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—— Abstract

We give a number of approximation metatheorems for monotone maximization problems expressible
in the first-order logic, in substantially more general settings than previously known. We obtain
a constant-factor approximation algorithm in any class of graphs with bounded expansion,
a QPTAS in any class with strongly sublinear separators, and
a PTAS in any fractionally treewidth-fragile class (which includes all common classes with
strongly sublinear separators).
Moreover, our tools also give an exact subexponential-time algorithm in any class with strongly
sublinear separators.
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1 Introduction

We are interested in approximation algorithms for problems such as the MAXiMUM INDE-
PENDENT SET and its variants (weighted, distance-d independent for a fixed parameter d,
...), MaxiMmuM INDUCED MATCHING, MAXIMUM 3-COLORABLE INDUCED SUBGRAPH, and
similar. There are many strong non-approximation results that preclude the existence of
constant-factor approximation algorithms for these problems in general; for example, it is
NP-hard to approximate the independence number [40] of an n-vertex graph up to the factor
of n'=¢ for every ¢ > 0. Hence, we need to consider more restricted settings.

There is a close connection between approximability and the existence of efficient algo-
rithms parameterized by the solution size. Indeed, the existence of an EPTAS (arbitrarily
precise polynomial-time approximation algorithm such that the degree of the polynomial
bounding the complexity does not depend on the precision) directly implies fixed-parameter
tractability, and a constant-factor approximation often forms a starting point for proving
fixed-parameter tractability. A natural family of problems, namely those expressible in
the first-order logic, is known to be fixed-parameter tractable in a subgraph-closed class
of graphs if and (under standard complexity-theoretic assumptions) only if the class is
nowhere-dense [26]. Moreover, in a slightly more restrictive setting of classes with bounded
expansion, the parameterized algorithms have linear time complexity [17]. We refer the reader
not familiar with the concept of bounded expansion to Section 1.1; here, let us just mention
that examples of graph classes with this property are planar graphs and more generally all
proper minor-closed classes, all graph classes with bounded maximum degree, and even more
generally, graph classes closed under topological minors, as well as almost all Erdés-Rényi
random graphs with bounded average degree.
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Motivated by this connection, we explore the approximability of maximization problems
expressible in the first-order logic when restricted to classes with bounded expansion. As
our first main result, we show that every monotone maximization problem expressible in the
first-order logic admits a constant-factor approximation algorithm in every class of graphs of
bounded expansion, even in the weighted setting. We need a few definitions to formulate the
precise statement.

Let I be a finite index set and let S be a set of vertices of a graph G. An I-tuple of
subsets of S is a system Ay = {A; : i € I}, where A; C S for each i. We say that the I-tuple
covers a vertex v € V(G) if v € J;c; Ai- A property of I-tuples of subsets in G is a set m of
I-tuples of subsets of V(G), listing the I-tuples that satisfy the property w. As an example,
suppose I = {1,2,3} and 7 consists exactly of the I-tuples {A4;, A, A3} such that Ay, As,
and Aj are disjoint independent sets in G; then an induced subgraph of G is 3-colorable if
and only if its vertex set is covered by some I-tuple satisfying the property . For I-tuples
Ar and A%, we write A} C Ay if Al is a subset of A; for each ¢ € I. Similarly, we define
ArUAL AN X and A7\ X for a set X C V(G) by applying the operation in each index
separately. We say that the property 7 is monotone if for all I-tuples A} C Ay, if Ay satisfies
the property m, then so does A.

Our goal will be to maximize the weight of an I-tuple satisfying the given property. The
weight of the I-tuple is the sum of the weights of the covered vertices, where the weight
of vertex can depend on its membership in the elements of the I-tuple. More precisely,
for a vertex v € V(G), let xa,(v) € 2! be the set of indices i € I such that v € A;. A
function w : V(GQ) x 2! — 7Z is a weight assignment if w(v, ) = 0 for each v € V(G); with
a few exceptions, we will only consider assignments of non-negative weights. Let us define
w(Ar) = 3, ev(e) W, xa,(v)), and let MAX(7m,w) be the maximum of w(Ay) over the
systems Aj satisfying the property .

Let X7 = {X; : i € I} be a system of unary predicate symbols (to be interpreted as subsets
of vertices of the input graph). A first-order I-formula is a formula ¢ using quantification
over vertices, the predicates X; for i € I, equality, and the standard logic conjunctions. A
first-order graph I-formula can additionally use a binary symmetric adjacency predicate E.
A formula is a sentence if it has no free variables. For a graph G, an I-tuple A; of subsets of
V(G), and a first-order I-sentence ¢, we write G, A1 |= ¢ if the sentence ¢ holds when the
variables in its quantifiers take values from V(G), the adjacency predicate is interpreted as
the adjacency in G, and for 7 € I, X; is interpreted as the set A;. The property © expressed
by ¢ consists of all I-tuples Ay such that G, A; = ¢. For example, the property “X; is a
distance-2 independent set” is expressed by the first-order graph {1}-sentence

(Vo,y) (X1(2) A X1 (y) Az #y) = (0E(z,y) A —(32) E(x, 2) A E(y, 2)).

» Theorem 1. Let I be a finite index set and let ¢ be a first-order graph I-sentence expressing
a monotone property w. For any graph class G with bounded expansion, there exists a constant
c>1 and a linear-time algorithm that, given

a graph G € G and

a weight assignment w : V(G) x 21 — ZF,
returns an I-tuple A; of subsets of V(G) satisfying the property m such that

w(Ag) > L MAX(m, w).

Actually, the result applies to even more general class of properties, expressible by the
fragment of monadic second-order logic where we allow quantification only over the subsets
of the vertices in the solution. For a finite index set I that does not contain the integers
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1, ...n, a solution-restricted MSOL I-sentence with first-order graph core v is a formula
of form (Q1 X1 C U;c; Xi) -+ (QnXn € User Xi) ¥, where Q1 ..., Q, are quantifiers, X7,
..., X, are unary predicate symbols (interpreted as subsets of vertices of the input graph),
and v is a first-order graph I U {1,...,n}-sentence. For example, the property “G[X] is a
union of cycles, and the distance in G between the distinct cycles is at least three” (or more
natural properties such as “G[X] is planar” or “G[X] is acyclic” that however do not use the
fact that in the first-order core, we are allowed to quantify also over the vertices not in X)
can be expressed in this way.

» Theorem 2. Let I be a finite index set and let ¢ be a solution-restricted MSOL I-sentence
with first-order graph core expressing a monotone property w. For any class G with bounded
expansion, there exists a constant ¢ > 1 and a linear-time algorithm that, given

a graph G € G and

a weight assignment w : V(G) x 21 — ZF,
returns an I-tuple Ay of subsets of V(Q) satisfying the property m such that

w(Ag) > % - MAX(7, w).

We are also interested in the graph classes for which every monotone maximization
problem expressible in the first-order logic admits a polynomial-time approximation scheme
(PTAS), i.e., an arbitrarily precise polynomial-time approximation algorithm. Note that
it is hard to approximate the maximum independent set size within the factor of 0.995
in graphs of maximum degree at most three [4], and thus we do not aim to obtain PTAS
in all classes with bounded expansion. The class of graphs of maximum degree three has

exponential expansion, motivating us to consider the classes with polynomial expansion.

Dvotdk and Norin [18] proved these are exactly the graph classes with strongly sublinear
separators!, and approximation questions have been intensively studied for various graph
classes with this property (such as planar graphs or more generally for proper minor-closed
classes); see Section 1.2 for an overview. While we were not able to obtain a PTAS for all
classes with strongly sublinear separators, we were at least able to obtain a quasi-polynomial
time approximation scheme (but only for properties expressed by first-order graph sentences,
rather than solution-restricted MSOL sentences with first-order graph core).

» Theorem 3. Let I be a finite index set and let ¢ be a first-order graph I-sentence expressing
a monotone property w. For any class G with strongly sublinear separators, there exists a
polynomial p and an algorithm that, given

a graph G € G,

a weight assignment w : V(G) x 21 — Z§, and

a positive integer o,
returns in time exp(p(o-log|V(G)|)) an I-tuple A1 of subsets of V(G) satisfying the property
7w such that

w(Ar) > (1 - 1) MAX(7, w).

Interestingly, the ideas used to prove Theorem 3 also lead to exact subexponential-time
algorithms for classes with strongly sublinear separators’.

1 For an n-vertex graph G, a set X C V(G) is a balanced separator if each component of G — X has at
most 2n/3 vertices. Let s(G) denote the minimum size of a balanced separator in G, and for a class G

of graphs, let sg : ZT — ZI be defined by sg(n) = max{s(H) : H C G € G,|V(H)| < n}. The class G
has strongly sublinear separators if sg(n) = O(n'=?) for some 8 > 0.
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» Theorem 4. Let I be a finite index set and let ¢ be a first-order graph I-sentence expressing
a property 7. Let G be a class of graphs such that sg(n) = O(n'=#) for some positive B < 1.
There exists an algorithm that, given

a graph G € G and

a weight assignment w : V(G) x 21 — Z (of not necessarily non-negative weights),
returns in time exp(O(|V(G)[*~? log"/? |V(G)|)) an I-tuple A; of subsets of V(G) satisfying
the property m such that w(Ar) = MAX(7, w).

We can obtain PTASes under a slightly stronger assumption on the considered class of

graphs, efficient fractional treewidth-fragility. For a positive integer s and a positive real
number § < 1, a multiset Z of subsets of vertices of a graph G is an (s, d)-generic cover
of G if for every set S C V(G) of size at most s, we have S C Z for at least §|Z]| sets
Z € Z. The treewidth of the cover is the maximum of tw(G[Z]) over all Z € Z. We say that
a class of graphs G is fractionally treewidth-fragile if for some function f : ZT — Z%, the
following claim holds: for every G € G and any positive integers s and o, there exists an
(s,1 —1/0)-generic cover of G of treewidth at most f(0s). The class is efficiently fractionally
treewidth-fragile if such a cover can be found in time polynomial in |V (G)|, and in particular,
Z has polynomial size?.
» Theorem 5. Let I be a finite index set and let ¢ be a solution-restricted MSOL I-sentence
with first-order graph core expressing a monotone property w. For any class G that is efficiently
fractionally treewidth-fragile, there exists a function f, a polynomial p, and an algorithm
that, given

a graph G € G,

a weight assignment w : V(G) — Zg, and

a positive integer o,
returns in time f(0)p(|V(G)|) an I-tuple Ar of subsets of V(G) satisfying the property w
such that

w(Ar) > (1- 1) MAX(7,w).

Efficiently fractionally treewidth-fragile classes include many of the known graph classes
with strongly sublinear separators, in particular
all hereditary classes with sublinear separators and bounded maximum degree [13],

all proper minor-closed classes, as an easy consequence of the result of DeVos et al. [10]
(or [16] without using the Robertson-Seymour structure theorem), and

many geometric graph classes, such as the intersection graphs of convex sets with bounded
aspect ratio in a fixed Euclidean space that have bounded clique number (as can be seen
using the idea of [22]).
Indeed, it is possible (and I have conjectured) that all classes with sublinear separators are
fractionally treewidth-fragile.

2 Note this is a somewhat non-standard formulation of fractional treewidth-fragility. In the usual
definition [13, 14], one requires the existence of a system of sets whose deletion results in a graph of
treewidth at most f(o) and such that each vertex belongs to at most 1/o fraction of the sets, i.e.,
the complements of the sets of the system form a (1,1 — 1/0)-generic cover of treewidth at most
f(0). To match this with our definition, it suffices to observe that a (17 1-— é)—generic cover is also

(s,1 — 1/0)-generic.
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Let us finish the introduction by giving two natural open questions. Our results only
apply to maximization problems. More precisely, the technique we use can be applied to
minimization problems (with monotone meaning the supersets of valid solutions are also
valid solutions) as well, but the resulting algorithms have error bounded by a fraction of the
total weight of all vertices, rather than a fraction of the optimal solution weight.

» Problem 6. Do monotone minimization problems expressible in the first order logic admit
constant factor approximation in all classes with bounded expansion? And PTASes in all
efficiently fractionally treewidth-fragile graph classes?

As a simplest example, we do not know whether there exists a PTAS for weighted vertex
cover in fractionally treewidth-fragile graph classes.

Secondly, many results for classes of graphs with bounded expansion extend to nowhere-
dense graph classes, up to replacement of some constants by terms of order n°"). Our
approach does not apply to this setting, since it is based on a quantifier elimination result
specific to graph classes with bounded expansion.

» Problem 7. Do monotone maximization problems expressible in the first order logic admit
an O(n°M)-factor approzimation for n-vertex graphs from nowhere-dense classes?

Let us remark that if a hereditary class G of graphs is not nowhere-dense, then for some fixed
integer r, it contains r-subdivisions of all graphs. Consequently, using the non-approximability
results for the independence number [40], we conclude that for every ¢ > 0, MAXIMUM-
WEIGHT DISTANCE-r INDEPENDENT SET cannot be approximated in polynomial time for
n-vertex graphs from G up to the factor of O(nl/Q*E), unless P = NP.

1.1 Bounded expansion

The theory of bounded expansion and nowhere-density was developed chiefly by Nesetril and
Ossona de Mendez in a series of papers [32, 33, 34] to capture the notion of graph sparsity
with respect to the expressive power of the first-order logic.

For a non-negative integer r, an r-shallow minor of a graph G is any graph obtained from
a subgraph of G by contracting pairwise vertex-disjoint subgraphs of radius at most r. A
class of graphs G has expansion bounded by a function f : ZS — Zg if for every r > 0, every
r-shallow minor of a graph belonging to G has average degree at most f(r). We say that a
class has bounded expansion if it has expansion bounded by some function, and polynomial
expansion if it has expansion bounded by a polynomial.

Many natural graph classes have bounded expansion, thus making it possible to treat
them uniformly within this framework. For example, Dvordk and Norin [18] proved that a
class of graphs has polynomial expansion if and only if it has strongly sublinear separators.
This includes

planar graphs [29], and more generally all proper minor-closed classes [2];

graphs drawn in the plane (or on a fixed surface) with a bounded number of crossings on

each edge [36]; and

many geometric graph classes, such as the intersection graphs of convex sets with bounded

aspect ratio in a fixed Euclidean space that have bounded clique number, or nearest-

neighbor graphs of point sets in a fixed Euclidean space [31].

Classes with bounded (but superpolynomial) expansion include

Graph classes with bounded maximum degree, and more generally all graph classes closed

under topological minors [32];

graphs with bounded stack or queue number [36]; and,

almost all Erdés-Rényi random graphs with linear number of edges [36].
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For a more in-depth introduction to the topic, the reader is referred to the book of
Nesetfil and Ossona de Mendez [35]. The classes with bounded expansion have found many
applications in the design of parameterized algorithms [17, 11, 1, 28, 21]. Their applications
in the context of approximation algorithms are discussed in the following section.

1.2 Related work

Distance versions of both minimum dominating set and the maximum independent set
are known to admit constant-factor approximation algorithms in classes with bounded
expansion [12, 15]. A constant-factor approximation algorithm for weighted and distance
version of the minimum dominating set also follows from [6] combined with the bounds on
the neighborhood complexity in classes with bounded expansion [38].

There are many known techniques to obtain approximation schemes for specific classes
of graphs with strongly sublinear separators (polynomial expansion). We illustrate the
power of these techniques on variants of the maximum INDEPENDENT SET problem: The
DISTANCE-r INDEPENDENT SET problem (parameterized by a fixed positive integer ), where
we require the distance between distinct vertices of the chosen set to be greater than r, and
the WEIGHTED version of the problem, where the input contains an assignment of weights to
vertices and we maximize the sum of weights of vertices in the set rather than the size of the
set; see Table 1 for a summary.

Let us start with the techniques that apply to all classes with strongly sublinear separators.

Lipton and Tarjan [30] observed that for each ¢ > 0, one can split the input graph G

by iteratively deleting sublinear separators into components of size poly(1/¢), where the

resulting set R of removed vertices has size at most €|V (G)|. One can then solve the
problem in each component separately by brute force and obtain an approximation with
the additive error ¢|V(G)|. In addition to only giving an additive approximation bound,
this technique is limited to the problems for which a global solution can be obtained from
the partial solutions in G — R; e.g., it does not apply to the DISTANCE-2 INDEPENDENT

SET problem. It also does not apply in the WEIGHTED setting.

Har-Peled and Quanrud [27] proved that in any hereditary class with sublinear separators,

a simple local search approach (incrementally improving an initial solution by changes of

bounded size) gives PTAS for a number of natural optimization problems, including the

r-INDEPENDENT SET problem for any fixed » > 1 (this is not explicitly stated in their
paper, but it is easy to work out the argument). On the other hand, it is not clear which
problems are amenable to this approach, and it fails even for some very simple problems

(e.g., finding the maximum monochromatic set in an edgeless graphs with vertices colored

red and blue). The technique does not apply in the weighted setting.

The property of fractional treewidth-fragility, which as noted above is satisfied by many

classes with strongly sublinear separators, was developed as a way to extend Baker’s

technique (discussed below) to more general graph classes. While a direct application

(solving the problem separately in each subgraph induced by the cover) fails for the

distance versions of the problems, we have overcame this restriction in a joint work

with Lahiri [20]. The approach presented in this paper can be seen as a substantial
generalization in terms of the algorithmic problems to which it applies (Dvoidk and

Lahiri [20] only consider problems expressible in terms of distances between the solution

vertices). The approach works for weighted problems. However, as a major restriction, it

generally only applies to maximization problems.

In [19], T made a rather technical attempt to improve upon the fractional treewidth-

fragility, by introducing a more powerful notion of thin systems of overlays. All hereditary

classes with sublinear separators and bounded maximum degree have this property, and
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Table 1 PTAS design techniques in hereditary classes with sublinear separators.

Technique Applies to H INDEP. SET | 7-INDEP. S. | WEIGHTED L.S. monot. FO
Iterated sepa- | all classes with sublinear sep- v
rators arators
Local search all classes with sublinear sep- v
arators
Fractional bounded max. degree, v v v/ (this work)
treewidth- proper minor closed, ...;
fragility maybe all?
Thin systems | bounded max. degree, v v
of overlays proper minor closed, ...
Baker’s tech- | proper minor closed, some ge- v v v
nique ometric settings

so do all proper minor-closed classes. Thin systems of overlays make it possible to design
PTAS for the r-INDEPENDENT SET problem for any fixed r > 1, as well as for other
problems defined in terms of distances between the vertices in the solution (including

minimization problems such as the distance version of the minimum dominating set).

However, the notion is not suitable for the problems where more complex relationships
need to be considered.

Baker [3] designed a very powerful technique for planar graphs based on finding a partition
of the graph into layers (where the edges are allowed only within the layers and between
consecutive layers) such that the union of a bounded number of these layers induces a
subgraph of bounded treewidth. This is a substantially more restrictive condition than

fractional treewidth-fragility (not even all proper minor-closed classes have this property).

In a trade-off, the range of problems for which it applies is much wider. In particular,
it can deal with all (maximization or minimization) problems expressible in monotone
first-order logic [8], which includes all the discussed variants of the INDEPENDENT SET
problem. A modified version of this technique (where the layering step is iterated and
combined with removal of a bounded number of vertices) also can be used in less restricted
settings [16], including for example all proper minor-closed classes (but not all classes
with sublinear separators).

The arguments based on bidimensionality [9] are rather powerful, but limited in scope to
(subclasses of) the proper minor-closed classes. With regards to the PTAS design, they
essentially build on the Baker’s technique framework.

1.3 Proof outline

The proofs of all our results are based on three ingredients:

(1) A strong locality result for first-order properties in graphs from classes with bounded
expansion, proved using a modification of the quantifier elimination procedure of [17]. To
state the result, we need a few more definitions. A simple signature o is a set of unary
predicate and function symbols. For a finite index set I and a system X; of unary predicate
symbols disjoint from o, a first-order graph (I,o)-formula is a formula ¢ using all the
ingredients from the definition of a first-order graph I-formula and additionally the predicates
and unary functions from o. For a graph G, a unary function f : V(G) — V(G) is guarded
by G if for each v € V(G), either f(v) = v or v is adjacent to f(v) in G. A G-interpretation
T of o assigns to each unary predicate symbol P a subset Pz of vertices of G and to each
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unary function symbol f a unary function f7; guarded by G. For a positive integer s and a
graph G, a function h : V(G) — 2V(9) is an s-shroud if for each v € V(G), |h(v)| < s and
v € h(v). The h-center of a set Y C V(G) is the set {v € Y : h(v) CY}.

» Theorem 8. Let I be a finite index set, let ¢ be a first-order graph I-sentence, and let G
be a class of graphs with bounded expansion. There exists a constant s, a simple signature o
disjoint from all symbols appearing in ¢, and a first-order graph (I,c)-sentence ¢’ such that
the following claim holds.

Given a graph G € G, we can in time O(|V(G)]) find an s-shroud h with the following
property: For any Y C V(G), we can in linear time find a G[Y]-interpretation Iy of o for
which every I-tuple Ay of subsets of the h-center of Y satisfies

G,Ar E ¢ if and only if G[Y], Iy, Ar = ¢'.

That is, for the I-tuples of subsets of the h-center of Y, we can evaluate whether they
have the property = (in the whole graph G) just by looking at the induced subgraph G[Y]
enhanced by Zy . Note that Theorem 8 straightforwardly extends to solution-restricted MSOL
I-sentences (Q1X1 C U;e; Xi) -+ (@nXn € U;er Xi) ¢ with first-order graph core, since
if X7 is interpreted as an I-tuple A; of subsets of the h-center of Y, then Xq,..., X, also
correspond to subsets of the h-center of Y.

» Corollary 9. Let I be a finite indezx set, let ¢ be a solution-restricted MSOL I-sentence
with first-order graph core, and let G be a class of graphs with bounded expansion. There
exists a constant s, a simple signature o disjoint from all symbols appearing in ¢, and a
solution-restricted MSOL (I, c)-sentence ¢ with first-order graph core such that the following
claim holds.

Given a graph G € G, we can in linear time find an s-shroud h with the following property:
For any Y C V(G), we can in linear time find a G[Y]-interpretation Iy of o for which every
I-tuple A; of subsets of the h-center of Y satisfies

G7 AI ): 14 Zf and Only ZfG[Y]7:ZY7AI ): 90/'

(2) The existence of sufficiently generic covers. For efficiently fractionally treewidth-
fragile classes, we have them by definition. For classes with bounded expansion, we use covers
obtained from low-treedepth colorings. A rooted forest F is an acyclic graph with a specified
root vertex in each component. The depth of F' is the number of vertices on the longest path
from a root to a leaf. If the path in F' from a root to a vertex v contains a vertex u, we say
that u is an ancestor of v and v is a descendant of u. The closure of F is the graph with the
vertex set V' (F') where each vertex is adjacent exactly to its ancestors and descendants in F.
The treedepth of a graph H is the minimum d such that H is a subgraph of the closure of a
rooted forest of depth d. A graph of treedepth d is known to have treewidth (in fact, even
pathwidth) smaller than d [35]. For a positive integer s, a treedepth-s coloring of a graph G
is a coloring such that the union of every s color classes induces a subgraph of treewidth at
most s. NesSetfil and Ossona de Mendez [33] proved the following claim.

» Theorem 10 (Nesetfil and Ossona de Mendez [33]). For every class G of graphs with bounded
expansion and every positive integer s, there exists an integer a and a linear-time algorithm
that given a graph G € G returns a treedepth-s coloring of G using at most a colors.

By considering the cover consisting of all ¢ = (Z) unions of s-tuples of color classes, we obtain
the following claim.
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» Corollary 11. For every class G of graphs with bounded expansion and every positive
integer s, there exists a positive integer ¢ and a linear-time algorithm that given a graph
G € G returns an (s, 1/c)-generic cover of size ¢ and treedepth at most s.

For classes with strongly sublinear separators, in [14] I proved they are “almost” fractionally
treewidth-fragile, in the following sense (again, with a somewhat different notation, see the
footnote at the definition of fractional treewidth-fragility).

» Theorem 12 (Dvorak [14]). For every class G with strongly sublinear separators, there
exists a polynomial f : Zt — Z* and a polynomial-time algorithm that, for every G € G
and positive integers s and o, returns an (s,1 — 1/0)-generic cover of G of treewidth at most
f(oslog |V(G)|). Moreover, the algorithm also returns the corresponding tree decomposition
for each element of the cover.

(3) The means to solve the problem on graphs of bounded treewidth. For Theorems 2
and 5, we use the well-known result of Courcelle [7], in the following optimization version
(note that we do not need to be given a tree decomposition, as for graphs of bounded
treewidth, we can find an optimal tree decomposition in linear time [5]).

» Theorem 13. Let I be a finite index set and let ¢ be a MSOL graph formula with free
variables X1, expressing a property w. For any positive integer t, there exists a linear-time
algorithm that, given

a graph G of treewidth at most t,

a set X CV(G), and

a weight assignment w : V(G) x 21 — Z,
returns an I-tuple Ap of subsets of X satisfying the property m such that w(Ay) is mazimum
among all such I-tuples, or decides no such I-tuple of subsets of X ewists.

This is not sufficient for the proof of Theorem 3, where we work with covers of poly-
logarithmic treewidth, and thus we need a better control over the dependence of the time
complexity on the treewidth. We use the following result proved using the locality property
underlying Theorem 8; we believe this result to be of independent interest.

» Theorem 14. Let I be a finite index set and let ¢ be a first-order graph I-sentence
expressing a property w. For any class G with bounded expansion, there exists a constant
¢ > 0 and an algorithm that, given

a graph G € G,

a tree decomposition T of G with at most |V (G)| nodes,

a set X CV(G), and

a weight assignment w : V(G) x 21 — Zj,
returns in time O(exp(ct)|V(G)|), where t is the width of the decomposition T, an I-tuple
A; of subsets of X satisfying the property m such that w(Ay) is mazimum among all such
I-tuples, or decides no such I-tuple of subsets of X exists.

Let us remark that the reason we are not able to generalize Theorem 3 to solution-restricted
MSOL sentences with first-order graph core is that we cannot prove the analogue of Theo-
rem 14 in that setting.

We are now ready to prove our results.

Proof of Theorems 2, 3 and 5. Note that G has bounded expansion:
In the situation of Theorem 2, this is an assumption.
In the situation of Theorem 3, this is the case since classes with strongly sublinear
separators have polynomial expansion [18].
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In the situation of Theorem 5, this is the case since every fractionally treewidth-fragile
class has bounded expansion [13].
Let s, o, and ¢ be obtained by applying Theorem 8 or Corollary 9 to ¢ and G. Now, for the
input graph G and the weight assignment w (and the precision o in the case of Theorems 3
and 5), we apply the following algorithm:
Let h be the s-shroud obtained using Theorem 8 or Corollary 9.
Let Z be an (s, d)-generic cover of treewidth at most ¢, where
in the situation of Theorem 2, Z is obtained using Corollary 11, § = 1/¢, and t = s;
in the situation of Theorem 3, Z is obtained using Theorem 12 for the given o and s,
d=1-1/o, and t = poly(oslog|V(G)|); and
in the situation of Theorem 5, Z is obtained using the definition of efficient fractional
treewidth-fragility for the given o and s, 6 =1 —1/o, and t = f(0s).
For each Y € Z:
Let Zy be the G[Y]-interpretation of o obtained using Theorem 8 or Corollary 9.
Let Y’ be the h-center of Y.
Using Theorem 13 or 14 in the bounded-treewidth graph G[Y], find an I-tuple AY of
subsets of Y satisfying G[Y], Ty, AY |= ¢’ such that w(AY) is maximum possible.
Return the I-tuple A} such that w(A}) is maximum over all Y € Z.

Note that Theorem 8 or Corollary 9 implies that G, A}/ E ¢, and thus it suffices to bound
the approximation ratio of the algorithm.

Let A; be an I-tuple of subsets of vertices of G satisfying the property 7 such that
w(Ay) is maximum. Choose Y € Z uniformly at random. Since h is an s-shroud and Z
is an (s, d)-cover, for each v € V(G), the probability that h(v) C Y is at least 6. Hence,
letting A7 = Ay NY’ (where Y’ is the h-center of V), the expected value of w(A%}) is at least
§ - w(Ar). Since 7 is monotone, we have G, A} = ¢, and by Theorem 8, G,Zy, A} = ¢'.
This implies w(AY) > w(A}), and thus the expected value of w(AY) is also at least § - w(Aj).
Since we return the maximum over all elements of Z, this implies the weight of the returned
set is at least 0 - w(Ay). <

Proof of Theorem 4. Note that since G has strongly sublinear separators, it has bounded
(in fact, polynomial) expansion [18].

Using the algorithm of [23], we can for any n-vertex subgraph of G in polynomial time
find a balanced separator of size O(n!~" logl/ 2 n). Using this algorithm, let us construct a
tree decomposition 7 of G as follows:

Find a balanced separator S in G.

Recursively find a tree decomposition 7¢ of each component C' of G — S.

Add a new root vertex adjacent to the root of 7o for each each component C' of G — S,

and add S to all bags (including the bag of the new root vertex).

This tree decomposition has width ¢ = O(|V(G)|*#log"/?|V(G)|). We then apply the
algorithm from Theorem 14 for this tree decomposition and X = V(G). <

Theorem 8 is a consequence of a quantifier-elimination result whose proof is inspired
by the approach of Dvorék, Kral’, and Thomas [17] (but likely could also be proved using
the alternative approaches to quantifier elimination in bounded expansion classes, such
as [24, 25, 37, 39]); we state the result and derive Theorem 8 in Section 2. Theorem 14
follows by a standard dynamic programming approach, with Theorem 8 used to bound the
number of states; we give the proof in Section 3.
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2  The quantifier elimination result and its applications

In [13], it has been shown that any first-order formula on a graph from a class with bounded
expansion can be transformed into an equivalent quantifier-free first-order formula on a graph
from a (different) class with bounded expansion, by introducing unary functions guarded by
the resulting graph and new unary predicates, both computable in linear time. Essentially the
same procedure can be applied to first-order formulas describing set properties; however, for
our application, we need to be more explicit in terms of how the newly introduced functions
and predicates are defined and in particular, how they depend on the set system whose
weight we are maximizing.

To this end, in addition to unary functions and predicates, we introduce counters.

Semantically, a counter 7 assigns a non-negative integer v(v) to each vertex v. For each
counter symbol ~, our formulas can use expressions of form ~y(z) > m, where z is a term and
m is a positive integer, with the natural interpretation. The symbols for counters are linearly
ordered, and we say that a formula is y-dominated if all counter symbols appearing in the
formula are strictly smaller than «. For a variable z, we say that a formula 0 is x-local if 0 is
quantifier-free, does not use unary functions, and x is the only variable appearing in 6.
The counters are used to keep track of the numbers of vertices that satisfy a prescribed
property. Formally, the values of each counter « are determined by an associated trigger

(f,0), where f is a unary function symbol and 6 is an z-local -dominated first-order formula.

For each vertex v, the value v(v) is equal to the number of vertices u € V(G) \ {v} such that
f(u) = v and 6(u) holds.

A global formula is a formula that can additionally use elementary formulas of form
#60 > m, where 6 is an z-local formula and m is a positive integer; this elementary formula
is true if there are at least m vertices v € V(@) such that 6(v) holds.

Let I be a finite index set. A counter I-signature o is a set of unary predicate and
function symbols and linearly ordered counter symbols, together with the triggers associated
with these counter symbols, where the triggers are allowed to refer to the unary predicates
from X; and o. For a graph G, a G-interpretation of ¢ is a G-interpretation of the simple
signature consisting of the unary predicate and function symbols from o. We can now state
the quantifier elimination result.

» Theorem 15. Let I be a finite index set, let ¢ be a first-order graph I-sentence, and let
G be a class of graphs with bounded expansion. There exists a counter I-signature o and a
global quantifier-free first-order (I, c)-sentence ¢’ such that the following claim holds. Given
a graph G € G, we can in linear time compute a G-interpretation T of o such that

G,A; = ¢ if and only if G,Z,A; = ¢’
for every I-tuple Ar of subsets of V(G).

As we mentioned before, Theorem 8 can be proved by a straightforward modification of
known arguments [17, 24, 25, 37, 39] and we omit the proof in this extended abstract; it can
be found in the full version of the paper at https://arxiv.org/abs/2103.08698.

Let us remark that since ¢’ is a quantifier-free sentence, it is a Boolean combination of
formulas of form #6 > m, where 6 is an z-local formula, and in particular ¢’ does not refer
to any function symbols.

Importantly, the interpretation Z of the predicate and function symbols from o is
independent on Aj; the choice of A; only affects the values of counters. Let £(c) denote
the number of counter symbols in ¢, and for i = 1,...,£(0), let f; 7 be the interpretation
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of the unary function from the trigger of the i-th counter symbol in o, in their fixed
linear ordering. For v € V(G), let us define hoz(v) = {v} and for i = 1,...,£(0), let
hi’I(’U) = hz‘,ll(v) U {fi’z(u) Tu € hl‘,l,z(v)}. We let hy = h[(g)’l—; note that hz is a
24(9)_shroud.

For a counter v of a counter I-signature o, a G-interpretation Z, and an I-tuple A of
subsets of V(G), let v(Z, Ar,v) denote the value of the counter v when the symbols of o are
interpreted according to Z and the predicates X are interpreted as A;. The applications of
Theorem 15 use the simple fact that the membership of a vertex v in the sets of an I-tuple
Ay only affects the values of the counters in hz(v).

» Lemma 16. Let I be a finite index set, let o be a counter I-signature, let G be a graph and
let T be a G-interpretation of 0. For any X C V(G) and I-tuples A; and A} of subsets of
vertices of G, if Af\ X = A7\ X, then v(Z, Ar,v) = v(Z, A}, v) for every v € V(G) \ hz(X).

Proof. For i =1,...,£(0), let (6;, f;) be the trigger of the i-th counter symbol ~; in o, in
their fixed linear ordering, and let f; 7z be the interpretation of f; in Z. By induction on ¢,
we show that v;(Z, Ar,v) = v (Z, A}, v) for each v € V(G) \ h; z(X). Recall that ~;(Z, A, v)
is the number of vertices v € V(G) \ {v} such that f;z(u) = v and G,Z,A; = 0;(u).
Note that v € V(G) \ hi—1,2(X) € V(G) \ hjz(X) € V(G) \ X for each j <i—1, and
thus +;(Z, Ar,u) = 7;(Z, A}, v) for each such j by the induction hypothesis. Since 6; is
a-local, the value of ;(u) only depends on these counters, Z, and the interpretation of
Xronu ¢ X, and thus G,Z,A; | 6;(u) if and only if G,Z, A} = 6;(u). Consequently,
vi(Z, Ar,v) = v(Z, A}, v), as required. <

This is useful in combination with the fact that vertices with fixed values of the counters
can be deleted. Let I be a finite index set, let o be a counter I-signature, and let ¢ be a global
quantifier-free first-order (I, 0)-sentence. For a graph G and Y C V(G), a (G,Y, 0, p)-census
is a function n that, letting M be the largest integer appearing in the formula ¢ and the
triggers of o, assigns an element of {0,..., M} to

each z-local formula 6 appearing in an elementary formula #6 > m in ¢, and

each pair (v, v), where v is a counter symbol of o and v € Y is a vertex with at least one

neighbor in V(G) \ Y.

Given a G-interpretation Z of o and an I-tuple A; of subsets of vertices of G, we say that n
isa (G,Y,Z,0,p)-shadow of Ay if

for each z-local formula 6 appearing in an elementary formula #6 > m in ¢, n(9) is the

minimum of M and the number of vertices u € V(G) \ Y such that G,Z, A; = 6(u); and,

for each counter v with trigger (6, f) and each vertex v € Y with at least one neighbor in

V(G)\Y, n(v,v) is the minimum of M and the number of vertices u € V(G) \ Y such

that fz(u) =v and G,Z, A1 = 0(u).

» Lemma 17. Let I be a finite index set, let o be a counter I-signature, and let ¢ be a
global quantifier-free first-order (I,c)-sentence. There exists a signature o’ obtained from o
by adding unary predicate symbols and changing the triggers on the counter symbols, and a
global quantifier-free first-order (I,0')-sentence ¢’ such that the following claim holds. For
any graph G, a G-interpretation T of o, a set Y C V(G) and a (G,Y, 0, )-census n, we can
in linear time find a G[Y]-interpretation T of o’s such that

GaIa AI ': ¥ Zf and Only ZfG[YLI/aAI ': SO/

for every I-tuple A of subsets of Y with (G,Y,Z,0,p)-shadow n.
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Proof. Let M be the largest integer appearing in the formula ¢ or the triggers of o. For
each counter symbol v and each positive integer m < M, we add to ¢’ a unary predicate
P, ., interpreted in 7' as the set of vertices v € Y such that n(y,v) > m. Each function
symbol g is interpreted in Z’ by setting gz/(v) = gz(v) if gz(v) € Y and gz(v) = v otherwise.
The predicate symbols are interpreted in Z’ as the restrictions of their intepretations in Z
to Y.

For a counter symbol v with trigger (6, f), we set the trigger of v in ¢’ to be (¢, f),
where ¢’ is obtained from 6 by replacing each formula of form +/(x) > m by the formula

(Y(z) >m)V (Py1(z) Ay (x) >m—1) V...V Py ().

This ensures that for each v € Y and each I-tuple A; of subsets of Y with (G,Y,Z, 0, ¢)-
shadow n, we have

min(M7 7(1-7 Ala U)) = min(M, ’Y(Zlv AI: U) + n(’% ’U)),

where n(y,v) = 0 if all neighbors of v belong to Y. For each subformula of ¢ of form #6 > m,
let 6 be obtained by performing the same replacements. The formula ¢’ is obtained from ¢
by replacing each such subformula by the formula #6’ > max(0, m — n(#)). The fact that
G,I,Ar E ¢ if and only if G[Y],Z’, A; | ¢’ holds for every I-tuple A of subsets of Y with
(G,Y,Z,0,p)-shadow n is clear from the construction. <

We also need the fact that counters can be eliminated at the expense of re-introducing
quantifiers.

» Lemma 18. Let I be a finite index set, let o be a counter I-signature, and let o’ be the
simple signature consisting of the predicate and function symbols from o. For any counter
symbol v € o and a positive integer m, there exists a first-order (I,0")-formula 1, with
one free variable x such that the following claim holds: Let G be a graph and let T be a
G-interpretation of o. For any I-tuple A; of subsets of vertices of G, we have y(Z, Ar,v) > m
if and only of G,Z, A1 = ¢y m(v).

Proof. We prove the claim by induction along the linear ordering of the counter symbols in
o, and thus we can assume that the claim holds for all counter symbols appearing in the
trigger (0, f) of . Let 6" be the (I, o’)-formula obtained from € by replacing each formula of
form ~/(z) > m' by the formula 1./ ./ (x). We let 1y, be the formula

m

(Fz1) ... Fzm) /\xl #ax; | A /\(xl Zx A f(x;) =z N0 (2;)). <

1<j =1
We now straightforwardly compose the results.

Proof of Theorem 8. Let o1 be the counter I-signature and ¢; the global quantifier-free
first-order (I, o1)-sentence obtained using Theorem 15. Let s = 24e1)  Let o4 and 2 be the
counter I-signature and the global quantifier-free first-order (I, o9)-sentence obtained using
Lemma 17 for o7 and ;. We let o be the simple signature consisting of the predicate and
function symbols from o4, and for each counter symbol v of oo and each positive integer m,
we let 1, be the formula constructed in Lemma 18. We let ¢’ be the formula obtained
from ¢, by replacing every subformula of form y(z) > m by the formula v ,,,(x), and every
subformula of form #6 > m by the formula

(Fz1) ... (Fzm) /\ z x| A 7\ 0(x;).
i=1

1<J
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Now, given a graph G, we first use the algorithm from Theorem 15 to compute a
G-interpretation Z; of o1 such that

G,As E ¢ if and only if G, 71, A | ¢

for every I-tuple A of subsets of V(G). We let h be the s-shroud hz, and let X be the
h-center of Y. Let n be the (G,Y,Z;, 01, p1)-shadow of the I-tuple of empty sets. Note that
by Lemma 16, every I-tuple A; of subsets of X has (G,Y,Z;, 01, p1)-shadow n. Using the
algorithm from Lemma 17, we compute a G[Y]-interpretation Zy of oo such that

G,TI,,A; E o1 if and only if G[Y],Zs, A; = 2

for every I-tuple A of subsets of X. By construction, ¢’ is a first-order (I, o)-sentence such
that

G|Y],Zs, As = 2 if and only if G[Y],Z2, A1 | ¢’
for every I-tuple A; of subsets of Y. Therefore,
G, A; = ¢ if and only if G[Y], T2, A; = ¢’

for every I-tuple A; of subsets of the h-center X of Y, and we can set 7y = Zs. <

3 Deciding first-order properties in time exponential in treewidth

In this section, we give the algorithm from the statement of Theorem 14. Let I be a finite
index set, let o be a counter I-signature, let ¢ be a global quantifier-free first-order (I, c)-
sentence, let G be a graph, and let Z be a G-interpretation of o. Suppose G = L U R for
some subgraphs L and R of G. In this context, for I-tuples A; and A} of subsets of vertices
of L, we write Ar =1 gy A} if for every I-tuple By of subsets of V/(R) \ V(L), we have

G,Z,A;UB; E ¢ if and only if G,Z, A7 U By = .
The algorithm is based on the following key fact.

» Lemma 19. Let I be a finite index set, let o be a counter I-signature, let ¢ be a global
quantifier-free first-order (I,o)-sentence, let G = LU R be a graph and let T be a G-
interpretation of o. Let hr be the corresponding 244%) -shroud and let S = hz(V(LNR))NV (L).
If Ar and A} are I-tuples of subsets of V(L) such that

ArNnS=A'NnS and

Ar and A’ have the same (G, V(L) \ S,Z,0,¢)-shadow n,
then Ar =(1,r) A}

Proof. By the definition of hz, we have S = hz(V(R)) N V(L). Consider any I-tuple
By of subsets of V(R) \ V(L). By Lemma 16 applied with X = V(R) \ V(L), we have
v(Z,A; U Br,v) = v(Z,As,v) and v(Z, A} U Br,v) = v(Z, A},v) for each v € V(L) \ S.
Consequently, the (G, V(L) \ S,Z, o, ¢)-shadow of both A; U By and A, U By is equal to n.
Let o', ¢’, and Z’ be obtained using Lemma 17 for the census n and Y = V(R) U S. By the
assumptions, we have (A U Br) N (V(R)US) = (A, UB;)N(V(R)US), and thus
G,Z,A;rU By | ¢ if and only if
GIV(R)US],Z',(A;UB)N(V(R)US) | ¢ if and only if
GIV(R)US],Z,(A;UB)N(V(R)US) E ¢ if and only if
G7I, A/I U By ': ©,

as required. <
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» Corollary 20. Let I be a finite index set, let o be a counter I-signature, let ¢ be a
global quantifier-free first-order (I,c)-sentence, let G = L U R be a graph and let T be a
G-interpretation of o. Then =1 ry has exp(O(|V (LN R)|)) equivalence classes.

Proof. Let M be the largest integer appearing in the formula ¢ and the triggers of o and
let a be the number of z-local formulas appearing in ¢. Let

¢ = (M + 1)) 7 gl1127

Let hz be the 2¢(“)-shroud corresponding to Z and let S = hz(V(LNR)) NV (L).
By Lemma 19, each equivalence class of =1, r) is determined by
the (G, V(L)\ S, 0, p)-census n: since only the vertices of S can have neighbors in V(L)\ S,
the number of such censuses is at most (M + 1)2T4@ISI < (M + 1)‘1”(‘7)2[(0)"‘/@“’%)‘;

and
the restriction of the I-tuple to S: there are 211151 < 9127 [V (LNR)| options.
Hence, the number of equivalence classes of =y, gy is at most (M + 1)“0|V(LF‘R)|. |

Proof of Theorem 14. Let T be the tree of the tree decomposition 7, rooted arbitrarily.
For each node x € V(T), let T, denote the subtree of T induced by z and its descendants.
Let Ly = GUyev(r,) 7)) and Ry = GlU,ev (ry\v (1. )yuia TW)], so that Ly U R, = G and
[V(L: N R,)|=|7(x)] <t+1.

Let o, ¢’ and Z be obtained using Theorem 15. We use the standard dynamic programming
approach, computing for each x € V(T) a table assigning to each equivalence class C' of
=(L.,Rr,) an I-tuple A;c € C of subsets of X NV(L,) such that w(A; ) is maximized.
Since =z, r,) has exp(O(t)) equivalence classes by Corollary 20, this can be done in total
time exp(O(¢))|V(G)| for all nodes of 7.

Let r be the root of T, and note that L, = G and R, = G[r(r)]. We go over the
equivalence classes C' of =, g, corresponding to I-tuples satisfying the property expressed
by ¢’ (and thus also by ¢), and return the I-tuple A; ¢ maximizing w(A; ¢). <
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