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—— Abstract

The natural generalization of the Boolean satisfiability problem to optimization problems is the

task of determining the maximum number of clauses that can simultaneously be satisfied in a
propositional formula in conjunctive normal form. In the weighted mazimum satisfiability problem
each clause has a positive weight and one seeks an assignment of maximum weight. The literature
almost solely considers the case of positive weights. While the general case of the problem is only
restricted slightly by this constraint, many special cases become trivial in the absence of negative
weights. In this work we study the problem with negative weights and observe that the problem
becomes computationally harder — which we formalize from a parameterized perspective in the sense
that various variations of the problem become W[1]-hard if negative weights are present.

Allowing negative weights also introduces new variants of the problem: Instead of maximizing
the sum of weights of satisfied clauses, we can maximize the absolute value of that sum. This turns
out to be surprisingly expressive even restricted to monotone formulas in disjunctive normal form
with at most two literals per clause. In contrast to the versions without the absolute value, however,
we prove that these variants are fized-parameter tractable. As technical contribution we present a
kernelization for an auxiliary problem on hypergraphs in which we seek, given an edge-weighted
hypergraph, an induced subgraph that maximizes the absolute value of the sum of edge-weights.
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1 Introduction

Maximum satisfiability is the natural generalization of the satisfiability problem of propos-
itional logic to optimization problems. In its decision version MAX-SAT, we seek a truth
assignment for a given propositional formula in conjunctive normal form that satisfies at
least a € N clauses. This problem is known to be NP-complete even in the restricted case
that every clause contains at most two literals [16]. On the positive side, it is known that
the problem can be decided in time f(a) - n® for some function f: N — N and constant
¢ € N, which means that the problem is fized-parameter tractable parameterized by « [26].
This also holds for the weighted version in which clauses have positive integer weights.
In this paper we extend the previous scenario by allowing also megative weights. We de-
note the corresponding problem with MAX-CNF: decide for a given propositional formula
with arbitrary integer weights whether there is an assignment of weight at least a. In the
presence of negative weights, many non-trivial variants of the problem arise, for instance
MAX-DNF (the propositional formula is in disjunctive normal form), MAX-MONOTONE-CNF
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and MAX-MONOTONE-DNF (all literals in the formulas are positive), and ABS-CNF as well as
ABS-DNF (maximize the absolute value of the sum of the satisfied clauses). Even an obscure
combination such as ABS-MONOTONE-DNF becomes surprisingly expressive if negative weights
are allowed (we show that this version is NP-hard restricted to formulas in which every clause
contains at most two literals). This complexity jump (many of these versions are trivially
in P if negative weights are not allowed) motivates a systematic study of the parameterized
complexity of ABS-DNF and its variants. The main problem we investigate is defined as:

» Problem 1 (p,-d-ABS-DNF).

Instance: A propositional formula ¢ in disjunctive normal form with clauses of size at
most d, a target value o € N, and a weight function w: clauses(¢) — Z.

Parameter: o

Question:  Is there an assignment B such that |- ¢ jauses(s),pi=c W(C)| = a (the absolute
value of the sum of the weights of satisfied clauses is at least a)?

We investigate the complexity of this problem by varying the status of « and d as
parameter. In the notation above (« as index of p and d in the problem description) we
consider « as a parameter and d as a fixed constant. But we also consider a and d to be
parameters at the same time, or both to be constant, or to be neither a parameter nor a
constant. An overview of the complexity of ABS-DNF can be found in Table 1.

Table 1 Summary of our results for the maximum satisfiability problem over formulas in
disjunctive normal form with negative weights and an absolute value target function (ABS-DNF).
We distinguish how a (the weight of the sought solution) and d (maximum size of a clause) are
interpreted (as constant, as parameter, or as unbounded). The columns correspond to d, while the
rows represent a. Upper bounds are highlighted in green and lower bounds in red.

a_d constant parameter unbounded
constant P FPT unknown
(Corollary 25) (Corollary 24)
arameter FPT FPT W/[1]-hard
p (Theorem 3) (Corollary 24) (Corollary 12)
unbounded NP-hard para-NP-hard NP-hard

(Corollary 9) (Corollary 10) (Corollary 9)

As mentioned before, we will also study other variations of the problem, which we obtain
by replacing the DNF by a CNF, by forcing the formula to be monotone, or by replacing
the absolute value function by a normal sum. It turns out that without the absolute value
function, many natural versions of the problem become W/[1]-hard in the presence of negative
weights. However, the problems become tractable if the aim is to maximize the absolute
value of the target sum as they than can all be fpt-reduced to p,-d-ABS-MONOTONE-DNF,
which in turn is equivalent to the following hypergraph problem:

» Problem 2 (p,-d-UNBALANCED-SUBGRAPH).

Instance: A d-hypergraph H = (V, E), a weight function w: E — Z, and a number o € N.
Parameter: «

Question: Is there a set X CV with |w[X]| > a.

In words, we seek a subset X of the vertices of an edge-weighted hypergraph such that
the absolute value of w[X] = 3" ¢y w(e) is maximized. Here E[X] are the hyperedges
induced by the set X. Intuitively, that means we have to find a subgraph that contains either
more positive than negative edges or more negative edges than positive ones. Thus, we seek
an unbalanced subgraph.
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Our Contribution I: Hardness Results. We present hardness results for the paramet-
erized and non-parameterized variants of MAX-DNF and ABS-DNF (both with negative
weights). In particular, we prove that MAX-DNF and ABS-DNF are NP-hard when restric-
ted to monotone formulas with at most two literals per clause. However, the problems
differ from a parameterized perspective: p,-d-MAX-MONOTONE-DNF is W[1]-hard for all
d > 2, while p,-d-ABS-DNF € FPT. We also prove a similar result for the CNF-versions: pq-
d-MAX-MONOTONE-CNF is W[1]-hard for all d > 2, but p,-d-ABS-CNF € FPT.

Our Contribution ll: Satisfiability Based Optimization with Absolute Value Function.
We derive a kernelization algorithm for p,-d-UNBALANCED-SUBGRAPH, which implies that
the problem is in FPT parameterized by «. Using an fpt-reduction we show:

» Theorem 3. p,-d-ABS-DNF € FPT

Our Contribution I1l: Absolute Integer Optimization. Theorem 3 can be generalized to
an absolute integer optimization problem. Given a multivariate polynomial p: Z™ — Z with
integer coefficients and intervals [(biin)i; (bmaz)i] for every @ € {1,...,n}, the task is to find
a solution (z1,...,x,) € Z™ with (byin)i < @i < (bynaz)i such that the non-linear objective
function |p(z1,...,zy,)| is maximized. With the value of the sought solution a and the
maximal degree d of the polynomial, we prove:

» Theorem 4. p, 4-ABS-I0 € FPT

We emphasize that there are no restrictions on the number of variables or on the size of
an interval [(bmin)i; (bmaz)i]. There may be even infinitely large intervals like [—o0; 0o].

Related Work. Optimization problems based on satisfiability or constraint-satisfaction
problems are usually NP-complete [23, 31]. The parameterized complexity of these problems
is, thus, an active field of research [17, 18, 21, 32]. An overview over the current trends can be
found in [8, 30]. In a propositional formula in conjunctive normal form, we can always satisfy
at least (1 —27%)m clauses if m is the number of clauses and d is the size of these clauses [7,
Chapter 9.2]. Therefore, the problem is fixed-parameter tractable when parameterized by the
solution size a. It is known that the problem remains in FPT parameterized above this lower
bound, i.e., the parameter is the distance between (1 —2~%)m and the number of clauses that
can actually be satisfied simultaneously [1]. The currently fastest algorithm for parameter «
runs in time O*(1.3248%) and improving the base is an active field of research [3].

Another parameterized approach to (non-optimizing) satisfiability problems are backdoors,
which are small sets of variables such that assigning values to these variables yields an easy
formula, e.g., a KROM- or HORN-formula [5, 28]. Unfortunately, MAX-CNF remains NP-hard
on such formulas, making the approach less appealing for optimization problems.

A third line of research on parameterized algorithms for satisfiability problems focuses on

structural parameters, i. e., graph theoretic properties of a graph representation of the formula.

Depending on the details of that representation, various tractability and intractability results
can be derived for parameters such as the treewidth of the corresponding graph [29, 30]. Such
algorithms usually can be obtained from general frameworks such as Courcelle’s Theorem
and carry over to the optimization versions [4]. Generalizing this approach to a broader
range of graphs is an active field of research, see for instance [15] or [2, Chapter 17].

A related problem is MAX-LIN2 [1, 6, 27]: given variables z1,...,z, and a set of equations
Micrz; =bforbe {—1,1} and I C {1,...,n}, find an assignment to {—1, 1} that satisfies as
many equations as possible. This can be seen as maximizing parity constraints, in contrast
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to or constraints (MAX-CNF) or and constraints (MAX-DNF). The parameterized complexity
of linear integer programming is well understood, see for instance the famous result of
Lenstra [25] or recent developments in algorithms based on structural parameters [9, 14, 22, 24].
There are also recent results on non-linear programs, see for instance [10, 19, 20]. For separable
convex functions, fixed-parameter tractability results are known for structural parameters
depending on the constraint matrix [11]. There are also results that directly cover absolute
values of polynomials — for instance, for maximizing convex functions, which include absolute
values of convex polynomials [20].

Structure of this Work. After some brief preliminaries in Section 2, we present lower bounds
for various versions of ABS-DNF and related problems in Section 3. Afterwards, we formulate
our main result — an FPT-algorithm for p,-d-ABS-DNF — in Section 4. We also present
the underlying machinery, i. e., a kernelization-algorithm for p,-d-UNBALANCED-SUBGRAPH.
Section 5 concludes with further applications and an outlook is presented in Section 6. Due
to space constraints, some proofs are only available in the technical report.

2 Preliminaries

A parameterized problem is a set @ C X* x N, where an instance (w, k) consists of a word w
and a parameter k. We denote parameterized problems with a preceding “p-”
index that indicates what the parameter is — for instance, py-VERTEX-COVER denotes the
well-known vertex cover problem parameterized by the solution size k. A parameterized

with an

problem is fized-parameter tractable (fpt or it is in FPT) if there is a computable function
f: N — N and a constant ¢ € N such that we can decide (w, k) €7 Q in time f(k) - |w|°. A
size-g kernelization for a parameterized problem () and a computable function g: N — N is a
polynomial-time algorithm that, on input of an instance (w, k), outputs an instance (w’, k')
such that (w,k) € Q & (', k') € Q and |w'| + k" < g(k). The output of the algorithm
is called a kernel. If g is a polynomial then the kernel is called a polynomial kernel. 1t is
well-known that a decidable problem is in FPT iff it admits a kernelization [13, Theorem 1.39].

A d-hypergraph H = (V, E) consists of a set V of vertices and a set E of edges with
e CV and le|] < d for all e € E. A hypergraph is d-uniform if all edges have size
exactly d. For d = 2, they are just graphs. The neighborhood of a vertex v is the set
N(@)={w| (Je € E)(v,w € e) } and its degree deg(v) is the number of edges containing
it. The link of a set ¢ C V is defined as link(c) = {e|e € E and ¢ C e }. A subedge of some
hyperedge e € E is any subset s C e. We use A(H) = max,cy deg(v) (or just A, if H is
clear from the context) to denote the mazimum degree of H. For X C V and w: E — Z,
let E[X]={e€ E|eC X} denote the edges of the induced hypergraph H[X] = (X, E[X])
over X, and define its weight as w[X] =" . pixj w(e).

We need only little terminology from propositional logic. A formula ¢ is in disjunctive
normal form if it is a disjunction of conjunctions, e.g., ¥ = (x1 A x2) V (22 A x3). It is in
conjunctive normal form if it is a conjunction of disjunctions, e.g., x = (z1 Va2) A (2 V —x3).
We refer to the variables of ¢ with vars(¢), and we call the conjunctions in a formula in
disjunctive normal form and the disjunctions in a formula in conjunctive normal form clauses.
These objects are addressed with clauses(¢). For instance, vars(¢) = vars(x) = {1, x2, 23},
clauses(¢)) = {(z1,x2), (x2,z3)}, and clauses(x) = {(x1, z2), (r2, 7x3)}. A literal is a variable
(then it is positive) or its negation (then it is negative). Formulas that contain only positive
literals are monotone, e.g., 1 is monotone but x is not.
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3 Lower Bounds for MaxSAT and AbsSAT Based Optimization

The problems MAX-DNF and ABS-DNF may seem similar on first sight. After all, if there are
no negative weights they are clearly equivalent. However, if negative weights are present, a
solution of ABS-DNF may either construct a sum of at least a or of at most —«; in contrast,
a solution for MAX-DNF does not have such freedom and has to find a weight-a solution.
This results in an interesting complexity gap: p,-d-MAX-MONOTONE-DNF is W/[1]-hard for
d > 2 while p,-ABS-DNF is only W[1]-hard if d is unbounded (recall that d is the size of
the clauses and that in p,-d-MAX-MONOTONE-DNF the size of every clause is bounded by
a constant d). We prove the hardness results in this section and complement them with a
proof of p,-d-ABS-DNF € FPT in the next section.

We first consider p,-d-MAX-MONOTONE-DNF. This problem is W[1]-hard by a reduction
from the independent set problem (given a graph and an integer k, decide whether there is a
set of at least k pairwise non-adjacent vertices):

» Lemma 5. p,-d-MAX-MONOTONE-DNF is W[1]-hard for d > 2.

Proof. Let G = (V,E) and k € N be an instance of p;-INDEPENDENT-SET. We build a
formula ¢ that contains a variable x, for every v € V:

o= \/(xv) vV \/ (Ty A Tp)-
veV I {v,w}eE I
1

The red labeling shows the corresponding weight function w. Clearly, a size-k independent
set translates into an assignment of weight k. For the other direction consider an assignment
of weight k. We can assume that the assignment satisfies only positively weighted clauses.
Otherwise we can flip one variable of a satisfied and negatively weighted clause. This does
not decrease the weight because there is at most one positively weighted clause containing
this variable. Since k variables are set to true and no negatively weighted clauses are satisfied,
the assignment translates back to an independent set. <

» Corollary 6. p,-d-MAX-DNF is W[1]-hard for d > 2.

On the other hand, the absolute value version of the problem remains intractable in the
classical sense, which motivates our parameterized perspective. In detail, the (unparameter-
ized) problem d-ABS-DNF is NP-hard by a reduction from INDEPENDENT-SET. Note that in
contrast to the previous lemma, the reduction in the following is not parameter-preserving.
Thus, the theorem does not imply that p,-d-ABS-MONOTONE-DNF is W[1]-hard.

» Theorem 7. d-ABS-MONOTONE-DNF is NP-hard for d > 2.

Proof. We reduce from INDEPENDENT-SET and let G = (V, E') with k € N be a corresponding
instance. Construct the following formula ¢ that contains four variables v, vy, vy, v, for
every vertex v € V (the red arrows illustrate the weight function):

o= \/(vf/\v;)\/(vf/\vg) v \/ (0 Aw) vV (vp Awy).

veV I I {v,w}ekr I I

-1 1 1 -1

The intuition (also illustrated in Example 8) behind the formula is as follows: Think of two
weighted copies of G called GT and G~ such that all edges in G* have weight +1 and all
edges in G~ have weight —1. This is the second part of the formula. Observe that by taking
either all edges of G or all edges of G~, a solution would always have absolute value |E|.

12:5
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To encode the independent set problem, we introduce an extra gain for every vertex,
these are the variables vy and v, . Observe that in the first part of ¢, we can add —1 or +1
to the solution by setting vf/ ~ and v;r /= %o true at the same time. Finally, note that the
signs in the first part of the formula are exactly the opposite of the signs in the second part.
We claim that G has a size-k independent set iff ¢ has a solution of weight k + |F|. Let S be
a size-k independent set in G, then the following assignment has an absolute value of k + |E|:

Bu?) = {true if(veSando=-)or (c =+ andi=1);

false else.

For the other direction let § be an assignment that achieves an absolute value |v| of at
least k+|E|. Assume for simplicity that v > 0 (the case v < 0 is symmetric). We may assume
B(vi") = true and B(vy) = false — otherwise we can increase the solution by modifying the
assignment locally. Observe that by setting only variables v;r to true, we have v < |E|
and, since we assumed [v| > k + |E|, 8 sets further variables v} to true. We may assume
B(vy) = B(vy) for all v € V, as setting both variables to true is the only way to increase v
(the clauses of the form (v; A wj ) all have a negative weight and we assumed v > 0).

Let {v,w} € E be an edge such that G(v]) = B(w; ) = true. Observe that changing
B(wy) to B(wy) = false does not decrease the value of the solution (it decreases the number
of satisfied clauses with negative weight by exactly one, as the positively weighted clause
(wy Awy ) is not satisfied anymore; but it increases the number of satisfied clauses with
positive weight by at least one as the negatively weighted clause (v; A wy ) is also no longer
satisfied). Hence, we may adapt  such that S = {v | f(v]) = true} is an independent set.
Since the absolute value of § is at least |E| + k and since all clauses containing variables of
+ can contribute at most |E| to this sum, we have |S| > k. <

i

the form v

» Example 8. Let us illustrate the reduction used within the theorem with an example.
Consider the following graph G with an independent set of size three:

a c d g
(@)
N\ Z

b
@

Within the reduction, we virtually generate the following edge-weighted graph that
contains two copies of G, namely G and . In both copies, every vertex has a mirror
vertex attached to it. Edges have either a positive weight of +1 or a negative weight of -1:

af c./dr,/’y*r a'fc'/d}/m

o / “lp le bl “lp f
The reduction continues by defining a weighted formula that contains a clause for every
edge with the same weight as that edge, e.g., we would have (a; A b)) of weight +1 and
(a; Aby ) of weight —1. By selecting from one copy (i.e., setting the corresponding variables
to true) all vertices except the mirrors, we obtain an assignment of weight +|E|; selecting the
independent set together with its mirrors in the other copy provides another £k, yielding a
solution of absolute value |E| + k. In this example we could take all green vertices (providing

a weight of +8) and {b, . d; , f; } together with their mirrors (for another +3); yielding a
solution with absolute value 11. a

» Corollary 9. d-ABS-DNF is NP-hard for d > 2.
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» Corollary 10. p;-ABS-DNF is para-NP-hard.

Due to the previous theorem, we cannot hope to achieve parameterized tractability with
respect to the sole parameter d. The following lemma shows that this is also not possible for
the parameter a. In the upcoming sections, we thus rely on the combined parameter a + d.

» Lemma 11. p,-ABS-MONOTONE-DNF is W[1]-hard.

Proof. Let G = (V, F) and k € N be an instance of py-INDEPENDENT-SET. Consider the
following formula ¢ that contains a variable z, for every vertex v € V:

(bz\/ Ty N /\ Ty | -

veV {v,w}eFE

Let @ = k and w be a weight function that maps all clauses of ¢ to 1. We show that
(G, k) is a yes-instance of INDEPENDENT-SET iff (¢, w, @) is a yes-instance of ABS-DNF. For
the first direction let I C V be a size-k independent set and consider the assignment:

B(ry) = {false ifv el

true otherwise.

Since I is an independent set we have 8(x,,) = true for all vertices w that have a neighbor
v € I. Therefore, 5 satisfies every clause that corresponds to a vertex of I and, hence, § is
an assignment of weight at least k.

For the other direction let 8 be an assignment of weight at least k, i.e., one that satisfies
at least k clauses. For each of these clauses there is a unique vertex v such that x, appears
negatively only in that clause and, thus, at least k variables must be assigned to false by .
Furthermore, for all neighbors w of v we have 3(x,,) = true by the second part of the clause.
We conclude that {v | f(x,) = false} is an independent set of size at least k.

The formula ¢ is not monotone, however, in the proof of Lemma 17 we describe how an
arbitrary instance can be turned into an equivalent one with a monotone formula. In this
case we obtain the following monotone formula ¢’, which (instead of ¢) can be constructed
directly for this reduction.

¢/E\/ /\a:w \/\/ xv/\/\xw.

veV \{v,w}eE veV {v,w}eFE
| l
1 -1

The red labeling shows the corresponding weight function w’. As we describe in the proof of
Lemma 17 the instances (¢, w, k) and (¢',w’, k) are equivalent. This completes the proof. <

» Corollary 12. p,-ABS-DNF is W[1]-hard.

3.1 From Disjunctive Normal Form to Conjunctive Normal Form

So far, we have seen that the parameterized DNF maximization variants are W[1]-hard. We
can use this to show that the same holds also for the conjunctive normal forms:

» Lemma 13. p,-d-MAX-MONOTONE-CNF 4s W[1]|-hard for d > 2.

» Corollary 14. p,-d-MAX-CNF is W[1]-hard for d > 2.

SWAT 2022
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3.2 Finding an Assignment with a Certain Weight

We finish this section with a variant of the problem in which we seek an assignment of a
certain absolute value. In detail, p,,4-EXACT-ABS-MONOTONE-DNF asks, given a weighted
propositional formula in disjunctive normal form, whether there is an assignment such that
the absolute value of the weighted sum is exactly « (and not at least «).

» Lemma 15. d-EXACT-ABS-MONOTONE-DNF is NP-hard for any constant d > 2 and o = 0.

Proof. Since p,-d-MAX-MONOTONE-DNF is W[l]-hard by Lemma 5, it is not surprising
that d-EXACT-MAX-MONOTONE-DNF is NP-hard. We just use the same polynomial-time-
computable reduction, which is possible since the independent set problem is monotone in
the sense that the existence of a solution of size > k implies the existence of an independent
set of size = k.

We can turn a d-EXACT-MAX-MONOTONE-DNF instance into a d-EXACT-ABS-MONOTONE-
DNF instance: Just add the empty clause with weight —a and set the target value to 0. Every
assignment of weight « in the original instance will have weight 0, as the empty clause is
always satisfied. On the other hand, any weight-0 assignment in the new formula has to
satisfy clauses of weight exactly o to compensate for the empty clause. |

» Corollary 16. p,-d-EXACT-ABS-MONOTONE-DNF s para-NP-hard.

Proof. A parameterized problem is para-NP-hard if there are finitely many slices whose
union is NP-hard [13, Theorem 2.14]. The claim follows as already the slice a = 0 alone is
NP-hard by Lemma 15. |

4 Satisfiability Based Optimization with Absolute Value Function

In the previous section we showed that various sAT-based optimization problems are pre-
sumably not in FPT with respect to the natural parameter a. There are various ways to
deal with these negative results. For instance, we could restrict ourselves to structured
instances — such as formulas of bounded incidence-treewidth [8]. For the absolute version of
the problem, we fortunately do not need such a strong structural parameter. Instead, we
provide a reduction to an auxiliary hypergraph problem for which we present a polynomial
kernel. This results in the main theorem of this section:

» Theorem 3. p,-d-ABS-DNF € FPT

It is well-known that various optimization problems over CNFs and DNFs are equal to
problems on hypergraphs. For instance, it is easy to see that the question of whether a given
monotone d-CNF can be satisfied by setting at most k variables to true equals the hitting
set problem on d-hypergraphs. Notice that “monotone” here is a crucial key word, as this
property allows us to encode clauses as edges. Such an approach does not work directly for
Pa-d-MAX-DNF. Fortunately, p,-d-ABS-DNF reduces to its monotone version:

» Lemma 17. p,-d-ABS-DNF < p,-d-ABS-MONOTONE-DNF
Proof. Let ¢ be a d-DNF and w: clauses(¢) — N be a weight function on its clauses. We

argue how we can remove one occurrence of a negative literal — an iterated application of
this idea then leads to the claim.
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Let ¢ € clauses(¢) be a clause containing a negative literal T. We remove ¢ from ¢ and
add two new clauses: ¢t and ¢~. The clause ¢t equals ¢ without T, and we set ¢~ = ¢ A z.
Define w(c*) = w(c) and w(c¢™) = —w(c), and observe that an assignment that satisfies ¢
does satisfy ¢™ but not ¢~ and, thus, yields the same value. On the other hand, every
assignment that satisfies ¢~ does also satisfy ¢ and, hence, the values cancel each other. <«

Given a monotone DNF and a weight function on its clauses, we can encode the problem
Pa-d-ABS-MONOTONE-DNF as a hypergraph by introducing one vertex per variable and by
representing clauses as edges. The task then is to identify a set of vertices such that the
absolute value of the total weight of the edges appearing in the subgraph induced by the
vertices is as large as possible. Formally this is Problem 2 from the introduction.

» Corollary 18. p,-d-ABS-DNF < p,-d-UNBALANCED-SUBGRAPH

4.1 A Polynomial Kernel for Unbalanced Subgraph

In this section we develop a polynomial kernel for p,-d-UNBALANCED-SUBGRAPH. The
kernelization consists of a collection of reduction rules which we just call rules. Every rule
obtains as input an instance of p,-d-UNBALANCED-SUBGRAPH and either (i) is not applicable,
or (ii) outputs an equivalent smaller instance. The rules are numbered and we assume
that whenever we invoke a rule, all rules with smaller numbers have already been applied
exhaustively. It will always be rather easy to show that the rules can be implemented in
polynomial time, so we only prove that they are safe. To get started, we consider the following
simple rules, where A is the maximum vertex degree in the hypergraph:

» Rule 1. If H contains an isolated vertex v, delete v.

» Rule 2. If H contains an edge e with w(e) = 0, delete e.

» Rule 3. If H has at least 2a - d>A? vertices, reduce to a trivial yes-instance.
» Lemma 19. Rule 1-3 are safe.

Proof. For the first two rules observe that neither isolated vertices nor weight-0 edges can
contribute to any solution and, hence, may be discarded.

For Rule 3 we argue that H contains a set X C V with |w[X]| > «. Consider a maximal set
M C FE such that (i) all edges in M are pairwise disjoint and (ii) H[UeeM e} = (UeeM e, M),
that is, M is a set packing that induces itself. Such a set always exists and can also be
computed as the following greedy algorithm shows: Start with M = () and repeatedly pick a
remaining nonempty edge e from H that is no superset of any edge in H (except (}) and add it
to M. Since Rule 1 has already removed isolated vertices, there must be such an edge as long

as V is not empty. After picking an edge e, remove the set E. of all edges that intersect e.

Observe that |E,| < dA. Clearly, if we just remove E,, the algorithm would already generate
a maximal set packing — however, it would not necessarily be self-induced. Let therefore
Vo={v eV |](3e € E,)(v e e)} be the set of vertices covered by the to-be-removed
edges. Since every edge has size at most d, we have |V,| < d?A. To ensure that M will be
self-induced, we remove all edges that contain a vertex of V, — which are at most d?A? edges
as H has maximum degree A.

For every edge that is picked to be in M, at most d?A? edges are removed from |E]|.

Therefore we have [M| > |E|/(d*A?). Furthermore, we have |E| > |V|/d because Rule 1 has
already removed isolated vertices. Given that |V| > 2a - d3A?%, we deduce |M| > 2. There

are at least a edges in M that have the same sign (no edge has a zero-weight by Rule 2).

Therefore, the set X of vertices induced by the larger set satisfies |w[X]| > a. <
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The rules yield a kernel for the combined parameter a+A, which means that an exhaustive
application of these rules leaves an instance of size bounded in o and A.

» Corollary 20. p, a-d-UNBALANCED-SUBGRAPH has a kernel with O(a - A?) wertices.

If we only consider « 4 d as parameter, rules 1-3 are not applicable, and the graph is
still large, we know that the input graph has no isolated vertices, all edges have a non-zero
weight, and we know that there is at least one vertex of high degree. Our final reduction
rule states that in this case we can as well reduce to a trivial yes-instance, since the high
degree vertex induces a solution. Intuitively, this is similar to an application of the well-
known Sunflower Lemma [12], which states that large enough hypergraphs contain a set
of hyperedges that pairwise all intersect in the same set of vertices (i.e., the “hypergraph
version” of a high-degree vertex). Unfortunately, a direct application of the lemma is tricky
as other hyperedges may intersect arbitrarily with such sunflowers. To circumnavigate this
difficulties, we need objects that are more like a self-induced sunflower. This leads to the
following reduction rule; details of these concepts are postponed to the proof of Lemma 21.

» Rule 4. Let g(i) = (z‘i20¢~22d)2i*1 fori>0andg(0) =1. If H contains a subedgec C e € E
such that (i) |link(c)| > g(i) where i = d — |c| and (i) for every superset f 2 c it holds that
|link(f)| < g(j) where j =d — |f|, then reduce to a trivial yes-instance.

Before we prove the safeness of the rule in the general case, let us quickly sketch why the
rule is correct for 2-uniform hypergraphs, i.e., normal graphs. A vertex v with deg(v) > 4«
is incident to at least 2a. edges of the same sign. For the sake of an example let there be a set
P(v) € N(v) with |P(v)| > 2« and w({v,u}) > 0 for all u € P(v). Either P(v) is a solution
(i.e., |w[P(v)]| > a) or P(v) U {v} is a solution (since w[P(v) U{v}] > 2a — |[w[P(v)]| > «).

» Lemma 21. Rule 4 is safe.

Proof. Let ¢ C V be a set for which the rule is applicable. We argue that H contains a set
X CV with |[w[X]| > a. Let i =d—|c|, E(c) =link(c) ={e€ E|cC e}, N(c) =JE(c)\¢,
and degp(v) = [{e € E(c) | v € e}|. We can assume that |¢[ < d and i > 0 because
otherwise |link(c)| = 0 < g(¢). Since |link(f)| < ¢g(j) holds for any superset f D ¢ with
J =d—|f], it also holds that degp.)(v) < g(i — 1) for every vertex v € N(c). Otherwise we
have a contradicion with f = cU {v}.

Consider a maximal set M C E(c) such that (i) all edges in M contain ¢ as a subedge,
(ii) ¢ is the intersection of any pair of different edges in M, and (iii) for every edge e € FE(c)
it holds that either e € M, or e € (Ue,eM e'), that is, M is a set of edges that induces only
itself in H. = (V, E(c)). By (i) and (ii) M is also known as a sunflower with core c. Such a
set always exists as the following greedy algorithm shows: Start with M = () and observe
that all three properties hold. Repeatedly pick an edge ¢ € E(c¢) that has no smaller subedge
in E(c) and add it to M as long as the properties are preserved.

We will use M to identify the soughted set X. For this, we require a lower bound for the
size of M. Therefore, let us carefully analyze which edges cannot be choosen after an edge has
been added to M. After picking an edge e € E(c), we can remove the whole set E, C E(c)
of all edges that intersect e not only in ¢ (a proper superset of ¢) because picking one of
those edges contradicts property (ii). There may be also an edge ¢’ € E(c) \ E. that has not
been added yet, but for which there is another edge €’ € E(c) \ M with ¢’ € |JM U {e'}.
This implies that ¢’ may not be added to M to preserve property (iii). Furthermore, there
must be an edge e € M such that e’ intersects either e or some edge in E, outside in the
core. Let E. C E(c) be the set of all edges that intersect E. not only in c¢. It follows
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that any edge in E(c) will either be inserted to M, or is in E. or E/ for an edge e € M.

Observe that |E.| <ig(i — 1) because e \ ¢ contains at most ¢ vertices that are in at most

g(i —1) — 1 edges from E(c). For the same reason, we have |E.| < |E,|- (i — 1) - g(i — 1).

Therefore, |{e} U E. U E'| < i?(g(i — 1))? edges are removed for every edge in M. This
implies [M| > |E(c)|/(i%g(i — 1)?). Given that E(c) > g(i), we deduce | M| > 2a - 22" For
i =1, we have [M| > |E(c)| because of g(0) = 1. For i > 1 we use that 22 22T 2 = g
and g(i) = 2%~ for z = 2 - 22",

We show that we can find a set X C (o, e with |w[X]| > a. Let M* denote all
positively weighted edges in M and let M~ denote the other ones. Let us consider three
cases based on the size of the core.

First Case (|c| = 0). We have ¢ = () and, without loss of generality, let w[f] = |w[0]| > 0.
Otherwise we could flip the sign of all weights. Note that F() = E \ {#}. By Property (iii),
any subset of |J M induces only edges in M U {0}. It follows that w[J M ™| = |[M*| + w[0].
We are done for w(|J M ]| > a, otherwise we obtain

ol J M1 = M| = wlf] = M|~ (MF] +wld]) > [M] - o

The claim follows with |M| > 2a.

Second Case (|c| = 1). In this case we have ¢ = {v} for some vertex v € V. Without loss
of generality, let w[c] = |w[c]| > 0 — otherwise we can flip the sign of all weights again. In
contrast to the previous case, a subset of | J M U ¢ might induce edges in M and subedges
of ¢. Those edges are induced by V! = |JM \ ¢. For any X’ C V' we have |w[X']| < a,
otherwise we are done. Observe that w[|JM*] = |[M*| + wlc] + w[|JMT]. The statement
follows immediately for w[|J M ]| > a. Otherwise we obtain

|MT| +wlc] < a+w[UM+] < 2a and
wl M) = (M7 = wle] +wl a7
= M|~ |M"| - wlc] —w| JM~] > [M] - 30.

The claim follows with |M| > 4a.

Third Case (|c| > 2). Observe that in this case | J M may induce edges that are neither
in E(c) nor subedge of ¢, but that intersect ¢ (and other vertices covered by M). This is

because M contains only edges of F(c). Let us recursively define the following subsets of
ElUM?] foro e {—,+}:

By =B [(JM7\ <) \ Bl

ES =E {c’U (UMU\CH \ U E$\ E[d] for every ¢’ Cc.
rée

For all ¢/ C ¢ these sets are disjoint and every edge e € E[|J M?] is either in one of these
sets or in E[c]. To be precisely, an edge e € E[|JM?] is in E%,, if it is a proper superset of c.
Otherwise e C ¢ (if e C ¢). Note that M = E?. We will now show that there is a set ¢ C ¢
and such that the absolute value of the induced weight of ¢/ U (|JM ™\ ¢) or U (UMT\ ¢)

is at least . Assume this is not the case and that for all subsets X C |J M we have

lwlX]| <a (1)

12:11

SWAT 2022



12:12

MaxSAT with Absolute Value Functions

for any ¢/ C cand o € {—,+}. Observe that

E [c’u (UM”\C)] = EZUE[CU | B (2)

f&e
Let wg = ) ..o w(e) and note that this is the total weight of the edges in EY,. Hence:
wleo(Umere)] =z rule)+ 3 wg ®
f&e

For any k € {0,...,]|c|} let wy = 22"~1. 924 We show that wy, is an upper bound in the
sense that |wg| < wy, for ¢ C cand k = |¢/|. By (1) and (3) we deduce that

lwf | = ’w [(UMU\C)] fw[ﬂ)]’ < 200 = wy.

Otherwise either |w[f]| > « or |w[(|J M \ ¢)]| > a. Observe that 2a + (2871 — 1wy < wy,
for k > 0. Then for § # ¢’ C c it follows by induction that

lwg | =|w [C'U (UMU\C>} —w[d] = Z w

fce
& 1]

<aoa+oa+ Z ( & )wk
k=0

< 2& —+ (2‘6,‘ — I)W‘c/‘ 1

Since |M| > 2a- 22" > 4o - 221 = 2. wye| either |[MT| > wy, or [M~| > wy. Recall
that M? = E7 and, thus, with |w?| > |M?| we get that our assumption must be wrong. <

» Corollary 22. p,-d-UNBALANCED-SUBGRAPH has a kernel with O(an) vertices.

Proof. If Rule 4 cannot be applied, there is no such subedge ¢ C e € E that meets the
two properties of the rule. However, this also implies that there is no subedge ¢ that
only meets the first property because otherwise there would be an inclusionwise largest
superset (at last a size-(d — 1) edge), which does. Therefore, for any subedge ¢ C e € E
it holds that |link(c)| < (i*2c - 22d)27”1 where ¢ = d — |¢|. Especially for ¢ = {) we have
|link(c)| < (2dd22da)2d*1. By the definition of the link we have |E| < |link(@)|+1. Thus, the
total number of edges is at most (2dd22da)2d*1. Hence, we get a kernel of size O(a2d). <

Proof of Theorem 3. Combine Corollary 18 with Corollary 22. |

If d is not a constant but a parameter, then, by an exhaustive application of the rules
d d
above, we obtain reduced instances of size O(d(QddQ2 a)? _1). Note that there could be up
to n¢ possible subedges, therefore it is not clear that we obtain a kernel. However, a closer
look at Rule 4 reveals that we are not forced to consider these subedges — we can directly
. . . - do2? \29—1
return a trivial yes-instance if |E| > (2d*2% «) .

» Corollary 23. p, ;-UNBALANCED-SUBGRAPH € FPT

Proof. A simple induction shows that when Rule 1 and Rule 2 were applied exhaustively and
|E| > (2d922°2)2"~!, Rule 4 can be applied on ¢ = ) because E \ {#} = link(0)) or on some
larger subedge. Hence we can return a trivial yes-instance whenever |E| > (2dd22da)2d_1. <

» Corollary 24. p, 4-ABS-DNF € FPT

» Corollary 25. o-d-ABS-DNF € P
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4.2 From Disjunctive Normal Form to Conjunctive Normal Form

Similar to Lemma 13 in Section 3, the goal of this section is to companion Corollary 24 with
a CNF-version of the claim.

» Lemma 26. p, q-ABS-CNF <j,; Py, q-ABS-DNF

Proof. Let (¢, w,a) be an instance of p, ¢-ABS-CNF and let ® = clauses(¢). The idea of the
reduction is to successively replace every disjunction in ® by a set of conjunctions with new
weights such that we have for the resulting pair (9, w’):

Z w(o) = Z w' (o).

oc€®, B0 =

Let ¢ be some disjunction in ®. Recall that ¢ contains at most d variables. There is
a set X of at most 2/V2(9)l conjunctions such that we have for every truth assignment
B: vars(¢) — {true, false} (i) B | c iff B satisfies exactly one formula in X, and (ii) g [~ ¢
iff B satisfies no formula in X. Such a set X can easily be computed using the truth table
of ¢, which is possible in the reduction as d is a parameter. Let w’(c¢’) = w(c) for any ¢ € X,
and w'(¢) = w(é) for any ¢ € &\ {c}.

For the reduction, we replace ® by & = &\ {c}UX and update w to w’ accordingly as long
as there is a disjunction ¢ € ®. Note that this will replace exactly | clauses(¢)| disjunctions
with at most 2¢ conjunctions each, which implies that the reduction can be carried out by
an fpt-algorithm. The resulting pair (@', w’) satisfies for every truth assignment 3:

> w(o)

o€d, B0
B Z w(@) * {;U<C) ftier_wic;e'
oce@\{c},B=0 ’
= ) w() + > w(e)
ce®\{c},BEc ceX,B=c
= Y W) + Y w'(o)
ce®\{c},BE0 ceX,BE=c

= > (o). <

ceP\{c}UX,B=0

» Corollary 27. p, ¢-ABS-CNF, Py, q-ABS-MONOTONE-CNF € FPT

5 Application: Absolute Integer Optimization

We have seen that p,,q-ABS-MONOTONE-DNF € FPT. We can generalize this problem to an
algebraic optimization problem: Given a sum of products (a multivariate polynomial over
binary variables), find an assignment such that the absolute value of the sum is at least a.
Using binary variables, this problem is essentially the same problem as ABS-MONOTONE-DNF
(in fact, optimization over DNF's is sometimes called sum of products). However, what
happens if we do not have binary variables, but arbitrary integers from some given domain?
We prove in this section that the problem remains tractable for similiar parameters.

Let us represent a multivariate polynomial p4 (21, ..., 2,) over n variables z1,..., 2,
by an n x m matrix A and a vector w of length m as follows: Define A(z,i,j) to be z4%i if
z#0or A;j # 0 and 1 otherwise; then write paw (21, .., 20) = 250y wj - [[12) Alzi,4, 7).
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» Problem 28 (p, 4-ABs-10).

Instance:  An n x m matrizc A € NLJ™, a weight vector w € Z™, two bounding vectors

bmin € (ZU{—00})™ and byes € (Z U {o0})™, and a target value o € N.
Parameter: o, d = max;c(1,. m} iy Aij
Question: Is there a solution x = (x1,Ta,...,Ty) € Z™ such that |pa(x)| > o and for all
i€ {l,...,n} we have (bimin)i < x; < (bmaz)i?

Here the parameter d is the maximal number of variables that do occur in any product
of the polynomial. If there is no exponent larger than 1, then d is the number of variables in
every product or monomial.

In this problem we restrict the domain of each variable to an interval. One might ask
whether we could allow arbitrary linear inequations instead of upper and lower bounds, which
is common in linear programming. However, in this case the problem becomes W([1]-hard:

» Lemma 29. p, ¢-ABS-10 with linear inequation constraints is W[1]-hard.

Proof. To prove this we turn an instance of p,-INDEPENDENT-SET into an instance of pq,q-
ABs-10 with additional inequations. For a graph G = ({1,...,n}, E) and a number k € N,
let A € Z"*" be the identity matrix, w = (1,...,1) € Z", and a = k. Further set b, = (0)™,
bmaz = (1)™, and let z,, + z, < 1 for every edge {u,v} € E be additional constraints.

Since all weights in w are positive, the absolute value is the exact value of the sum. Every
size-k independent has now a corresponding variable assignment and vice versa. <

Observe that variables may have a huge or possibly infinite domain of possible values and,
hence, it is not obvious that p, 4-ABS-10 is in FPT. However, we already mentioned that pq,q-
ABS-MONOTONE-DNF is equivalent to py,q-ABS-10 if (i) the domain of all variables is {0,1}
(i.e., bnin = (0)™ and byar = (1)™), and if (ii) we have no exponents (i.e., A € {0,1}™>*"™).

Therefore, we only have to consider the remaining cases. If (i) holds but (ii) does
not, we can simply replace all nonzero-values in A by 1. This does not change the value
of paw(z1,...,2,) as by (i) we have only binary variables and w remains the same.

If (i) does not hold, we use a set of reduction rules to transform an instance over an
arbitrary domain into one in which the domain is a superset of {0,1}. This is, of course, not
the same as property (i). However, while adapting the domain, we can transform the instance
such that it is reducible to an instance of p,,¢-UNBALANCED-SUBGRAPH with the following
property: Rule 4 either identifies it as a yes-instance or does nothing. This property can be
used by an algorithm for p,, 4-ABS-10 with the following trick: First modify the domain such
that it contains {0, 1}; then virtually shrink the domain to {0,1} (this restricts the solution
space and, thus, may turn a yes-instance to a no-instance, but may not turn a no-instance to
a yes-instance); perform the reduction and apply Rule 4; either deduce that we are dealing
with a yes-instance (trivial decision of Rule 4) or that the instance is small (as the rule did
nothing). In the latter case restore the larger domain and explore a search tree to solve the
problem (the size of the search tree is bounded, as Rule 4 did not trigger).

Let us first describe the reduction rules. As before, we assume that a rule may only
be applied if rules with smaller numbers were applied exhaustively. The first rule removes
unnecessary variables, products, and constraints; or detects that the instance has no solution.

» Rule 5. Apply the following modifications if possible:
1. If w; =0 for some j, then remove the j-th column from A and w.

2. If there is some i such that A; ; = 0 for every j, then remove the i-th row from A, (bpn)i,
and (bimaz)i-
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3. If there is some i with (bmaz)i < (bmin)i, then return a trivial no-instance.
4. If there is some i with (bmagz)i = (bmin)i, then for every j where A; ; > 0 replace w; by
A
W - (bmag); 7 and set A; ; = 0.
5. If there are two equal columns jo, j1 in A, then replace wj, by wj, +w;, and remove the
j1th column from A and w.

» Lemma 30. Rule 5 is safe.

Proof. For Item 1 and 2 observe that neither variables that do not occur in the represented
polynomial nor products that contain zero as a factor contribute to the value of the polynomial.
Item 3 follows from the fact that there cannot be a solution if the domain of a variable is the
empty set. Finally, Item 4 follows by the distributivity of addition and multiplication. <

If this rule cannot be applied, the domain of any variable contains at least two consecutive
values. With the next rule we change and shift the domains of all variables such that the
domain of every variable contains 0 and 1.

» Rule 6. Apply the following modifications if possible:
1. If there is an i with {0,1} € [(bmin)i, (Dmaz)i] and (bmin)i € Z, then for every column jo
where A; j, > 0 add c := A; j, new ji,J2,...,je-th columns such that

Ay ifi' #1 (c)
Ay i = o and w; = cwjy - (bin)¥ for ke {1,...,¢}.
ik {Ai,jo ki =i T k jo * ( )i [ { }

Finally set (bpin)i to 0 and (bmaz)i t0 (bmaz)i — (Dmin)i-
2. If there is an i with (bym)i = —00 and (bmaz)i < 0, then replace w; by —w; for every j
where A; j is odd, and set (bmin)i t0 —(bmaz)i and (bpaz); to 0o.

» Lemma 31. Rule 6 is safe.

The first subrule shifts the domain of variables that have a finite lower bound. Variables
without such a bound are turned into variables with a finite lower bound by the second
subrule. The first subrule may then be applied again.

As soon as none of the rules can be applied, every variable that occurs in the polyno-
mial pa,, has a domain that is a superset of {0,1}. We can turn our reduced instance into
an instance of p, ¢-ABS-DNF, which directly translates into an equivalent instance of pq,q4-
UNBALANCED-SUBGRAPH.

Thereby we might turn an ABS-10 yes-instance into a no-instance of UNBALANCED-
SUBGRAPH. Recall that running the kernelization algorithm from Section 4 (especially Rule 4)
either returns a trivial yes-instance or does nothing. After applying Rule 5 on the initial
instance, rules 1 and 2 cannot be applied on the hypergraph. Therefore, the inital instance
is a yes-instance or the size of the matrix is bounded by the parameters (because (H,w) is a
kernel). Note that this does not imply that we obtain a kernel: The values in the bounding
vectors are eventually not bounded yet. However, we show that such problematic instances
can be reduced to a set of equivalent instances in which we have control over all these values.

» Theorem 4. p, 4-ABS-10 € FPT

Proof. Let us firstly present some branching rule for our problem:

12:15
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» Branching Rule 1. Let there be some i* where (bpmaz)ix —(bmin)i+ > 2ea with e = max; Az« ;.
Let w®) € Z™ with w](k) =w; if Ay j =k and w](-k) = 0 otherwise, and let A’ be the matriz
obtained by setting all values in the i*-th row of A to 0. Then (A, w,bmin, bmaz, @) € ABS-10
iff there is some k € {0,...,e} such that (A', W™, byin, bmaz, k) € ABS-10 where o, = 1 for
k>1and ag = a.

> Claim 32. Branching Rule 1 is safe.

Proof. Let (z1,...,z,) be an arbitrary solution for the input instance. By term rewriting it
follows that

m n
pA,w(mla cee ,"En) = ij : HA<:E“@7]>
j=1 i=1

e

=> Yooowie [T Awsig)

k=0 \jeflom}  ief{ln}
Apx =k

:i Z wj(k) H Al<l’i,i,j>-A<J;i*’i*7j7>
k=0

je{1,....m} ie{l,...,n}
Ao =k it

= Z (pA’,w(k)(xh s 727”) : A<xl*7l*ak7>) :
k=0

We show that one of the branching instance has a solution, too. If p 4/ 0 (21, ..., 2,) > 0 for
some k > 0, we are done. Otherwise p 4/ ) (71, ..., ;) = 0 holds for every k > 0. Then the
equation above implies p 4/ ) (T1, ..., Tn) = Paw(T1,. .., Tn). Since [paw(T1,...,20)] > a,
we get that [pas o (T1,...,2,)|] > a, which means (A, W by, bnas, @) € ABS-I0.

It remains to show that the input instance is a yes-instance if one of the branching instances
is a yes-instance. Firstly, consider (A", w), byin, Dmas, @). Note, that Parw© (1, ..., Tp)
does not depend on x;+ because w§0) = 0 for every product that does include x; . For
the same reason it also holds that pa w(z1,. .., Tix 1,0, T 41, ., Tn) = Par 4 (T1, .-, Tp).
Therefore, we can turn any solution of (A", w®), byin, bmas, @) into a solution for the input
instance (A, w, bmin, bmaz, &) by replacing x; by 0.

Now assume that (A’, w®), bypin, bmaz), @) is a no-instance and consider the largest num-
ber k € {1,...,e} such that (A", w™ buin, bmas, 1) is a yes-instance. Let (y1,...,%n) be
one of its solutions. Define the polynomial p(2) := pa w(Y1,-- -, Yir—1,2, Yir41, - - - Yn). 1t
follows that p(z) = ZIZ:O co - 28 with ¢p = Parw® (Y1, -, yn). Note that for every z we have
P arw Y1y -+ Yir—1, 2, Yir 15 - - - Yn)| > 1 as Aj. ; = 0 for every column j and, thus, ¢ # 0.
We will now argue by curve sketching over R that there is a z € {(bmin)is- - -, (Dmaz)i} N Z
with |[p(z)| > a. Any interval [a,b] with b — a > 2« where either (a,b] or [a,b) contains no
extremum of the polynomial contains at least one value z € Z where |p(z)| > «. This is
because the polynomial is strictly increasing or decreasing on such an interval and the domain
and image are restricted to Z. The polynomial p has a degree of k, which is at most e, and,
thus, it has at most e — 1 extreme points. Since (bymaz)i — (bmin)i > 2eq, there is such an
interval within [(bmin)i; (Dmaz)i]- Hence, there is a z € [(bmin)i; (bmaz)i] With [p(z)| > «. By
the definition of p(z), we finally get that (y1,...,%i—1,2,¥it1...,¥n) is a solution for the
input instance. <
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Note that this rule reduces the number of variables on which the value of the polynomial

depends. Recall Rule 5: As soon as a row contains only zeroes, it can be safely removed.

Since the rules output at most e < d branches, an exhaustive application of all the reduction
rule results in a search tree of size O(d™). This search tree computes O(d") instances in
total, all of which have no variables with large domain (more than 2da possible values).

We partition the remaining part of the proof into three parts: First, we present the
algorithm sketched in the main text in detail; second, we prove that this algorithm correctly
solves pq,4-ABS-10; and third, we argue that the algorithm in fpt-time.

The Algorithm. Our algorithm has four phases. In the first phase it exhaustively applies
the reduction rules 5 and 6 to obtain an instance (A, w, byin, bmas, @). If Rule 5 returns a
trivial no-instance, we reject the initial input. As soon as no reduction rule can be applied, it
follows from Rule 5 that every variable in p4 ,, has a domain of size at least two. By Rule 6
every domain must be a superset of {0,1}.

In the second phase we use the kernelization algorithm for p,, 4-UNBALANCED-SUBGRAPH:
For the instance (A, w, bmin, bmaz, &) obtained from the previous phase, let H = (V| E) be a
d-hypergraph and let w: E — Z be a weight function with V- ={1,...,n}, E = {e1,...,em},
e; ={i| A;; >0}, and w(e;) = w;. We test whether |E| > (2dd22da)2d_1 and accept if so.

Otherwise m = |E| < (2dd22da)2d_1 and n < d-m. Then we continue with the third
phase and exhaustively apply Branching Rule 1 as well as the reduction rules (Rule 5 and
Rule 6). This gives us a search tree that computes a set of instance on which neither a
reduction rule nor the branching rule is applicable. The domain of all variables in all of these
instances is bounded by the parameters and, hence, we can solve them via “brute-force.”

Proof of Correctness. Consider the first phase of the algorithm where rules 5 and 6 are
applied in the given order as long as possible. Since the rules are safe, it is correct to stop
and reject if Rule 5 returns a trivial no-instance. Otherwise we obtain an instance that has a
solution if, and only if, the initial input instance does.

Since the reduction rules have been applied exhaustively in the first phase, the domain for
every variable is a superset of {0, 1} afterwards. Therefore, any solution for the constructed
UNBALANCED-SUBGRAPH instance gives us a valid solution. By Rule 5 there is no isolated
vertex in V nor an edge e € E with w(e) = 0 in the constructed hypergraph. This means
the only rules that modify the hypergraph (Rule 1 and Rule 2) are not applicable. Because
of that, from the proof of Corollary 23, and from Lemma 21, the test for the size of
the hypergraph correctly identifies trivial yes-instances or does nothing. We can derive a
solution (z1,...,%,) € Z" with [pa w(21,...,2,)| > « from a solution X for our hypergraph

where |w[X]| > « as follows by setting x; = 1 if ¢ € X, and by setting z; = 0 otherwise.

This is correct as the term that we maximize for the UNBALANCED-SUBGRAPH instance is
the same as |p4,(%1,...,2y)|, and because the domain of every variable contains 0 and 1.

In the third phase, the algorithm reduces the instance to a set of instances in which the
domain of every variable is bounded by the parameter. Variables with a too large domain
will be eliminated by the branching rule and a following application of Rule 5 to remove the
row containing only zeros. From the safeness of the branching rule it directly follows that
there is one yes-instance if, and only if, one of the final branching instances is a yes-instance.
Since the number of possible solutions for each instance is finite, a brute-force algorithm will
decide for each of these instances correctly whether it is a yes-instance.
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Runtime Analysis. We first argue that applying the reduction rules exhaustively can be
done in time f(a,d) - p°, were u is the encoding length of the input, f some computable
function, and ¢ € N a constant.

Rule 6 removes a variable with a domain that is not a superset of {0,1} and no rule
introduces new variables. Hence, Rule 6 is applied at most O(n) times. Rule 5 can only
be applied O(n + m) times because subrules 1-4 can be applied only once initially; the
fifth subrule can be applied after Rule 6. Hence the rules can only be applied a polynomial
number times. Observe that almost all reduction rules are computable in polynomial time
with respect to the size of the input instance. The sole exceptions are Rule 6.1 and Rule 5.4,
which still run in fpt-time.

We also have to show that the size of subproblems does not exceed the algorithm’s time
bound of f(a,d) - p°. The critical part is Rule 6.1 — in all other cases the instance becomes
only smaller. Each time we apply the rule for some i, the number of columns j for which
A;; > 0 is increased by a factor of at most d as A; ; < d. Every new column arises directly
or indirectly from one column that was in the initial instance and, hence, the size of the
instance increases at most by a factor of d% in total.

For the search tree note that once the kernelization was used in the second phase, n
and m are bounded by the parameters. The height and size of the search tree is therefore
bounded, too. Note that the kernelization itself runs in polynomial time by the definition
of a kernelization algorithm. Finally, whenever Branching Rule 1 cannot be applied, we
have to solve the instance at the leaves of the search tree. Since neither a reduction rule
nor the branching rule are applicable, it holds that n, m, all values in the matrix, and all
values in the bounding vectors are bounded by the parameters for these instances. Thus,
the brute-force algorithm’s runtime is bounded by some computable function that depends
only on the parameters (note that the weights are not necessarily bounded, but this is no
problem for a combinatorial algorithm that enumerates the solutions). |

6 Conclusion and Outlook

We considered several variants of the maximum satisfiability problem and showed that, as
soon as we allow negative weights, those variants become W[1]-hard parameterized by the
solution size o — even for monotone clauses of fixed size d. On the other hand, we obtained
fixed-parameter tractability results parameterized by a + d if we optimize the absolute value
of the target function. The latter result was obtained via a kernelization for the auxiliary
hypergraph problem p, 4-UNBALANCED-SUBGRAPHS, which we think may be of independent
interest. Using these techniques, we were able to almost completely resolve the complexity
of ABS-DNF, see Table 1 in the introduction for an overview. The only remaining case is
«a-ABS-DNF, i.e., the version in which the sought solution size « is constant while the size of
the clauses is unbounded. We do not see how our techniques can be used for this version, as
our algorithms for the unbalanced subgraph problem rely on hyperedges of bounded size.

Using a collection of additional reduction rules, we were able to generalize the results
from pq,q-ABS-DNF t0 po,q-ABS-10, which tries to optimize the absolute value of the target
function of a restricted integer optimization problem.

An interesting line of further research could be to study the minimization version of the
problems presented within this paper. Usually, minimization and maximization problems
have similar complexity, as one can perform some easy modifications such as multiplying
all weights with —1. This is, however, not the case if we optimize the absolute value of the
target function, as the following observation illustrates: Let d-MIN-ABS-MONOTONE-DNF be
defined as d-ABS-MONOTONE-DNF, but with > « being replaced by < «, then:
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» Observation 33. INDEPENDENT-SET < d-MIN-ABS-MONOTONE-DNF

Sketch of Proof. We use the same reduction as in Lemma 5 to reduce INDEPENDENT-SET to
d-MAX-MONOTONE-DNF. Hence, we obtain weighted formula (¢, w) and seek an assignment
of weight at least > « (without absolute values). Note that if such an assignment exists, then
there is also one with weight = « as the independent set problem is monotone. We continue
by adding the empty clause (which is always true in a DNF) and set its weight to —«. Finally,
we seek an solution with absolute value < 0. |

Note that this reduction works for constant d and produces an instance with oo = 0, i.e.,
a parameterization by « and d alone is not enough. However, restricting, for instance, the
weights may yield tractable subproblems that should be explored further.
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