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—— Abstract
We consider the predecessor problem on the ultra-wide word RAM model of computation, which
extends the word RAM model with ultrawords consisting of w? bits [TAMC, 2015]. The model
supports arithmetic and boolean operations on ultrawords, in addition to scattered memory operations
that access or modify w (potentially non-contiguous) memory addresses simultaneously. The ultra-
wide word RAM model captures (and idealizes) modern vector processor architectures.

Our main result is a simple, linear space data structure that supports predecessor in constant
time and updates in amortized, expected constant time. This improves the space of the previous
constant time solution that uses space in the order of the size of the universe. Our result is based on
a new implementation of the classic z-fast trie data structure of Willard [Inform. Process. Lett. 17(2),
1983] combined with a new dictionary data structure that supports fast parallel lookups.
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1 Introduction

Let S be a set of n w-bit integers. The predecessor problem is to maintain S under the
following operations.

predecessor(z): return the largest y € S such that y < z.

insert(z): add x to S.

delete(x): remove x from S.
The predecessor problem is a fundamental and well-studied data structure problem, both
from the perspective of upper bounds [2,5,7,8,23,31,33,37,38,39] and lower bounds [1,5,28,29,
31,32,35]. The problem has many applications, for instance integer sorting [2, 3,23, 25], string
sorting [4,9,20], and string searching [6,8,10,11,13]. See Navarro and Rojas-Ledesma [30]
for a recent survey.

On the word RAM model of computation, the complexity of the problem is well-understood
with the following tight upper and lower bound on the time for operations given by Patragcu
and Thorup [33].
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From the upper bound perspective, the first branch matches dynamic fusion trees [23], the
second branch is based on an extension of the techniques from Beame and Fich [5], and the
last branch is based on an extension of dynamic van Emde Boas trees [38]. Note that the
lower bound implies that we cannot support operations in constant time for general n and w.
Hence, a natural question is if practical models of computation capturing modern hardware
can allow us to overcome the superconstant lower bound.

One such model is the RAM with byte overlap (RAMBO) by Brodnik et al. [14]. This
model extends the word RAM model by adding a set of special words that share bits; flipping
a bit in one word will also affect all the other words that share that bit. The precise model
is determined by the layout of the shared bits. It is feasible to make hardware based on this
model, and prototypes have been built [27]. In the RAMBO model, Brodnik et al. [14] gave a
predecessor data structure using constant time per operation with O(2* /w) space (counting
both regular words and shared words). They also gave a randomized version of the solution
that uses constant time with high probability and reduces the regular space to O(n) (but
still needs Q(2* /w) space for the shared words). In both cases, the total space is near-linear
in the size of the universe.

More recently, Farzan et al. [21] introduced the ultra-wide word RAM model (UWRAM).
The UWRAM extends the word RAM model by adding special ultrawords of w? bits. The
model supports standard boolean and arithmetic operations on ultrawords, as well as scattered
memory operations that access w words in memory in parallel. The UWRAM model captures
(and idealizes) modern vector processing architectures [15,34,36] (see Section 2 for details of
the model). Farzan et al. [21] showed how to simulate algorithms for the RAMBO model on
the UWRAM at the cost of increasing the space by a polylogarithmic factor. Simulating the
above RAMBO solution for the predecessor problem, they gave a solution to the predecessor
problem on the UWRAM using worst case constant time for all operations and O(w2™)
space.

1.1 Our Results

We revisit the predecessor problem on the UWRAM and show the following main result.

» Theorem 1. Given a set of n w-bit integers, we can construct an O(n) space data structure
on a UWRAM which supports predecessor in constant time and insert and delete in amortized
expected constant time.

Compared to the previous result of Farzan et al. [21], Theorem 1 significantly reduces the
space from O(w2") to linear while maintaining constant time for operations (note that query
time is worst-case, while updates are amortized expected).

A key component in our solution is a new dictionary data structure of independent interest
that supports fast parallel lookups on the UWRAM. We define the problem as follows. Recall
that an ultraword X consists of w? bits. We view X as divided into w words of w consecutive
bits each, numbered from right to left starting from 0. The ith word in X is denoted X (¢}
(we discuss the model in detail in Section 2). Given a set S of n w-bit integers, the w-parallel
dictionary problem is to maintain S under the following operations.

pMember(X): return an ultraword I where I(i) =1 if X (i) € S and I{) = 0 otherwise.

insert(z): Add z to S.

delete(x): Remove x from S.

Thus, pMember takes an ultraword X of w integers and returns an ultraword encoding which
of these integers are in S. To the best of our knowledge, the w-parallel dictionary problem
has not been studied before. We show the following result.
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» Theorem 2. Given a set of n w-bit integers, we can construct an O(n 4+ w)-space data
structure on a UWRAM which supports pMember in worst case constant time and insert and
delete in amortized expected constant time.

Note that the queries are worst-case constant time, while the updates are amortized expected
constant time. The time bounds of Theorem 2 thus match the well-known dynamic perfect
hashing structure of Dietzfelbinger et al. [19] (which is also the basis of our solution), except
that the queries are parallel. The space is linear except for the additive w term, which is
needed even for storing the input to the pMember query.

1.2 Techniques

Our results are achieved by novel and efficient parallel implementations of well-known
sequential data structures.

Our parallel dictionary structure of Theorem 2 is based on the dynamic perfect hashing
structure of Dietzfelbinger et al. [19]. This is a two-level data structure similar to the classic
static perfect hashing structure of Fredman et al. [22]. At the first level, a universal hash
function partitions the input into smaller subsets, each of which is then resolved at the
second level using another universal hash function mapping the elements into sufficiently
large tables. The structure supports (sequential) membership queries in worst-case constant
time by evaluating the hash functions and navigating the structure accordingly. Updates are
supported in amortized expected constant time by carefully rebuilding and rehashing the
structure during execution. At any point in time the structure never uses more than O(n)
space. We show how to parallelize the evaluation of a universal hash function (the simple and
practically efficient multiply-shift hash function). Then, using the scattered memory access
operations, we show how to access the corresponding entries in the structure in parallel. Our
technique requires only small changes to the structure of Dietzfelbinger et al. [19] and we
can directly apply their update operations to our solution. Thus, we are able to parallelize
the worst-case constant time sequential membership query while maintaining the amortized
expected constant update time bound of Dietzfelbinger et al. [19], leading to the bounds of
Theorem 2.

Our predecessor data structure of Theorem 1 is based on the z-fast trie of Willard [39]
combined with our parallel dictionary structure of Theorem 2. The z-fast trie consists of
the trie T of the binary representation of the input set. Also, at each level ¢, the structure
stores a dictionary containing the length-i prefixes of the input set. In total, this uses O(nw)
space. The z-fast trie supports predecessor queries in O(logw) time by binary searching
the levels (with the help of the dictionaries) to find the longest common prefix of the query
and the input set. Though not designed for it, we can implement updates on the z-fast
trie in O(w) time by directly updating each level of the dictionary accordingly. Our new
predecessor structure, which we call the xtra-fast trie, instead stores the compact trie of
the binary representation of the input set (i.e., the trie where paths of nodes with a single
child are merged into a single edge). We store a dictionary representing the prefixes (similar
to in the z-fast trie) using our parallel dictionary structure of Theorem 2, but now only
for the branching nodes in the compact trie. This reduces the space to O(n). To support
predecessor queries for an integer x, we generate all w prefixes of z and apply a parallel
membership query on these in the dictionary. We show how to identify the longest match in
parallel which in turn allows us to identify the predecessor. In total this takes worst-case
constant time for the predecessor query. To handle updates, we show how to modify the trie
efficiently using scattered memory access operations and a constant number of dictionary
updates, leading to the expected amortized constant time bound of Theorem 1.
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Figure 1 The layout of an ultraword X.

In our data structures we only need to store a constant number of ultrawords during the
computation. This is important since modern vector processor architectures only have a
limited number of ultraword registers.

1.3 Outline

In Section 2 we describe the UWRAM model of computation and some useful procedures.
In Sections 3 and 4 we show how to do parallel hash function evaluation and w-parallel
dictionaries, proving Theorem 2. Finally, in Section 5 we prove Theorem 1.

2 The Ultra-Wide Word RAM Model

The word RAM model of computation [24] consists of an unbounded memory of w-bit words
and a standard instruction set including arithmetic, boolean, and bitwise operations (denoted
“&”, “|” and “~” for and, or and not) and shifts (denoted “>>” and “<”) such as those
available in standard programming languages (e.g., C). We make the standard assumption
that we can store a pointer into the input in a single word and hence w > logn, where n is
the size of the input, and for simplicity we assume that w is even. We denote the address of
x in memory as addr(z), and the address of an array is the address of its first index. The
time complexity of a word RAM algorithm is the number of instructions and the space is the
number of words stored by the algorithm.

The wltra-wide word RAM (UWRAM) model of computation [21] extends the word
RAM model with special ultrawords of w? bits. As in [21], we distinguish between the
restricted UWRAM that supports a minimal set of instructions on ultrawords consisting of
addition, subtraction, shifts, and bitwise boolean operations, and the multiplication UWRAM
that additionally supports multiplications. We extend the notation for bitwise operations
and shifts to ultrawords. The UWRAM (both restricted and multiplication) also supports
contiguous and scattered memory access operations, as described below. The time complexity
is the number of instructions (on standard words or ultrawords) and the space complexity is
the number of words used by the algorithms, where each ultraword is counted as w words. The
UWRAM model captures (and idealizes) modern vector processing architectures [15,34, 36].
See also Farzan et al. [21] for a detailed discussion of the applicability of the UWRAM model.

2.1 Instructions and Componentwise Operations

Recall that ultrawords consists of w? bits. We often view an ultraword X as divided into
w words of w consecutive bits each, which we call the components of X. We number the
components in X from right-to-left starting from 0 and use the notation X (i) to denote the
ith word in X (see Figure 1). We will also use the notation X = (z,_1,...,Zo), denoting
that X (i) = x;.

We define a number of useful componentwise operations on ultrawords that we will need
for our algorithms in the following. Let X and Y be ultrawords. The componentwise addition
of X and Y, denoted X + Y, is the ultraword Z such that Z(i) = X (i) + Y (:) mod 2%.



P. Bille, I.L. Ggrtz, and T. Stordalen

We define componentwise subtraction, denoted X — Y, and componentwise multiplication,
denoted XY, similarly. The componentwise comparison of X and Y is the ultraword Z
such that Z(i) =1 if X (i) < Y (i) and 0 otherwise. Given another ultraword I where each
component is either 0 or 1, we define the componentwise blend of X, Y, and I to be the
ultraword Z such that Z(i) = X (i) if I{(i) =0 and Z{i) =Y (i) if I{i) = 1.

Except for componentwise multiplication, all of the above componentwise operations
can be implemented in constant time on the restricted UWRAM using standard word-level
parallelism techniques [12,24] (see the full version for details on blend). For our purposes, we
will need componentwise multiplication as an instruction (for evaluating hash functions in
parallel) and thus we include this in the instruction set of the UWRAM. This is the UWRAM
model that we will use throughout the rest of the paper. Note that all of the componentwise
operations are widely supported directly in modern vector processing architectures. For
instance, a componentwise multiplication (e.g., the vpmullw operation) is defined in Intel’s
AVX2 vector extension [16].

We will need componentwise operations on components that are small constant multiples
of w. In particular, we will need a 2w-bit componentwise multiplication that multiplies w/2
components of w bits and returns the w/2 resulting components of 2w bits. Specifically,
let X = (0,24—2,...,0,22,0,209) and Y = (0, Yw—2,---,0,¥2,0,%0), i.e., X and Y store w/2
components aligned at the even positions. The 2w-bit componentwise multiplication is
the ultraword Z = (2 5,2 o,..., 20,25, 20,2y ) where 2 and 2; is the leftmost and
rightmost w bits, respectively, of the 2w-bit product of x; and y;. We can implement 2w-bit

componentwise multiplication using standard techniques in constant time on the UWRAM.

See the full version for details.

Finally, the UWRAM model supports the compress operation that, given X, returns the
word that results from concatenating the rightmost bit of each component of X. We do not
need the corresponding inverse spread operation, defined by Farzan et al. [21].

2.2 Memory Access

The UWRAM supports standard memory access operations that read or write a single word
or a sequence of w contiguous words. More interestingly, the UWRAM also supports scattered

access operations that access w memory locations (not necessarily contiguous) in parallel.

Given an ultraword A containing w memory addresses, a scattered read loads the contents of
the addresses into an ultraword X, such that X (i) contains the contents of memory location
A(i). Given ultrawords X and A a scattered write sets the contents of memory location
A(7) to be X (i). Scattered memory accesses captures the memory model used in IBM’s Cell
architecture [15]. They also appear (e.g., vpgatherdd) in Intel’s AVX2 vector extension [16].
Scattered memory access operations were also proposed by Larsen and Pagh [26] in the
context of the I/O model of computation. Note that while the addresses for scattered writes
must be distinct, we can read simultaneously from the same address. We can use this to
efficiently copy z into all w components of an ultraword X. To do so, create the ultraword
(0,...,0) by left-shifting any ultraword by w? bits, write 2 to address 0, and do a scattered
read on (0, ...,0). We say that we load x into X.

3 Computing Multiply-Shift in Parallel

We show how to efficiently compute a universal hash function in parallel. The multiply-shift
hashing scheme is a standard and practically efficient family of universal hash functions due
to Dietzfelbinger et al. [18]. For some integer 1 < ¢ < w, define the class H. = {h, |0 < a <

18:5
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2% and a is odd} of hash functions where h,(z) = (axz mod 2%) > (w — ¢). Each function
in H. maps from w-bit to c-bit integers. The class H. is universal in the sense that for any
x # y and for h, € H, selected uniformly at random, it holds that P[h,(z) = h,(y)] < 2/2°.

We will show how to evaluate w such functions in constant time. Given X (i) = x;,
A(i) = a; and C(i) = 2% where h;(z) = (a;& mod 2¥) > (w — ¢;) the goal is to compute
H (i) = h;(z;). To do so we first evaluate the functions in two rounds of w/2 functions each,
and then combine the results.

Step 1: Evaluate the hash function on the even indices. We construct an ultraword
H,yen containing all the values of h;(xz;) at all even indices i. First construct the ultrawords

C' = (0,22 ...,0,2%)
T' = (0,04 _2Tw_o mod2¥ ... 0,a0z9g mod 2v).

To do so, we do componentwise multiplication of C' with the constant M = (0,1,...,0,1)
and componentwise multiplications of A, X, and M. Then, we do a 2w-bit multiplication of
C’" and T" and right shift the result by w. This produces the ultraword

Heyen = (%, (@—2Zw—2 mod 2%) > (W — cy—2),...,% (agzg mod 2*) > (w — ¢g))

Thus, all even indices in Hoyen store the resulting hash values of the integers at the even
indices in the input. We will not need the values in the odd indices (resulting from the 2w-bit
multiplication and the right shift) and therefore these are marked with a wildcard symbol *.

Step 2: Evaluate the hash function on the odd indices. Symmetrically, we now construct
the ultraword H,qq containing h;(x;) at all odd indices i. To do so, repeat step 1 and modify
the shifting to align the computation for the odd indices. More precisely, right shift X, C
and A by w and repeat step 1, then left shift the result by w to align the results back to the
odd positions. This produces the ultraword

Hyga = ((aw—1Tw—1 mod 2¥) K cy—1,%,...,(a1z1 mod 2¥) < ¢1,%)

Step 3: Combine the results. Finally, we combine the results by blending Heye, and Hoqq
using I = (1,...,1) — M, producing the ultraword H of the even indices of Heyen and the
odd indices of Hyqq-

This takes constant time since componentwise multiplication, 2w-bit multiplication,
shifting, blending, loading 1 into (1,...,1), and componentwise subtraction all run in
constant time. Hence, we can evaluate each case of w/2 hash functions in constant time and
combine the results in constant time. In summary, we have the following result.

» Lemma 3. Given X (i) = x;, A(i) =a;, C{i) =2, and the constant M = (0,1,...,0,1)
we can evaluate each of the w multiply-shift hash functions h;(z) = (a;z mod 2%) > (w —¢;)
by computing the ultraword H = (hy—1(y—1), ..., ho(z0)) in constant time on a UWRAM.

4 The w-Parallel Dictionary

We now show how to construct the w-parallel dictionary of Theorem 2. To do so we use a
dictionary by Dietzfelbinger et al. that implements a dynamic perfect hashing strategy [19].
Their dictionary already supports insert and delete in amortized expected constant time.
Furthermore, it supports sequential member queries (i.e. “is x € S”) in worst case constant
time. We will show that we can use scattered memory operations to run w member queries
simultaneously, thus implementing pMember in constant time.
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4.1 Dynamic Perfect Hashing

In this section we briefly describe the contents of the data structure of Dietzfelbinger et
al. [19]. Note that we use the multiply-shift hashing scheme, while they use another class
of universal hash functions. Multiply-shift satisfies all the necessary constraints and the
analysis from [19] still works. It does however incur a multiplicative, constant space overhead
for our arrays since the range of a multiply-shift function is a power of two.

The main idea of the data structure is as follows. Let S be a set of w-bit integers. Choose
h € H, and partition S into 2° = ©(n) sets Sy, ..., S2c_1 where S; = {x | x € S and h(z) =

i}. Each set S; is stored in a separate array using a hash function h,;. Dietzfelbinger et al.

show how to implement the operations insert and delete such that they maintain that h; has
no collisions on S;.
The data structure consists of the following.
For each S;, store an array T; of size 2%. Let h;(x) = (a;x mod 2¥) > (w — ¢;). For
each x € S; let T;[h;(x)] = z, i.e. the position that = hashes to stores z. If there is no
x € S; that hashes to j, then Tj[j] = 2%~ if j = 0 and T;[j] = 0 otherwise. We claim
that h;(0) is always zero and h;(2*~1) is never zero, so it follows from this construction
that x € S; if and only if T;[h;(z)] = x. We have that h;(2¥~1) is not zero because

(27 = (@2Y7' mod2¥) > (w—¢) = 2" > (w—¢) > 1

The second step follows since a; is odd; then @;2¥~! = 2w—1 4+ (a; — 1)2“’_1, and the
latter term is 0 modulo 2% since a; — 1 is even. The last step follows because ¢; > 1.
An array T of size 2¢. At index T[i] we store the 5-tuple (addr(T;), 2%, a;, %, x) where %
are book-keeping values used by insert and delete. Note that 2¢ and a; encode h;.

The integers a and 2° representing the top-level hash function h(z) = (az mod 2%) >
(w—c¢), as well as addr(T).

It follows from this construction that = € S if and only if T;[h;(x)] = = where i = h(z).

Dietzfelbinger et al. show that the data structure uses linear space, that member runs in
worst-case constant time, and that insert and delete run in amortized expected constant
time [19].

Extending the Data Structure. We extend this data structure by storing the constant

M =1(0,1,...,0,1,0,1) from Section 3 used to evaluate multiply-shift functions in parallel.

This increases the space of the data structure to O(n + w). Note that linear space in w is
needed even to store the input to a pMember query.

4.2 Parallel Queries

In this section, we begin by describing a single member query, before we show how to run w
copies of the member query in parallel to support pMember. We compute member(x) as
follows.

1. Using @ and 2¢, compute j = h(x).

2. Let ¢ = addr(T) 4+ 55 = addr(T[j]) (recall that each index in T stores five words). Read
the values stored at ¢, ¢ + 1 and ¢ + 2 to get respectively addr(T}), 2% and aj, the first
three words stored at T'[j]. Compute k = h;(x).

3. Check whether the value stored at addr(T};) + k = addr(T}[k]) is equal to .

The parallel algorithm runs this algorithm for all w inputs simultaneously. Given X =

(Tw—1,--.,20) we implement pMember(X) as follows. Each of the steps below executes the

corresponding step above in parallel for each of the w inputs.
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Step 1: Evaluate the top-level hash function. Load the two ultrawords A = (a,...,a) and
C =(2¢,...,2°. Compute the ultraword J = (h(zy_1),. .., (o)) using the multiply-shift
algorithm of Lemma 3.

Step 2: Evaluate each of the second-level hash functions. Load F = (5,...,5) and P =
(addr(T), ...,addr(T)). Compute Q = P+FJ. Then Q(i) = addr(T)+5J(i) = addr(T[J(i)]).
Do scattered reads of @, @+ (1,...,1), and Q + (2,...,2) to produce the ultrawords P’, C’,
and A’. We have that

Pl = <addl’(7"‘]<w,1>)7 ey addr(TJ<0>)>
O = (2erw-n . 2000

Al = <aJ(w—1)7 cee an<O>>

Compute the ultraword K = (hjw—1)(Tw-1),--.,hsoy(20)) using the multiply-shift
algorithm of Lemma 3.

Step 3: Check whether the inputs are present in the dictionary. Do a scattered read of
P’ + K and name the result R. Then R(i) = T;[h;(x;)] where j = h(z;). Return the result
I of componentwise equality between X and R. That is

Ty = {1 if X (i) = R(i)
0 otherwise
Evaluating the hash functions in steps 1 and 2 takes constant time according to Lemma 3.
The remaining operations are scattered reads, loads and componentwise operations, all of
which run in constant time. Since there is only a constant number of operations, pMember
runs in constant time. This concludes the proof of Theorem 2.

4.3 Satellite Data

Suppose we associate some value data(z) with each x € S. We extend the data structure to
support the following operation, where X = (z,_1,...,20) as above.

pRetrieve(X): returns a pair (I, D) where I is the result of pMember(X) and

D {addr(data(mi)) if (i) =1,1eifz; €89
1) =

undefined otherwise

We return addr(data(z)) instead of data(z) since the data would not fit into an ultraword if
data(z) requires more than one word to store.

We extend the data structure as follows to support pRetrieve. Store two words for each
index in T;. For each z € S;, the first word in T;[h;(x)] stores z and the second stores
addr(data(x)). The remaining entries store either 0 or 2*~!, as above.

To do the retrieval, first compute I = pMember(X). However, in step 3, multiply K by
(2,...,2) before the scattered read since each index in T; now stores two words. Also, add
(1,...,1) to P+ (2,...2)K and do a scattered read to compute the ultraword D. The space
of the data structure remains O(n + w) (assuming that data(z) uses constant space), and
pRetrieve runs in constant time.
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5 The xtra-fast Trie

In this section we describe our data structure, the ztra-fast trie, which supports predecessor
in worst case constant time and insert and delete in amortized expected constant time.

Below we assume that we have keys of w — 1 bits each and give a solution that uses
O(n + w) space. At the end of this section we will reduce the space to O(n) and extend the
solution to w-bit keys, proving Theorem 1.

5.1 Data Structure

Consider the compacted trie T" over the binary representation of the elements in S. For each

node v € T define str(v) to be the bitstring encoded by the path from the root to v in T
Also let min(v) and max(v) be the smallest and largest leaves in the subtree of v, respectively.

By min(v) and max(v) we refer both to a leaf and to the value the leaf represents.
For each edge (u,v) € T, let label(u,v) be str(u) followed by the first bit on the edge
(u,v). Define key(u,v) to be label(u,v) followed by a single 1-bit and w — |label(u,v)| — 1

zeroes. Note that |key(u,v)| = w and that the keys of two distinct edges in T always differ.

See Figure 2 for an example.

We define the ezit edge for an integer = to be the edge in T' where the match of = ends.

In other words, it is the edge (u,v) € T such that label(u,v) is a prefix of x and |label(u, v)|
is maximum. See Figure 2 for an example. It is possible that = has no exit edge if the root
has fewer than two children.

Our data structure consists of the following:

A sorted, doubly linked list L of the leaves of T, i.e., the elements of S.

A dictionary D supporting parallel queries using Theorem 2. For each edge (u,v) € T we

store an entry in D with the key key(u, v) and data(u,v) = (addr(min(v)), addr(max(v))).

Here, addr(min(v)) and addr(max(v)) are the addresses to the corresponding elements in
L, and we denote the addresses to min(v) and max(v) as the min- and maz-pointer of
(u,v).
The two ultraword constants M’ and H described in the next section.
Storing L and the ultraword constants takes O(n +w) space combined. Since T' is compacted
there are O(n) entries in D, so by Theorem 2 the dictionary also uses O(n + w) space.

5.2 Predecessor Queries

The main idea of the predecessor query for x is to first find the exit edge of x by simultaneously
searching for all prefixes of z in D. Then we use the min- and max-pointer of the exit edge
to find the predecessor of z. If # has no exit edge, then the root does not have an outgoing
edge matching the leftmost bit of x. If the leftmost bit of x is 1, the predecessor of x is the
largest leaf in the left subtree of the root, and otherwise = has no predecessor. Assuming
that = has an exit edge, the procedure has three steps.

Step 1: Compute all prefixes of x. Let b,,_2by_3---bg be the binary representation of x
of length w — 1. We compute the ultraword

X = (by_2bw_3-+bol , by_oby_3---b110 , ... , 10---0).

That is, X (i) contains the prefix of x of length i followed by a 1-bit and w — i — 1 zeroes.

Thus, for any edge (u,v) € T such that label(u,v) is the length-i prefix of x, we have
X (i) = key(u,v). We compute X as follows.
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SWAT 2022



18:10

Predecessor on the Ultra-Wide Word RAM

Figure 2 An xtra-fast trie for S={001000,001010,001011,101000,101010,110110,110111,111100}.
The dashed edge and nodes illustrate how the trie would change if x = 110101 were inserted. The
exit edge for x is (u,v) since we match the bitstring 1101 but do not match the next 1 on (u,v).
Similarly, the exit edge for 100100 is (s,t). We have that key(u,v) = label(u,v)1000 = 1101000
where the underlined part is what we append to the labels to disambiguate the keys. Similarly,
key(r, s) = 1100000 and key(s,t) = 1010000. The dictionary entry of (s, u) has key(s,u) = 1110000,
and the min- and max-pointer of (s, u) are addr(min(u)) and addr(max(u)). Similarly, the min-pointer
of (r,s) is to min(s) = min(t) and the max-pointer is to max(s) = max(u). Note that if we insert x
we would have to update the min-pointer of (s, u), since £ < min(v). However, the min-pointer of
(r, s) remains unchanged since min(t) < z.

Let M’ be the constant such that M’(i) consists of ¢ consecutive 1-bits followed by w — ¢
consecutive 0-bits. Let H be the constant where the (i 1)th leftmost bit in H (7) is 1 and the
remaining bits are zeroes. First load z into X such that X = (z,z,...,z). Then compute

X=(X&M)|H.

Step 2: Find the exit edge (u,v) of x. First do (I, P) = pRetrieve( X ) on D. Then
compute ¢ = compress(I) such that the ith rightmost bit in ¢ is 1 if (i) = 1 and zero
otherwise. Note that x has no exit edge if ¢ = 0. Find the index k of the leftmost bit in ¢
that is 1 (see [23]). Then X (k) = key(u,v) where (u,v) is the exit edge of . Furthermore,
the values stored at the addresses P(k) and P(k)+ 1 are the min- and max-pointers of (u, v),
respectively.

Step 3: Find the predecessor of x. Use the min- and max-pointer of (u,v) found in
step 2 to retrieve min(v) and max(v). If £ > max(v) then return max(v), otherwise return
the element immediately left of min(v) in L. Note that there might not be an element
immediately left of min(v) if « is smaller than than everything in S, in which case = has no
predecessor.

Since we search for all prefixes of = and take the edge corresponding to the longest prefix
found, we find the exit edge (u,v) of . If z € S, then z = v = max(v) and we correctly
return that x is the predecessor of itself. If z ¢ S then the path to where x would have
been located if it were in T' branches off (u,v) either to the left (if z < min(v)) or right
(if > max(v)). In the first case, predecessor(x) is the element located immediately left of
min(v) in T, and in the second case predecessor(x) is max(v).

By Theorem 2 the parallel dictionary query in step 2 takes worst case constant time.
Finding the leftmost bit that is 1 takes constant time on the word RAM [23]. The remaining
operations are standard operations available in the model, so the procedure runs in constant
time.
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5.3 Insertions

The main idea of the insertion procedure is as follows. Since T is compacted, inserting a
new leaf x will cause only a constant number of edges to be inserted and removed, so we can
make these changes sequentially. Furthermore, some of the at most w — 1 edges on the path
from the root to x might have their min- or max-pointers changed, and we will update these
edges in parallel.

Consider inserting x = 110101 in the trie in Figure 2. When z is inserted we add a new
leaf for x, as well as a new node p at the location where the path to x branches off the exit
edge (u,v) of z. This removes the edge (u,v), but adds the three new edges (u,p), (p,z) and
(p,v). Furthermore, we must update the min-pointer of (s, u), because min(v) was replaced
by « as the smallest leaf under u. On the other hand, we do not update the min-pointer of
(r,s) because min(t) is smaller than z. Note that we do not explicitly store internal nodes
and therefore do not add p anywhere in the data structure.

We now describe the insertion procedure. First we note that if x does not have an exit
edge it is because the root does not have an outgoing edge which shares the same leftmost
bit as x. This case is easily solved by adding an edge from the root to the new leaf x and
adding x to either the start or end of L. We will now assume that x has an exit edge, and
also that x branches off its exit edge to the left; the other case is symmetric.

Step 1: Find the predecessor of . Do a predecessor query as described in Section 5.2,
which determines

The predecessor of x in L.
The exit edge (u,v) of z, label(u,v) and data(u,v) = (addr(min(v)), addr(max(v))).

The result (I, P) of pRetrieve( X ) on D.

Step 2: Insert x in L. Insert x immediately to the right of its predecessor in L.

Step 3: Update edges. We insert (u,p), (p,x) and (p,v) and remove (u,v) from D. We find
the labels of the three edges to insert as follows. We have that label(u, p) = label(u,v) since
(u,p) is the edge (u,v) shortened by adding the node p and since only the first character of
the edge affects the label. By definition, label(p, ) and label(p, v) consist of str(p) with a zero
and a one appended, respectively. We compute str(p) by finding the longest common prefix p
of x and min(v). To do so, do bitwise XOR between x and min(v) and find the index k of the
leftmost bit that is 1 in the result (see [23]). Now k indicates the leftmost bit where z and

min(v) differ. To extract the longest common prefix compute p =z & ~((1 < (k+ 1)) —1).

Given the labels we can easily construct the keys for the edges.

We now construct the satellite data for the edges. Both the min- and max-pointer for
(p, x) are addr(z) since z is a leaf. For (p,v) they are addr(min(v)) and addr(max(v)), which
were determined during the predecessor query. Finally, the min-pointer for (u,p) is addr(x)
and the max-pointer is addr(max(v)).

Step 4: Update min-pointers. We update the min-pointers for the edges on the path from
the root to u that are incorrect after inserting x. Note that inserting « cannot invalidate any
max-pointers since we assumed that x branched off its exit edge to the left. The edges that
must be updated are exactly those that have a min-pointer to min(v), since x has replaced
min(v) as the smallest leaf under u.
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Consider the result (I, P) from the pRetrieve query. We begin by setting I(k’) = 0 for the
index k' corresponding to the exit edge (u,v) of  (we know k' from the predecessor query).
The indices in I that now contain 1 indicate the edges on the path from the root to w.

Next we identify the edges that needs to be updated by creating I’ where I’ (i) = 1 if and
only if both I{i) = 1 and what is stored at address P(i) is the address of min(v). To do so,
first do a scattered read of P and store the result in M. Now M contains addr(min(b)) for
each edge (a,b) on the path to u.! Note the value of P(i) is arbitrary if I(i) = 0, i.e. if no
edge has the length-i prefix of = as its label. Load addr(min(v)) into the ultraword V. Let E
be the result of componentwise equality between M and V. Then E(i) = 1 if and only if
what is stored at address P(i) is addr(min(v)). Finally compute I' = I & E.

Now we use P and I’ to update the incorrect min-pointers. First, load the address of the
node for z into U. Then compute B by blending M (the result of the scattered read of P)
and U conditioned on I’ such that

Bli) M@ if I'(i) =0 (i.e. the value already at the address P(i))
1) =
U(iy ifI'ti) =1 (i.e. the address of z)

Finally, do a scattered write of B to the addresses in P. Hence, what is stored at the
address P(i) remains the same if I’(i) = 0 and is replaced by the address of = otherwise.

The predecessor query in step 1 takes constant time. The operations in step 2 and step 4
are all standard RAM or UWRAM operations, except for finding the leftmost 1-bit which
takes constant time [23]. The dictionary updates in step 3 run in amortized expected constant
time by Theorem 2. Since the rest of step 3 consists of standard operations, the running
time for insertions is amortized expected constant.

5.4 Deletions

The deletion procedure is essentially the inverse of the insertion procedure. We assume that
x is the left child of its parent p; the other case is symmetric.

Step 1: Find x. Do a predecessor query for z. Since x € S, the predecessor of z is itself.
This determines
The position of z in L.
The exit edge (p, z) for z, along with label(p, ). Since z € S, this edge must end in the
leaf for x.
The result (I, P) of pRetrieve( X ) on D.

Step 2: Update min-pointers. If p is the root (i.e. if |label(p, z)| = 1) we remove the edge
(p,z) from D and remove z from L which completes the deletion of x. Otherwise p is an
internal node and must have another child which we denote by v. Consider the edges on the
path to p. Any min-pointer to = should be replaced by the address of min(v), since min(v) is
the successor of z and also in the subtree of all of these edges. We find min(v) in the node
immediately right of x in L. As we did for insertions, replace any min-pointer that is an
address of by the address of min(v) in parallel using I and P.

L If z branched off to the right of its exit edge, we would do a scattered read of P+ (1,...,1) to load the
max-pointers instead of min-pointers.
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Step 3: Delete edges. We delete (p, z) and (p,v) from D. Determine label(p, v) by flipping
the last bit in label(p,z). Using the labels we easily find the keys. Note that we do not
explicitly delete the edge (u,p) or insert the edge (u,v). These two edges share the same key,
and the min-pointer of (u,p) was changed to the address of min(v) in step 2.

Step 4: Update L. Remove = from L.

Steps 1, 2 and 4 all take constant time (see Sections 5.2 and 5.3). The two deletions in
step 3 take amortized constant time according to Theorem 2. The remainder of step 3 takes
constant time, so deletions run in amortized expected constant time.

5.5 Reducing to Linear Space and Supporting w-bit Keys

Here, we reduce the space to O(n) and show how to support w-bit keys, concluding the proof
of Theorem 1.

The O(w) term in the space bound above is due to the w-parallel dictionary D and O(1)
ultraword constants. To avoid this when n = o(w), we will initially support predecessor,
insert and delete using the dynamic fusion tree by Patragcu and Thorup [33] (based on the
fusion tree by Fredman and Willard [23]), which uses linear space and supports all three
operations in constant time for sets of size w®). Simultaneously, we build the ultraword
constants we need over the course of ©(w) insertions, maintaining linear space. When n > w,
the constants have been built and we move all elements into the trie. If at any point n < w/2,
we move all elements from the trie into a fusion tree and remove the trie and the ultraword
constants, leaving us with linear space and ©(w) insert operations in which to rebuild the
constants. Updates still run in amortized expected constant time since we always do Q(w)
updates before we move O(w) elements.

To extend the solution to work with w-bit keys, we partition the input set S into Sy and
S1 where S; = {s | s € S and the leftmost bit of s is i}, and store an ztra-fast trie for each
set. Suppose the leftmost bit of an integer x is ¢. An insert, delete or predecessor operation
on zx is performed on the data structure for S;. Additionally, if ¢ = 1 and the predecessor
query on S7 returns that z has no predecessor, we return the largest element in Sy, or report
that = has no predecessor if Sy is empty.

6 Conclusion and Open Problems

We have studied the predecessor problem on the UWRAM model of computation. We have
given a linear space data structure that supports predecessor queries in worst case constant
time and updates in amortized expected constant time.

Furthermore, we have shown how to implement a w-parallel dictionary on the UWRAM.

The dictionary supports w simultaneous membership queries in worst case constant time
and individual updates in amortized expected constant time.

We wonder if it is possible to achieve constant time with high probability for all operations
in the predecessor problem. The limiting factor for our solution is the time for updates
in the w-parallel dictionary. There are dictionaries that achieve constant time with high
probability for all operations in the word RAM model, e.g. [17]. However, such dictionaries
seem to require hash functions that are difficult to evaluate in parallel on the UWRAM. For
instance, [17] uses the modulo operator, for which we cannot see an obvious way to make a
component-wise version.
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