
Stable Approximation Algorithms for the
Dynamic Broadcast Range-Assignment Problem
Mark de Berg #

Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

Arpan Sadhukhan #

Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

Frits Spieksma #

Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

Abstract
Let P be a set of points in Rd (or some other metric space), where each point p ∈ P has an associated
transmission range, denoted ρ(p). The range assignment ρ induces a directed communication graph
Gρ(P ) on P , which contains an edge (p, q) iff |pq| ⩽ ρ(p). In the broadcast range-assignment problem,
the goal is to assign the ranges such that Gρ(P ) contains an arborescence rooted at a designated
root node and the cost

∑
p∈P

ρ(p)2 of the assignment is minimized.
We study the dynamic version of this problem. In particular, we study trade-offs between the

stability of the solution – the number of ranges that are modified when a point is inserted into or
deleted from P – and its approximation ratio. To this end we introduce the concept of k-stable
algorithms, which are algorithms that modify the range of at most k points when they update the
solution. We also introduce the concept of a stable approximation scheme, or SAS for short. A
SAS is an update algorithm alg that, for any given fixed parameter ε > 0, is k(ε)-stable and that
maintains a solution with approximation ratio 1 + ε, where the stability parameter k(ε) only depends
on ε and not on the size of P . We study such trade-offs in three settings.

For the problem in R1, we present a SAS with k(ε) = O(1/ε). Furthermore, we prove that this
is tight in the worst case: any SAS for the problem must have k(ε) = Ω(1/ε). We also present
algorithms with very small stability parameters: a 1-stable (6 + 2

√
5)-approximation algorithm –

this algorithm can only handle insertions – a (trivial) 2-stable 2-approximation algorithm, and a
3-stable 1.97-approximation algorithm.
For the problem in S1 (that is, when the underlying space is a circle) we prove that no SAS
exists. This is in spite of the fact that, for the static problem in S1, we prove that an optimal
solution can always be obtained by cutting the circle at an appropriate point and solving the
resulting problem in R1.
For the problem in R2, we also prove that no SAS exists, and we present a O(1)-stable O(1)-
approximation algorithm.

Most results generalize to when the range-assignment cost is
∑

p∈P
ρ(p)α, for some constant α > 1.

All omitted theorems and proofs are available in the full version of the paper [14].
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1 Introduction

The broadcast range-assignment problem. Let P be a set of points in Rd, representing
transmission devices in a wireless network. By assigning each point p ∈ P a transmission
range ρ(p), we obtain a communication graph Gρ(P ). The nodes in Gρ(P ) are the points
from P and there is a directed edge (p, q) iff |pq| ⩽ ρ(p), where |pq| denotes the Euclidean
distance between p and q. The energy consumption of a device depends on its transmission
range: the larger the range, the more energy it needs. More precisely, the energy needed
to obtain a transmission range ρ(p) is given by ρ(p)α, for some real constant α > 1 called
the distance-power gradient. In practice, α depends on the environment and ranges from 1
to 6 [18]. Thus the overall cost of a range assignment is costα(ρ(P )) :=

∑
p∈P ρ(p)α, where

we use ρ(P ) to denote the set of ranges given to the points in P by the assignment ρ. The
goal of the range-assignment problem is to assign the ranges such that Gρ(P ) has certain
connectivity properties while minimizing the total cost [6]. Desirable connectivity properties
are that Gρ(P ) is (h-hop) strongly connected [8, 9, 10, 16] or that Gρ(P ) contains a broadcast
tree, that is, an arborescence rooted at a given source s ∈ P . The latter property leads to
the broadcast range-assignment problem, which is the topic of our paper.

The broadcast range-assignment problem has been studied extensively, sometimes with
the extra condition that any point in P is reachable in at most h hops from the source s.
For α = 1 the problem is trivial in any dimension: setting the range of the source s to
max{|sp| : p ∈ P} and all other ranges to zero is optimal; however, for any α > 1 the problem
is np-hard in Rd for d ⩾ 2 [5, 15]. Approximation algorithms and results on hardness of
approximation are known as well [4, 7, 15]. Many of our results will be on the 1-dimensional
(or: linear) broadcast range-assignment problem. Linear networks are important for modeling
road traffic information systems [3, 17] and as such they have received ample attention. In R1,
the broadcast range-assignment problem is no longer np-hard, and several polynomial-time
algorithms have been proposed, for the standard version, the h-hop version, as well as the
weighted version [2, 4, 7, 11, 12]. The currently fastest algorithms for the (standard and
h-hop) broadcast range-assignment problem run in O(n2) time [11].

All results mentioned so far are for the static version of the problem. Our interest lies
in the dynamic version, where points can be inserted into and deleted from P (except the
source, which should always be present). This corresponds to new sensors being deployed
and existing sensors being removed, or, in a traffic scenario, cars entering and exiting the
highway. Recomputing the range assignment from scratch when P is updated may result
in all ranges being changed. The question we want to answer is therefore: is it possible to
maintain a close-to-optimal range assignment that is relatively stable, that is, an assignment
for which only few ranges are modified when a point is inserted into or deleted from P ? And
which trade-offs can be achieved between the quality of the solution and its stability?

To the best of our knowledge, the dynamic problem has not been studied so far. The
online problem, where the points from P arrive one by one (there are no deletions) and
it is not allowed to decrease ranges, is studied by De Berg et al. [13]. This restriction is
arguably unnatural, and it has the consequence that a bounded approximation ratio cannot
be achieved. Indeed, let the source s be at x = 0, and suppose that first the point x = 1
arrives, forcing us to set ρ(s) := 1, and then the points x = i/n arrive for 1 ⩽ i < n. In the
optimal static solution at the end of this scenario all points, except the rightmost one, have
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range 1/n; for α = 2 this induces a total cost of n · (1/n)2 = 1/n. But if we are not allowed
to decrease the range of s after setting ρ(s) = 1, the total cost will be (at least) 1, leading
to an unbounded approximation ratio. Therefore, [13] analyze the competitive ratio: they
compare the cost of their algorithm to the cost of an optimal offline algorithm (which knows
the future arrivals, but must still maintain a valid solution at all times without decreasing
any range). As we will see, by allowing to also decrease a few ranges, we are able to maintain
solutions whose cost is close even to the static optimum.

Our contribution. Before we state our results, we first define the framework we use to
analyze our algorithms. Let P be a dynamic set of points in Rd, which includes a fixed
source point s that cannot be deleted.

An update algorithm alg for the dynamic broadcast range-assignment problem is an
algorithm that, given the current solution (the current ranges of the points in the current
set P ) and the location of the new point to be inserted into P , or the point to be deleted
from P , modifies the range assignment so that the updated solution is a valid broadcast
range assignment for the updated set P . We call such an update algorithm k-stable if it
modifies at most k ranges when a point is inserted into or deleted from P . Here we define
the range of a point currently not in P to be zero. Thus, if a newly inserted point receives
a positive range it will be counted as receiving a modified range; similarly, if a point with
positive range is deleted then it will be counted as receiving a modified range. To get a more
detailed view of the stability, we sometimes distinguish between the number of increased
ranges and the number of decreased ranges, in the worst case. When these numbers are
k+ and k−, respectively, we say that alg is (k+, k−)-stable. This is especially useful when
we separately report on the stability of insertions and deletions; often, when insertions are
(k1, k2)-stable then deletions will be (k2, k1)-stable.

We are not only interested in the stability of our update algorithms, but also in the
quality of the solutions they provide. We measure this in the usual way, by considering the
approximation ratio of the solution. As mentioned, we are interested in trade-offs between
the stability of an algorithm and its approximation ratio. Of particular interest are so-called
stable approximation schemes, defined as follows.

▶ Definition 1. A stable approximation scheme, or SAS for short, is an update algorithm
alg that, for any given yet fixed parameter ε > 0, is k(ε)-stable and that maintains a solution
with approximation ratio 1 + ε, where the stability parameter k(ε) only depends on ε and not
on the size of P .

Notice that in the definition of a SAS we do not take the computational complexity of the
update algorithm into account. We point out that, in the context of dynamic scheduling
problems (where jobs arrive and disappear in an online fashion, and it is allowed to re-assign
jobs), a related concept has been introduced under the name robust PTAS: a polynomial-time
algorithm that, for any given parameter ε > 0, computes a (1 + ε)-approximation with
re-assignment costs only depending on ε, see e.g. [19] and [20].

We now present our results. Recall that costα(ρ(P )) :=
∑

p∈P ρ(p)α, is the cost of a
range assignment ρ, where α > 1 is a constant. To make the results easier to interpret, we
state the results for α = 2; the dependencies of the bounds on the parameter α can be found
in the theorems presented in later sections.

In Section 3 we present a SAS for the broadcast range-assignment problem in R1, with
k(ε) = O(1/ε). We prove that this is tight in the worst case, by showing that any SAS
for the problem must have k(ε) = Ω(1/ε).

SWAT 2022
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Figure 1 The structure of an optimal solution. The non-filled points are zero-range points, the
solid black points all have a standard range (for ℓ|L| and r|R| the standard range is zero), except for
the root-crossing point which (in this example) has a long range.

Our SAS (as well as some other algorithms) needs to know an optimal solution after each
update. The fastest existing algorithms to compute an optimal solution in R1 run in
O(n2) time. In Section 2 we show how to recompute an optimal solution in O(n log n)
time after each update, which we believe to be of independent interest. As a result, our
SAS also runs in O(n log n) time per update.
There is a very simple 2-stable 2-approximation algorithm. We show that a 1-stable
algorithm with bounded approximation ratio does not exist when both insertions and
deletions must be handled. For the insertion-only case, however, we give a 1-stable (6 +
2
√

5)-approximation algorithm. We have not been able to improve upon the approximation
ratio 2 with a 2-stable algorithm, but we show that with a 3-stable we can get a 1.97-
approximation. Due to lack of space, these results are mostly delegated to the appendix.
Next we study the problem in S1, that is, when the underlying 1-dimensional space is
circular. This version has, as far as we know, not been studied so far. We first prove that
in S1 an optimal solution for the static problem can always be obtained by cutting the
circle at an appropriate point and solving the resulting problem in R1. This leads to an
algorithm to solve the static problem optimally in O(n2 log n) time. We also prove that,
in spite of this, a SAS does not exist in S1.
Finally, we consider the problem in R2. Based on the no-SAS proof in S1, we show that
the 2-dimensional problem does not admit a SAS either. In addition, we present an
17-stable 12-approximation algorithm for the 2-dimensional version of the problem.

All omitted results and proofs are there in the full version of the paper [14].

2 Maintaining an optimal solution in R1

Before we can present our stable algorithms for the broadcast range-assignment problem
in R1, we first introduce some terminology and we discuss the structure of optimal solutions.
We also present an efficient subroutine to maintain an optimal solution.

2.1 The structure of an optimal solution
Several papers have characterized the structure of optimal broadcast range assignments in R1,
in a more or less explicit manner. We use the characterization by Caragiannis et al. [4],
which is illustrated in Figure 1 and described next.

Let P := L ∪ {s} ∪ R be a point set in R1. Here s is the designated source node,
L := {ℓ1, . . . , ℓ|L|} contains all points from P to the left of s, and R := {r1, . . . , r|R|} contains
all points to the right of s. The points in L are numbered in order of increasing distance
from s, and the same is true for the points in R. The points ℓ|L| and r|R| are called extreme
points. In the following, and with a slight abuse of notation, we sometimes use p or q to
refer a generic point from P – that is, a point that could be s, or a point from R, or a point
from L. Furthermore, we will not distinguish between points in P and the corresponding
nodes in the communication graph Gρ(P ).
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For a non-extreme point ri ∈ R, we define ri+1 to be its successor ; similarly, ℓi+1 is
the successor of ℓi. The source s has (at most) two successors, namely r1 and ℓ1. The
successor of a point p is denoted by succ(p); for an extreme point p we define succ(p) = nil.
If succ(p) = q ≠ nil, the we call p the predecessor of q and we write pred(q) = p. A chain is
a path in the communication graph Gρ(P ) that only consists of edges connecting a point to
its successor. Thus a chain either visits consecutive points from {s} ∪ R from left to right, or
it visits consecutive points from {s} ∪ L from right to left. It will be convenient to consider
the empty path from s to itself to be a chain as well.

Consider a range assignment ρ. We say that a point q ∈ P is within reach of a point
p ∈ P if |pq| ⩽ ρ(p). Let B a broadcast tree in Gρ(P ) – that is, B is an arborescence rooted
at s. A point in R ∪ L in B is called root-crossing in B if it has a child on the other side of s;
the source s is root-crossing if it has a child in L and a child in R. The following theorem,
which holds for any distance-power gradient α > 1, is proven in [4].

▶ Theorem 2 ([4]). Let P be a point set in R1. If all points in P \ {s} lie to the same side
of the source s, then the optimal solution induces a chain from s to the extreme point in P .
Otherwise, there is an optimal range assignment ρ such that Gρ(P ) contains a broadcast
tree B with the following structure:

B has a single root-crossing point, p∗.
B contains a chain from s to p∗.
All points within reach of p∗, except those on the chain from s to p∗, are children of p∗.
Let ri and ℓj be the rightmost and leftmost point within reach of p∗, respectively. Then B
contains a chain from ri to r|R|, and a chain from ℓj to ℓ|L|.

From now on, whenever we talk about optimal range assignments and their induced
broadcast trees, we implicitly assume that the broadcast tree has the structure described
in Theorem 2. Note that the communication graph Gρ(P ) induced by an optimal range
assignment ρ can contain more edges than the ones belonging to the broadcast tree B.
Obviously, for ρ to be optimal it must be a minimum-cost assignment inducing B.

Define the standard range of a non-extreme point ri ∈ R to be |riri+1|; the standard range
of the extreme point r|R| is defined to be zero. The standard ranges of the points in L are
defined similarly. The source s has two standard ranges, |sℓ1| and |sr1|. A range assignment
in which every point has a standard range is called a standard solution; a standard solution
may or may not be optimal. Note that, in the static problem, it is never useful to give a point
a non-zero range that is smaller than its standard range. Hence, we only need to consider
three types of points: standard-range points, zero-range points, and long-range points. Here
zero-range points are non-extreme points with a zero range, and a point is said to have a
long range if its range is greater than its standard range. Theorem 2 implies that an optimal
range assignment has the following properties; see also Figure 1.

There is at most one long-range point.
The set Z ⊂ P of zero-range points (which may be empty) can be partitioned into two
subsets, Zleft and Zright, such that Zleft consists of consecutive points that lie to the left
of the source s, and Zright consists of consecutive points to that lie to the right of s.

2.2 An efficient update algorithm
Using Theorem 2 an optimal solution for the broadcast range-assignment problem can be
computed in O(n2) time [11]. Below we show that maintaining an optimal solution under
insertions and deletions can be done more efficiently than by re-computing it from scratch:
using a suitable data structure, we can update the solution in O(n log n) time. This will also
be useful in later sections, when we give algorithms that maintain a stable solution.

SWAT 2022
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s p∗

∆j = | pred(q) q|α ∆j = | pred(q) q|α + |q succ(q)|α − | pred(q) succ(q)|α

∆j = 0 ∆j = |q succ(q)|α − | pred(q) succ(q)|α

ρjρj

Figure 2 Various cases that can arise when a new point q is inserted into P . Open disks indicate
zero-range points. The arcs indicate the ranges of the points before the insertion of q, where the
range of the root-crossing point is drawn both to its right and to its left. The colored intervals relate
the possible locations of q to the corresponding values ∆j , where ∆j refers to the (signed) difference
of the cost of the range assignment before and after the insertion of q.

Recall that an optimal solution for a given point set P has a single root-crossing point, p∗.
Once the range ρ(p∗) is fixed, the solution is completely determined. Since ρ(p∗) = |p∗p| for
some point p ̸= p∗, there are n − 1 candidate ranges for a given choice of the root-crossing
point p∗. The idea of our solution is to implicitly store the cost of the range assignment for
each candidate range of p∗ such that, upon the insertion or deletion of a point in P , we can
find the best range for p∗ in O(log n) time. By maintaining n such data structures Tp∗ , one
for each choice of the root-crossing point p∗, we can then find the overall best solution.

The data structure for a given root-crossing point. Next we explain our data structure
for a given candidate root-crossing point p∗. We assume without loss of generality that p∗

lies to the right of the source point s; it is straightforward to adapt the structure to the
(symmetric) case where p∗ lies to the left of s, and to the case where p∗ = s.

Let Rp∗ be the set of all ranges we need to consider for p∗, for the current set P . The
range of a root-crossing point must extend beyond the source point. Hence,

Rp∗ := {|p∗p| : p ∈ P and |p∗p| > |p∗s|}.

Let λ1, . . . , λm denote the sequence of ranges in Rp∗ , ordered from small to large. (If Rp∗ = ∅,
there is nothing to do and our data structure is empty.) As mentioned, once we fix a range λj

for the given root-crossing point p∗, the solution is fully determined by Theorem 2: there is a
chain from s to p∗, a chain from the rightmost point within range of p∗ to the right-extreme
point, and a chain from the leftmost point within range of p∗ to the left-extreme point. We
denote the resulting range assignment1 for P by Γ(P, p∗, λj).

Our data structure, which implicitly stores the costs of the range assignments Γ(P, p∗, λj)
for all λj ∈ Rp∗ , is an augmented balanced binary search tree Tp∗ . The key to the efficient
maintenance of Tp∗ is that, upon the insertion of a new point p (or the deletion of an existing
point), many of the solutions change in the same way. To formalize this, let ∆j be the signed
difference of the cost of the range assignment Γ(P, p∗, λj) before and after the insertion of
q, where ∆j is positive if the cost increases. Figure 2 shows various possible values for ∆j ,
depending on the location of the new point q with respect to the range λj . It follows from
the figure that there are only four possible values for ∆j . This allows us to design our data
structure Tp∗ such that it can be updated using O(1) bulk updates of the following form:

1 When P lies completely to one side of s, then the range assignment is formally not root-crossing. We
permit ourselves this slight abuse of terminology because by considering s as root-crossing point, setting
ρ(s) := |s succ(s)| and adding a chain from succ(s) to the extreme point, we get an optimal solution.
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Given an interval I of range values and an update value ∆, add ∆ to the cost of
Γ(P, p∗, λj) for all λj ∈ I.

In the full version of the paper [14]. we define the information stored in Tp∗ and we show how
bulk updates can be done in O(log n) time. We eventually obtain the following theorem.

▶ Theorem 3. An optimal solution to the broadcast range-assignment problem for a point set
P in R1 can be maintained in O(n log n) per insertion and deletion, where n is the number
of points in the current set P .

3 A stable approximation scheme in R1

In this section we use the structure of an optimal solution provided by Theorem 2 to obtain
a SAS for the 1-dimensional broadcast range-assignment problem. Our SAS has stability
parameter k(ε) = O((1/ε)1/(α−1)), which we will show to be asymptotically optimal.

The optimal range assignment can be very unstable. Indeed, suppose the current point
set is P := {s, r1, . . . , rn} with s = 0 and ri = i (1 ⩽ i ⩽ n), and take any α > 1. Then
the (unique) optimal assignment ρopt has ρopt(s) = ρopt(r1) = · · · = ρopt(rn−1) = 1 and
ρopt(rn) = 0. If now the point ℓ1 = −n is inserted, then the optimal assignment becomes
ρopt(s) = n and ρopt(r1) = · · · = ρopt(rn) = ρopt(ℓ1) = 0, causing n ranges to be modified.

Next, we will define a feasible solution, referred to as a canonical range assignment ρk that
is more stable than an optimal assignment, while still having a cost close to the cost of an
optimal solution. Here k is a parameter that allows a trade-off between stability and quality
of the solution. The assignment ρk for a given point set P will be uniquely determined by the
set P –it does not depend on the order in which the points have been inserted or deleted. This
means that the update algorithm simply works as follows. Let ρk(P ) be the canonical range
assignment for a point set P , and suppose we update P by inserting a point q. Then the
update algorithm computes ρk(P ∪ {q}) and it modifies the range of each point p ∈ P ∪ {q}
whose canonical range in ρk(P ∪ {q}) is different from its canonical range in ρk(P ). The goal
is now to specify ρk such that (i) many ranges in ρk(P ∪ {q}) are the same as in ρk(P ), (ii)
the cost of ρk(P ) is close to the cost of ρopt(P ).

The instance in the example above shows that there can be many points whose range
changes from being standard to being zero (or vice versa) when preserving optimality of
the consecutive instances. Our idea is therefore to construct solutions where the number of
points with zero range is limited, and instead give many points their standard range; if we do
this for points whose standard range is relatively small, then the cost of this solution remains
bounded compared to the cost of an optimum solution. We now make this idea precise.

Consider a point set P and let ρopt be an optimal range assignment satisfying the structure
described in Theorem 2. Assuming there are points in P on both sides of the source, ρopt
induces a broadcast tree B with the structure depicted in Figure 1. Let ρst(p) be the standard
range of a point p. The canonical range assignment ρk is now defined as follows.

If all points from P lie to the same side of s, then ρk(p) := ρopt(p) for all p ∈ P . Note
that in this case ρk(p) = ρst(p) for all p ∈ P .
Otherwise, let Z be the set of zero-range points in ρopt(P ). If |Z| ⩽ k then let Zk := Z;
otherwise let Zk ⊆ Z be the k points from Z with the largest standard ranges, with ties
broken arbitrarily. We define ρk as follows.

ρk(p) := ρopt(p) for all p ∈ P \ Z. Observe that this means that ρk(p) = ρst(p) for all
p ∈ P \ Z except (possibly) for the root-crossing point.
ρk(p) := 0 for all p ∈ Zk.
ρk(p) := ρst(p) for all p ∈ Z \ Zk.

SWAT 2022



15:8 Stable Approximation Algorithms for Range Assignment

Notice that ρk is a feasible solution since ρk(p) ⩾ ρopt(p) for each p ∈ P . The next lemma
analyzes the stability of the canonical range assignment ρk. Recall that for any range
assignment ρ – hence, also for ρk – and any point q not in the current set P , we have ρ(q) = 0
by definition.

▶ Lemma 4. Consider a point set P and a point q ̸∈ P . Let ρold(p) be the range of a point p

in ρk(P ) and let ρnew(p) be the range of p in ρk(P ∪ {q}). Then

|{p ∈ P ∪ {q} : ρnew(p) > ρold(p)}| ⩽ k+3 and |{p ∈ P ∪ {q} : ρnew(p) < ρold(p)}| ⩽ k+3.

Proof. The range of a point p ∈ P ∪ {q} can increase due to the insertion of q only if
(i) p = q and ρnew(q) > 0, or
(ii) p is a zero-range point in ρk(P ), or
(iii) p is the root-crossing point in ρk(P ∪ {q}), or
(iv) the standard range of p increases due to the insertion of q, or
(v) p = s and, out of the two standard ranges it has, s gets assigned a larger one in ρk(P ∪{q})

than in ρk(P ).
Recall that we defined ρk such that the number of zero-range points is at most k. Furthermore,
at most one standard range can increase due to the insertion of q, namely, the standard
range of a point that is extreme in P but not in P ∪ {q}. When this happens, however, q

is extreme in P ∪ {q} and so ρnew(q) = 0; this implies that cases (i) and (iv) cannot both
happen. Hence, |{p ∈ P ∪ {q} : ρnew(p) > ρold(p)}| ⩽ k + 3.

The range of a point p can decrease only if
(i) p is a zero-range point in ρk(P ∪ {q}), or
(ii) p is the root-crossing point in ρk(P ), or
(iii) the standard range of p decreases due to the insertion of q, or
(iv) p = s and, out of the two standard ranges it has, p gets a assigned a smaller one in

ρk(P ∪ {q}) than in ρk(P ).
Since the only point whose standard range decreases is the predecessor of q in P , we conclude
that |{p ∈ P ∪ {q} : ρnew(p) < ρold(p)}| ⩽ k + 3. ◀

Next we bound the approximation ratio of ρk.

▶ Lemma 5. For any set P and any α > 1, we have costα(ρk(P )) ⩽
(
1 + 2α

kα−1

)
·

costα(ρopt(P )).

Proof. If all points in P lie to the same side of s then ρk(P ) = ρopt(P ), and we are done.
Otherwise, let p∗ be the root-crossing point. The only points receiving a different range
in ρk(P ) when compared to ρopt(P ) are the points in Z \ Zk; these points have ρk(p) = ρst(p)
while ρopt(p) = 0. This means we are done when Z \ Zk = ∅. Thus we can assume that
|Z| > k, so Z \ Zk ̸= ∅. Assume without loss of generality that ρopt(p∗) = 1. As each p ∈ Z is
within reach of p∗, we have

∑
p∈Z ρst(p) ⩽ 2. Since Zk contains the k points with the largest

standard ranges among the points in Z, we have max{ρst(p) : p ∈ Z \ Zk} ⩽ 2/k. Hence,∑
p∈Z\Zk

ρk(p)α =
∑

p∈Z\Zk

ρst(p)α =
∑

p∈Z\Zk

ρst(p)α−1 · ρst(p) ⩽
( 2

k

)α−1 ∑
p∈Z\Zk

ρst(p) ⩽ 2α

kα−1 .

(The analysis can be made tighter by using that
∑

p∈Z\Zk
ρst(p) ⩽ 2 − k maxp∈Z\Zk

ρst(p),
but this will not change the approximation ratio asymptotically.) We conclude that

costα(ρk(P ))
costα(ρopt(P )) ⩽

∑
p∈P \(Z\Zk) ρk(p)α +

∑
p∈Z\Zk

ρk(p)α∑
p∈P \(Z\Zk) ρopt(p)α

⩽ 1 + 2α

kα−1 ,

where the last inequality follows because we have ρk(p) = ρopt(p) for all p ∈ P \ (Z \ Zk) and∑
p∈P \(Z\Zk) ρopt(p)α ⩾ 1. ◀
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By maintaining the canonical range assignment ρk for k = (2α/ε)1/(α−1) = O((1/ε)1/(α−1))
we obtain the following theorem.

▶ Theorem 6. There is a SAS for the dynamic broadcast range-assignment problem in R1

with stability parameter k(ε) = O((1/ε)1/(α−1)), where α > 1 is the distance-power gradient.
The time needed by the SAS to compute the new range assignment upon the insertion or
deletion of a point is O(n log n), where n is the number of points in the current set.

Proof. Our SAS maintains the canonical range assignment ρk for k = (2α/ε)1/(α−1) =
O((1/ε)1/(α−1)). We then have costα(ρk(P )) ⩽ (1 + ε) · ρopt(P ) by Lemma 5. Furthermore,
the number of modified ranges when P is updated is 2k + 6 by Lemma 4. To determine
the assignment ρk, we need to know an optimal assignment ρopt with the structure from
Theorem 2. Such an optimal assignment can be maintained in O(n log n) time per update,
by Theorem 3. Once we have the new optimal assignment, the new optimal assignment can
be determined in O(n) time. ◀

Next we show that the stability parameter k(ε) in our SAS is asymptotically optimal.

▶ Theorem 7. Any SAS for the dynamic broadcast range-assignment problem in R1 must
have stability parameter k(ε) = Ω((1/ε)1/(α−1)), where α > 1 is the distance-power gradient.

Proof. Let alg be a k-stable algorithm, where k ⩾ 4 and kα−1 ⩾ 1
2α+1(2α−1−1) and k is even,

and let ρalg be the range assignment it maintains. Note that the condition on k is satisfied
for k large enough. We will show that the approximation ratio of alg is at least 1 + 1

2α+2kα−1 .
Since a SAS has approximation ratio 1 + ε, this implies that the stability parameter k(ε) of
alg must satisfy k(ε) = Ω((1/ε)1/(α−1)).

Consider the point set P := {s, r1, r2, . . . r2k}, where s = 0 and ri = i/(2k) for i =
1, 2, . . . , 2k. We consider two cases.
Case I: The number of zero-range points in ρalg(P ) is at least k/2, where we assume

without loss of generality that all points with range less than 1/(2k) actually have
range zero. The cheapest possible solution in this case is to have exactly k/2 zero-range
points, k points with range 1/(2k), and k/2 points with range 1/k, for a total cost of

costα(ρalg(P )) ⩾ k ·
(

1
2k

)α

+ k

2 ·
(

1
k

)α

=
(

1 + 2α−1 − 1
2

)
· 2k

(
1
2k

)α

.

An optimal solution has cost 2k · (1/(2k))α, and so the approximation ratio of alg in
Case I is at least 1 + 2α−1−1

2 , which is at least 1 + 1
2α+2kα−1 since kα−1 ⩾ 1

2α+1(2α−1−1) .
Case II: The number of zero-range points ρalg(P ) is less than k/2. Now suppose the

point ℓ1 = −1 arrives. Since ρalg(P ) had less than k/2 zero-range points and alg
can modify at most k ranges, ρalg(P ∪ {ℓ1}) has less than 3k/2 zero-range points. Hence,
at least k/2 points in P ∪ {ℓ1} have a range that is at least 1/(2k), one of which must
have a range at least 1. This implies that costα(ρalg(P ∪ {ℓ1})) ⩾ 1 + (k/2 − 1) ·

( 1
2k

)α
⩾

1 + 1
2α+2kα−1 , where the last inequality holds since k/2 − 1 ⩾ k/4 (because k ⩾ 4). An

optimal range assignment on P ∪ {ℓ1} has ρopt(s) = 1 and all other ranges equal to
zero, for a total cost of 1, and so the approximation ratio of alg in Case II is at least
1 + 1

2α+2kα−1 as well. ◀
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Table 1 An overview of the approximation ratio of 1-stable, 2-stable and 3-stable algorithms.

ℓ-stable algorithm Approximation Ratio Remarks
ℓ = 1 6 + 2

√
5 ≈ 10.47 α = 2, insertions only

ℓ = 2 2 for any α > 1
ℓ = 3 1.97 α = 2

4 1-Stable, 2-Stable, and 3-Stable Algorithms in R1

In Section 3 we presented a (2k + 6)-stable algorithm with approximation ratio 1 + 2α/kα−1,
which provided us with a SAS. For small k the algorithm is not very good: the most stable
algorithm we can get is 6-stable, by setting k = 0. A careful analysis shows that the
approximation ratio of this 6-stable algorithm is 3, for α = 2. Below we briefly discuss the
results we obtained for more stable algorithms; details are available in the full version [14].

We give a 1-stable O(1)-approximation algorithm; obviously, this is the best we can do
in terms of stability. This algorithm can only handle insertions. We also show that this is
necessarily the case: a 1-stable algorithm that can handle insertions as well as deletions
cannot have bounded approximation ratio. We then present a straightforward 2-stable
2-approximation algorithm, which simply gives every point its standard range. Finally, we
study 3-stable algorithms: we show that using a 3-stable algorithm it is possible to get an
approximation ratio strictly below 2. See Table 1 for an overview of results. We now briefly
sketch our 3-stable algorithm.

A 3-stable algorithm with approximation ratio less than 2. Given the simplicity of our
2-stable 2-approximation algorithm, it is surprisingly difficult to obtain an approximation
ratio strictly smaller than 2. In fact, we have not been able to do this with a 2-stable
algorithm. Below we show this is possible with a 3-stable algorithm, at least for the case
α = 2, which we assume from now on.

Recall that for any set P with points on both sides of the source point s, there is an
optimal range assignment inducing a broadcast tree with a single root-crossing point; see
Figure 1. Unfortunately the root-crossing point may change when P is updated. This may
cause many changes if we maintain a solution with a good approximation ratio and the same
root-crossing point as the optimal solution. We therefore restrict ourselves to source-based
range assignments, where s is the root-crossing point. The main question is then how large
the range of s should be, and which points within range of s should be zero-range points.

We now define our source-based range assignment, which we denote by ρsb, more precisely.
It will be uniquely defined by the set P ; it does not depend on the order in which points
have been inserted or deleted. Let δ be a parameter with 1/2 < δ < 1; later we will choose δ

such that the approximation ratio of our algorithm is optimized. We call a point p ∈ P \ {s}
expensive if succ(p) ̸= nil and |p succ(p)| > δ · |s succ(p)|, and we call it cheap otherwise.
The source s is defined to be always expensive. (This is consistent in the sense that for p = s

the condition |p succ(p)| > δ · |s succ(p)| holds for both successors, since δ < 1.) We denote
the set of all expensive points in P by Pexp and the set of all cheap points by Pcheap. Define
dmax := max{|s succ(p)| : p ∈ Pexp}, that is, dmax is the maximum distance from s to the
successor of any expensive point. We say that a point p ∈ Pexp is crucial if |s succ(p)| = dmax.
Typically there is a single crucial point, but there can also be two: one on the left and one
on the right of s. Our source-based range assignment ρsb is now defined as follows.
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ρsb(s) := dmax,
ρsb(p) := 0 for all p ∈ Pexp \ {s}, and
ρsb(p) := ρst(p) for all p ∈ Pcheap, where ρst(p) denotes the standard range of a point.

It is easily checked that we can maintain this range assignment with a 3-stable algorithm.
The challenge is to analyze its approximation ratio. In the full version of the paper [14].
we show that, for a suitable choice of δ, the approximation ratio is strictly smaller than 2,
leading to the following theorem.

▶ Theorem 8. There exists a 3-stable 1.97-approximation algorithm for the dynamic broadcast
range-assignment problem in R1 for α = 2.

5 The problem in S1

We now turn to the setting where the underlying space is S1, that is, the points in P lie
on a circle and distances are measured along the circle. In Section 5.1, we prove that the
structure of an optimal solution in S1 is very similar to the structure of an optimal solution
in R1 as formulated in Theorem 2. In spite of this, and contrary to the problem in R1, we
prove in Section 5.2 that no SAS exists for the problem in S1.

Again, we denote the source point by s. The clockwise distance from a point p ∈ S1 to a
point q ∈ S1 is denoted by dcw(p, q), and the counterclockwise distance by dccw(p, q). The
actual distance is then d(p, q) := min(dcw(p, q), dccw(p, q)). The closed and open clockwise
interval from p to q are denoted by [p, q]cw and (p, q)cw, respectively.

5.1 The structure of an optimal solution in S1

Here we prove that the structure of an optimal solution in S1 is very similar to the structure
of an optimal solution in R1. The heart of this proof is the following lemma 9. Define the
covered region of P with respect to a range assignment ρ, denoted by cov(ρ, P ), to be the set
of all points r ∈ S1 such that there exists a point p ∈ P with ρ(p) ⩾ d(p, r).

▶ Lemma 9. Let P be a point set in S1 with |P | > 2 and let ρopt be an optimal range
assignment for P . Then there exists a point r ∈ S1 such that r /∈ cov(ρopt, P ).

Lemma 9 implies that an optimal solution for an instance in S1 corresponds to an
optimal solution for an instance in R1 derived as follows. For a point r ∈ S1, define the
mapping µr : P → R1 such that µr(s) := 0, and µr(p) := dcw(s, p) for all p ∈ [s, r]cw, and
µr(p) := −dccw(s, p) for all p ∈ [r, s]cw. Let µr(P ) denote the resulting point set in R1.

▶ Theorem 10. Let P be an instance of the broadcast range-assignment problem in S1.
There exists a point r ∈ S1 such that an optimal range assignment for µr(P ) in R1 induces
an optimal range assignment for P . Moreover, we can compute an optimal range assignment
for P in O(n2 log n) time, where n is the number of points in P .

Proof. Let r ∈ S1 be a point such that r /∈ cov(ρopt, P ), which exists by Lemma 9. Consider
the mapping µr. Any feasible range assignment for µr(P ) induces a feasible range assignment
for P in S1, since d(p, q) ⩽ |µr(p)µr(q)| for any two points p, q ∈ P . Conversely, an optimal
range assignment for P induces a feasible range assignment for µr(P ), since the point r is
not covered in the optimal solution. This proves the first part of the theorem.

Now let P := {s, p1, . . . , pn}, where the points pi are ordered clockwise from s. For
0 ⩽ i ⩽ n, let ri be a point in (pi, pi+1)cw, where p0 = pn+1 = s. Since µri = µr for any
r ∈ (pi, pi+1)cw, an optimal solution can be computed by finding the best solution over all
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mappings µri . The only difference between µri and µri+1 is the location that pi+1 is mapped
to, so after computing an optimal solution for µ1(P ) in O(n2 log n) time, we can go through
the mappings µ2, . . . , µn and update the optimal solution in O(n log n) time using Theorem 3.
Hence, an optimal range assignment for P can be computed in O(n2 log n) time. ◀

Next we prove Lemma 9. Without loss of generality we identify S1 with a circle of perimeter 1.
Let ρopt be a fixed optimal range-assignment on P . We will need the following lemma.

▶ Lemma 11. If |P | > 2 then ρopt(p) < 1
2 for all p ∈ P .

Proof. Note that setting ρ(s) = 1
2 and ρ(p) = 0 for all p ∈ P \ {s} gives a feasible solution.

Since ρ(s) > 0 in any feasible solution, this means that ρopt(p) < 1
2 for all p ≠ s. Hence, it

suffices to show that ρopt(s) < 1
2 . If there is no point p ∈ P which is diametrically opposite s

then clearly ρopt(s) < 1
2 . Now suppose some point p ∈ P lies diametrically opposite s. Let

q ∈ P \{s, p} be a point that maximizes the distance from s among all points in P \{s, p}. The
point q exists since |P | > 2. Note that d(s, q) + d(q, p) = 1

2 . Hence, setting ρ(s) = d(s, q) and
ρ(q) = d(q, p) (and keeping all other ranges zero) gives a solution of cost d(s, q)α + d(q, p)α,
which is less than

( 1
2
)α since α > 1. Thus ρopt(s) < 1

2 , which finishes the proof. ◀

Before we proceed, we introduce some more notation.
For two points p, q ∈ S1, we let [p, q]cw ⊂ S1 denote the closed clockwise interval

from p to q. In other words, [p, q]cw is the clockwise arc along S1 from p to q, including
its endpoints. Furthermore, we define (p, q)ccw to be the open clockwise interval from p

to q. The intervals [p, q]ccw and (p, q)ccw are defined similarly, but for the counterclockwise
direction. Now consider a directed edge (p, q) in a communication graph Gρ(P ). We say
that (p, q) is a clockwise edge if ρ(p) ⩾ dcw(p, q), and we say that it is a counterclockwise
edge if ρ(p) ⩾ dccw(p, q). Lemma 11 implies that an edge cannot be both clockwise and
counterclockwise in an optimal range assignment, assuming |P | > 2. Finally, we define the
covered region of a subset Q ⊆ P with respect to a range assignment ρ to be the set of all
points r ∈ S1 such that there exists a point p ∈ Q such that ρ(p) ⩾ d(p, r). We denote
this region by cov(ρ, Q). Furthermore, the counterclockwise covered region of Q, denoted
by covccw(ρ, Q), is the set of all points r ∈ S1 such that there exists a point p ∈ Q such
that ρ(p) ⩾ dccw(p, r). The clockwise covered region of Q, denoted by covcw(ρ, Q), is defined
similarly.

We can now state the main lemma of this section.

▶ Lemma 9. Let P be a point set in S1 with |P | > 2 and let ρopt be an optimal range
assignment for P . Then there exists a point r ∈ S1 such that r /∈ cov(ρopt, P ).

Proof. Let dhop(p, q) denote the hop distance from p to q in the communication
graph Gρopt(P ). Let B broadcast tree rooted at s in Gρopt(P ) with the following properties.

B is a shortest-path tree in terms of hop distance, that is, the hop-distance from s to any
point p in B is equal to dhop(s, p).
Among all such shortest-path trees, B maximizes the number of clockwise edges.

For two points p, q ∈ P , let π(p, q) denote the path from p to q in B, and let |π(p, q)| be its
length, that is, the number of edges on the path. Note that |π(s, p)| = dhop(s, p) for any
p ∈ P . Let pa(p) denote the parent of a point p in B and define

Scw = {p ∈ P \ {s} : (pa(p), p) is a clockwise edge}

and

Sccw = {p ∈ P \ {s} : (pa(p), p) is a counterclockwise edge}.
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qccw

s

qccw

qcw

s

qccw
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s

[qcw, qccw]
cw is covered

by a single range
[qcw, qcw]

ccw is covered
by two ranges

qcw and qccw are in
reverse order

p∗
p∗1

(i) (ii) (iii)

p∗2

Figure 3 Illustration for the proof of Lemma 9. Note that the point p∗ in part (ii) of the figure
could also lie in [s, qcw]cw. Similarly, in part (iii) the points p∗

1 and p∗
2 could lie on “the other side”

of s.

Note that Scw ∪ Sccw = P \ {s}. Now define

qcw = the point from Scw that maximizes dcw(s, p),

where qccw = s if Scw = ∅. Similarly, define

qccw = the point from Sccw that maximizes dccw(s, p),

where qccw = s if Sccw = ∅. Let anc(p) be the set of ancestors in B of a point p ∈ P , that is,
anc(p) contains the points of π(s, p) excluding the point p. The following observation will be
used repeatedly in the proof.

▷ Observation. If (pa(p), p) is a clockwise edge, then [s, p]cw ⊂ cov(ρopt, anc(p)). Similarly,
if (pa(p), p) is a counterclockwise edge, then [s, p]ccw ⊂ cov(ρopt, anc(p)).

Proof. Assume (pa(p), p) is a clockwise edge; the proof for when (pa(p), p) is a
counterclockwise edge is similar. If s ∈ [pa(p), p)]cw – this includes the case where pa(p) = s

– then the statement obviously holds, so assume pa(p) ∈ [s, p]cw. Since (pa(p), p) is a
clockwise edge, it then suffices to prove that [s, pa(p)]cw ⊂ cov(ρopt, anc(p)). Note that
cov(ρopt, anc(p)) is connected, because the points in anc(p) form a path, namely π(s, pa(p)).
Since π(s, p) is shortest path, p ̸∈ cov(ρopt, anc(pa(p)), which implies that [s, pa(p)]cw ⊂
cov(ρopt, anc(pa(p))) ⊂ cov(ρopt, anc(p)). ◁

We now proceed to show that qccw must lie clockwise from qcw, as seen from s, that is, the
situation shown in Fig. 3(i) cannot happen.

▷ Claim. dcw(s, qcw) + dccw(s, qccw) < 1.

Proof. Note that dcw(s, qcw) + dccw(s, qccw) ̸= 1, since otherwise qcw = qccw which cannot
happen since Scw ∩ Sccw = ∅.

Now assume for a contradiction that dcw(s, qcw) + dccw(s, qccw) > 1, which means that
qccw ∈ [s, qcw]cw. Since qcw is reached from its parent by a clockwise edge, this implies
that qccw ∈ cov(ρopt, anc(qcw)) by the observation above. Hence, dhop(s, qcw) ⩾ dhop(s, qccw).
An analogous argument shows that dhop(s, qccw) ⩾ dhop(s, qcw). Hence, dhop(s, qccw) =
dhop(s, qcw). This implies that the edge (pa(qcw), qcw) passes over qccw, otherwise some
other edge of π(s, qcw) would pass over qccw and we would have dhop(s, qccw) < dhop(s, qcw).
But then we also have a shortest path from s to qccw whose last edge is a clockwise edge,
contradicting the definition of B. ◁
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So we can assume that dcw(s, qcw) + dccw(s, qccw) < 1 or, in other words, that qccw lies
clockwise from qcw, as seen from s. Clearly no point from P lies in (qcw, qccw)cw. If we
have (qcw, qccw)cw ̸⊂ cov(ρopt, P ) then we are done, so assume for a contradiction that
(qcw, qccw)cw ⊂ cov(ρopt, P ). This can happen in three ways, each of which will lead to a
contradiction.

Case I: There exists a point p∗ ∈ B such that qcw ∈ covccw(ρopt, {p∗}).

See Fig. 3(ii) for an illustration of the situation. If p∗ = s then dhop(s, qcw) = 1. Since
qcw ∈ Scw this means that qcw must also have an incoming clockwise edge from s. But then
ρopt(s) ⩾ 1

2 , which contradicts Lemma 11. So p∗ ̸= s. Now note that p∗ must have an
outgoing clockwise edge in B, else we can reduce the range of p∗ to dccw(p∗, qccw), which
is smaller than dccw(p∗, qcw), and still get a feasible solution. Observe that p∗ /∈ π(s, qcw);
otherwise we must have p∗ = pa(qcw) (since qcw lies in the range of p∗) which contradicts
that qcw ∈ Scw. So for any point from P in the region [s, qcw]cw there exists a path from s in
the communication graph induced by ρopt that does not use p∗. We now have two subcases.

If p∗ ∈ [s, qccw]ccw then clearly p∗ ∈ Sccw (otherwise the definition of qcw is contradicted).
Hence, each point from P in the region [s, p∗]ccw has a path from s that does not use p∗.
This implies that can reduce the range of p∗ to dccw(p∗, qccw) and still get a feasible solution.

If p∗ ∈ [s, qcw]cw then obviously we can also reduce the range of p∗ to dccw(p∗, qccw) and
still get a feasible solution.

So both subcases lead to the desired contradiction.

Case II: There exists a point p∗ ∈ B such that qccw ∈ covcw(ρopt, {p∗}).

In the proof of Case I we never used that B maximizes the number of clockwise edges. Hence,
a symmetric argument shows that Case II also leads to a contradiction.

Case III: There are two points p∗
1, p∗

2 ∈ P such that [qcw, qccw]cw ⊆ covccw(ρopt, {p∗
1}) ∪

covcw(ρopt, {p∗
2}).

See Fig. 3(iii) for an illustration of the situation. We can assume that qcw /∈ covccw(ρopt, {p∗
1})

and qccw /∈ covcw(ρopt, {p∗
2}), otherwise we are in Case I or Case II. Now either p∗

2 /∈ π(s, p∗
1)

or p∗
1 /∈ π(s, p∗

2) or both. Without loss of generality, assume p∗
2 /∈ π(s, p∗

1). Then p∗
2 ̸= s

and all points from P in the region [s, qccw]ccw have a path from s in the communication
graph Gρopt(P ) that does not use p∗

2. The point p∗
2 must have an outgoing counterclockwise

edge, else we can reduce the range of p∗
2 to dcw(p∗

2, qcw) and still get a feasible solution. We
have two subcases.

If p∗
2 ∈ [s, qccw]ccw then by reducing the range of p∗

2 to dcw(p∗
2, qcw) we still get a feasible

solution.
If p∗

2 ∈ [s, qcw]cw then p∗
2 must be reached by a clockwise edge from its parent in B,

otherwise the definition of qccw would be contradicted. Hence, for each point from P in the
region [s, p∗

2]cw there is a path from s that does not use p∗
2. So again we can reduce the range

of p∗
2 to dcw(p∗

2, qcw) we still get a feasible solution.
Thus both subcases lead to a contradiction.

This finishes the proof of the lemma. ◀

5.2 Non-existence of a SAS in S1

We have seen that an optimal solution for a set P in S1 can be obtained from an optimal
solution in R1, if we cut S1 at an appropriate point r. It is a fact however that the insertion
of a new point into P may cause the location of the cutting point r to change drastically.
Next we show that this means that the dynamic problem in S1 does not admit a SAS.
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Figure 4 (i) The instance showing that there is no SAS in S1. (ii) The instance in R2.

▶ Theorem 12. The dynamic broadcast range-assignment problem in S1 with distance power
gradient α > 1 does not admit a SAS. In particular, there is a constant cα > 1 such that the
following holds: for any n large enough, there is a set P := {s, p1, . . . , p2n+1} and a point q

in S1 such that any update algorithm alg that maintains a cα-approximation must modify
more than 2n/3 − 1 ranges upon the insertion of q into P .

The rest of this section is dedicated to proving Theorem 12. We will prove the theorem for

cα := min
(

1 + 2α−4 − 1
8 , 1 + 2α−1 − 1

3 · 2α + 2 , 1 +
min

(
2α − 1, 3α−2α−1

2 , 4α−2α−2
3

)
4(2α + 1)

)
.

Note that each term is a constant strictly greater than 1 for any fixed constant α > 1. In
particular, for α = 2 we have cα = 1 + 1

14 .

Let P := {s, p1, . . . , p2n+1}, where dcw(pi, pi+1) = 2 for odd i and dcw(pi, pi+1) = 1 for
even i; see Fig. 4(i). Let dcw(s, p1) = δ, where δα = (2α + 1)n. Finally, let dcw(p2n+1, q) =
dcw(q, s) = xδ, where xα = 1

4 +
( 1

2
)α+1. Note that (1/2)α < xα < 1/2 for any α > 1.

Let ρ(p) denote the range given to a point p by alg. A directed edge (p, p′) in the
communication graph induced by ρ is called a clockwise edge if ρ(p) ⩾ dcw(p, p′), and it is
called a counterclockwise edge if ρ(p) ⩾ dccw(p, p′). Observe that we may assume that no edge
(p, p′) is both clockwise and counterclockwise, because otherwise ρ(p) ⩾ (δ + 3n + 2xδ)/2,
which is much too expensive for an approximation ratio of at most cα. Define the range
ρ(p) of a point in P to be cw-minimal if ρ(p) equals the distance from p to its clockwise
neighbor in P . Similarly, ρ(p) is ccw-minimal if ρ(p) equals the distance from p to its
counterclockwise neighbor. The idea of the proof is to show that before the insertion of q,
most of the points s, p1, . . . , p2n+1 must have a cw-minimal range, while after the insertion
most points must have a ccw-minimal range. This will imply that many ranges must be
modified from being cw-minimal to being ccw-minimal.

Before the insertion of q, giving every point a cw-minimal range leads to a feasible
assignment of total cost δα + (2α + 1)n = 2δα. After the insertion of q, giving every point a
ccw-minimal range leads to a feasible assignment of total cost 2(xδ)α+(2α+1)n = (2xα+1)δα.
Hence, if opt(·) denotes the cost of an optimal range assignment, then we have:

▶ Observation 13. opt(P ) ⩽ 2δα and opt(P ∪ {q}) ⩽ (2xα + 1)δα < 2δα.
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We first prove a lower bound on the total cost of the points p1, . . . , p2n+1. Intuitively, only
o(n) of those points can be reached from s or q (otherwise the range of s or q would be
too expensive) and the cheapest way to reach the remaining points will be to use only
cw-minimal or ccw-minimal ranges.

▶ Lemma 14.
∑2n+1

i=1 ρ(pi)α ⩾ (2α + 1)n − o(n), both before and after the insertion of q.

Proof. By Observation 13, we have ρ(p)α ⩽ cα · 2δα and, hence, ρ(p) ⩽ (2cα)1/α · δ < 3δ, for
any point p. Consider the interval I = [y1, y2]cw where dcw(s, y1) = 3δ and dccw(q, y2) = 3δ.
All the points in I ∩ P are at distance more than 3δ from s or q and hence I ∩ P ⊆
cov(ρopt, P \ {s, q}). Let pi ∈ I ∩ P be the point whose clockwise distance from s is
minimum, and let pj ∈ I ∩ P be the point whose counterclockwise distance from q is
minimum. Then the cost of covering all the points in I ∩ P using the points in P \ {s, q} is
at least

∑j−1
t=i dcw(pt, pt+1)α − 2α, where the term −2α is because the covered region may

leave one interval [pt, pt+1]cw uncovered. Recall that the cost of assigning all the points in
P \ {s, q} a cw-minimal range is (2α + 1)n. Note that i = O(δ) since dcw(s, pi) ⩽ 3δ + 2 and
(2n + 1) − j = O(δ) since dcw(pj , q) ⩽ 3δ + 2. Hence,

2n+1∑
i=1

ρ(pi)α ⩾ (2α + 1)n − O(δ) · 2α ⩾ (2α + 1)n − o(n),

since δ = ((2α + 1)n)1/α = o(n). ◀

The following lemma gives a key property of the construction.

▶ Lemma 15. The point p2n+1 cannot have an incoming counterclockwise edge before q is
inserted, and the point p1 cannot have an incoming clockwise edge after q has been inserted.

Proof. Suppose before insertion of q the point p2n+1 has an incoming counterclockwise
edge. The cheapest incoming counterclockwise edge would be from s and this is already too
expensive. Indeed, if ρ(s) ⩾ 2xδ then by Lemma 14 the total cost of the range assignment
by alg is at least

(2xδ)α + (2α + 1)n − o(n) =
(

2α ·

(
1
4 +

(
1
2

)α+1
)

+ 1
)

· δα − o(n)

=
(

1 +
(

2α−3 − 1
4

))
· 2δα − o(n)

>

(
1 + 1

2 ·
(

2α−3 − 1
4

))
· 2δα for n sufficiently large

⩾ cα · opt(P ) by definition of cα and Observation 13.

This contradicts the approximation ratio of alg, proving the first part of the lemma.
Now suppose after the insertion of q the point p1 has an incoming clockwise edge. The

cheapest way to achieve this is with ρ(s) = δ, which is too expensive. Indeed, by Lemma 14
the total cost of the range assignment is then at least
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δα + (2α + 1)n − o(n) = 2δα

(2xα + 1)δα
· (2xα + 1)δα − o(n)

⩾

(
1 + 1

2 ·
(

2δα

(2xα + 1)δα
− 1
))

· opt(P ∪ {q}) for n sufficiently large

=
(

1 + 2 − (2xα + 1)
2(2xα + 1)

)
· opt(P ∪ {q})

=

(
1 +

1 −
(

1
2 + 1

2α

)
2
(

1
2 + 1

2α + 1
)) · opt(P ∪ {q}) since 2xα = 1

2 + 1
2α

=
(

1 + 2α−1 − 1
3 · 2α + 2

)
· opt(P ∪ {q})

⩾ cα · opt(P ∪ {q}) by definition of cα and Observation 13.

This contradicts the approximation ratio of alg, proving the second part of the lemma. ◀

We are now ready to prove that many edges must change from being cw-minimal to being
ccw-minimal when q is inserted. Observe that before and after the insertion of a point q, the
distance between any two points is either 1, 2 or at least 3. Hence, in the following lemma
we may assume that ρ(p) ∈ {0, 1, 2} ∪ [3, ∞) for any point p ∈ P ∪ {q}.

▶ Lemma 16. Before the insertion of q, at least 4n/3 + 1 of the points from {s, p1, . . . , p2n}
have a cw-minimal range and after the insertion of q at least 4n/3 + 1 of the points from
{q, p1, . . . , p2n} have a ccw-minimal range.

Proof. We prove the lemma for the situation before q is inserted; the proof for the situation
after the insertion of q is similar. It will be convenient to define p0 := s (although we may
still use s if we want to stress that we are talking about the source). Recall that p2n+1 does
not have an incoming counterclockwise edge in the communication graph Gρ(P ) before the
insertion of q. Let π∗ be a minimum-hop path from s to p2n+1 in Gρ(P ). Since p2n+1 does
not have an incoming counterclockwise edge and π∗ is a minimum-hop path, all edges in
π are clockwise. We assign each point pj with 1 ⩽ j ⩽ 2n + 1 to the edge (pi, pt) in π∗

such that i + 1 ⩽ j ⩽ t, and we define A(pi, pt) := {pi+1, . . . , pt} to be the set of all points
assigned to (pi, pt). We define the excess of a point pj ∈ A(pi, pt) to be

excess(pj) := 1
|A(pi, pt)|

·

ρ(pi)α −
∑

pℓ∈A(pi,pt)

d(pℓ−1, pℓ)α

 .

We say that an edge (pi, pt) in π∗ is cw-minimal if pi has a cw-minimal range. Note that if a
point pj is assigned to a cw-minimal edge, then this is the edge (pj−1, pj) and excess(pj) = 0.
Intuitively, excess(pj) denotes the additional cost we pay for reaching pj compared to reaching
it by a cw-minimal edge, if we distribute the additional cost of a non-cw-minimal edge over
the points assigned to it. Because each of the points p1, . . . , p2n+1 is assigned to exactly one
edge on the path π∗, we have

∑
pi∈π∗

ρ(p)α ⩾
2n+1∑
j=1

d(pj−1, pj)α +
2n+1∑
j=1

excess(pj) ⩾ opt(P ) +
2n+1∑
j=1

excess(pj) (1)

where the second inequality follows from Observation 13 and because p0 = s. The following
claim is proved in the full version. (Essentially, the smallest possible excess is obtained when
|A(pi, pt)| ∈ {1, 2, 3}; the three terms in the claim correspond to these cases.)

SWAT 2022



15:18 Stable Approximation Algorithms for Range Assignment

▷ Claim. If pj is not assigned to a cw-minimal edge then excess(pj) ⩾ c′
α, where c′

α =
min

(
2α − 1, 3α−2α−1

2 , 4α−2α−2
3

)
.

Now suppose for a contradiction that less than 4n/3 + 1 points from {s, p1, . . . , p2n+1} have
a cw-minimal range. Then at least 2n/3 + 1 points pj have excess(pj) ⩾ c′

α by the claim
above. By Inequality (1) the total cost incurred by alg is therefore more than

opt(P ) + c′
α · (2n/3) = opt(P ) + c′

α

3(2α + 1) · 2(2α + 1)n (2)

>

(
1 +

min
(
2α − 1, 3α−2α−1

2 , 4α−2α−2
3

)
4(2α + 1)

)
· opt(P ) (3)

⩾ cα · opt(P ) (4)

which contradicts the approximation ratio achieved by alg. ◀

Lemma 16 implies that at least 4n/3 of the points p1, . . . , p2n+1 have a cw-minimal range
before q is inserted, and at least 4n/3 of those points have a ccw-minimal range after the
insertion. Hence, at least 2n + 1 − 2 · (2n/3 + 1) = 2n/3 − 1 points must change from being
cw-minimal to being ccw-minimal, thus finishing the proof of Theorem 12.

The claim in the proof of Lemma 16

▷ Claim. If pj is not assigned to a cw-minimal edge then excess(pj) ⩾ c′
α, where c′

α =
min

(
2α − 1, 3α−2α−1

2 , 4α−2α−2
3

)
.

Proof. Consider a non-cw-minimal edge (pi, pt). First suppose only a single point pj is
assigned to (pi, pt). Then t = i + 1 and pj = pt. Hence, ρ(pi) ⩾ d(pj−1, pj) + 1 because we
assumed ρ(pi) ∈ {0, 1, 2} ∪ [3, ∞). Thus when |A(pi, pt)| = 1 then

excess(pj) ⩾ (d(pj−1, pj) + 1)α − d(pj−1pj)α ⩾ 2α − 1 ⩾ c′
α.

Now suppose |A(pi, pt)| > 1. Let z1 be the number of points pj ∈ A(pi, pt) with d(pj−1, pj) =
1, and let z2 be the number of points pj ∈ A(pi, pt) with d(pj−1, pj) = 2. Since |A(pi, pt)| > 1
we have z1 ⩾ 1 and z2 ⩾ 1 and |z1 − z2| ⩽ 1. When |A(pi, pt)| = 2 then z1 = z2 = 1, and
we are distributing the cost of an edge of length at least 3, minus the costs of edges of
length 2 and 1, over two points. Thus in this case we have

excess(pj) ⩾ 3α − 2α − 1
2 .

Similarly, when |A(pi, pt)| = 3 then z1 = 2 and z2 = 1 (or vice versa, but that will only lead
to a larger excess), and we have

excess(pj) ⩾ 4α − 2α − 2
3 .

It remains to argue that we do not get a smaller excess when |A(pi, pt)| ⩾ 4. To see this, we
compare the excess we get when (pi, pt) is an edge of π with the excesses we would get when,
instead of (pi, pt), the edges (pi, pi+2) and (pi+2, pt) would be in π∗. Note that

d(pi, pt)α =
(

d(pi, pi+2) + d(pi+2, pt)
)α

> d(pi, pi+2)α + d(pi+2, pt)α

since α > 1. Hence,
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d(pi, pt)α −
∑t

ℓ=i+1 d(pℓ−1, pℓ)α

t − i

>

(
d(pi, pi+2)α −

∑i+2
ℓ=i+1 d(pℓ−1, pℓ)α

)
+
(

d(pi+2, pt)α −
∑t

ℓ=i+3 d(pℓ−1, pℓ)α
)

t − i

⩾
d(pi, pi+2)α −

∑i+2
ℓ=i+1 d(pℓ−1, pℓ)α

2 +
d(pi+2, pt)α −

∑t
ℓ=i+3 d(pℓ−1, pℓ)α

t − i − 2

where the last inequality uses that a1+a2
b1+b2

⩾ min
(

a1
b1

, a2
b2

)
for any a1, a2, b1, b2 > 0. Thus the

excess we get for (pi, pt) is at least the minimum of the excesses we would get for (pi, pi+2)
and (pi+3, pt). More generally, when |A(pi, pt)| > 4 then we can compare the excess for
(pi, pt) with the excesses we get when we would replace (pi, pt) with a path of smaller edges,
each being assigned two or three points. The excess for (pi, pi+2) is at least the minimum of
the excesses for these shorter edges. (Reducing to edges that are assigned a single point is
not useful, since these may be cw-minimal and have zero excess.) This finishes the proof of
the claim. ◁

6 The 2-dimensional problem

The broadcast range-assignment problem is np-hard in R2, so we cannot expect a
characterization of the structure of an optimal solution similar to Theorem 2. Using a
similar construction as in S1 we can also show that the problem in R2 does not admit a SAS.

▶ Theorem 17. The dynamic broadcast range-assignment problem in R2 with distance power
gradient α > 1 does not admit a SAS. In particular, there is a constant cα > 1 such that the
following holds: for any n large enough, there is a set P := {s, p1, . . . , p2n+1} and a point q

in R2 such that any update algorithm alg that maintains a cα-approximation must modify
at least 2n/3 − 1 ranges upon the insertion of q into P .

Proof. We use the same construction as in S1, where we embed the points on a square
and the distances used to define the instance are measured along the square; see Fig. 4(ii).
We now discuss the changes needed in the proof to deal with the fact that distances in R2

between points from P ∪ {q} may be smaller than when measured along the square. With a
slight abuse of terminology, we will still refer to an edge (p, p′) that was clockwise in S1 as a
clockwise edge, and similarly for counterclockwise edges.

Note that Observation 13 still holds. Now consider Lemma 14. The proof used that the
points pi at distance more than 3δ from s or q must be covered by the ranges of the points
p1, . . . , p2n+1. We now restrict our attention to the points that are also at distance more
than 3δ from a corner of the square. Each such point pi must be covered by the range of
some point pj on the same edge of the square. Hence, the distance in R2 of from pj to pi

is the same as the distance in S1, so we can use the same reasoning as before. Thus the
exclusion of the points that are at distance at most 3δ from a corner of the square only
influences the constant in the o(n) term in the lemma. Hence, Lemma 14 still holds.

The proof of Lemma 15 still holds, since the cheapest counterclockwise edge to p2n+1
before the insertion of q is still from s (and the distance from s to p2n+1 did not change),
and the cheapest clockwise edge to p1 after the insertion of q is still from s (and the distance
from s to p1 did not change).
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It remains to check Lemma 16. The proof still holds, except that the claim that
excess(pj) ⩾ c′

α may not be true for the given value of c′
α when pj is near a corner of

the square, because the distances between points on different edges of the square do not
correspond to the distances in S1. To deal with this, we simply ignore the excess of any
point within distance 3δ from a corner. This reduces the total excess by o(n). It is easily
verified that this does not invalidate the rest of the proof: we have to subtract o(n) from the
formulae in Equality (2), but this is still larger than cα · opt(P ).

We conclude that all lemmas still hold, which proves Theorem 17. ◀

Although the problem in R2 does not admit a SAS, there is a relatively simple O(1)-stable
O(1)-approximation algorithm for α ⩾ 2. The algorithm is based on a result by Ambühl [1],
who showed that a minimum spanning tree (MST) on P gives a 6-approximation for the
static broadcast range-assignment problem: turn the MST into a directed tree rooted at
the source s, and assign as a range to each point p ∈ P the maximum length of any of its
outgoing edges. To make this stable, we set the range of each point to the maximum length of
any of its incident edges (not just the outgoing ones). Because an MST in R2 has maximum
degree 6, this leads to 17-stable 12-approximation algorithm; see the full version [14].

7 Concluding remarks

We studied the dynamic broadcast range-assignment problem from a stability perspective,
introducing the notions of k-stable algorithms and stable approximation schemes (SASs).
Our results provide a fairly complete picture of the problem in R1, in S1, and in R2. In
particular, we presented a SAS in R1 that has an asymptotically optimal stability parameter,
and showed that the problem does not admit a SAS in S1 and R2. Future work can focus
on improving the (the upper and/or lower bounds for) approximation ratios that we have
obtained for algorithms with constant stability parameter.
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