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Abstract
We study the variant of the Euclidean Traveling Salesman problem where instead of a set of points,
we are given a set of lines as input, and the goal is to find the shortest tour that visits each line.
The best known upper and lower bounds for the problem in Rd, with d ≥ 3, are NP-hardness and an
O(log3 n)-approximation algorithm which is based on a reduction to the group Steiner tree problem.

We show that TSP with lines in Rd is APX-hard for any d ≥ 3. More generally, this implies that
TSP with k-dimensional flats does not admit a PTAS for any 1 ≤ k ≤ d − 2 unless P = NP, which
gives a complete classification regarding the existence of polynomial time approximation schemes for
these problems, as there are known PTASes for k = 0 (i.e., points) and k = d − 1 (hyperplanes). We
are able to give a stronger inapproximability factor for d = O(log n) by showing that TSP with lines
does not admit a (2 − ε)-approximation in d dimensions under the Unique Games Conjecture. On
the positive side, we leverage recent results on restricted variants of the group Steiner tree problem
in order to give an O(log2 n)-approximation algorithm for the problem, albeit with a running time
of nO(log log n).
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1 Introduction

In the Euclidean Traveling Salesman problem, one is given n points in d-dimensional Euclidean
space (denoted by Rd), and the goal is to find the shortest tour visiting all the points. The
problem is NP-hard for d ≥ 2 [41], but it has a celebrated polynomial time approximation
scheme (PTAS), i.e., a polynomial-time algorithm that produces a tour of length at most 1+ε

times the optimum for any fixed ε > 0, due to Arora [3] and (independently) by Mitchell [38].
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10:2 On the Approximability of TSP with Line Neighborhoods

In the past decades, a considerable amount of work has concentrated on finding approxim-
ations for variants and generalizations of the Euclidean Traveling Salesman Problem, e.g., by
changing the underlying space [4, 33, 16, 6], or the objects being visited [15, 7, 11, 20, 39, 40,
28]. In the latter case which is known as the Traveling Salesman Problem with Neighborhoods
(TSPN), the input consists of n neighborhoods, and the goal is to find the shortest tour that
visits each neighborhood. More formally, we are given the sets S1, . . . , Sn ⊂ Rd, and we wish
to compute the shortest closed curve τ such that for each i ∈ {1, . . . , n} we have Si ∩ τ ̸= ∅.
(Observe that the optimum curve τ consists of at most n segments.)

In contrast to regular TSP, TSPN is already APX-hard in the Euclidean plane [15], i.e.,
it has no PTAS unless P = NP. Worse still, even the basic case in which each neighborhood
is an arbitrary finite set of points in the Euclidean plane (the so called Group TSP) admits
no polynomial-time O(1)-approximation (unless P = NP) [43]. Even in the case in which
each neighborhood consists of exactly two points [18] the problem remains APX-hard.

This inherent hardness of TSPN gives rise to studying variants of the problem in which
the neighborhoods are restricted in some ways. In a seminal paper, Arkin and Hassin [2]
looked into the problem for various cases of bounded neighborhoods, including translates
of convex regions and parallel unit segments, and gave constant-factor approximation al-
gorithms for them. The best known approximation algorithm for a more general case of
bounded neighborhoods in the plane is due to Mata and Mitchell [35] and attains an O(log n)
approximation factor. However, there exist special cases of such bounded neighborhoods in
the plane that do allow for O(1)-approximation algorithms. These include neighborhoods
which are disjoint, fat, or have comparable sizes [15, 7, 11, 20, 39, 40].

The complementary case of TSPN where neighborhoods are unbounded regions (the
focus of this paper) is, in general, less well understood. Consider neighborhoods that
are affine subspaces (flats) of dimension k < d in Rd. On the positive side, and despite
the APX-hardness of the general TSPN problem already in R2, the version with flats (in
this case lines) as neighborhoods can be solved exactly in O(n4 log n)-time via a reduction
to the watchman route problem [29, 17]. Furthermore, Dumitrescu [19] provides a 1.28-
approximation algorithm that runs in linear time. In R3, the problem of line and plane
neighborhoods was first raised by Dumitrescu and Mitchell [20]. For the line case, they
already point out that the problem is NP-hard as a direct consequence of the NP-hardness
of Euclidean TSP in the plane [41]. Although this leaves the possibility for a PTAS open,
the best known approximation algorithm to date for TSPN with lines in R3 was given by
Dumitrescu and Tóth [21] and achieves an O(log3 n)-approximation. For the case of (d − 1)-
dimensional flats in Rd (which also includes planes in R3), they give a linear-time (for any
constant dimension d and any constant ε > 0) (1 + ε)2d−1/

√
d-approximation. This result

was subsequently improved by Antoniadis et al. [1] to an EPTAS that also runs in linear
time for fixed d and ε. Whether this variant is NP-hard or not remains an interesting open
problem. As for the case of line neighborhoods in Rd for d ≥ 3, a PTAS for k-dimensional
flats for 1 ≤ k ≤ d − 2 also remained out of reach.

We show that unless P = NP, there is no PTAS for lines in R3. As a direct consequence,
we can rule out the existence of a PTAS in all remaining open cases of TSPN with flats:
there is no PTAS for k-dimensional flat neighborhoods for any 1 ≤ k ≤ d − 2, unless P = NP.

Let us call the Euclidean TSP problem in Rd with k-dimensional flat neighborhoods
(k, d)-TSPN. Although ruling out a PTAS for (1, 3)-TSPN is an important step towards
settling the approximability of the problem, the inapproximability factor obtained is very
close to 1. It would be desirable to obtain a stronger inapproximability factor, especially
given how far we are from any constant-approximation algorithm for the problem. A natural
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way to obtain such a stronger inapproximability result is to consider the problem in higher
dimensional spaces. For example, regarding the classic Euclidean TSP, it is known that the
problem becomes APX-hard for d = log n [44]. This result directly implies that TSPN with
line neighborhoods in R1+log n is APX-hard, but this is barely satisfactory, since it again only
gives a small inapproximability factor. However, by using a different reduction from the vertex
cover problem, we are able to show that the problem has no polynomial (2−ε)-approximation
in RO(log n) for any fixed ε > 0 under the Unique Games Conjecture [30].

On the algorithmic side, very little is known about (k, d)-TSPN. For d = 3, the best
known polynomial time approximation for (1, 3)-TSPN is the aforementioned O(log3 n)-
approximation algorithm due to Dumitrescu and Tóth [21]. Their approach is to discretize
the problem by selecting a polynomial number of “relevant” points on each line. It is shown
that restricting the solution to visiting lines at these points only increases the tour length
by a constant factor. The resulting instance can now be seen as an instance of group-TSP,
where the relevant points of each line form a group. By feeding this into the O(log3 n)-
approximation algorithm for general group Steiner tree [25, 24] (it is easy to go from the tree
solution to a tour by doubling each edge), they obtain the same asymptotic approximation
factor for TSPN with line neighborhoods. This is somewhat unsatisfactory, since it ignores
that the group Steiner tree instances constructed by the reduction are (i) Euclidean and (ii)
all the points of a group are collinear. In other words, although the constructed group Steiner
tree instances are highly restricted, there is no known technique to exploit this restriction.

However, the reduction from TSPN with line neighborhoods to the group Steiner tree
problem implies that, if we allow quasi-polynomial running time, then TSPN with line
neighborhoods admits an approximation ratio of O(log2 n/ log log n) in O(nlog2 n) time [13].
This approximation ratio of group Steiner tree is tight for the class of quasi-polynomial time
algorithms due to the recent work of Grandoni et al. [26], which holds under the Projection
Game Conjecture and NP ̸⊆

⋂
0<ϵ<1 ZPTIME

(
2nϵ)

. Their hardness result is built on the
seminal work of Halperin and Krauthgamer [27], who prove that group Steiner tree admits
no log2−ϵ n-approximation for any fixed ϵ > 0, unless NP ⊆ ZTIME

(
npolylog(n)).

For the class of polynomial-time approximation algorithms, the group Steiner tree problem
admits an approximation ratio of O(log2 n) on some special cases, e.g., trees [25] and bounded
treewidth graphs [10, 9]. It is still open whether the group Steiner tree problem in general
graphs admits a polynomial-time O(log2 n)-approximation algorithm; the best running time
to obtain an O(log2 n)-approximation is nO(log n) [13].

The connection between TSPN and group Steiner tree also holds in the reverse direction:
Given an instance of group Steiner tree, one may embed the input metric into a Euclidean
space with distortion O(log n) [8] and cast it as TSPN with “set neighborhoods”.

While we cannot improve the approximation factor in polynomial time, we can do so in
quasi-polynomial time: we give an O(log2 n)-approximation in nO(log log n) time. We obtain
this result by using Arora’s PTAS for TSP [3], together with the framework of Chalermsook
et al. [10, 9], to transform TSPN into a variant of group Steiner tree when the input graph is
a tree, and then employing an O(log2 n)-approximation algorithm.

Our Contribution. Our first contribution is to show that unlike the problem with hyperplane
neighborhoods, the problem with line neighborhoods is APX-hard.

▶ Theorem 1. The TSPN problem for lines in R3 is APX-hard. More specifically, it has no
polynomial time (1 + 1

230000 )-approximation unless P = NP.

The reduction is from the vertex cover problem on tripartite graphs. The idea is to
represent the graph edges with lines, where two lines intersect if and only if they correspond to
incident edges. The main challenge is to keep the pairwise distance between non-intersecting
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lines large enough. We solve this by carefully placing the intersection points on non-adjacent
edges of a cube. For technical reasons, we do not work directly with this placement, but
rather on a “flattened” version of this point set. Additionally, we want to restrict the optimal
tour so that it visits each line near one of its intersection points with other lines. This is
achieved by forcing the optimal tour to follow a certain closed curve using special point
gadgets (each consists of polynomially many lines), and to visit the lines representing the
edges only at (or close to) intersection points. Visiting an intersection point corresponds to
including the corresponding vertex in the vertex cover of the graph. As a direct consequence
of Theorem 1, we obtain the following.

▶ Corollary 2. The Euclidean TSP problem with k-dimensional flat neighborhoods in Rd is
APX-hard for all 1 ≤ k ≤ d − 2.

To prove Corollary 2, suppose we are given a set L of lines in R3. We can first change each
line ℓ ∈ L into the flat ℓ ×Rk−1, resulting in k-dimensional flats in Rk+2. Since k ≤ d − 2, we
have that Rk+2 is a subspace of Rd, so this is a valid construction for (k, d)-TSPN. Moreover,
any tour in R3 visiting the lines is also a valid tour of the k-flats, and a valid tour of the
k-flats can be projected into a valid tour of L in R3 of less or equal length.

Our second contribution is to show a larger inapproximability factor in higher dimensions
under the Unique Games Conjecture:

▶ Theorem 3. For any ε > 0, there exists a constant c such that there is no (2 − ε)-
approximation algorithm for TSPN with line neighborhoods in Rc·log n, unless the Unique
Games Conjecture is false. Moreover, for any ε > 0, there is a constant c such that it is
NP-hard to give a (

√
2 − ε)-approximation for TSPN with line neighborhoods in Rc·log n.

This reduction is from the general vertex cover problem. Again we represent the edges of
the graph with lines and the vertices correspond to intersection points. This time however the
intersection points are almost equidistant: they are obtained via the Johnson-Lindenstrauss
lemma applied on an n-simplex. This allows the tour to visit the intersection points in any
order. To obtain a direct correspondence with vertex cover, we need to ensure that lines are
visited near intersection points. To this end, we blow up the underlying graph by replacing
each edge by a complete bipartite graph. Thus, we get the following corollary of Theorem 3.

▶ Corollary 4. For any ε > 0 there is a number c = c(ε) such that the Euclidean TSP
problem with k-dimensional flat neighborhoods in Rd has no polynomial (2−ε)-approximation
for any k ∈ {1, . . . , d − c log n}, unless the Unique Games Conjecture is false.

On the positive side, our third contribution is to develop an O(log2 n)-approximation
algorithm with slightly superpolynomial running time.

▶ Theorem 5. There is a deterministic O(log2 n)-approximation algorithm for TSPN with
line neighborhoods in Rd that runs in time nO(log log n) for any fixed dimension d.

The algorithm is based on adapting the dynamic program by Arora [3], and reformulating
TSPN into the problem of finding a solution in the dynamic programming space that visits
all the line neighborhoods. We then build upon the techniques of Chalermsook et al. [10, 9],
and show that this task can be reduced to a variant of the group Steiner tree problem
that admits an O(log2 n)-approximation in slightly superpolynomial running time. The
O(log log n)-factor in the exponent of the running time is a consequence of the running time
of Arora’s algorithm, and it is possible that we can improve it to polynomial time if an
appropriate EPTAS for TSP with running time O(f(ε, d)n log n) is discovered.

Due to space constraints, missing proofs are deferred to the full version of the paper.
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Q
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Figure 1 Left: Overview of a basic construction with a cube. Right: The optimal tour must visit
all points of Q, and it makes detours to some points pv.

2 Inapproximability in 3 dimensions

The goal of this section is to prove Theorem 1. The overall setup of our construction is
lightly inspired by a reduction in Elbassioni et al. [22]. The reduction is from vertex cover
on 3-partite graphs (i.e., on graphs G where the vertices can be partitioned into three
independent sets V1, V2 and V3). It is NP-hard to decide whether a given instance has a
vertex cover of size n/2 or if all vertex covers have size at least 34

33
n
2 [14]. In our construction,

each vertex v of G is assigned to a point pv on an edge of a unit cube; the classes V1, V2, V3
are mapped to pairwise non-adjacent and non-parallel (i.e., skew) cube edges. For each edge
uv ∈ E(G), we add the line pupv; see Fig. 1.

Consider now a closed curve γ of length 10 which is disjoint from the cube, but follows
some edges of the cube at a distance c/n for some constant c. Let Q be a set of points along
γ such that any two consecutive points have distance c/(10n).

We define a special point gadget – which consists of a large collection of lines – at each
point q ∈ Q. This ensures that any TSP tour that has length at most 20 will touch an
infinitesimally small ball around each vertex of Q. Consequently, any not too long TSP
tour will have to “trace” γ. The points in P = ∪pv which are placed near the cube edges
are arranged so that one can visit each point pv with a short detour from γ of length c/n.
Given a vertex cover of size k in G one can create a TSP tour of length at most 10 + kc/n,
namely by folowing γ and making the short detour at pv if and only if v is in the vertex
cover. Conversely, by a careful arrangement of the lines and point gadgets, we can ensure
that a tour of length 10 + kc/n implies the existence of a vertex cover of size at most 1.011k.

For technical reasons, we need to transform the constructed cube to a very flat paral-
lelepiped; it is convenient to define the point set Q and the point gadgets only after this
flattening transformation takes place. We are now ready to define our construction.

2.1 The construction
Let G = (V, E) be a tripartite graph on n vertices with partition classes V1, V2, V3. We add
dummy vertices (without any incident edges) to G so that each class has n vertices; the
vertices of Va (a = 1, 2, 3) are denoted by va

1 , . . . , va
n. Notice that the addition of dummy

vertices does not change the set of vertex covers of G. Let C denote the unit cube [0, 1]3, and
let e1, e2, e3 be the unit segments (0, 0, 1)T(1, 0, 1)T , (1, 0, 0)T(1, 1, 0)T and (0, 1, 0)T(0, 1, 1)T

respectively. We assign each vertex va
i to a point on the middle third of ei. The assignment

is denoted by p, and defined as:

SWAT 2022



10:6 On the Approximability of TSP with Line Neighborhoods

p(va
i ) =


( n+i

3n , 0, 1)T if a = 1
(1, n+i

3n , 0)T if a = 2
(0, 1, n+i

3n )T if a = 3.

We denote by P = p(V (G)) the set of points created this way. For each edge uv ∈ E(G),
let ℓ(uv) be the line through p(u) and p(v), and let L be the set of lines created this way:
L = {ℓ(uv) | uv ∈ E(G)}. The following technical lemma plays a key role in the contruction.

▶ Lemma 6. If ℓ, ℓ′ ∈ L correspond to non-incident edges, then they are disjoint and the
distance between them is at least 1

20n .

Flattening. We must ensure that the points of Q near a cube edge are similarly distant
from the lines in L incident to the cube edge (we will do this in Claim 9). We achieve
this by transforming the above construction so that the angle of each line ℓ with the plane
x + y + z = 0 is at most some small constant. Practically, we transform the point set P

and the line set L with the linear transformation x 7→ Ax, where A = I − 0.3J and J is the
all-ones matrix.

Essentially, the transformation pushes everything closer to the plane H : x + y + z = 0:
for a given point p and its perpendicular projection q on H, the point Ap is the point
on the segment pq for which dist(q, Ap) = 1

10 dist(q, p). Note that if pq is any segment of
length λ, then its length after the transformation is at least λ/10 and at most λ. When the
transformation is applied to an edge ea of the cube C, then the resulting segment has length
σ =

√
0.72 + 0.32 + 0.32 ≃ 0.8185. Consequently, Ap(va

i ) and Ap(va
i+1) has distance σ/(3n).

Let P̄ and L̄ be the resulting point set and line set. Using Lemma 6 and the above
arguments we get the following corollary.

▶ Corollary 7. The minimum distance between points of P̄ is σ
3n , and the minimum distance

between lines of L̄ corresponding to non-incident edges of G is at least 1
200n .

Defining the point gadgets, and wrapping up the construction. For a point set X, let
X̄ denote its image under the flattening transformation A. Let F a

1 and F a
2 be the planes of

the faces of [0, 1]3 incident to ea. The following claim shows that F̄ a
1 and F̄ a

2 are two planes
through ēa whose angle is small.

▷ Claim 8. For a = 1, 2, 3 we have ∢(F̄ a
1 , F̄ a

2 ) < 1
4 .

Let Ha be the angle bisector plane of F̄ a
1 and F̄ a

2 which does not intersect the image of
C, see Figure 2(i). Within Ha, we place a set of points Qa, which we define next.

Let δ = 1
4000n , and let δ∗ be the height of the isoceles triangle Tδ with base δ and two

sides of length 10δ, that is δ∗ =
√

99.75δ. Consider a half-plane in Ha whose boundary is
parallel to ēa and is at distance δ∗ from it. Within this half-plane, let Qa be a set of at most
4000n points with the following properties: (i) for each p(va

i ) there are two points q, q′ ∈ Qa

such that p(va
i ), q and q′ form an isoceles triangle of side lengths 10δ, 10δ, δ and (ii) there is

a unique shortest TSP path of Qa, whose edges are of length exactly δ; see Figure 2(ii).
Let Q be a point set with the following properties:
Q1 ∪ Q2 ∪ Q3 ⊆ Q

For any pair of distinct points q, q′ ∈ Q, dist(q, q′) ≥ δ.
Each segment of the minimum TSP tour T (Q) of Q has length δ, and cost(T (Q)) = 10.
The minimum distance of points of Q from L̄ is attained only in Q1 ∪ Q2 ∪ Q3

Q is disjoint from the cylinder Y of axis (0, 0, 0)T (1, 1, 1)T and radius σ/2.
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ēa

Ha F̄ a1

F̄ a2

C̄
L̄

δ∗

q ∈ Q

p(vai ) p(vai+1) p(vai+2)

δ∗

σ
3n

10δ

δ
δ

Ha

(ēa)⊥

ēa
ē1

ē2ē3

Q

Q3

Q1

Q2

(i)

(ii) (iii)

Q2

Y

Figure 2 (i) Cross-section given by a plane perpendicular to ēa. (The segment ēa appears as a
point, and the plane Ha as a line in this picture.) All lines of L̄ intersect such a plane in the gray
area. (ii) Defining Qa within the plane Ha, so that all points have distance at least δ∗ from ēa. (iii)
Defining Q so that it has all the required properties. The cylinder Y is perpendicular to the plane
x + y + z = 0, a plane to which all points of the construction are close to. The “triangle” defined by
the skew lines ēa wraps around the cylinder Y.

Such a set Q is easy to find, for example by following the lines ēa and connecting them
far from the origin. See Fig. 2(iii) for an illustration.

We need the following claim on the distance of Q from the lines in L̄. Intuitively, it shows
that the points in Q are far from the lines in L̄, and thus a certain detour is necessary to
visit a line in L̄. Note that the bound would not be strong enough without the flattening.

▷ Claim 9. For any q ∈ Q and ℓ ∈ L̄ we have dist(q, ℓ) > 9.9δ.

▶ Lemma 10 (Point gadget). Given a positive integer n and a point q ∈ R3, there is a set
L of O(n6) lines through q such that any TSPN tour of L which is disjoint from the ball
B(q, 1

n3 ) has length at least 20.

Our construction is the union of the line set L̄ together with a point gadget placed at
each point q ∈ Q; let L∗ denote the resulting line set.

2.2 Putting things together
▶ Lemma 11. If G has a vertex cover of size k, then there is a tour in L∗ of length 10+19δk.
If L∗ has a tour of length 10 + 19δk, then G has a vertex cover of size 1.011k.

The proof of the first part of the lemma is straightforward. To prove the second claim,
we use the fact that the tour must touch the small balls B(q, 1

n3 ) for each point q ∈ Q by
Lemma 10. We can then consider a portion of the tour between two consecutive ball visits,
i.e., a polygonal curve g that starts near some point q ∈ Q and ends near some other point
q′ ∈ Q, and visits some of the lines in L̄ along the way. In the full version we show that g

cannot touch lines from all three classes, in other words there is a segment ēi such that all
lines visited by g have an endpoint on ēi. The proof relies on the property that Q avoids
the cylinder Y with axis (0, 0, 0)T , (1, 1, 1)T and radius σ/2. Intuitively, if g would touch
lines from all three classes, then it would have to go around the cylinder partially, which

SWAT 2022



10:8 On the Approximability of TSP with Line Neighborhoods

would be too costly. We can then define a vertex cover based on the tour portions g: for
each line ℓ visited by g, the line ℓ has a point on ēi that corresponds to some vertex v of
the graph. These vertices v form a set W which is clearly a vertex cover; the goal is then to
prove that |W | ≤ 1.011k. The proof hinges on the fact that if a tour portion g contributes
s unique vertices to W , then it must jump between non-incident lines of L̄ at least (s − 1)
times, which incurs a cost of at least 20(s − 1)δ by Corollary 7. In case of s = 1, the tour
still needs to visit some line in L̄, which incurs a cost of at least 19.8δ by Claim 9. Putting
these observations together (and that the minimum cost tour of the balls B(q, 1/n3) has
length very close to 10) yields the desired bound on |W |.

Proof of Theorem 1. Suppose that there is a polynomial time algorithm that approximates
TSPN with lines in R3 within a factor of 1 + 1

230000 . Let G be a given 3-partite graph. If
G has a vertex cover of size n/2, then the above construction would have a tour of length
10 + 19δ n

2 = 10.002375. On the other hand, if all vertex covers of G have size at least 34
33

n
2 ,

then all tours of the construction have length at least 10 + 19δ 34
33

n
2·1.011 > 10.00242. As

10.00242/10.002375 > 1 + 1
230000 , we could use the hypothetical approximation algorithm to

distinguish between these two cases in polynomial time, which would imply P = NP. ◀

3 No (2 − ϵ)-approximation Algorithm

In this section we prove Theorem 3. In particular, we will show that when the objects are
lines, TSPN is at least as hard to approximate as the Vertex Cover problem which is known
to be hard to approximate to within a factor of 2 − ε, for any constant ε > 0, under the
Unique Games Conjecture (and inapproximable within a factor of 1.42 unless P = NP [31]).

▶ Theorem 12 ([32]). Unless the Unique Games Conjecture is false, for any constant ε > 0,
there is no polynomial-time algorithm that, given a graph G = (V, E) and an integer k,
distinguishes between the cases (i) G has a vertex cover of size at most k or (ii) G has no
vertex cover of size less than (2 − ε)k.

The main idea behind the reduction is to represent a graph G in Euclidean space such that:
Each vertex v ∈ V (G) corresponds to a point pv ∈ Rd,
Each edge e = uv ∈ E(G) corresponds to a line going through the points pu and pv,
An optimal tour visits each line sufficiently close to the points pv, and therefore the vertex
set corresponding to the points in the vicinity of the tour is a vertex cover.

However, in order to enforce that an optimal tour passes through (or not too far from)
the points pv, we will have to further build upon this idea. In particular, for each vertex v,
instead of constructing only one point pv, we will construct a set Pv of polynomially many
points corresponding to v. If there is an edge e = uw ∈ E(G), then we connect each point
corresponding to u with each point corresponding to w. More precisely, for each edge uv

and for every pair of points (pu, pw) with pu ∈ Pu and pw ∈ Pw, we add a line going through
pu and pw. Notice that the number of edges increases quadratically in the number of vertex
copies. Therefore, tours that visit lines away from the vertices are disproportionally affected,
which forces an optimal tour to visit lines at (or close to) the points in Pv.

Another key aspect of our construction is that we position the points of P :=
⋃

v∈V (G) Pv

in Rd so that the distance between any pair of distinct points is (roughly) the same. This
helps us to have a more direct correspondence between the cost of the optimal tour and the
size of an optimal vertex cover. The reduction is desribed formally in the next subsection.
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3.1 Reduction: Vertex Cover to TSP with Line Neighborhoods
Take an instance of the Vertex Cover problem on a graph G = (V, E) with n vertices and m

edges. We first take a lexicographic product of the graph G with an independent set of size
α = n2. Informally speaking, we construct a graph G′ by making α copies of each vertex
v ∈ V (G), and denote the corresponding vertex set by Qv. Then, for each edge vw ∈ E(G),
we add edges between every pair of vertices vi ∈ Qv and wj ∈ Qw, thus forming a complete
bipartite graph on Qv and Qw. More formally, the graph G′ is defined as:

V (G′) = {vi : v ∈ V (G) ∧ i ∈ [α]} and E(G′) = {viwj : vw ∈ E(G) ∧ v ̸= w ∧ i, j ∈ [α]}.

Next, we use the graph G′ to construct an instance I(G′) of the TSPN with line neigh-
borhoods problem in d = O(δ−2 ln n′) dimensions for any small enough δ > 0 and with
n′ = |V (G′)| = α · n. We map each vertex v of G′ to a point pv in Rd such that for any two
points pv and pu with v ≠ u, v, u ∈ V (G′) the distance dist(pv, pu) between them satisfies
the following property: 1 ≤ dist(pv, pu) ≤ 1 + δ.

The fact that this is possible and can be done in polynomial time follows by Theorem 3.1
by Engebretsen, Indyk and O’Donnell [23], which we restate for completeness in the Appendix
as Theorem 19. In particular, we can employ the theorem in order to deterministically map a
unit side length simplex from Rn′−1 to Rd such that the desired property holds for all pairs
of points.

We denote the resulting point set by P . Next, we create a collection of lines L in an
instance of TSPN, by adding to L a line ℓvw passing through points pv and pw if vw ∈ E(G′).

We devote the rest of this section to prove completeness and soundness of our reduction.

Completeness. Suppose the graph G has a vertex cover of size ≤ k. Then we claim that
there is a tour T of cost at most αk(1+δ) that touches each line at least once. To see this, let
S = {v1, . . . , vk} denote the vertex cover of G. By construction, S′ = {vi

j : i ∈ [α] ∧ j ∈ [k]}
is a vertex cover of G′. By the construction of L and by the fact that S′ is a vertex cover of
G′, it follows that any tour that visits points pv1

1
, pv2

1
, . . . pvα

k
(in any order) is a feasible tour,

i.e., it touches all lines in L. So, in total such a tour visits a total of at most αk points, and
the distance between any pair of these points is by construction at most 1 + δ. Thus, there
is a solution to TSPN with cost at most αk(1 + δ).

Soundness. We show that if there is a tour of cost x (where x ≤ αn(1 + δ)), then there is a
vertex cover in G of size at most x

α(1−2∆)λ , where ∆ is a small positive number and λ ∈ [0, 1]
is very close to 1.

The intuition behind ∆ is that it describes the maximum distance that the tour is allowed
to have to a given point, assuming that the vertex corresponding to that point contributes to
the vertex cover. For each point pvi ∈ P (note that vi ∈ V (G′)), let B(vi) be a d-dimensional
ball of radius ∆ centered at pvi . Note that ∆ is small enough so the only lines from L
intersecting a ball B(vi) are the ones that go through pvi . Given a tour T , we say that a
ball B(vi) is non-empty if T ∩ B(vi) ̸= ∅; otherwise, we say that B(vi) is empty. We say
that a line ℓuw is covered by a ball if at least one of the balls B(u) and B(w) is non-empty.
Otherwise ℓuw is not covered by a ball. We first show that any point p ∈ ℓuw that is outside
the two balls corresponding to u and w will not be “too close” to any other line:

▶ Lemma 13. For any point p ∈ ℓuw such that p ̸∈ B(u) and p ̸∈ B(w) and for any
ℓ ∈ L \ {ℓuw} we have dist(p, ℓ) ≥ ∆/2.

We are now ready to prove that any optimal tour T must cover almost all lines by balls:
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▶ Lemma 14. Let T be a tour of cost at most x with x ≤ αn(1 + δ) for the instance I(G′).
Then the number of lines of I(G′) that are not covered by balls is at most 2x

∆ .

Proof. Note it is without loss of generality to assume that T consists of line segments with
endpoints on lines of I(G′). By Lemma 13 any line ℓuiwj ∈ Luw that is visited at a point
p with p ̸∈ B(ui) and p ̸∈ B(wj), must have two adjacent segments on T of length at least
∆/2 each. Since the total tour cost of T is at most x there can be at most x

∆/2 = 2x
∆ lines

that are visited by T outside a ball. ◀

Let λ = 1 − ε2 and set α = n2. We can construct a vertex cover of G based on a tour T

the following way: if a set Qv has at least λα non-empty balls, then we add v to the vertex
cover.

▶ Lemma 15. The set S = {v : |∪i∈[a]{vi : B(vi) is non-empty}| ≥ λα} is a vertex cover of
G of size |S| < x

α(1−2∆)λ .

Proof. We first argue that S is a vertex cover of G. Assume for the sake of contradiction that
some edge uv ∈ E(G) is not covered by S. Then it must be the case that there are at least
α(1 − λ) empty balls among the balls corresponding to both u and v. But any line defined
by two such empty balls corresponding to u and v is not covered by a ball. In total there are
more than (1 − λ)2α2 = Ω(n4) many such lines. This is a contradiction, since by Lemma 14
there can be at most 2nαk(1+δ)

∆ = O(n3) such lines in total over the whole instance.
Let S be the vertex cover of G we have obtained. Since the dsitance of any two balls is

at least 1 − 2∆, and we have visited at least αλ balls among Qv for each v ∈ S, the total
cost of the tour is at least

x > |S|αλ(1 − 2∆),

therefore we have that |S| < x
αλ(1−2∆) . ◀

Proof of Theorem 3. Suppose that there is an algorithm that can distinguish in polynomial
time, for any 0 < ε′ and any x ∈ R+, whether there is a tour of length at most x or all tours
have length at least (2 − ε′)x. Take some instance of vertex cover, where the goal is to decide
if there is a vertex cover of size at most k or all vertex covers of the graph have size at least
(2 − ε)k, where ε ∈ (0, 0.1]. By the above polynomial construction, it would be sufficient to
distinguish the cases where I(G′) has a tour of size at most kα(1 − 2∆)λ (implying a vertex
cover of size at most k), or all tours have length at least (2 − ε)kα(1 + δ) (implying that all
vertex covers have size at least (2 − ε)k). If we set δ = ∆ = ε2, then we get that the ratio of
these tours is:

(2 − ε)kα(1 + δ)
kα(1 − 2∆)λ = (2 − ε)(1 + ε2)

(1 − 2ε2)(1 − ε2) < 2,

so the hypothetical algorithm on I(G′) distinguishes these cases, which is a contradiction. ◀

We note that our reduction implies that TSPN with Line Neighborhoods is Vertex Cover
hard, and therefore also inapproximable within a factor of

√
2 − ε unless P = NP [31].

4 A Quasipolynomial-Time Approximation Algorithm

In this section, we will show a quasi-polynomial time algorithm to approximate TSPN for
lines to a factor of O(log2 n). In fact, our approach is more general: we show how to
O(log N log n)-approximate TSPN for discrete neighborhoods of total size N , in running time
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NO(log log N) for any fixed d. In this problem, we are given n neighborhoods Pi ⊂ Rd, which
are discrete sets of points. Let P =

⋃
i∈[n] Pi, N = |P |. Using the approach of Dumitrescu

and Tóth [21], we can convert any instance of TSPN with line neighborhoods into an instance
of discrete TSPN on a set of N = O(n4) points and n neighborhoods. This transformation
has a running time of O(N), and incurs the loss of a constant factor in the approximation.
From now on, we focus on TSPN for discrete neighborhoods.

Our main result is an O(log N log n)-approximation algorithm that runs in time
NO(log log N) for constant d. Our algorithm combines the dynamic program by Arora [3] with
the framework of Chalermsook et al. [10, 9]. As Dumitrescu and Tóth show [21], TSPN is
related to the group Steiner tree problem, and can be reduced to this problem to obtain an
O(log3 n)-approximation. We show that, using the structure of the Euclidean space, which
is exploited in the algorithm presented by Arora for TSP, we can use the techniques of
Chalermsook et al. to approximate discrete instances of TSPN and group Steiner tree in Rd.

We note that, even on tree metrics, the group Steiner tree problem is Ω(log2 n/ log log n)-
hard to approximate under the projection games conjecture [27, 26]. As every tree metric
can be embedded into some Euclidean space with distortion O(

√
log log n) [34, 36, 37],

the group Steiner tree problem in Euclidean space is also hard to approximate to within
Ω(log2 n/(log log n)3/2) under the same assumption.

▶ Theorem 16. There is a randomized O(log N log n)-approximation algorithm for TSPN
with discrete neighborhoods in Rd that runs in time NO(log log N) for constant d.

The theorem above, together with the result of Dumitrescu and Tóth [21] imply Theorem 5,
along with the derandomization techniques of Arora [3] and Charikar et al. [12].

We start by recalling the main steps of the PTAS for TSP by Arora, as our result builds
upon the dynamic program used there. While describing the algorithm, we state some
modifications that are necessary for our purpose. Then, we show how to use the framework
of Chalermsook et al. [10, 9] to find a feasible solution using the dynamic program. We note
that, among different results on Euclidean TSP, the work of Arora yields the best running
time for our algorithm as the use of other techniques, e.g., spanners [42, 5], to improve the
running time is not compatible with our approach. Nevertheless, an existence of a “pure”
dynamic program for Euclidean TSP that has constant number of branches in each recursive
call will immediately lead to a polynomial-time algorithm without further modification.

4.1 Chalermsook et al.’s Framework
Firstly, we discuss the technique of Chalermsook et al. [10, 9] that reduces an instance of the
group Steiner tree problem on bounded treewidth graphs into a tree-instance. In fact, the
algorithm of Chalermsook et al. works on arbitrary graphs, but the size of the tree produced
depends on the running time of a dynamic program or any recursive algorithm that solves
the corresponding point-to-point problem, i.e., the classical Steiner tree problem. Specifically,
the resulting tree will have a polynomial-size only if the recursive algorithm terminates in
polynomial-time. Indeed, each node in the tree corresponds to a state in the search space
of the dynamic program. In our case, while a polynomial-time algorithm is not available
for Euclidean TSP (due to its NP-hardness), there exists a pure dynamic-programming
based PTAS by Arora [3], which suffices for reducing the Euclidean TSP instance into
a tree-instance of the group Steiner tree problem, albeit losing a constant factor in the
approximation ratio.

Now we wish to extract a near-optimal solution of the original problem from the tree-
instance, which appears as a subtree. This is relatively straightforward for the point-to-point
network design problems like the classical Steiner tree problem and Euclidean TSP. The
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neighborhood problem (i.e., TSPN), on the other hand, has multiple points where we can
enter a neighborhood, and each choice affects the solution globally. Chalermsook et al. solves
this issue by exploiting linear programs to find an (fractional) optimal solution that satisfies
the global constraints. Henceforth, we are left with rounding a fractional solution obtained
from the LP, and this problem reduces to solving a group Steiner tree problem on the
tree-instance, which admits an O(log N log n)-approximation algorithm.

Lastly, we remark that, while Chalermsook’s algorithm runs in polynomial-time, our
algorithm for TSPN runs in slightly super polynomial-time even in constant dimension.
This is because each recursive call in Arora’s algorithm may branch up to O(log n)2O(d log d)

sub-processes, thus causing the transformation to produce a tree of size O(n2O(d log d) log log n).
The remaining part of this section is devoted to give more details on our algorithm. The

full discussion and proofs are deferred to an appendix due to page limit.

4.2 Arora’s Algorithm
In this section, we briefly summarize the algorithm of Arora [3] (a more detailed description
can be found in Appendix B.1). This algorithm approximates TSP to a factor of 1 + 1/c; for
our purpose, it is sufficient to consider c = 1. Arora’s algorithm has three main steps:
1. Perturbation, which ensures that all coordinates are integral and bounded by O(n);
2. Construction of a shifted quadtree;
3. Dynamic program, which finds the approximate solution for TSP.

The dynamic program is based on the (m, r)-multipath problem (see Definition 21), which
given a cell of the quadtree and a set of pairs of portals on the boundary of the cell, has as
its objective to find a minimum-cost set of paths, each connecting a pair of portals, and such
that all of the points in the cell are visited. We refer to the multiset of portals and their
pairing as the state of an (m, r)-multipath problem.

Two main changes are required to use the algorithm by Arora to approximate TSPN.
First, we must guess a point v0 in an optimum solution, as well as a value R = O(OPT) (see
Appendix B.1.1). Second, we must allow the solutions to the (m, r)-multipath problem to
not visit every point in the cell. We achieve this by adding a visit bit to the state of the
(m, r)-multipath problem on leaves, which indicates if the (unique) point in the cell must be
visited (it is True), or it is sufficient to connect the portals (see Appendix B.1.3).

4.3 Approximating TSPN using the framework by Chalermsook et al.
After perturbation and construction of the shifted quadtree, we use the dynamic program
above to define a dynamic programming graph. The intuition is that a solution to the problem
can be represented as a tree in this graph, where the vertices in the tree correspond to all of
the (m, r)-multipath problems that assemble into the solution.

We now describe the nodes and edges of this graph, denoted by H.
Nodes: There are two types of nodes, which we refer to as subproblem nodes and
combination nodes. The graph contains one subproblem node for every entry of the
modified dynamic programming table in Section 4.2, i.e. one node for each instance of
the (m, r)-multipath problem for every cell, pairing of portals and visit bit (for leaves).
Combination nodes correspond to the possibilities of recursion for a given subproblem:
for a given (m, r)-multipath problem (for a non-leaf cell), there is a combination node for
every possible way for the p paths to cross the boundary between children cells.
Root: The root of H corresponds to (m, r)-multipath on the root cell with no portals.
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Edges: There are (directed) edges connecting the node for each (m, r)-multipath prob-
lem to the corresponding combination nodes, and then the combination nodes to the
corresponding nodes for the subproblems in the children cells.
Costs: Edges incident to leaf nodes have cost equal to the corresponding entry in the
dynamic programming table; all other edges have cost 0.

Using this definition, we can represent any (m, r)-light salesman path, that is a path
which crosses each facet of each cell at most r times and always at a portal, as a tree T in
H. For each cell, the solution restricted to that cell consists of a union of disjoint paths,
which induce a set of portals and their pairing, and hence an instance of the (m, r)-multipath
problem. We include the corresponding subproblem node in T . For each non-leaf cell, there
is a combination node which represents the way in which the paths cross boundaries between
children cells. We add that combination node to T , as well as all of the edges containing it.

The trees obtained by this process have a specific structure, which was implicitly formu-
lated in the work of Chalermsook et al. [10, 9], and which we formalize below.

▶ Definition 17 (Solution tree). Let H be a DAG with root r, and its nodes be partitioned
into combination nodes Hc, and subproblem nodes Hp. We say an out-arborescence T ⊆ H

rooted at r is a solution tree if:
1. Every combination node tc ∈ T ∩ Hc has full out-degree (i.e., all children are also in T ),
2. Every non-leaf subproblem node t ∈ T ∩ Hp (including the root r) has out-degree 1 in T .

As we mentioned above, we can construct a solution tree for any (m, r)-light salesman
path. The converse is also true: for each solution tree, there is a corresponding (m, r)-light
salesman path. The final requirement for a solution to be feasible is that each neighborhood
must be covered, meaning that the tour must intersect every neighborhood.

Consider a tour corresponding to a solution tree in T . The set of points visited by this
tour is exactly the set of points contained in the leaf cells for subproblem nodes whose visit
bit is set to True. In other words, the points of the leaf subproblems with visit bit True are
visited by the tour, and so the corresponding neighborhoods are covered. Therefore, we can
solve TSPN by formulating it as finding a solution tree that covers every neighborhood.

Let Si be the set of all subproblem nodes whose visit bit is True, and whose cell contains a
point in Pi. We can formulate our goal as finding a minimum-cost solution tree that contains
at least one node of each set Si. This problem resembles GST, and is defined in the work of
Chalermsook et al. [10, 9]. We redefine the problem using our own notation.

▶ Definition 18 (Solution Tree Group Steiner Tree (STGST)). Let H be a DAG with edge-costs
cost : E(H) → R and root r, as well as groups Si ⊆ V (H), for i ∈ [h], and a partition of
the nodes into Hc and Hp. The objective of this problem is to find a minimum-cost solution
tree T that contains at least one vertex of every group Si.

Their work shows that we can obtain an O(log2 n)-approximation to STGST (see [10,
Sec. 4]). By reducing TSPN to STGST, we can apply the same approximation result, thus
proving Theorem 16. We show the details of these steps in Appendix B.2.

5 Conclusion

We have shown that TSPN with line neighborhoods is APX-hard, so a PTAS for this problem
is unlikely. This implies the same hardness for k-dimensional flats in Rd for 1 ≤ k ≤ d − 2,
which together with the known PTAS results for k = 0 and k = d − 1 gives a complete
classification of these problems. We have also proved a stronger inapproximability factor

SWAT 2022



10:14 On the Approximability of TSP with Line Neighborhoods

for d = O(log n): there is no (
√

2 − ε)-approximation assuming P ̸= NP and no (2 − ϵ)-
approximation assuming the UGC. On the positive side, we gave an O(log2 n)-approximation
algorithm in slightly superpolynomial time.

There is still a large gap between the lower bounds and the algorithms for TSPN with
line neighborhoods. Perhaps the most important question related to TSPN is to find a
constant-approximation for line neighborhoods in R3, or to prove that it does not exist.
Furthermore, for general point sets in higher dimensions there is an inapproximability of
Ω(log2 n/(log log n)3/2) under the Projection Games Conjecture. Whether that holds for
flats or lines is an open problem.
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B.1 Arora’s Algorithm
Arora’s algorithm consists of three main steps:
1. Perturbation, which changes the instance so that all coordinates are integral and bounded

by O(n);
2. Construction of a shifted quadtree;
3. Dynamic program, which finds the approximate solution for TSP.

We describe all of these steps, including any minor alterations needed for them to work
in our setting.

B.1.1 Perturbation
Arora shows how to perturb the solution such that:
1. All nodes have integer coordinates;
2. Every (non-zero) distance between two points is at least 8 units;
3. The maximum distance between two points is O(n).

Given a bounding box on the instance of size L0, Arora achieves this perturbation by
snapping points to an appropriately fine grid. To use this step for our problem, we need
to specify a value of L0 such that OPT ≤ L0 ≤ O(OPT). To this effect, we guess the value
of OPT rounded up to a power of 2, as well as a vertex v0 that is included in an optimum
solution. We implement this guessing step by iterating over all of the possible values, and
computing a feasible solution for each possibility. The best feasible solution we obtain will
be at least as good as the solution for the correct guess (in expectation).

The guessing step is done as follows. We start by guessing a vertex v0 that is contained in
an optimum solution. Then, we compute the minimum radius R0 such that at least one point
from each neighborhood is contained in the ball B of radius R0 centered at v0. Such a ball
can be computed simply by iterating over all neighborhoods and finding the neighborhood’s
nearest point to v0. If the optimum solution contains v0, then its cost is at least R0, as it
must visit the farthest neighborhood, at distance R0. On the other hand, OPT ≤ 2R0n, since
the ball B contains at least one point from each neighborhood, and the distance between
any two points in B is at most 2R0. Hence, there is a tour of cost at most 2R0n. Knowing
that R0 ≤ OPT ≤ 2R0n (assuming v0 is in an optimum solution), we can simply run the
algorithm for every v0 and for any R ∈ [R0, 4R0n] that is a power of 2.

Given a vertex v0 and a guess R for the value of the optimum solution, we set L0 = R/2
(so that if R/2 ≤ OPT ≤ R, L0 ≤ OPT). Finally, we remove all of the vertices u ∈ P that
are at a distance more than R from v0, that is, dist(v0, u) > R. A solution containing both
v0 and u would cost more than R ≥ OPT, implying that for correct choices of R and v0, such
vertices can be safely removed. We now have a bounding box of side length 4L0 containing
all the points in the instance, and hence the perturbation step in Arora’s algorithm ensures
the stated properties.

B.1.2 Construction of a shifted quadtree
Let L = O(n) be the size of the bounding box. The algorithm computes a random shift
a′ = (a′

1, a′
2, . . . , a′

d), with a′
i ∈ {0, . . . , L − 1}, i ∈ [d]. Then, it constructs a quadtree where

the dissection points are shifted according to a′. The resulting quadtree has height O(log n),
and O(n log n) cells. For our purpose, no changes are needed to this process.
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B.1.3 Dynamic Program
Arora’s algorithm uses dynamic programming to find a salesman path, which may visit
additional points along the boundary of the cells of the quadtree. The following definition
formalizes this concept.

▶ Definition 20. Let m, r be positive integers. An m-regular set of portals for a shifted
dissection is a set of points on the facets of the cells in it. Each cell has a portal at each
of its vertices and m other portals on each facet, placed in a d − 1-dimensional square grid
whose vertices are identical to the vertices of the facet.

A salesman path is a path in Rd that visits all the input points, and some subset of
portals. It may visit a portal more than once.

The salesman path is (m, r)-light with respect to the shifted dissection if it crosses each
facet of each cell in the dissection at most r times and always at a portal.

The goal of the dynamic program is to find a minimum cost (m, r)-light salesman path,
for the instance. For our purpose, a 2-approximation of TSP is sufficient, and hence we
set m = O(

√
d log n)d−1 and r = O(

√
d)d−1. By restricting the solution to cross the cell

boundaries only through portals, we can see that any solution to the problem, restricted to
a single cell, consists of a set of paths that together cover all of the points inside the cell.
Since we want to find an (m, r)-light solution, this further implies that at most r portals
per facet of the cell are used. This motivates the definition of the (m, r)-multipath problem,
which is the problem solved by the dynamic program for each cell:

▶ Definition 21 ((m, r)-multipath problem [3]). An instance of this problem is specified by
the following inputs:
1. A nonempty cell in the quadtree.
2. A multiset of r portals on each of the 2d facets of this cell such that the sum of the sizes

of these multisets is an even number 2p ≤ 2dr.
3. A pairing (a1, a2), (a3, a4), . . . (a2p−1, a2p) between the 2p portals specified in Item 2.

The goal in the (m, r)-multipath problem is to find a minimum cost collection of p paths in
the cell that is (m, r)-light. The i-th path connects a2i−1 to a2i, and the p paths together visit
all the points in the cell.

The dynamic programming table consists of all of these instances of (m, r)-multipath
problem, for each cell and pairing of portals (considered here to include the multiset of
portals in Item 2. We refer to the multiset of portals and their pairing as the state of an
(m, r)-multipath problem.

The values of the table can be computed recursively. The entries corresponding to leaves
of the quadtree can be easily determined: given the portal set of size 2p and the pairing,
we simply need to find the shortest paths between the paired portals, and add the (single)
point in the cell to one of these paths. For all other entries, the algorithm enumerates all
possible ways that the p paths can cross the boundary between children cells. For each of
these arrangements, the cost of the solution can be obtained by summing the costs of the
respective instances for the children cells. Once all of the entries have been computed, the
minimum cost (m, r)-light salesman path can be found by looking at the (m, r)-multipath
problem for the root cell of the quadtree with no portals used.

The dynamic programming table contains a total of O
(
n(log n)O(d)(d−1)/2)

entries, and
the value at each cell can be computed in time (log n)O(d)(d−1)/2 . Therefore, the running time
of this algorithm is O

(
n(log n)O(d)(d−1)/2)

.
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Our algorithm uses a very similar dynamic program, with only a small change needed at
the leaves. In the TSP problem, all of the points must be visited, which implies that any
feasible solution to the (m, r)-multipath problem must visit all the points contained in that
cell. However, the same is not true of the TSPN problem: as long as one point from each
neighborhood is visited in the whole path, the solution is feasible, which means that not all
neighborhoods are visited in every cell that intersects them. To that effect, we add an extra
input to the (m, r)-multipath problem for leaf cells, which we call visit bit. If the visit bit
is set to True, then the (single) point in the cell must be visited; if it is set to False, then
the solution only needs to connect the portals as specified in the input (meaning that the
optimum solution will be a union of shortest paths between paired portals).

We remark that finding a solution in this new dynamic program can be thought of as
two different tasks: choosing which points in the leaf cells should be visited (by choosing the
corresponding subproblems with visit bit True or False) and choosing the tour visiting these
points (using the portals as in the original dynamic program).

B.2 Approximating TSPN using the framework by Chalermsook et al.
To prove Theorem 16, we need to show how to formulate TSPN as an instance of STGST,
and then show how to obtain an O(log2 n)-approximation to this problem. In this section,
we provide details to both of these steps.

B.2.1 Formulating discrete TSPN as an instance of STGST
We will formally describe the construction of a DAG H based on the dynamic program for
TSP. We assume that the perturbation and random shift steps implemented by Arora have
been performed, with the alterations described in Section 4.2.

We now consider the dynamic program as presented by Arora, and construct our DAG
H as follows. The vertex set is partitioned into subproblem nodes Hp and combination nodes
Hc.

For every (m, r)-multipath subproblem considered by Arora, we create a subproblem node.
Formally, for every cell C in the quadtree, and every state A or (A, b) (where b represents
the visit bit if C is a leaf cell), we create a node t[C, A] (resp. t[C, A, b]) in Hp.
For every non-leaf cell C with children C1, . . . , Ck and states X for C and Xi for Ci,
we add a combination node tc[C, X, {Xi}i∈[k]] if the states are consistent, that is, if
the combination of the portal pairings for each of the cells Ci forms the portal pairing
represented by X in C.
For each combination node t′ = tc[C, X, {Xi}i∈[k]], we add edges from t[C, X] to t′ and
from t′ to t[Ci, Xi] for each i ∈ [k].
The edges entering leaf nodes t[C, A, b] have cost equal to the minimum cost of a solution
to the (m, r)-multipath problem in C with portal pairings specified by A, and which
visits the point in C if b = True.
All other edges have cost 0.

The root of H is the node t[C, X], where C is the root cell of the quadtree (the bounding
box of the instance), and X represents an empty set of portals. The height of the resulting
DAG H is O(log n), since its structure is similar to the dynamic program of Appendix B.1.

▶ Lemma 22. Let v0 ∈ P be a point and R0 be a radius guessed in Appendix B.1.1.
For every (m, r)-light tour F in the resulting quadtree there is a solution tree X in H

such that cost(F ) = cost(X) and they visit the same set of points in P .
Similarly, for any solution tree X ⊂ H, there is an (m, r)-light tour F of the same cost,

which visits the same points in P .
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B.2.2 Obtaining an O(log2 n)-approximation
We will use the following theorem, which is implicit in the work of Chalermsook et al. [10,
Section 4]. We remark that, even though the work of Chalermsook et al. is formulated in
terms of the tree decomposition of a graph, it also applies when obtaining the DAG from a
quad-tree, as the necessary properties still hold.

▶ Theorem 23 ([10, 9]). Let H be a DAG with edge-costs cost : E(H) → R and root r, as
well as groups Si ⊆ V (H), for i ∈ [h], and a partition of the nodes into Hc and Hp. There is
an algorithm that outputs a solution tree X ⊆ H sampled from a distribution D such that:
1. EX∼D[cost(X)] ≤ cost(OPT), where cost(OPT) denotes the cost of the optimal solution
2. For any group Si, the probability that the group is covered (for some constant α > 1) is

PrX∼D
[
|Si ∩ X| > 0

]
≥ 1

α height(H)

The algorithm runs in time ∆(H)O(height(H)), where ∆(H) is the max-degree of H.

We will now show how to use Theorem 23 and Lemma 22 to obtain an O(log N log n)-
approximation for the TSPN problem on discrete neighborhoods, and hence prove Theorem 16.

We start by guessing a vertex v0 to be the starting point of our solution. For every
vertex v0 ∈ P , we compute the minimum radius R0 such that every neighborhood contains a
point at distance at most R0 from v0. Next, we guess R, an approximation for OPT, in the
range [R0, 4nR0]. For the powers R = 2i, i ∈ Z, R0 ≤ R ≤ 4nR0, we can now preprocess the
instance according to the perturbation step of Arora’s algorithm. (Appendix B.1.1). Next,
we enumerate the shift a = (a1, . . . , ad) ∈ {0, . . . , L − 1}d, and construct the shifted tree
as in Arora’s algorithm (Appendix B.1.2). Finally, we construct the DAG H based on the
dynamic programming table, as specified in Appendix B.2.1. We recall that the height of
the tree, as well as of DAG H is O(log N).

We now use Theorem 23 repeatedly to obtain solution trees X1, . . . , Xℓ, where ℓ =
c log n log N , and c is a large constant. Then, we use Lemma 22 to convert each solution tree
Xi into a tour Fi, and finally take the union of all these tours to obtain a solution F . While
F is not necessarily a tour, it is simple enough to remove crossings. For every neighborhood
Pi that is not visited by F , we add a detour visiting the closest point in Pi. We denote by
F ∗ the minimum-cost solution among all solutions F for all the enumerated values of v0, R0,
and a.

By construction, F ∗ is a feasible solution, as it is a tour that visits every group. To
prove that it is O(log N log n)-approximate, consider the solution F ′ that we obtained for the
correct values of v0, R0, and a, that is, for a vertex v0 in an optimum solution, R0 such that
R0/2 ≤ OPT ≤ R0, and a shift a for which an (m, r)-light tour exists. By Theorem 23, each
of the solution trees X ′

i obtained has expected cost at most OPT, and by Lemma 22, the
corresponding tour F ′

i also has expected cost at most OPT. Therefore, the union of all tours
F ′

i costs at most O(log N log n OPT) in expectation. The probability that a neighborhood is
not visited, and hence that we must add a detour, is (for sufficiently large c)

Pr

⋂
j

|Si ∩ Xj | = 0

 ≤
(

1 − 1
α height(H)

)ℓ

≤ e−O(log n)

≤ 1
n3
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We conclude that the expected cost of F ′ is at most O(log N log n OPT), and since, by
Lemma 22, cost(F ∗) ≤ cost(F ′), F ∗ is O(log N log n)-approximate in expectation. By The-
orem 23, the running time of our algorithm is

NO(d) (log N)O(d)(d−1)/2 O(log N) = NO(d)(d−1)/2 log log N .

This completes the proof of Theorem 16.
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