are keys, and underlined
keys are decreased keys.

Sorting

Consider sorting items by inserting them into a priority queue and then extracting them in
increasing key order. If an item gets its key decreased during the sequence of operations,
a priority queue with decreasing keys guarantees that the items with unchanged keys are
still reported in increasing key order. A binary heap with bottom-up insertions fails to do
so when inserting four items with keys 2, 3, 4 and 1, and where key 3 is decreased to 0
before inserting 1, as illustrated in Figure 2. Recall that the heap is not informed when
keys decrease, causing the current keys to violate heap order. Instead of reporting the items
with unchanged keys in order (1,2,4) they are reported in order (2,1,4). Note that when
inserting 1 as the last leaf, it is compared to its parent with current key 0 (but original key 3),
where the sift-up terminates, and incorrectly leaves 1 in the subtree of 2, causing 2 to be the
first item extracted by ExtractMin.

Dijkstra’s algorithm

Figure 3 shows a graph with 6 nodes and 9 edges, where Dijkstra’s algorithm (Dijkstra,)
fails when using a binary heap with bottom-up insertions and using dist[v] as the current
key for node v. Whenever a smaller distance to a node is discovered, the node is inserted
with the new distance as its original key. The previously inserted copies of the node (if any)
get their current keys decreased to the new smaller distance, like b where by is the copy of b
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in the heap with original key 8 and current key 2. When extracting b, in the example, eg
is sifted down and leaving the leftmost path top-down with nodes ds, by and eg, causing
the inserted node c3 to stay at a leaf when compared with by. The algorithm incorrectly
visits node d before node ¢, causing the distance to node e to be computed incorrectly as 6.
Note that node d is extracted twice from the heap, both with original keys, but only the first
time we visit d and consider paths with d as the second to last node on the paths (the test
u & visited prevents us from visiting d a second time).

It should be noted that if we skipped the test u & visited, the algorithm would compute
the correct distances by revisiting nodes whenever a shorter distance to a node has been
discovered. This is against the principle idea of Dijkstra’s algorithm to only visit nodes once
in increasing order of distance from the source, so that each edge is considered at most once.
See the discussion in Section 7.3 on Figure 9 for further details.

4 Binary heaps with top-down insertions

In a binary heap with top-down insertions Insert(z) creates a new empty leaf at position n,
and items on the path from the root to the new leaf are compared with x top-down until the
first node u is found with current key greater than or equal to the new key. The items on
the path from u to the new leaf are sifted one level down and item x is inserted in node u.
The ancestor at depth d =0, ..., [logy n| is node [n/2!°827=4| If keys are distinct and do
not decrease, then top-down insertions and bottom-up insertions yield identical structures.

In the following we let key,,, denote an original key and key,,, a current key. For a
tree structure, where each node stores an item, we say that the tree satisfies the decreased
heap order if and only if u.key,,, < v.key,,, for all ancestors u of a node v. Note that if
decreased heap order is satisfied, then the item at the root of a tree satisfies the conditions to
be returned by ExtractMin, and decreased heap order remains satisfied when current keys
decrease.

During Insert(z) a node v can only get one new ancestor, namely x. This happens when
x is compared with an ancestor u of v with the result z.key,,, < u.key,,,. Since before the
insertion decreased heap order ensures u.key,,, < v.key,,, we have z.key,,, < v.key,,, and
the tree satisfies decreased heap order after the insertion.

An ExtractMin operation returns the root of the tree. By the decreased heap order the
item returned has current key less than or equal to all original keys in the tree. Before
returning the answer, the last item z is moved to the root and sifted down, where x is swapped
with the item at the child with smallest current key until the items of both children have
current key > x.key,,,,. Whenever two siblings v and w are compared, say v.key,,, < w.k€Ycyy,
we have two cases. If z becomes the parent of v and w, since z.key.,, < v.keyey, < W.keYqyr,
then z.key.,, is less than or equal to the original keys in all nodes below z, since either
v.key.,, or w.key.,,, was so before the operation. Otherwise, v becomes the parent of w, and z
and all nodes in w’s subtree get v as a new ancestor. Since v.key.,, < w.key.,,, then v.key.,,
is less than or equal to all original keys in w’s subtree, and v.key.,, < z.keyq,, < T.keyy,.
It follows that after ExtractMin the tree still satisfies decreased heap order.

5 Existing heaps supporting decreasing keys

In the following we argue that the internal workings of several existing priority queues ensure
decreased heap order to be maintained in the presence of decreasing keys.
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Skew heaps and Leftist heaps

Skew heaps [18] and leftist heaps [4] support Insert and ExtractMin on a heap storing n
items in time O(logn), where the time for skew heaps is amortized and for leftist heaps
worst-case. Both data structures represent a priority queue by a (decreased) heap ordered
binary tree, and support ExtractMin by removing the root and returning its item. All other
structural changes consist of merging two root-to-leaf paths in two (decreased) heap ordered
binary trees, and potentially swapping the left and right subtrees at nodes of the resulting
tree. Swapping the left and right subtrees of a node does not change ancestor relationships,
i.e., does not affect decreased heap order. To argue that the two data structures maintain
decreased heap order, we only need to argue that merging two paths ensures that the resulting
tree satisfies decreased heap order.

Normally the keys along the two paths would appear in increasing key order, but this is
not necessarily the case when keys can decrease (in fact the current keys can appear in any
order). Assume the nodes along the two root-to-leaf paths to be merged are (ug,u1,us,...)
and (vg, v1,va,...), and the merging is performed top-down recursively as in Figure 4. If u;
ends up before vj, i.e., u; is a new ancestor of vj;, then there exists j* < j where u; and vj/
have been compared and u;.key.,, < vj.key.,,. Since by assumption vjr.keyq,, < vj.key,,,
it follows that u; satisfies decreased heap order with v; and all its descendants. It follows
that the resulting tree after merging two root-to-leaf paths in two decreased heap ordered
trees also satisfies decreased heap order.

T, wug 3 merge(7T1,T2) vy 2
proc merge(u = (ug, u1,...)),v = (Vo,V1,...)) / \ N\
if u =0 then ur 1lg 4 ug 3 15
return v /A \ / \
if v = () then U2 8 T 214 ur g 4
return u v 5/ \7 2\14
if wo.key.,, < vo.key.,, then T v 2 I\
return (ug) + merge((u1,...),v) / \ vy 29 413

else v1 5 15 /

return (vo) + merge(u, (v1,...)) /\ uz 8
V2 29 413

Figure 4 Top-down merging two paths u and v. In the example values are current keys and
subscripts original keys (subscripts are omitted if current and original keys are equal).

Pairing heaps, Binomial queues, and Fibonacci heaps

Many priority queues represent a priority queue by one or more heap ordered trees of arbitrary
degree. Pairing heaps [8], binomial queues [19], and Fibonacci heaps [9] are examples of such
priority queues supporting Insert in amortized time O(1) and ExtractMin in amortized
time O(logn). Here we prove that these data structures maintain decreased heap order
when used with decreasing keys. Pairing heaps only represent a priority queue by a single
tree, whereas binomial queues and Fibonacci heaps maintain a forest, and the item removed
by ExtractMin is the root with minimum current key, i.e., the returned item has current
key less than or equal to all original keys in all trees. Nodes only get new ancestors when
two roots are linked, that makes the root v with greatest current key a child of the root u
with smallest current key. Since u.key.,, < v.key,,, and any node w in the tree rooted at
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v has v.keye,, < w.key,,,, it follows that u.key,,, < w.key,,, i.e., the linked tree satisfies
decreased heap order. It follows that the resulting heaps satisfy decreased heap order.

For Fibonacci heaps, the operations DecreaseKey replaces the key of an item by a smaller
key. In our context this corresponds to lowering the original key. In the context of decreasing
keys, it is important that DecreaseKey is implemented to always cut the edge from the node
to its parent (without comparing with the current key of the parent, since that could have
been decreased arbitrarily), and adds the node as a new root to the forest.

6 Post-order heap

Binary heaps with bottom-up insertions often benefit from the fact that insertions do not
sift-up items far in the tree in practice. With top-down insertions this property cannot be
exploited. In this section we consider the post-order heap by Harvey and Zatloukal [10]. In
our experiments it appears to be a strong contender for an efficient implicit priority queue
supporting decreasing keys, which is why we consider it in more detail in this section. Harvey
and Zatloukal [10] did an experimental comparison of C# implementations of post-order
heaps and binary-heaps with bottom-up insertions and found that post-order heaps had
faster insertions but slower deletions.

A post-order heap consists of a forest of complete heap ordered binary trees, where all
trees have distinct size, except for possibly the two trees of smallest size. Since a complete
binary tree has size 2° — 1, for some %, the number of trees of each size corresponds to the
digits in the skew binary number representation of n. Myers [14] proved that the set of tree
sizes is unique for a given n. The trees are laid out consecutively in a single array H in
decreasing size order, and each tree in post-order. For a subtree of size s with root H[i], the
subtree is stored in H[i — s + 1,14], the subtrees at the children have size |s/2], the right
child is H[i — 1], and the left child is H[i — 1 — [s/2]]. See Figure 5.

10/1\3 2

/N VRN 7N\
13 20 14 19 6 4 7 5

/ N\ / N\ / N\ / N\ /\ /\ /\ /\
16 21 23 25 24 18 28 26 27 8 17 12 11 15 9 22

16]21[13]23]25]20]10[24]18]14[28]26]19[ 3| 1 [27] 8] 6 [17[12[ 4 [ 2 [11[15[ 7] 9 [22] 5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Figure 5 Top: A post-order heap storing 28 items in four trees of size 15, 7, 3 and 3. Bottom:
The implicit post-order layout in a single array.

Insert(x) inserts the item z as the last item of H. If the last two trees had different
size, © becomes a tree of size one. Otherwise, the last two trees of size s together with x
are combined to a new tree of size 2s + 1 with = as the root, and we apply the sift-down
operation Heapify(|H|,2s+1) (where the first argument is the node position, and the second
argument is the size of the subtree). Except for node indexing, Heapify is implemented as
for binary heaps. To support decreasing keys, it is important that Heapify is performed
top-down. ExtractMin() identifies the root min with minimum (current) key to return, and
removes the root x from the rightmost tree (causing the two subtrees to become new trees).
If & # min, x replaces the root min, and x is sifted down using Heapify. Pseudo-code for
the operations is given in Figure 6 (in [10] it is discussed how the list of tree sizes S of length
O(logn) can be stored using only O(logn) bits). Since a post-order heap structurally is
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proc Insert(z)
push(H, z)
if |S| > 2 and S[|S|] = S[|S| — 1] then
size = pop(S) + pop(S) + 1
push(S, size)
Heapify(|H|, size)
else

8:11

proc ExtractMin()
min = +0o
i=|H|
for j =1 to |S| do
size = S[|S| — 7 + 1]
if H[i] < min then

min = H|[i]

push(S, 1)

S12€min = Size
proc Heapify(i, size)

if size > 1 then

1 =1 — Size

. : size = [pop(5)/2]
size = | size/2] if size > 0 then
right =1 —1 push(S, size)
left = right — size

push(S, size)
smallest = H|[left] < Hlright] 7 left : right

. , @ = pop(H)
if H[smallest] < H[i] then Sf i < |H| then
swap H[i] and H[smallest] Hliin] = &

Heapify(smallest, size) Heapify(imim, $i2€mm)

return min

Figure 6 Post-order heap operations, where H stores the items and S is a list of tree sizes.

just a collection of binary heaps updated only using top-down Heapify, the discussion from
Section 4 carries over to prove that post-order heaps support decreasing keys.

Harvey and Zatloukal [10] proved that post-order heaps support Insert in amortized
time O(1) and ExtractMin in amortized time O(logn). If we consider the worst-case
number of comparisons for binary heaps with top-insertions, then Insert uses at most
|log, n| whereas ExtractMin at most 2|log, n], i.e., sorting using a binary heap requires
at most 3|log, n] comparisons. The worst-case number of comparisons for operations on
post-order heaps is not competitive, since in the worst-case Insert performs Heapify on a
tree containing all items, i.e., requiring at most 2|log, n| comparisons, and ExtractMin first
must find the root with minimum value, and then perform Heapify on this tree, requiring
at most 3|log, n] comparisons. Using these bounds for deriving a bound on sorting using a
post-order heap gives us an upper bound of 5nlog, n comparisons. But for sorting we can
derive a better bound. During the n insertions at most n/2" roots are created at height h each
requiring 2h comparisons for a sift-down, causing a total of at most »_,;° , 2h - n/2" = O(n)
comparisons for insertions. Furthermore, during the sequence of minimum extractions the
average number of trees is %logQ n + O(1), causing the total number of comparisons for
finding the minimum roots to be at most %nlogQ n + O(n). Together with the upper bound
of 2log, n comparisons for each Heapify caused by an ExtractMin gives a total bound
of 2.5nlogy n + O(n) comparisons for sorting using a post-order heap. The advantage of
post-order heaps over binary heaps with top-down insertions is studied in Section 7 (Figure 7).

7 Experimental evaluation

The previous sections state that many priority queue data structures work in the setting with
decreasing keys. Any implementation of these data structures will also work if explicit keys
can be removed and handled by implicit decreasing keys, e.g., implemented by a comparator
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accessing the array dist in Dijkstra’s algorithm. The worst-case analysis of these data
structures carries over to the setting with decreasing keys and the worst-case running time
analysis of Dijkstra’s algorithm remains unchanged, though in practice the picture could be
different. In particular items to be skipped (i.e., with decreased keys) in Dijkstra’s algorithm
can be extracted earlier when allowing decreasing keys.

We implemented various priority queues and Dijkstra’s algorithm in Python 3.9 to have
code as close as possible to pseudo code, and to focus on measuring counts that were hardware,
language, and compiler independent.* A priority queue was implemented as a class with
extract_min and insert methods to update the priority queue, and a method empty to
test for emptiness. Items are compared using the < operator, i.e., using the __1t__ method
of the items. Finally, each priority queue has a method validate to check the structural
integrity of its current content, e.g., a recursive traversal checking heap order, number of
children, and balance conditions. The experimental evaluation was done on a Lenovo T460s
laptop (Intel i7-6600U CPU, 12 GB RAM) running Python 3.9.4 under Windows 10.

The following priority queues were implemented: Skew heaps [18], leftist heaps [4],
binomial queues [19], pairing heaps [8], post-order heaps [10], and binary heaps [20] with
bottom-up and top-down insertions. Finally, we made a wrapper class around Python’s
builtin module heapq that is a C implementation® of binary heaps with bottom-up insertions.
We did not implement Fibonacci heaps [9], since we do not consider dedicated DecreaseKey
operations, and without DecreaseKey Fibonacci heaps are identical to binomial queues.

We considered four versions of binary heaps, where the first two do not support decreasing
keys: BinaryHeap is a standard binary heap with bottom-up insertions and top-down heapify
to sift-down the new root value during minimum extractions. BinaryHeapHeapifyBottomup
improves typical performance by letting heapify first recursively pull up the child with smallest
(current) key until an empty leaf is created, where the item from the last leaf is inserted
and sifted up (our experiments confirm that module heapq implements this idea). The last
two variants support decreasing keys. BinaryHeapTopdown supports insertions by performing
comparisons top-down along the root-to-new-leaf path, until the first node is reached with
greater or equal (current) key. The new item is inserted in this node, and all remaining
nodes on the path to the last leaf are sifted one level down. BinaryHeapTopdownHeapify has
a slightly naiver insertion implementation, where all items on the root-to-new-leaf path are
sifted one level down, and the new item is inserted at the root and sifted down by heapify.

Experiments were parameterized by the priority queue class to be tested, to ensure
identical testing overhead for the different classes. In our experiments we have measured
the number of comparisons performed, various counts and running time. All priority queues
were tested with exactly the same set of inputs. Data structures not supporting decreasing
keys (Heapq, BinaryHeap and BinaryHeapHeapifyBottomup) are shown with dashed lines. In
all plots Heapq and BinaryHeapHeapifyBottomup have identical curves, except for the time
for sorting in Figure 7(e).

7.1 Correctness of implementation

To have some evidence for the correctness of our implementations, we performed two simple
sorting tests: The first checks if Insert and ExtractMin work correctly if no keys decrease,
and the second checks if decreasing keys are supported. The second stress test was in fact

4 Python source code used for experiments and data visualized in figures is available at
https://www.cs.au.dk/~gerth/papers/fun22code.zip
5 https://github.com/python/cpython/blob/master/Modules/_heapgmodule.c


https://www.cs.au.dk/~gerth/papers/fun22code.zip
https://github.com/python/cpython/blob/master/Modules/_heapqmodule.c

G.S. Brodal

used to identify which priority queues supported decreasing keys, before knowing if they did
S0, directing the search for the arguments presented in Sections 3—6.

Sorting

Each priority queue implementation was used to sort various input sequences of n numbers,
1 < n <1000, with input being the increasing sequence 1,...,n, the decreasing sequence
n,...,1, a uniform random permutation of 1,...,n, and n uniformly selected random
integers from 1,...,n (with possible repetitions). Only the random integer inputs can
contain duplicates, where the expected number of distinct integers among n integers is
n(l—(1—-1/n)") = n(l —1/e) ~ 0.632n. Each input was first inserted using n calls to
insert followed by calls to extract_min until empty returned true. The output was checked
against Python’s built-in function sorted. After each update the priority queue’s validate
method was called to check for internal integrity.

Decrease key support

Each priority queue implementation was tested for the support of decreasing keys by per-
forming the following experiment 1000 times with n = 100: Insert a random permutation of
1,...,n using n calls to Insert, followed by n calls to ExtractMin. After each operation,
with probability 1/2 a random inserted item has its key decreased to zero. At the end it is
checked if all items with unchanged key were reported in sorted order. As expected by the
theory, all priority queues not supporting decreasing keys failed this test, whereas the others
succeeded on all inputs

7.2 Sorting performance

We evaluated the performance of the different priority queues by using them to sort n integers
for different n (powers of two, n < 22°) and different input distributions: increasing sequences,
decreasing sequences, uniformly permuted sequences, uniformly selected random integers from
1,...,n. Each input was run at least 3 times and until at least 0.2 seconds were passed. For
random inputs 10 different inputs were generated and the average computed. The measured
average number of comparisons for each input size and type is shown in Figure 7(a,b, ¢, d).
In the plots we on the y-axis have number of comparisons performed divided by nlog, n, i.e.,
the theoretical asymptotic worst-case bound of sorting.

That Heapq is equivalent to the Python implementation BinaryHeapHeapifyBottomup
follows from the plots, where the two priority queues achieve coinciding number of comparisons
(it was checked that the number of comparisons performed were identical). Among the
implicit constructions based on binary heaps we have a clear ordering (except for decreasing
sequences) where BinaryHeapHeapifyBottomup (and Heapq) performs the fewest comparisons,
followed by BinaryHeap, BinaryHeapTopdown and BinaryHeapTopdownHeapify, where only
the last two support decreasing keys. In all cases the implicit PostOrderHeap achieves a
better performance than the other implicit binary heaps supporting decreasing keys. In
particular we see that PostOrderHeap performs about %nlogQ n fewer comparisons as Binary-
HeapTopdown for random input, as expected by the discussion in Section 6. The only priority
queues supporting decreasing keys that achieve significant better bounds on the number of
comparisons are all pointer based (SkewHeap, LeftistHeap, PairingHeap and BinomialQueue).
This leaves the post-order heap as a strong contender for an implicit priority queue supporting
decreasing keys — at least with respect to comparisons.
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With respect to running times the built-in Heapq consistently achieved the best time-
wise performance, which is not surprising since it is implemented in C, whereas the other
implementations are clearly penalized by the overhead of Python being interpreted. Running
times for random input is shown in Figure 7(e). Interestingly, for large random inputs the
running time of post-order heaps is only outmatched by the builtin heapq, although the
overhead of using Python makes the results less conclusive. Since the motivation for studying
priority queues with decreasing keys is to achieve space efficiency by avoiding storing keys
with the items, the implicit post-order heap appears to be a good choice of data structure in
this context.

7.3 Dijkstra’s algorithm performance

We implemented a generic version of Dijkstra’s algorithm for the single-source shortest path
problem corresponding to Dijkstra, in Figure 1. This algorithm was selected since it allows
to be executed both with a priority queue supporting decreasing keys (and no explicit keys
in the items) and with a standard priority queue (with explicit keys in the items), and to
study if allowing decreasing keys caused the number of comparisons performed to increase or
decrease. We also tested what happens if we in addition to removing the explicit keys from
the items also removed the visited array from the algorithm. This further reduces the space
requirement for the algorithm, but breaks the O(|E|log|V|) running time guarantee.

As arguments the function takes the graph, the priority queue to be used, and two
flags use_visited and use_dist. If use_visited is false, the algorithm will not check if
extracted nodes from the priority queue have been visited before, i.e., we could save the
space for having a bit-vector for the visited nodes, the cost being that we might revisit nodes
(and relax their outgoing edges) multiple times (once for each shorter distance discovered to
the node). If use_dist is true, dist[v] is used as the key of v when comparing v, otherwise
an item in the priority queue consists of a pair (distance, node).

As input we tested directed cliques (including self loops) with n nodes and n? edges,
where 10 < n < 250, with random integer weights from 1,...,n, and weights forcing the
worst-case number of key decreases. In the latter case, the edge from node u to v has weight
max(0,2(v —u) — 1), where 0 < u,v < n — 1, and node 0 is the source node, i.e., the path
0515 ... 54121 0is the shortest path to node v with distance v.

In the experiments we measured the number of comparisons performed by the priority
queues, the number of nodes inserted into the priority queue, the number of nodes visited,
and the number of edges relaxed. The results are summarized in Figures 8-10, where different
combinations of use_visited and use_dist were tested. E.g., “+visited —dist” is when
use_visited is true and use_dist is false, i.e., Dijkstra,. The y-axis in Figures 8 and 9 is
the measured cost divide by n, i.e., the average cost per node.

Since we only consider cliques, the number of edges relaxed is exactly n times the number
of nodes visited. Furthermore, when a visited bit-vector is used, each node is visited and
each edge relaxed exactly once, whereas if visited is not used, then each node inserted into
a priority queue is also visited. For cliques with worst-case edge weights each edge (u,v),
where u < v, will cause a new shorter distance of 2v —u — 1 to v to be discovered, causing
the number of insertions into the priority queue to be (%), and the priority queue to grow to
size ©(n?). When visited is not used, the total number of nodes visited is (5) ~ n?/2 and
the number of edges relaxed is n (%) &~ n®/2. We therefore only show data for the number of
nodes inserted into the priority queues for cliques with random weights in Figure 9 and omit
data for the number of edges relaxed, nodes visited, and insertions for worst-case graphs.

For random edge weights, the probability is at most 1/k that the k’th edge considered
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with node v as target decreases the distance to v (this follows by a simple backwards analysis
argument), i.e., the expected number of times node v is inserted into the priority queue is at
most, ZZ;% % ~ Inn. This explains the nature of the curves in Figure 9(a), where the priority
queue stores (distance, node) pairs. When using dist[v] as key, it follows from Section 2 that
the same applies to the priority queues supporting decreasing keys (non-dashed plots in
Figure 9(b)).

Priority queues not supporting decreasing keys (Heapq, BinaryHeap and BinaryHeap-
HeapifyBottomup) might return the wrong items when using the current dist as keys. In
combination with using a visited bit-vector, the algorithm might fail to compute the correct
shortest distances. This was the case for random weights. Surprisingly, the algorithm worked
correctly for worst-case weights. If the visited bit-vector is not used, then incorrect nodes
returned by the priority queue will just be revisited later with a shorter distance, so the
algorithm will still correctly find shortest paths — but there is no guarantee on the number
of edge relaxes performed (except for an exponential upper bound that holds for any relax
based approach). For our inputs the potential increase in number of revisits to nodes appears
neglectable though, cf. Figure 9(b).

Finally, the number of comparisons performed in the priority queues is depicted in Figure 8.
Interestingly, the number of comparisons performed appears to be a little bit lower if we use
dist as key, cf. (e) versus (g), and (f) versus (h). In Figure 10 we have plotted the number
of comparisons performed when using dist as the key relative to using (distance, node) pairs,
for priority queues supporting decreasing keys and when using visited. The gain is largest
for random cliques where the number of comparisons is reduced by typically at least 10 %.
Interestingly, it appears that using a priority queue supporting decreasing keys one can
both save the space for storing explicit keys in the priority queue and reduce the number of
comparisons performed.

8 Conclusion

We have considered using priority queues supporting decreasing keys in Dijkstra’s single
source shortest path algorithm, motivated by the idea of saving space by omitting explicit
keys for the items in the priority queue. Although standard binary heaps with bottom-up
insertion fail to support decreasing keys, many other priority queues have been identified to
do so, and in particular post-order heaps have been identified as a strong contender for a
good alternative implicit priority queue in this context.

An open problem is to do a detailed experimental evaluation of the priority queues
supporting decreasing keys in a low-level programming language like C. This is beyond the
scope of this paper. Optimizing the running time of such implementations would require to
carefully tune the code to take into account, e.g., caching, paging, branch mispredictions, and
exploiting SIMD instructions [17]. Since the cache performance of binary heaps is known to
be improvable by increasing the degree of the heap [13], one should also consider post-order
heaps of higher degree.
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—— Abstract

Peg solitaire is a very popular traditional single-player board game, known to be NP-complete. In
this paper, we present a zero-knowledge proof of knowledge for solutions of peg solitaire instances.
Our proof is straightforward, in the sense that it does not use any reduction to another NP-complete
problem, and uses the standard design of sigma protocols. Our construction relies on cryptographic
commitments, which can be replaced by envelopes to make the protocol physical. As a side
contribution, we introduce the notion of isomorphisms for peg solitaire, which is the key tool of our
protocol.
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1 Introduction

Zero-knowledge proofs are fascinating protocols introduced by Goldreich, Micali, and Rack-
off [8], in which a prover, knowing a secret needed to verify some property, tries to convince
a verifier that the property actually holds, but without revealing anything about the secret.
Although these surprising features seem difficult to achieve, these protocols are often elegant
and very simple to understand. For this reason, zero-knowledge proofs are usually considered
as a beautiful concept.

In [7], Goldreich, Micali, and Wigderson present a protocol for proving the knowledge of a
graph 3-coloring, without revealing anything about the coloring. Such a protocol is said to be
a zero-knowledge proof of knowledge. This protocol is amazingly simple: the prover randomly
permutes the three colors and commits the new color of each vertex, the verifier chooses one
of the edges of the graph, the prover reveals the color of its two endpoints, and the verifier
checks that these two colors are different. On the one hand, the verifier learns nothing else
than the fact that the two endpoints have different (random) colors. On the other hand, if
the prover does not know any 3-coloring, then at least one edge has two endpoints of the same
color. In this case, the prover succeeds its proof with probability of at most (n — 1)/n, where
n is the number of edges. By repeating the protocols A times, its probability of success falls
to ((n — 1)/n)*. By adjusting the parameter A, the probability of deceiving the verifier can
be reduced as much as desired. This protocol can be used physically (i.e. without computer
and without cryptography) by replacing the commitments with paper envelopes.

This construction allows at the same time to show the existence of a zero-knowledge
proof of knowledge for any problem in NP: by reducing the required problem to the graph
3-coloring, the prover can turn the instance of the problem into an instance of the graph
3-coloring, and can prove its knowledge of this 3-coloring. However, using this generic method
results in heavy and unclear proof protocols, and it is often better to design tailor-made
proofs for specific problems in NP that are understandable, elegant and efficient.

If building tailor-made zero-knowledge proofs of knowledge for NP problems is fun in itself,
building such proofs for fun problems is even more fun. Therefore, many proofs of knowledge
for logic puzzles have been proposed, either in a cryptographic or a physical setting. For
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instance, cryptographic and physical zero-knowledge proofs of knowledge for sudoku puzzles
are presented in [9] and [16], physical proofs for various logical grid puzzles (namely akari,
takuzu, kakuro and ken-ken) are presented in [4], and cryptographic proofs problems based
on the Rubik’s cube are presented in [19]. Some works use physical properties of playing
cards to optimize the design of the physical proofs [13, 16]. As a fun application, such
proofs can be used as authentication or signature protocols, where authentication amounts
to proving the knowledge of a secret solution for a public logic game instance [19].

Peg solitaire is a traditional board game for one player known all over the world. This
game was already known in the 17" century, and is probably older. Peg solitaire rules are
very simple but the game is deeply complex, which makes it an exciting research topic for
mathematicians and computer scientists, as shown by the many scientific papers that have
already been published about it [1, 2, 10, 11, 12, 15, 18]

The game is played on a board with holes that can contain pegs. The player can jump
a peg over an adjacent peg (which is removed from the board) into a hole. The goal is to
reach a given winning position from a given initial position. Peg solitaire is proven to be
NP-complete [10]. A weaker variant of the game, where the goal is to remove all the pegs
but one, was previously proven to be NP-complete in [18]. In [15], authors show that the
game is no longer NP-complete when one of the dimensions of the board is fixed.

In this paper, we give the first tailor-made cryptographic zero-knowledge proof of know-
ledge for solutions of peg solitaire, in the sense that our protocol does not rely on a reduction
to another problem but uses the specific properties of the peg solitaire. While most logic
games used to build zero-knowledge proofs consist of filling in a grid with a pen within certain
constraints, peg solitaire has a different mechanism, since its solution is a series of successive
moves on a board. The method that we use seems generic and should be applicable to other
similar games: at each proof round, the prover shows to the verifier that one of its moves is
legal.

Our construction

Because of its structure, a peg solitaire board can be formalized as a graph (the link between
the graphs and the peg solitaire is quite natural and has already been studied in [2]). This
representation allows us to extend the notion of graph isomorphisms to define the notion of
peg solitaire isomorphisms. Loosely speaking, two peg solitaires are isomorphic when there is
a bijection that allows to pass from one to the other preserving the existence and the general
structure of their solutions. Considering two isomorphic peg solitaires, we give an efficient
method to transform a solution of one into a solution of the other using the isomorphism.
Our definition of peg solitaire isomorphism is generic and could be of independent interest.

Our proof protocol uses the standard method introduced in [7] with the proof for 3-
coloring: the prover commits its solution, the verifier challenges the prover to show that
one of the constraints of the problem holds in the solution, and the prover shows this by
decommitting one part of the solution. Obviously, the revealed part should not leak anything
else than the respect of the constraint.

More precisely, the prover first chooses an isomorphism of peg solitaire at random, and
computes the image of the peg solitaire instance and its solution by this isomorphism. This
step randomizes the structure of the solution. The prover then commits each part of this
randomized peg solitaire and its solution. The verifier has two ways to challenge the prover:

Either it requests the prover to reveal the isomorphism. In this case the prover also

decommits the isomorphic peg solitaire (but not its solution). The verifier then checks

that the peg solitaire has been correctly randomized, but it learns nothing about the
solution.
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Or it requests the prover to reveal the i*® move of the randomized solution. In this case
the prover decommits the corresponding part of the randomised solution, and the verifier
checks that the move is legal (i.e. it is a jump from a peg over an adjacent peg landing
in a hole). Since this move is isolated from the others and takes place on a randomized
board, the verifier does not learn anything else about the solution.

If the prover knows how to answer each challenge, then it knows each move of the solution
for the isomorphic peg solitaire instance, and it knows the isomorphism allowing to pass
from this solution to that of the initial peg solitaire instance. By contrapositive, if the prover
is not able to answer all the challenges, then it does not know a solution. The probability
that the prover deceives the verifier is at most (S — 1)/.S, where S is the number of steps in
the solution. By repeating the protocol several times, this probability becomes as small as
desired. Note that this protocol can also be turned into physical proof by replacing each
commitment with a paper envelope.

2  Cryptographic background

In this section, we recall the definitions of negligible functions, zero-knowledge proofs of
knowledge, sigma protocols, and commitments.

We use the notion of negligible function to formalize the concept of unrealistic event. A
function is negligible when it tends to zero faster than the inverse of any polynomial. We
consider that an attack is not feasible in practice if its probability is negligible in some
security parameter.

» Definition 1. A positive function ¢ : N — R is said to be negligible if for any positive

polynomial t, there exists an integer n such that for all integer x > n, |e(x)| < ﬁ

A zero-knowledge proof of knowledge [3] is a protocol where two parties interact, a prover
and a verifier. The prover knows a secret value (in our case, the solution of a peg solitaire)
and tries to convince the verifier of this knowledge, without leaking any other information
about the solution.

A zero-knowledge proof of knowledge has the three following properties:

Completness: If the prover actually knows the secret and runs the protocol honestly, then
the proof is accepted.

Validity: If the prover does not know the secret, then the probability that its proof is accepted
in a reasonable time is negligible. This probability is called the knowledge error. More
precisely, assuming the existence of a prover able to perform an accepted proof with a
reasonable probability, the validity ensures that the secret of that prover can be extracted
in a similar running time.

Zero-knowledge: The verifier learns nothing about the secret of the prover. More precisely,
the verifier is able to simulate its interaction with the prover in such a way that no
efficient algorithm can distinguish the simulated transcripts from the real transcripts with
non-negligible probability.

The protocol that we present in this paper is a sigma protocol [5], i.e. it is a repetition
of the three following interactions: the prover sends a commitment, the verifier sends a
challenge, and the prover sends a response. Due to their structure, validity of such protocols
can be proven using the definition of the n-Special-soundness. This property holds when it is
possible to extract the secret from n transcripts containing different challenges but sharing
the same commitment. A n-special-sound sigma protocol is valid with a knowledge error of
(n —1)/n [5]. By repeating the protocol A times, the knowledge error falls to ((n — 1)/n)*,
which is negligible in A.

9:3
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» Definition 2 (Sigma protocol [3, 5]). Let Ry, be a relation for a language L in NP, we say
that an element x is a witness for the instance y € L if (x,y) € Rr. Let A be a security
parameter; in what follows, p.p.t algorithm means probabilistic polynomial-time algorithm
in A. Let us consider two p.p.t algorithms P (the Prover) knowing a witness x and V (the
verifier) knowing an instance y interacting in a proof protocol (P(x),V(y)) using the following
pattern: P sends a commitment, V sends a challenge, P sends a response, after which V
accepts or rejects the proof. This proof protocol is said to be a sigma-protocol for Ry. We
denote the set of the accepted transcripts for any instance y by Acc(y). Moreover, a sigma
protocol can have the following properties:

Completeness: For every (r,y) € Ry:

Pr[(P(x), V(y)) € Acc(y)] = 1.

n-Special-soundness: For any y € L, there exists an efficient algorithm &£ (polynomial in
ly|) such that for any set of n valid transcripts T € Acc(y)™ sharing the same commitment
but having n different challenges from each other, we have:

Prlz «+ &E(7,y) : (z,y) € Ry] = 1.

(Computational) Zero-knowledge: For every (x,y) € Ry, and every p.p.t verifier V* there
exists a probabilistic p.p.t algorithm S (called simulator) such that for every p.p.t algorithm
D, the following is negligible in \:

|Prtr < (P(z), V*(y)); b < D(tr) : b =1] — Prftr + S(y); b < D(tr) : b =1]].

A sigma protocol which is complete, special-sound, and zero-knowledge is said to be a zero-
knowledge proof of knowledge.

A cryptographic commitment scheme [6, 7] C' = (Gen, Commit) is a pair of algorithms
that allows a user to commit a value with a secret key. More precisely, Gen(1*) generates a
commitment key sk from a security parameter A, and Commit(sk, m) generates a commitment ¢
from a key sk and a value m. To open the commitment ¢, the user reveals the committed value
m and the key sk. The validity of the opened commitment is verified if ¢ = Commit(sk,m).
Such a scheme should verify two propertie