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Abstract
We describe a dynamic data structure for approximate nearest neighbor (ANN) queries with respect
to multiplicatively weighted distances with additive offsets. Queries take polylogarithmic time, while
the cost of updates is amortized polylogarithmic. The data structure requires near-linear space and
construction time.

The approach works not only for the Euclidean norm, but for other norms in Rd, for any fixed d.
We employ our ANN data structure to construct a faster dynamic structure for approximate

SINR queries, ensuring polylogarithmic query and polylogarithmic amortized update for the case of
non-uniform power transmitters, thus closing a gap in previous state of the art.

To obtain the latter result, we needed a data structure for dynamic approximate halfplane range
counting in the plane. Since we could not find such a data structure in the literature, we also show
how to dynamize one of the known static data structures.
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1 Introduction

Nearest-neighbor (NN) search is a fundamental problem that has received much attention in
a variety of research fields, such as databases, machine learning, and statistics. It is a central
ingredient in clustering and pattern matching algorithms, as well as in numerous retrieval
and recommendation systems. In this study, we are interested in the multi-shot version of the
problem: Given a set P in some space S and a distance function d(·, ·) on S, preprocess P

for nearest-neighbor queries, where such a query is specified by an element q ∈ S and the
goal is to return an element of P that is nearest to q under d among all elements in P . In
this study, we shall restrict our attention to the case where the input set consists of points
in Rd and the distance is measured by a weighted version of a metric derived from a norm.

Let P = {p1, . . . , pn} be a set of n points in Rd, such that each point pi ∈ P is
associated with a positive real weight wi and a non-negative real weight ai, and let ∥·∥
denote any norm on Rd. The distance from q ∈ Rd to pi ∈ P is now defined as dW,A(q, pi) :=
wid(q, pi) + ai, where d(q, pi) := ∥q − pi∥ and W and A are the sets of multiplicative

© Boris Aronov and Matthew J. Katz;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 11; pp. 11:1–11:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:boris.aronov@nyu.edu
https://orcid.org/0000-0003-3110-4702
mailto:matya@cs.bgu.ac.il
https://orcid.org/0000-0002-0672-729X
https://doi.org/10.4230/LIPIcs.SWAT.2022.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


11:2 Dynamic Approximate Multiplicatively-Weighted Nearest Neighbors

and additive weights, respectively. We consider nearest-neighbor search in this setting,
that is, following a preprocessing stage, service a sequence of queries of the form: given a
query point q, return a point pi ∈ P realizing minpi∈P dW,A(q, pi). Notice that when ∥·∥ is
the Euclidean norm, we obtain the additively weighted Euclidean nearest-neighbor search
problem, if w1 = · · · = wn = 1, the multiplicatively weighted Euclidean nearest-neighbor
search problem, if a1 = · · · = an = 0, and the combined additively and multiplicatively
weighted Euclidean nearest-neighbor search problem, otherwise.

More specifically, we consider dynamic approximate nearest-neighbor (ANN) search in
this setting, where, in addition, points may be inserted into and deleted from P over time.
An approximate nearest neighbor of q in P is a point pj ∈ P , such that dW,A(q, pj) ≤
(1 + ε)dW,A(q, pi), where pi is a nearest neighbor of q in P and ε > 0 is a prespecified
parameter. The reason for considering approximate, rather than exact, nearest-neighbor
search is that already in the plane the induced (multiplicatively-weighted) Voronoi diagram
may have complexity Θ(n2) [11], so constructing it explicitly for sufficiently large values of n

is impractical. On the other hand, we want to be able to handle queries efficiently, typically
in time polylogarithmic in n, thus we resort to approximate queries.

Although there are known solutions for approximate nearest-neighbor search (see below),
we are not aware of any published technique suitable for efficient updates of P , where
each such update involves the adjustment of the data structure following an insertion or
a deletion of a point to/from P . We present a data structure for dynamic approximate
nearest-neighbor search in this general setting. The data structure is of size O(tn polylog n),
which is also the bound on its construction time; it supports approximate nearest-neighbor
queries in O(t polylog n) time and it can be updated in O(t polylog n) amortized time, where
t =

√
1/ε for d = 2, t = 1/ε for d = 3, and in general t = 1/ε(d−1)/2 for d ≥ 2.

The case where ∥·∥ is the Euclidean norm and a1 = · · · = an = 0, namely, dynamic
approximate multiplicatively weighted Euclidean nearest-neighbor search, is of special interest,
since (i) it applies to many practical scenarios, and (ii) it is more difficult than some of the
other common cases, such as in the additively weighted scenario. In Section 5, we show that
our data structure for this case enables us to significantly improve the best known solution
to the most general version of the approximate SINR (signal-to-interference-plus-noise ratio)
query problem. In this version, we are given a set of simultaneous transmitters, where each
transmitter is represented by a point in the plane and has its own power level. Moreover,
transmitters may appear or disappear over time. The goal is to construct a dynamic data
structure, so that given a receiver (i.e., a point) q, one can (approximately) determine which
transmitter (if any) is received at q, according to the SINR model (see Section 5). After
a preprocessing stage of near-linear time, in which a data structure of near-linear size is
constructed, we can answer a query in polylogarithmic time and insert or delete a transmitter
in polylogarithmic amortized time. In contrast, in the best previous solution, the query time
was roughly

√
n [4]. Our algorithm is randomized, with performance guarantees holding with

high probability; see Theorem 5.
To obtain the latter result, we also need a data structure for handling approximate

halfplane range counting queries in a dynamic setting in two dimensions. Since we could not
find such a data structure in the literature, we also show how to dynamize one of the known
static data structures. We include the description for completeness.

Previous work

There is extensive literature, both in computational geometry and in other fields, on nearest-
neighbor (NN) and approximate nearest-neighbor (ANN) data structures; see, for example,
[9,10,15,17,18,20,26], and the book [30] for a database perspective. (As we assume throughout
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that the dimension d is a small constant, the work addressing nearest-neighbor queries in
high dimension [3] is out of scope for this summary.) This includes structures under the
Euclidean metric and other metrics, supporting both exact and approximate queries, possibly
in a dynamic setting. Moreover, many of these structures can also accommodate (with
minor adjustments) additive weights (i.e., a non-negative weight ai is added to the distance
between q and pi). However, multiplicative weights are much more challenging, and we are
only aware of two teams of researchers who studied this case in low dimension, as well as
more general ones, albeit not in a dynamic setting.

Next we discuss the work of these two teams. Recall first that, if we require a near-
linear-size structure, then we need to resort to approximation. Har-Peled and Kumar [22]
were the first to present a near-linear-size data structure with logarithmic query time for
approximate multiplicatively weighted Euclidean nearest-neighbor search. Actually, their
result is for a much more general problem, where the input is a set F of d-variate functions,
satisfying several rather weak conditions, and the goal is to construct a data structure, so
that given a query point q ∈ Rd, one can return a function in F whose value at q is at
most 1 + ε times the minimum value attained at q by any function in F . Now, if we define
fi(q) = wi∥q − pi∥, we get approximate multiplicatively weighted nearest-neighbor search.
The bounds that they obtain in this case are O( n

ε2(d+1) logd+2 n + n
εd(d+1) ) for the structure

size, O( n
ε2(d+1) log2d+3 n + n

εd(d+1) ) for the construction time, and O(log n
ε ) for the query time.

Subsequently, Abdelkader et al. [1] presented a data structure, based on convexification,
for approximate multiplicatively weighted Euclidean nearest-neighbor search (see also [28]).
Their result is actually for scaling distance functions, which also include the Minkowski
distance (provided the unit ball is fat and smooth) and the Mahalanobis distance. It improves
the bound on the structure size to O( n log 1

ε

εd/2 ), while retaining the O(log n
ε ) bound on the query

time, thus almost matching (up to a log 1
ε factor) the best known bounds for approximate

Euclidean nearest-neighbor search [9]. However, it is not clear how fast this structure can be
constructed.

Our results

(i) In Section 2 we describe a near-linear-size data structure that supports queries for
approximate Euclidean nearest neighbors with multiplicative weights in the plane. The
query and the amortized update times are both polylogarithmic.

(ii) In Section 3 we explain how to handle other norms and also a combination of additive
and multiplicative weights.

(iii) We point out, in Section 4, that a further generalization extends the results of Section 3
to higher dimensions.

(iv) We show how the data structures described above allow approximate dynamic SINR
queries with logarithmic query times and amortized logarithmic time updates; see
Section 5. The data structure can accommodate non-uniform transmitter powers; to
the best of our knowledge it was not known how to achieve this performance for the
case of non-uniform powers.

(v) To facilitate the latter result, we also show in Section 6 how to dynamize with minimal
overhead a data structure for approximate halfplane range counting queries.

The purpose of this paper is to demonstrate the existence of several related data structures,
of near-linear size and construction time, polylogarithmic query time, and polylogarithmic
amortized update time. We did not make any effort to optimize the performance of these
structures and often used the “classical” well known tools as the building blocks. More
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11:4 Dynamic Approximate Multiplicatively-Weighted Nearest Neighbors

precisely, it was not our objective to optimize polylogarithmic factors; this may be a
worthwhile project on its own. Hence, with one or two exceptions, we leave the precise
polylogarithmic factors unspecified.

2 Multiplicatively weighted Euclidean nearest neighbors

For ease of presentation, we start with the basic case, that is, we consider the Euclidean norm
in the plane with multiplicative weights. Generalizations to other norms, higher dimensions,
and more complicated weights are described in some detail subsequently.

Consider a set P = {p1, . . . , pn} of n points in the plane. The points have an associated
(multiplicative) weight function W : P → R+; the (positive) weight of pi will be denoted
by wi := W (pi). The (multiplicatively weighted) distance from q ∈ R2 to p ∈ P is defined
as dW (q, p) := W (p) · d(q, p), where d(p, q) := ∥p − q∥ stands for the Euclidean distance
and ∥·∥ – for the Euclidean norm, in this section. A multiplicatively weighted Euclidean
nearest neighbor N(q) = N(q; P, W ) of q ∈ R2 is a point p ∈ P realizing minp∈P dW (q, p).
For brevity, we will refer to N(q) simply as the nearest neighbor of q (in P ). (When we need
to compute N(q), if more than one point realizes the minimum distance, we are allowed to
pick one of them arbitrarily.) We are interested in building a data structure that supports
fast nearest-neighbor queries: preprocess a given pair (P, W ), so that N(q) = N(q; P, W )
can be computed quickly for any query point q ∈ R2; “quickly” here and hereafter means “in
time polylogarithmic in n = |P |.”

A natural approach to preprocessing for fast nearest-neighbor queries is to consider the
induced Voronoi diagram; unfortunately, in presence of multiplicative weights, the Voronoi
diagram may have complexity Θ(n2) [11] and is thus not a viable option for a compact
data structure. We therefore focus on looking for an approximate (multiplicatively weighted
Euclidean) nearest neighbor Ñ(q) for q, which is a point p ∈ P such that dW (q, p) ≤
(1 + ε)dW (q, N(q)); of course, by definition, for this point p, dW (q, N(q)) ≤ dW (q, p).

Terminology and notation

We use f(x) = poly(x) to indicate that there exists a constant a > 0 such that f(x) is
in O(xa); similarly, g(x, y) = poly(x, y) means that there exist two constants a, b > 0 such
that g(x, y) is in O(xayb).

We say that an event holds with high probability, if it holds with probability 1 − 1/nc for
a suitably large c > 0.

Finally, we say that a quantity k′ (1 + ε)-approximates a quantity k, if (1 − ε)k ≤ k′ ≤
(1 + ε)k.

Problem statement

Dynamic approximate multiplicatively weighted Euclidean nearest neigh-
bors in the plane
Input: an n-point set P in the plane with positive weights W as above and ε > 0
Output: a data structure

of size O(n poly(log n, 1/ε)),
constructed in time O(n poly(log n, 1/ε)),
that supports approximate nearest-neighbor queries in time poly(log n, 1/ε), and
insertions and deletions for P in amortized time poly(log n, 1/ε).
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Outline of our approach

We use the standard approximation that replaces the unit disk U of the Euclidean norm by
a regular k-gon Uk inscribed in it, for a suitable choice of k = Θ(ε−1/2). More precisely, we
choose k, so that for any point z ∈ U , its closest point of Uk on the segment oz connecting z

to the origin o is at Euclidean distance at most ε from z: ∀z ∈ U : d(z, oz ∩ Uk) ≤ ε.
The norm ∥·∥k defined by Uk as the unit disk is a (1 + ε)-approximation of the Euclidean

norm. We will denote the distance induced by this norm by dk(·, ·) and its multiplicatively
weighted version by dk,W (·, ·). We thus have d(q, P ) ≤ dk(q, P ) ≤ (1 + ε)d(q, P ), where
dist(q, P ) := minp∈P dist(q, p) and dist stands for either dk or d.

With each edge e of Uk we associate a wedge X(e) centered at the origin and delimited
by the rays from the origin through the endpoints of e; see Figure 1 (left).

e
X(e)

q

q ⊕X(e)

de

Figure 1 Left: The regular k-gon Uk, for k = 6, and the wedges X(e). Right: Determining the
distance de for query point q.

Given a point q, dk(q, P ) can be computed as follows: for each edge e of Uk, let Pe :=
P ∩ (q ⊕ X(e)), or, in words, consider the subset Pe of points of P (if any) that lie in the
wedge X(e) translated to q; see Figure 1 (right). Now project the points of Pe onto the
central ray of q ⊕ X(e) and compute de as the distance from q to the closest projected point
(set de = +∞ if Pe = ∅). Then dk(q, P ) = mine de. (Up to this point, our approach is quite
similar to that of Kapoor and Smid [26], who studied the basic (i.e., unweighted Euclidean)
version of dynamic approximate nearest neighbors.)

We will make use of the fact that computing dk,W (q, P ) is a decomposable problem, since
dk,W (q, P1 ∪ P2) = min{dk,W (q, P1), dk,W (q, P2)}.

Approximately nearest in a wedge

We first examine a fundamental subproblem. Fix an edge e of Uk and denote its associated
wedge X(e) by X. Let R ⊆ P be a subset of the given points and consider only those
queries q for which R ⊆ q ⊕ X. We will describe a data structure for determining, given q, its
nearest neighbor N(q; R, W ) in R, which we will continue to denote N(q), slightly abusing
the notation.

After a suitable rotation, we may suppose that the central ray of X coincides with the
positive x-axis; recall that the apex of X is the origin; refer to Figure 1.

By definition, if q = (xq, yq), the function dk,W (q, p), for p ∈ q ⊕ X, is simply W (p) · |xq −
xp| = W (p)(xp − xq), since p ∈ q ⊕ X implies xp ≥ xq. Therefore N(q) is precisely the point
p ∈ R whose corresponding function achieves minp∈R W (p)(xp − xq). One way to view this

SWAT 2022
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operation is to consider the graphs of functions fp(x) = W (p)(xp − x), for p ∈ R, define the
lower envelope L : R → R by x 7→ minp∈R fp(x), and then perform vertical ray-shooting in
(the graph of) L, namely given x = xq, identify (the graph of) the function that achieves the
value L(xq) at this x.

Being a lower envelope of a set of lines, the graph of L is the boundary of the intersection
of a set of lower halfplanes in the plane, and so a monotone concave chain. In a static setting,
it can be precomputed and stored in, say, an array, to facilitate vertical ray shooting via
binary search on the x-coordinate of the query point q. In a dynamic setting, the intersection
of lower halfplanes is dual to the upper convex hull of the dual points of the lines bounding
the halfplanes. It can be stored, say, in the data structure of Overmars and van Leeuwen [29],
that supports O(log2 n) time updates and O(log n) time queries, where n = |R|.1 A vertical
ray shooting query corresponds in the dual to finding the extreme point of the hull in a given
direction, one of the standard queries supported by the data structure.

The general case

We build k data structures, one for each wedge X = X(e). For each X, let u and v be
the directions of its bounding rays and m be the direction of its central ray. We build a
three-level range-search tree structure on the points of P , where the first two levels sort
points of P in the directions orthogonal to u and to v, respectively. The effect of this is that
a query with a point q will return the points of P ∩ (q ⊕ X) as a disjoint union of O(log2 n)
canonical subsets on the second level of the structure; here we use the decomposability of
the queries we are interested in. On the bottommost level, for each canonical subset R, we
build the nearest-in-a-wedge data structure described above, with the distinguished direction
being m, the central direction of X (rather than that of the positive x-axis).

Among the O(k log2 n) points returned from O(log2 n) canonical subsets in each of the
k structures, we pick the one that is closest to q in the distinguished direction as the
approximate nearest neighbor Ñ(q); this produces the correct answer, since our query is
decomposable.

Now to address the efficiency of the updates. Given m points, the corresponding nearest-
in-a-wedge structure for them can be built from scratch in O(m log m) time. This structure
is fully dynamic by construction and hence the only concern is maintaining the balance in
the upper levels of the overall range tree. If upper levels of the range-search structure are
implemented as BB[α] trees, amortized rebalancing costs are polylogarithmic, as implied by
Theorem 5 in section III.5.1 of Mehlhorn’s monograph [27, pages 198–199].

We summarize in the following theorem:

▶ Theorem 1. For any n-point set P in the plane and ε > 0, we can construct a dynamic
data structure for (1 + ε)-approximate multiplicatively weighted Euclidean nearest-neighbor
queries in P

of size O(n poly(log n, 1/ε)),
in time O(n poly(log n, 1/ε)),
supporting O(poly(log n, 1/ε))-time queries and
O(poly(log n, 1/ε)) amortized time updates.

1 Recall that, in this work, a conservative choice of the data structure that guarantees performance
polylogarithmic in n and polynomial in 1/ε but does not necessarily attempt to achieve optimal
performance is sufficient.
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▶ Remark. As an illustration, we calculate the actual performance characteristics using
admittedly suboptimal “classical” building blocks: With the Overmars-van Leeuwen data
structure for dynamic convex hulls with O(log n) time queries and O(log2 n) time updates,
and with k = O(ε−1/2) top-level structures, we obtain space and time O((n/

√
ε) log2 n),

query time of O(ε−1/2 log3 n) and amortized update time of O(ε−1/2 log4 n).

3 Other norms

In this section we outline how the results of Section 2 generalize to an arbitrary norm
on R2. Indeed, for any norm ∥·∥, consider its unit disk D := {p ∈ R2 : ∥p∥ ≤ 1}. D is a
compact centrally symmetric convex set with non-empty interior.2 We proceed as follows:
by a theorem of John [24] there exists a pair of concentric ellipses, one contained in D and
one containing it, which are scaled copies of each other, with a scaling factor of at most 2.
Consider an affine transformation that turns the inner ellipse into the Euclidean unit disk
and the outer one into a Euclidean disk of radius at most 2. Apply this transformation to
the unit ball D, to all of R2, and to P for the subsequent processing. It is easy to check that
this transformation leaves the answer to the (both exact and approximate) nearest-neighbor
problem unchanged. With a slight abuse of notation, we will continue to refer to objects
after the transformation by the same symbols.

q

de

X(e)

q ⊕X(e)

e

ρe

Figure 2 Left: Approximating D by a centrally-symmetric convex k-gon Uk, and the wedges
X(e). Right: Determining the distance de for query point q.

After the transformation, the unit ball D is “fat” in the sense that it is sandwiched
between two concentric disks with a bounded ratio of radii. It therefore can be approximated
by a centrally-symmetric convex polygon Uk ⊆ D with k = Θ(ε−1/2) sides, just as the
Euclidean disk in Section 2 (except that now Uk is not necessarily a regular polygon) [14], see
Figure 2 (left). Uk approximates D in the sense that, for any direction ρ, the ratio between
the distances of the farthest points of D and Uk along the ray from the origin in direction ρ

is at most 1 + ε. This implies that replacing D by Uk as the unit disk distorts the distance
by a factor of at most 1 + ε, as desired.

We now proceed as before: We associate each of Uk’s edges e with the wedge X(e) formed
by the rays from the origin passing through e’s endpoints. We use a shifted version q ⊕ X(e)
of X(e) to compute the “approximately closest” point of Pe = P ∩ (q ⊕ X(e)) from q, where
the distance from q is measured along a ray ρe emanating from q and orthogonal to e (ρe

need not be the central ray of X(e) any longer), see Figure 2 (right). That is, we project the
points of Pe onto ρe, and measure the distance de from q to the first projected point along
ρe. The remainder of the argument and the data structure remain unchanged.

2 D with empty interior would allow non-zero vectors of zero norm, violating the standard norm definition.
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11:8 Dynamic Approximate Multiplicatively-Weighted Nearest Neighbors

We summarize in the following theorem.

▶ Theorem 2. For any norm in R2, there exists a dynamic data structure supporting (1 + ε)-
approximate multiplicatively weighted nearest-neighbor queries with the same performance as
the data structure in Theorem 1.

Notice that at no extra cost, we can support more general approximate nearest-neighbor
queries where both multiplicative and positive additive weights are present. More precisely, let
A : P → R+

0 be non-negative additive weights on P and modify the distance from q to p ∈ P

to mean A(p) + W (p) · ∥q − p∥, where ∥·∥ is any norm as above. (Setting A(p) ≡ 0 recovers
the multiplicative-weights-only version of the problem, and setting W (p) ≡ 1 recovers the
familiar additive-weights-only version.) Indeed the functions fp(x) as defined above become
W (p)(xp − x) + A(p), i.e., remain linear, and the argument goes through verbatim.

▶ Theorem 3. For any norm in R2, we can construct a dynamic data structure supporting
(1 + ε)-approximate additively and multiplicatively weighted nearest-neighbor queries with the
same performance guarantees as the data structure in Theorem 1.

▶ Remark. In fact, our result is slightly more general. It applies to any asymmetric norm,
whose unit disk is a not necessarily centrally-symmetric convex set with non-empty interior,
provided that this disk is sandwiched between two Euclidean disks centered at the origin,
with a constant ratio c of the outer and inner radii. In this situation the unit disk is still
approximable by a D(c)

√
ε-gon where D(c) is a constant that depends on c. The argument

goes through essentially without modification, taking care that the distance from p to q need
not be equal to the distance from q to p.

4 Higher dimensions

We now outline the fairly standard procedure to extend our results from Sections 2 and 3
from the plane to any fixed dimension d ≥ 2; we assume d is a small constant. We proceed
as in Section 3. Consider a norm ∥·∥ on Rd and let D be its unit ball – a compact centrally
symmetric convex set with with non-empty interior. We consider the Löwner-John ellipsoids
for D that approximate it up to a factor of d, in the following sense: The two ellipsoids are
concentric, one is contained in D while the other contains it, and the outer ellipsoid is a
scaled copy of the inner one, with a scaling factor of at most d [24]. We now apply an affine
transformation to the entire space turning the inner ellipsoid into the Euclidean unit ball and
proceed with the transformed problem; transforming the space, the input point set P , and
the unit ball D does not affect distance measurements according to ∥·∥. Slightly abusing the
notation, we use the same symbols referring to the objects after the transformation. After
the transformation, D is “fat” in the sense that it is sandwiched between two concentric balls
with radius ratio of at most d.

Bronshteyn and Ivanov [14] proved that D in this situation (see also [21] for a compact
self-contained proof) can be (1 + ε)-approximated in the Hausdorff metric by a polytope
with O(1/ε(d−1)/2) vertices. Dudley [19] showed that there exists such an approximating
polytope with O(1/ε(d−1)/2) facets. Much more recently Arya et al. [8] proved that one can
construct such an approximating polytope whose total number of faces of all dimensions
is k := O(1/ε(d−1)/2);3 moreover, one can assume that the resulting polytope Uk is simplicial,

3 This is the best possible answer, as Ω(1/ε(d−1)/2) faces are sometimes required. In fact, this is the case
for the Euclidean norm.
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that is each of its faces is a simplex. As in the plane, Uk approximates D in the sense that
the norm ∥·∥k defined by Uk as the unit ball has the property that ∥p∥ ≤ ∥p∥k ≤ (1 + ε)∥p∥.
Since Uk is a simplicial polytope with at most k facets, its boundary is already triangulated
by at most k simplices.

We now repeat the reasoning of Section 3 for each facet ∆ of Uk (which is a simplex): ∆ is
associated with a (simplicial) cone of directions X = X(∆), and for any point of q ∈ Rd, the
distance dk(q, P (q, ∆)) from q to the closest point of P (q, ∆) := P ∩ (q ⊕X) can be computed
exactly by using a suitable range-searching data structure, as P (q, ∆) is the intersection of P

with the simplicial cone q ⊕ X with fixed and known directions of its d bounding hyperplanes,
and the distance ∥p − q∥k for p ∈ P (q, ∆) is the distance from q to the projection of p

onto the ray ρ = ρ(∆) emanating from q and orthogonal to the hyperplane containing ∆.
Employing a suitable dynamic range structure, á la Section 3, completes the description; the
only difference is that there are d upper levels in the structure to handle the narrowing to
the cone X. Note that the bottommost level still handles dynamic vertical ray shooting in
two dimensions.

The query structure has to be built for each of the at most k cones.

▶ Theorem 4. For any norm in Rd, d ≥ 2, any n-point set P , and ε > 0, there exists
a dynamic data structure for approximate additively-and-multiplicatively weighted nearest-
neighbor queries, with performance guarantees as follows:

data structure has size O(kn polylog n) and it can be constructed in this time,
updates in O(k polylog n) amortized time, and
queries in O(k polylog n) time,

where k = Θ(1/ε(d−1)/2). In particular, when d = 2, k = Θ(1/
√

ε), and when d = 3,
k = Θ(1/ε).

5 Dynamic SINR queries: An application

We now explain how to use the ANN data structure described in Section 2 to speed up
dynamic approximate SINR (signal-to-interference-plus-noise ratio) queries for non-uniform
power transmitters. We first formulate the problem, give some background and history, and
then outline the application.

Problem setup and formulation

Let S = {s1, . . . , sn} be a set of n transmitters (distinct points in the plane), and let pi ≥ 0
denote the transmission power of si, for i = 1, . . . , n. Let q be a receiver (a point in the
plane). According to the SINR model, q receives si if and only if

pi

d(q,si)α∑
j ̸=i

pj

d(q,sj)α + N
=: sinr (q, si) ≥ β ,

where α ≥ 1 and β > 1 are given constants, N is a given constant representing the background
noise, and d(a, b) is the Euclidean distance between points a and b. The quantity pi

d(q,si)α is
the strength of the signal of the ith transmitter (located at si with power pi) as measured at
the receiver q, where α is the path-loss parameter. In words, the above inequality states that
q receives si if and only if si’s signal (at q) is at least β times stronger than the combined
signal of all other transmitter and the noise; see, for example, [31].

Observe that, since β > 1, q may receive at most one transmitter – the one for which the
value 1

p
1/α
i

d(q, si) is minimum. Thus, in the uniform power situation, where p1 = p2 = · · · =
pn, one needs to test reception at q for the (Euclidean) nearest neighbor of q in S, while in
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the non-uniform power situation, where transmitter powers vary, one needs to test reception
for the multiplicatively weighted nearest neighbor of q. An SINR query is therefore: Given a
receiver q, find the sole transmitter s ∈ S that may be received by q and determine whether
sinr (q, s) ≥ β.

Since it seems unlikely that one can answer an SINR query exactly in significantly sublinear
time with the help of a near-linear-size data structure, as the degree of the polynomials
involved is high, the relevant research has focused on preprocessing to facilitate efficient
approximate SINR queries.

Given ε > 0, an approximate SINR query is: Given a receiver q, find the sole transmitter s

that may be received by q and return a value sĩnr (q, s), such that (1 − ε)sinr (q, s) ≤
sĩnr (q, s) ≤ (1 + ε)sinr (q, s). Thus, unless (1 − ε)β ≤ sĩnr (q, s) < (1 + ε)β, the value
sĩnr (q, s) enables us to determine definitely whether or not s is received by q.

Given S, α, β, and N , as above, and ε > 0, there are four natural problems to consider,
depending on whether the transmission powers are uniform or not, and whether the setting
is static or dynamic (i.e., transmitters may be added to or deleted from S). In each of these
problems, the goal is to devise efficient algorithms for handling approximate SINR queries,
after some preprocessing of total near-linear time, where in the dynamic setting one also
needs to handle updates (i.e., insertions and deletions of transmitters) efficiently.

Some history

For all but the most general problem, satisfactory solutions already exist, where by satisfactory
we mean near-linear time preprocessing, polylogarithmic-time approximate queries and
amortized polylogarithmic-time updates (in the dynamic setting) [4]; the dependence on 1/ε

is polynomial (see also [6, 12,25]).
In this section, we obtain a satisfactory solution also for the most general problem. That

is, we show that even if the transmission powers are non-uniform, it is possible to construct
in near-linear time a dynamic data structure that supports polylogarithmic-time approximate
SINR queries and amortized polylogarithmic-time updates.

Tools required

A static structure supporting fast approximate SINR queries was presented in [4, section 6].
With the goal of generalizing it to support dynamic updates, inspecting the proposed
algorithm, we discover that dynamizing the following two structures is sufficient for achieving
our objective: The first one is a dynamic approximate multiplicatively weighted nearest-
neighbor structure, which is precisely the problem in Section 2.

The second issue is handling approximate halfplane range counting queries in a dynamic
setting; the problem is stated formally and a reasonably efficient solution is sketched in
Section 6.

Examining the static algorithm of [4, section 6], we note that the approximate halfplane
range counting data structure is used as the bottom level of a multilevel dynamic orthogonal
range-searching structure, where approximate halfplane range counting queries are applied
to bottommost canonical subsets of points. Replacing the static structure by the dynamic
one from Section 6 completes the dynamization of the algorithm.4

4 In slightly more detail, if we use BB[α] trees as the basis of the orthogonal range counting structure,
then, by Theorem 5 in section III.5.1 and subsequent discussion in [27, pages 198–199], the amortized
cost of an update remains polylogarithmic.
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We thus summarize our result.

▶ Theorem 5. Given a set S of n transmitters in the plane, with their power transmission
levels, parameters α, β, N , and an approximation constant ε > 0, one can preprocess S

into a data structure of worst-case size O(n poly(log n, 1/ε)) that supports approximate SINR
queries in time O(poly(log n, 1/ε)) and updates in amortized time O(poly(log n, 1/ε)).

The construction time is O(n poly(log n, 1/ε)) with high probability, and query and update
times are with high probability, assuming the number of queries is polynomial.

▶ Remark. As already noted in [4], the same approach generalizes to any fixed dimension d > 2
with increased overhead in the dependence on 1/ε and higher polylogarithmic factors. The
algorithm still only needs dynamic approximate counting in the plane and results from
Section 4 provide the machinery for finding nearest neighbors.

6 Dynamic approximate halfplane counting

In this section we outline a solution to the following problem which is required to complete
our algorithm for efficient dynamic SINR queries in Section 5. No effort has been made to
optimize the performance of the data structure; this may be an interesting question in itself.

Dynamic Approximate Halfplane Range Counting: Given a set P of n points
in the plane and a parameter ε, 0 < ε < 1, preprocess P in O(n poly(log n, 1/ε)) time
so that, given a query halfplane h, a (1 + ε)-approximation of the number |P ∩ h| can
be returned in time O(poly(log n, 1/ε)). Moreover, insertions and deletions can be
processed in O(poly(log n, 1/ε)) amortized time.

We sketch a Monte Carlo algorithm for this problem, where the (1 + ε)-approximation is
correct with high probability (i.e., with probability 1 − 1/nc, for a sufficiently large c > 0),
provided one makes a polynomial number of queries, assuming that the updates to the data
structure do not depend on the random choices made by the algorithm.

The easiest, though perhaps not the most efficient method to achieve our goal is to use the
“black-box” reduction of Aronov and Har-Peled [5], who observed that an approximate range
counting structure can be obtained, at the cost of multiplicative overhead of poly(log n, 1/ε)
in construction time and space and in query time, from a data structure for emptiness
testing. In our context, emptiness testing is, given a set P of points in the plane, preprocess
it so that, for a query halfplane h, one can quickly check whether or not h ∩ P = ∅. The
nature of the reduction is constructing a number of emptiness-testing structures on randomly
chosen subsets of P . In our case, emptiness testing is easily dynamized by using, say, the
classical dynamic convex hull data structure of Overmars-van Leeuwen [29]. Random subsets
generated by the reduction involve picking each point of P independently with a given
probability and so can be updated efficiently on insertion into and deletion from P . The
number of such subsets is poly(log n, 1/ε), so an update cannot affect too many of them,
even in the worst case. (Some additional aspects of the structure depend on the value of n,
but these can be handled, as is standard, by periodic rebuilds when n changes substantially.)

If one is interested in improving the performance of this data structure, there are several
natural avenues of improvement:

One can replace the dynamic convex hull structure of Overmars-van Leeuwen [29] by a
faster alternative, such as [16] or [13, 23]; refer to the introduction of the latter reference
for a more thorough literature survey.
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Using the black-box reduction from [5] likely affects efficiency, see more elaborate non-
black-box work in [7] (though that work focuses on the higher-dimensional case and does
not address supporting updates).
Afshani and Chan [2] describe a more efficient Monte Carlo black-box reduction from
approximate counting to small-count range searching, where a query needs to check if
|P ∩ h| is small for a halfplane h, and if so, produce the correct answer, and otherwise
output too large. The algorithm essentially builds small-count structures for random
samples of the input, of various sizes, conceptually similar to the reduction from [5]. As
the counts required in the reduction are essentially of size O(poly(1/ε) log n), one could
implement such a dynamic data structure in (near-)linear space with efficient updates
using classical tools such as [29] or their subsequent improvements. One could even
employ a dynamic reporting structure in this situation, provided it can interrupt the
reporting if the query answer is too large; most reporting structures have such an ability.
We conclude with an open problem: All the reductions described so far produce a
Monte Carlo algorithm for dynamic approximate halfplane range counting. Is there a
(simple and straightforward) Las Vegas algorithm with comparable performance? Or even
a deterministic one?

7 Discussion and open problems

Our data structures in Sections 2 through 4 can handle farthest rather than nearest
neighbors, with simple and obvious modifications.
It might be interesting to determine the best performance that can be attained in
Theorems 1 through 4 with the current state-of-the-art data structures.
The static data structures of Har-Peled and Kumar [22] and of Abdelkader et al. [1]
cover a large class of (weighted) distance measures. In particular, both structures allow
assigning different norms to different sites, which our approach cannot accommodate.

Refer to the end of Section 6 for some discussion and open problems related to the approximate
halfplane range counting data structure described there.
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