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Abstract
Given a sequence of integers, S = s1, s2, . . . in ascending order, called the search domain, and an
integer t, called the target, the predecessor problem asks for the target index N such that sN is the
largest integer in S satisfying sN ≤ t. We consider solving the predecessor problem with the least
number of queries to a binary comparison oracle. For each query index i, the oracle returns whether
si ≤ t or si > t. In particular, we study the predecessor problem under the UnboundedNoisy
setting, where (i) the search domain S is unbounded, i.e., n = |S| is unknown or infinite, and (ii)
the binary comparison oracle is noisy. We denote the former setting by Unbounded and the latter
by Noisy. In Noisy, the oracle, for each query, independently returns a wrong answer with a fixed
constant probability 0 < p < 1/2. In particular, even for two queries on the same index i, the
answers from the oracle may be different. Furthermore, with a noisy oracle, the goal is to correctly
return the target index with probability at least 1 − Q, where 0 < Q < 1/2 is the failure probability.

Our first result is an algorithm, called NoS, for Noisy that improves the previous result by
Ben-Or and Hassidim [FOCS 2008] from an expected query complexity bound to a worst-case
bound. We also achieve an expected query complexity bound, whose leading term has an optimal
constant factor, matching the lower bound of Ben-Or and Hassidim. Building on NoS, we propose
our NoSU algorithm, which correctly solves the predecessor problem in the UnboundedNoisy
setting. We prove that the query complexity of NoSU is

∑k

i=1(log(i) N)/(1 − H(p)) + o(log N)
when log Q−1 ∈ o(log N), where N is the target index, k = log∗ N , the iterated logarithm, and H(p)
is the entropy function. This improves the previous bound of O(log(N/Q)/(1 − H(p))) by reducing
the coefficient of the leading term from a large constant to 1. Moreover, we show that this upper
bound can be further improved to (1 − Q)

∑k

i=1(log(i) N)/(1 − H(p)) + o(log N) in expectation, with
the constant in the leading term reduced to 1 − Q. Finally, we show that an information-theoretic
lower bound on the expected query cost of the predecessor problem in UnboundedNoisy is at least
(1 − Q)(

∑k

i=1 log(i) N − 2k)/(1 − H(p)) − 10. This implies the constant factor in the leading term
of our expected upper bound is indeed optimal.
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1 Introduction

Consider a sequence of integers S = s1, s2, . . . sorted in ascending order. The predecessor
problem for a given integer, t, asks for the index N such that sN is the largest integer in S
satisfying sN ≤ t. We assume sN always exists. We refer to S as the search domain and
to N as the target index. The goal of the predecessor problem is to find the target index
with the least number of queries of a given binary comparison oracle, F . Specifically, let
n = |S|; F is a function from the index domain of S, i.e., {1, 2, . . . , n}, to a binary domain
{1,−1}, such that F (i) = −1, if si ≤ t, but F (i) = 1, if si > t. Clearly, when n is known
and the oracle F always returns correct answers, the well-known binary search algorithm
solves the predecessor problem optimally with ⌈log2 n⌉ queries.

Arguably, the predecessor problem is one of the most important and classic problems in
computer science. Departing from the standard setting, there is much research on variants of
binary search [2, 23, 31]. We are particularly interested in two settings of the predecessor
problem, Unbounded and Noisy, as well as the combination of them.

The Unbounded Setting. In the Unbounded setting, the size of S, i.e., n, is either
unknown or unbounded, i.e., infinite. The Unbounded problem was studied by Bentley and
Yao [5] and has many applications, e.g., in range-count queries and in shortlisting [16]. Several
algorithms solving the Unbounded problem are result sensitive: their query complexity
does not depend on the (possibly infinite) size of the search domain, but rather the location
of the result (i.e., the target index N) in S, a property desirable in the context of local
algorithms [21]. Bentley and Yao [5] wrote the state-of-the-art algorithm, BY, with query
complexity

∑
1≤i≤k⌊log(i)(N)⌋+5+2k, where log(i) N is the nested logarithm and k = log∗ N

is the iterated logarithm of N .

The Noisy Setting. In the Noisy setting, the comparison oracle might not always respond
correctly, or truthfully: it could return incorrect results. In this case, the comparison oracle
is said to be noisy. This setting captures the fact that real-world information can be noisy
and, hence, the results of comparisons might not be correct. There has been a long line of
work for dealing with faulty information or uncertainties in searching problems, from the
1965 Rényi-Ulam game [27] to some more recent work [15, 11, 16]. In this paper, we focus
on the probabilistic error model [27, 29, 17, 11, 15], where the oracle F behaves as follows.

▶ Definition 1. For a specified fixed constant error probability p, with 0 < p < 1/2, in the
probabilistic error model, on each query the comparison oracle F independently returns
a wrong answer with probability p.

The goal of the predecessor problem under Noisy is to return the correct target index with
probability at least 1−Q, where 0 < Q < 1/2 is the failure probability.

The UnboundedNoisy Setting. The main focus of this paper is on algorithms solving
the predecessor problem in the UnboundedNoisy setting. This setting combines both
Unbounded and Noisy, and UnboundedNoisy has the following characteristics:

First, due to the unbounded search domain, the anticipated query complexity is a function
of the target index, N , rather than the unknown or unbounded n;
Second, inheriting from Noisy, the query complexity should also be related to both the
error probability, p, and the failure probability, Q. On the one hand, aligned with previous
work [17, 4, 15, 14, 16], parameter p is treated as a constant. On the other hand, as the
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target index N depends on the target integer t, it no longer makes sense to aim at “high
success probability” in terms of N . We require that 1/Q is far less than N ; otherwise, one
can turn this problem into the bounded Noisy case by searching the first c/Q elements
for some constant c. In particular, we assume throughout that log Q−1 ∈ o(log N). As
we see shortly, in this case, the leading term in the query complexity is log2 N , which is
typically the most important term in the query cost. We hence focus on reducing the
hidden constant in such a leading term.

1.1 Our contributions
Bounded search

Our first contribution is an improved algorithm, NoS, for the Noisy setting. It achieves
the same asymptotic query complexity as the state-of-the-art algorithm by Ben-Or and
Hassidim [4]. However, our query bound is more powerful by being worst-case, while theirs is
in expectation. Comparing the constant factors, when log Q−1 ∈ o(log n), the leading term in
their query bound is (1−Q)/(1−H(p)) log2 n, where H(p) = −p log p− (1− p) log(1− p) is
the well-known entropy function. We show that NoS can achieve the same leading term in the
query bound, in expectation, but the randomness stems purely from the algorithm mechanism
rather than the assumption on the target index distribution. Furthermore, according to the
lower bound of Ben-Or and Hassidim [4], the constant factor on this leading term in the
query bounds of both their algorithm and NoS is indeed optimal.

▶ Theorem 2. Our NoS algorithm solves the predecessor problem in the Noisy setting, with
constant error probability 0 < p < 1/2, and a failure probability 0 < Q < 1/2, with worst-case
query complexity:

1
1−H(p)

(
log2 n + O(log log n) + O(

√
log n log Q−1 · log log n

log Q−1 ) + O(log Q−1)
)

. (1)

▶ Corollary 3. When log Q−1 ∈ o(log n), NoS achieves expected query complexity:

1−Q

1−H(p)
(
log2 n + o(log n)

)
. (2)

According to the lower bound of Ben-Or and Hassidim [4], we have the following:

▶ Fact 4 ([4]). The expected query complexity for solving the predecessor problem under
Noisy, parameterized by 0 < p < 1/2 and 0 < Q < 1/2, is at least:

1−Q

1−H(p) log2 n− 10 .

Therefore, the constant factor of the leading term in the query complexity of NoS is tight,
when log Q−1 ∈ o(log n). Very recently, and concurrently with the technical development of
this paper, Dereniowski et al. [10] also proposed improvements over the results of Ben-Or
and Hassidim, achieving a query bound with the same leading term as ours. We compare
the two contributions further in Section 2.

Unbounded search

Building upon Theorem 2, our second contribution is a new algorithm, NoSU, which improves
the query complexity bound for UnboundedNoisy.

SWAT 2022
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▶ Theorem 5. Our NoSU algorithm solves the predecessor problem in the UnboundedNoisy
setting, parameterized by a constant error probability 0 < p < 1/2 and a failure probability
0 < Q < 1/2, with worst-case query complexity:

1
1−H(p)

 k∑
i=1

log(i)
2 N + O(log log N) + O(

√
log N log Q−1 · log log N

log Q−1 ) + O(k log k

Q
)

 ,

where k = log∗ N is the iterated logarithm of N .

▶ Corollary 6. When log Q−1 ∈ o(log N), NoSU has expected query complexity:

1−Q

1−H(p)

 k∑
i=1

log(i)
2 N + o(log N)

 . (3)

Our NoSU algorithm significantly reduces the hidden constant factor in the state-of-the-art
bound by Epa et al. [16] and Dereniowski et al. [11], i.e., O(log(N/Q)/(1 −H(p))). The
coefficients of the leading terms in these bounds are required to be sufficiently large to
invoke the Chernoff bound. In contrast, by Corollary 6, the constant factor in the leading
term, log2 N , of NoSU, is just 1−Q

1−H(p) .
Our final contribution is a lower bound on the expected query complexity for the

predecessor problem under UnboundedNoisy.

▶ Theorem 7. The expected query complexity for solving the predecessor problem under
UnboundedNoisy, parameterized by 0 < p < 1/2 and 0 < Q < 1/2, is at least:

1−Q

1−H(p)

 k∑
i=1

log(i)
2 N − 2k

− 10 . (4)

Combining Theorem 7 and Corollary 6, the leading term in the expected query complexity
of NoSU is thus optimal.

1.2 Applications of UnboundedNoisy
The UnboundedNoisy setting naturally produces algorithms whose costs are result-sensitive:
the query complexity relies on the target index rather than the size of the search domain.
Epa et al. [16] listed a range of applications that solves the predecessor in a noisy setting,
including, for instances, counting the number of elements from a sorted list that fall into a
range, and obtaining the top-ranked elements from two sorted lists. When applying NoSU
to bounded domains, NoSU is an improvement to the algorithm by Epa et al. [16] in the
result-sensitive setting.

The unbounded domain also arises from the context of local algorithms [21], where
computing units in a distributed environment have access to local, but not some global
information, e.g., the total size of the domain. Since the search domain is distributed, it
is hard to discern the total size and run the normal binary search algorithm. Kim and
Winston [20] adapted BY [5], an unbounded binary search algorithm to the problem maximum
power point tracking, processing a large volume of data created from the voltage change in
logarithmic time and avoiding a linear scan of the input. Since unbounded domains are often
a consequence of large-scale, automatically generated, or distributed datasets, it is natural to
consider the comparisons on those data points with the presence of errors [33]. In software
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testing, there often is a breakpoint for certain resource, be it time, space or workload [32].
For instance, finding the number of requests of services that break a load-balancer requires a
tester to check the status of the software under a range of different request numbers. Due to
the randomness commonly existing in those tests, it is reasonable to assume that the search
domain (possible breakpionts) is not only unbounded but also noisy.

2 Related Work

Computing with faulty or uncertain information has long been active field of research. An
early model that deals with uncertainty is the Rényi-Ulam game [26, 28, 34]. In this two-
player game, Player 1’s goal is to identify an element in a finite set by posing questions
to Player 2. In answering these questions, Player 2 tries to stop Player 1 from meeting
their goal by lying sometimes. One standard model for is fixed lies [11, 25, 7, 9], where the
number of lies Player 2 can tell is bounded. Another common error model is linearly bounded
lies [13, 1], where the number of lies the adversary is allowed to tell is at all times linear in
the number of queries. The error model in this paper is the probabilistic model [17], where
for each query the adversary (a.k.a., oracle) independently lies with fixed probability. Feige
et al. [17] proposed algorithms for not just searching, but also sorting, ranking and merging
with the probabilistic model. They refer to this model as the noisy comparison tree: at each
“node” (query), the result leads us in two different directions, and the configurations of the
query responses naturally form a binary tree. When searching an integer domain, algorithms
are often based on binary search [6, 29, 30].

There are well-known connections between these models. We consider the MWU
algorithm by Dereniowski et al. [12], who studied a graph search framework proposed by
Emamjomeh-Zadeh et al. [15]. Though designed for the fixed-lies model, with carefully
selected parameters, it could return the correct answer with desirable guarantees under the
probabilistic error model, which is the setting of Noisy.

Bentley and Yao first introduced the Unbounded setting for binary search and the
definitive algorithm, BY [5], detailed in Section 4. Invoking results from prefix codes, they
also established a lower bound for Unbounded predecessor search, which is at the heart
of our lower bound in Section 6. Their bounds [5] were later improved by Beigel [3] on the
non-leading terms. As our analysis focuses on the leading term, we still consider BY as the
state of the art.

Combining the two settings, UnboundedNoisy was studied by Pelc [24] and then by
Aslam and Dhagat [1], who achieved a bound of O(log N) for the linearly bounded lies model.
Dereniowski et al. [11] and Epa et al. [16] recently studied the problem under the same
setting as ours, but our algorithm NoSU has a better constant on the leading term.

Table 1 displays state-of-the-art results for those problems and the query complexity.
Although the hidden constant on the leading term log n of Feige’s bound is not as small

as that of BH, a nice feature of Feige is that it is a Monte-Carlo algorithm and provides a
worst-case query complexity. We incorporate Feige as a subroutine in our algorithm, NoSU.

Simultaneously with the technical development of our work, Dereniowski et al. [10] applied
the Bayesian-update technique, further developing and improving the result of Ben-Or and
Hassidim [4], to sorted integers as well as graphs. Similar to NoS, their algorithms also
improve the previous bounds [17, 4, 10] in Noisy. Their algorithm PŁU and our NoS
(stated in Theorem 2) achieve the same query complexity bound in the leading term. Upon
closer inspection, PŁU is tighter on the second dominating term (O(

√
log n log Q−1)) than

ours. While we are interested in constant error probability, PŁU is able to handle the

SWAT 2022
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Table 1 Summary of complexity results for predecessor search in a variety of settings.

Problem Algorithm Upper Bound Complexity Source

Bounded BinarySearch ⌈log n⌉ Folklore
Unbounded BY

∑
1≤i≤log∗ N

⌊log(i)(N)⌋ + 5 + 2 log∗ N [5]

Noisy BH Expected (1 − H(p))−1 · (log n +
O(log log n) + O(log Q−1)) [4]

Noisy Feige (1 − H(p))−1O(log n/Q) [17]

Noisy PŁU (1 − H(p))−1 · (log n +
O(

√
log n log Q−1) + O(log Q−1))

[10]

UnboundedNoisy Unbounded (1 − H(p))−1O(log(N/Q)) [11]
UnboundedNoisy EGW Expected (1 − H(p))−1O(log(N/Q)) [16]

case when p is not a constant For this work, this is not an issue as we already require that
p be a constant. Although both their and our algorithms share similar ideas of selecting
items by adjusting the pre-assigned weights, interestingly, the actual details are substantially
different: while PŁU processes the items in epochs with repeated queries, our NoS first
adopts the existing MWU algorithm as a blackbox and then refines the certain candidates
in the subsequent stages. Thanks to this, the proof of NoS is relatively simpler. Moreover,
NoS is also easily incorporated into the UnboundedNoisy setting which is the main focus
of this work.

There is a variety of models, and accompanying algorithms, for solving binary search in
noisy conditions; several of these models differ substantially from ours [19, 22, 18, 8]. For
instance, Karp and Kleinberg [19] considered a setting where the search is conducted on
a sequence of coins, each equipped with a fixed (but distinct) probability of showing head
when tossed. The coins are sorted according to their head probabilities. The goal is to find
the leftmost coin whose head probability is lower than some target probability, with the
least number of coin tosses. This is a more general noisy binary search model than Noisy as
the probability of making a mistake varies from query to query. Interestingly, NoS almost
matches the information-theoretical lower bound obtained by Karp and Kleinberg [19].

3 Bounded Search with Noisy Information

We begin our technical presentation with an introduction to an existing algorithm in Noisy
setting, but with a different oracle definition, culminating in our algorithm NoS, as part of
the proof of Theorem 2.

3.1 Preliminary: A Graph-based Noisy Search Algorithm
We outline the MWU (Multiplicative Weight Update) algorithm [11]1 in this section, as
a preliminary to our NoS algorithm. MWU is designed for the problem of searching in a
graph via queries to an oracle. Since a sorted sequence of integers can be viewed as a path
graph, MWU is also applicable to the predecessor problem. However, MWU requires a
ternary oracle in the probability model, which is a stronger oracle than the binary oracle
as discussed earlier. Specifically, for the index domain [n], a ternary comparison oracle is

1 Here and onwards we cite the ArXiv version [11] instead of the conference version [12]: as the authors
themselves later noted, the bounds established in the conference version turn out to be inaccurate.
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defined as a function F ′ such that for all i ∈ [n], F ′(i) = −1 if si < t, F ′(i) = 0 if si = t,
while F ′(i) = 1 if si > t. Nonetheless, as we show shortly, we can strengthen the MWU
algorithm to be applicable with a binary oracle without affecting its query complexity.

To avoid distractions, we describe MWU in the context of predecessor problem on a
sorted sequence of integers. Let us define some notation first. For an index i ∈ [n], define
its left set as Li = [1, i − 1] and its right set as Ri = [i + 1, n], each an interval that
includes both endpoints. For a query on i, the response F ′(i) = 1 implies t ∈ Li, while
F ′(i) = −1 implies t ∈ Ri, and F ′(i) = 0 implies t = si. For a specified error probability
0 < p < 1/2, each response is correct, independently, with probability at least 1 − p. An
index j is called compatible with the oracle’s response for index i if j is in the implied
interval2, and is called incompatible otherwise. We learn the target t by eliminating indices
that are incompatible with too many queries, and assess the likelihood of an index being the
target via the assignment of weights at each round of the algorithm. For every index i ∈ [n],
let µ(i) be the weight of i, initialized to be 1. We overload function µ so that for a subset of
indices S ⊆ [n], define µ(S) =

∑
i∈S µ(i), and let µ = µ([n]), the total weight in array [n].

The weighted distance sum of index i ∈ [n] is

Φ(i) =
∑

j∈[n]

µ(j) · |i− j| .

Let q = argmini∈[n] Φ(i) be the index that minimizes the weighted distance sum, Φ. Analogous
to standard binary search, q is the median that we query, and the response suggests eliminating
half of the potential candidates for the target. In Noisy, we choose q so that the nodes
preceding q constitute roughly half the weight and those following q roughly possess half the
total weight.

Algorithm MWU proceeds in iterations. Initially each index has weight 1. At each
iteration, MWU queries the comparison oracle at q: it reduces the weight of each incompatible
index multiplying by factor 1/Γ, for some Γ > 0 defined later. MWU terminates when
only one index in [n] has weight at least 1/ΓL, for some pre-determined integer L > 0.
This termination condition assumes that the oracle makes at most L mistakes throughout
the search, a property of an oracle in the fixed-lies error model. However, by setting the
parameters appropriately, the fixed-lies error model can be transformed into the probabilistic
error model. In particular, Dereniowski et al. [11], show the following:

▶ Fact 8. Over all iterations of the entire process of MWU, the amortized rate of decrease
of the total weight is at least Γ+1

2Γ . Specially, if the total weight at the beginning of an iteration
is µ, at the end of this iteration, the total weight decreases to Γ+1

2Γ µ, amortized.

The main result of MWU is as follows.

▶ Theorem 9 (Section 3.3 [11]). Algorithm MWU solves the predecessor problem under
Noisy parameterized by 0 < p < 1/2 and 0 < Q < 1/2 with a ternary comparison oracle,
with at most

1
1−H(p)

(
log2 n + O(

√
log n log Q−1 · log log n

log Q−1 ) + O(log Q−1)
)

(5)

queries, and the parameters are set as L = (r log2 n)/(1−H(r)), Γ = (1−r)/r, r = (1−ε0)/2,
and ε0 = (1− 2p)/

(
1 +

√
8 ln Q−1/ ln n

)
.

2 Treat F ′(i) = 0 as t ∈ [si, si]

SWAT 2022
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In fact, Dereninowski et al. [11] showed that as long as an iterative algorithm can reduce
the total weight by an (amortized) rate of (Γ + 1)/(2Γ), the algorithm satisfies the bound in
Expression (5) with the parameters set in Theorem 9. With high probability, it takes that
many (Expression 5) iterations to reduce the total weight to an amount such that only one
node can possibly have weight more than 1/ΓL. Unfortunately, Theorem 9 is not directly
applicable to the setting with a binary comparison oracle. The binary oracle cannot provide
answers to the queries as strong as those a ternary oracle provides. Specifically, for a query
index i, a binary oracle can only separate [n] into two parts, Li ∪ {i} and Ri, rather than
three parts: Li, {i} and Ri. Hence Fact 8 need not hold for the binary oracle.

3.2 Our Two-Stage Noisy Search Algorithm
In this section, we present our algorithm NoS (Noisy Search), to solve the predecessor
problem under the Noisy setting with a binary oracle, achieving the same query complexity
as MWU. Algorithm NoS first finds a smaller candidate set that includes the target index
and then searches on the set to find the target index. Recall that for a queried index v, the
possible compatible sets yielded from a query response are Lv ∪ {v} when F (v) = −1 and
Rv when F (v) = 1. We call the first response that includes the queried index an inclusive
answer and the second an exclusive answer. The basic idea of our NoS is that it first collects
all the queried indices into a set M as if a ternary oracle is adopted, and then, it further
searches the target index in M in the second stage.

Algorithm 1 Algorithm WeightedBinary with Γ and L as parameters (defined in Theorem 9).

1: function WeightedBinary(A, L, Γ)
2: M ← ∅
3: for v ∈ [1, n] do µ(v)← 1 and lv ← 0
4: while more than one index x ∈ [n] has lx ≤ L do
5: Query the oracle at q ← arg minx∈[1,n] Φ(x)
6: if the query response is an inclusive answer then
7: M ←M ∪ {q}, µ(q)← 0, and lq ← L + 1
8: for all incompatible v do
9: µ(v)← µ(v)/Γ and lv ← lv + 1

10: M ←M ∪ {x ∈ [n] : lx ≤ L}
11: return M

Algorithm 1 is the first stage of NoS, where a small set of potential targets is identified. We
adapt the ternary-oracle algorithm MWU in the previous section to our setting. Compared
to its ternary counterpart, WeightedBinary returns a set M that contains the single index
that has sufficiently large weight, plus all queried indices for which an inclusive answer is
returned. We have:

▶ Lemma 10. At each iteration, if the total weight at the beginning of the iteration is µ,
then WeightedBinary reduces the total weight to Γ+1

2Γ µ.

Proof. To see this, we compute the rate by which the total weight diminishes at an iteration.
It is easy to prove that by the definition of q, µ(Lq) ≤ µ/2 and µ(Rq) ≤ µ/2.

At any iteration, consider the response of the binary oracle for a queried node q. Suppose
the total weight is µ. Then by definition µ = µ(Lq) +µ(Rq) +µ(q). If the answer is exclusive,
then weights in Lq ∪ {q} are lowered. Since µ(Lq ∪ {q})/Γ + µ(Rq) ≤ µ

Γ + Γ−1
Γ µ(R) ≤ Γ+1

2Γ µ,
the total weight is reduced sufficiently. If the answer is inclusive, then the total weight is
lowered by a factor at least Γ+1

2Γ , as here q has its weight reduced to 0. ◀
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Observe that the bound in Lemma 10 holds at every iteration, contrasting with Fact 8, which
holds in amortization. From Theorem 9 we conclude the following.

▶ Theorem 11. With suitable parameter settings (as in Theorem 9), for the predecessor
problem under Noisy, with 0 < p < 1/2 and 0 < Q < 1/2, Algorithm WeightedBinary
returns a set M containing the target, taking at most β queries, where |M | ≤ β + 1 and

β = 1
1−H(p)

(
log2 n + O(

√
log n log Q−1 · log log n

log Q−1 ) + O(log Q−1)
)

.

The second stage of NoS can be conducted with an existing algorithm, e.g., Feige [17]
whose query complexity is O(log(n/Q))/(1−H(p)), as shown in Algorithm 2.

Algorithm 2 Algorithm NoS.

1: function NoS(A, Q)
2: Q← Q/2 ▷ For the union bound

3: r ←
(

1− 1−2p

1+
√

8(ln Q−1)/(ln n)

)
/2

4: L← (r log2 n)/(1−H(r)) and Γ← (1− r)/r

5: M ←WeightedBinary(A, L, Γ)
6: Run Feige on (M, Q/2)
7: return the target found

It first runs WeightedBinary on the input to obtain M , whose size is bounded
by O(log2 n/(1 − H(p)). Second, it runs Feige [17] on M and obtain a target within(

O(log log n
1−H(p) ) + O(log Q−1)

)
/(1−H(p)) = O(log log n + log Q−1)/(1−H(p)) queries. A

union bound on the failure probability and summing up these two costs lead to Theorem 2.

3.3 Proof of Corollary 3
To obtain the promised expected query complexity of NoS, we apply a familiar trick [4].
Observe that when log Q−1 ∈ o(log n), the worst-case query complexity of NoS can be
written as 1

1−H(p)
(
log2 n + o(log n)

)
. As a result, the “gap” (i.e., the difference) between this

worst-case bound and the expected bound, in Expression (2), is Q
1−H(p)

(
log2 n + o(log n)

)
.

We strengthen NoS as follows. On the one hand, when Q ≤ 1
log2 n , this gap becomes

at most 1
1−H(p) (1 + o(1)) ∈ o(log n). In this case, the worst-case query complexity of NoS

suffices to meet the bound 1−Q
1−H(p)

(
log2 n + o(log n)

)
. But when Q > 1

log2 n , we perform the
following steps. With probability Q− 1

log2 n , we return index 1, and are done. Otherwise,
i.e., with probability 1−Q + 1

log2 n , we run NoS with a failure probability Q′ = 1
log2 n .

Clearly, the probability of not returning the target index by the above strengthened
version of NoS is at most Q− 1

log2 n + Q′ = Q. Furthermore, in expectation, the query cost
is (1−Q + 1

log2 n ) · 1
1−H(p)

(
log2 n + o(log n)

)
which is bounded by 1−Q

1−H(p)
(
log2 n + o(log n)

)
.

4 Unbounded Search Without Noise

In this section we introduce an algorithm for the Unbounded setting by Bentley and Yao [5]
(denoted by BY), a central plank of our approach to Unbounded. Bentley and Yao express
their results, i.e., Lemmas 12, 13 and 14 via some customized functions. Our exposition has
more standard notation, via the logarithmic function.
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We consider Unbounded for the index domain A = {1, 2, . . .}, an infinite sequence. We
first define a series of subsequences of A. Specifically, put A0 ≡ A, and for i, j ≥ 1 let
Ai[j] = Ai−1[2j − 1]. We illustrate the definition of the {Ai} in Figure 1’s left panel.

𝐴∗ 𝑚" = 16
𝐴" = 1, 2 , 3, … , 𝑖, … 𝑚# = 5 𝐵" = 16,17,18, … , 31
𝐴# = 1, 3 , 7, … , 2$ − 1,… 𝑚% = 3 𝐵# = 15, 31, 63,127
𝐴% = 1, 7 , 127, … , 2%!&# − 1,… 𝑚' = 2 𝐵% = 7, 127

𝐴' = 1, 127 ,2#%(−1,… , 2%"
!#$&# − 1,… 𝑢 = 3 𝐵' = 1, 127

Figure 1 Left panel: An illustration of the first four subsequences, A0, A1, A2, A3, and A∗.
Right panel: an example of running BY for target index N = 16, with u, mi and Bi. The arrow
indicates the execution order, and the red-colored item indicates the answer to the predecessor query.
Quantity mi is the index of the red-colored item in Ai.

For all i ≥ 0, define mi to be the answer to the predecessor query for t on Ai: the goal of
Unbounded is to find m0. We can also express the value of mi in terms of N , the target.

▶ Lemma 12 (Derived from [5]). For 1 ≤ i ≤ k, where k = log∗ N , mi ≤ ⌊log(i) N⌋+ 2.

Next, the unbounded sequence A∗ consists of the second item in each sequence Ai. Formally,
A∗[j] = Aj [2], for j ≥ 1. Let u denote the answer to the predecessor query on A∗.

▶ Lemma 13 (Derived from [5]). We have u ≤ k + 1, where k = log∗ N .

Algorithm 3 outlines the BY algorithm. It has two stages: first we find u via a unary
search on A∗; then we repeatedly call BinarySearch on suitable subsequences, Bi. For some
array R, BinarySearch(R) returns the lowest i satisfying F (i) = 1, in ⌈log |R|⌉ queries.
Line 6 defines Bi−1, a subsequence of Ai−1, so that it contains all items that are between
the immediate preceding item of the current search result, Ai[mi− 1], and the current search
result, Ai[mi]. Formally, for 1 ≤ j < 2mi−1 + 1, we have Bi−1[j] = Ai−1[j + 2mi−1 − 1]. The
intuition of the algorithm is simple: at each iteration, we identify, via binary search, the
answer to the predecessor problem for a subsequence of Ai, and the result helps us to “zoom
in” to the items contained by an interval of a more fine-grained subsequence, Ai−1. The
right panel of Figure 1 shows an example of running BY.

Algorithm 3 BY.

1: function BY(A)
2: Find u by evaluating A∗ linearly
3: Bu ← Au

4: for i← u down to 1 do
5: mi ← BinarySearch(Bi)
6: Bi−1 ← the subsequence of Ai−1 for indexes in [2mi−1, 2mi)
7: m0 ← BinarySearch(B0)
8: return m0

▶ Lemma 14 (Derived from [5]). Let k = log∗ N . The query complexity of algorithm BY is
5 + 2k +

∑
1≤i≤k⌊log(i)(N)⌋.
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5 Unbounded Noisy Search

With the help of algorithms BY and NoS, we can tackle UnboundedNoisy. Algorithm
NoSU builds on the idea of an almost result-sensitive algorithm [16, Section 3.1].

5.1 An Existing Algorithm
We first describe an existing UnboundedNoisy algorithm called Unbounded, derived from
Noisy algorithm Feige.

▶ Theorem 15 (Theorem C.3 [11]). For the predecessor problem under UnboundedNoisy
parameterized by 0 < p < 1/2 and 0 < Q < 1/2, Algorithm Unbounded, with probability at
least 1 −Q, correctly finds the target index. Unbounded is built upon an existing Noisy
algorithm A and it uses at least 10 but at most O(1) times as many queries as does A. When
A is Feige [17], Unbounded has query complexity O

(
1

1−H(p) · log(N/Q)
)

.

The Unbounded algorithm invokes Feige as a blackbox and inherits the same asymptotic
query complexity bound. Theorem 15 provides a satisfactory algorithm for solving Unboun-
dedNoisy. In contrast, NoSU achieves a bound with leading term 1

1−H(p) · log2(N/Q). The
hidden constant leading coefficient in Unbounded is at least 10, i.e., the query complexity of
algorithm Unbounded is not as tight as desired. The bound of Epa et al. [16] also includes
a large constant, dervied from the Chernoff bound.

5.2 Algorithm NoSU
Algorithm 4 details our procedure, NoSU. Symbols mi, u and Bi are the same as in BY,
defined in Section 4. Similar to BY, NoSU has stages, one to figure out u, the other to
simulate the iterations of Bi. We prove Theorem 5 here.

Algorithm 4 NoSU.

1: function NoSU(A, Q)
2: run Unbounded(A∗, Q/3) to find u

3: Bu ← Au

4: for i from u to 1 do
5: mi ← NoS(Bi, Q/(3u))
6: Let Bi−1 be a subsequence of Ai−1 for indexes in [2mi−1, 2mi)
7: m0 ← NoS(B0, Q/3)
8: return m0

Proof of Theorem 5. Clearly, by the union bound, Algorithm 4 correctly finds the target
index N with probability at least 1−Q.

We now focus on the query complexity of each of the two stages of the algorithm. Line 2
identifies u by calling Unbounded(A∗, Q/3). Recall that k = log∗ N . Lemma 13 shows
that the target index is u and k + 1 ≥ u, so Theorem 15 implies that O

(
1

1−H(p) · log(k/Q)
)

many queries are needed for this step.
For 1 ≤ i ≤ u, let gi(N, p, Q) be the upper bound on the number of queries issued by

algorithm NoS (Theorem 2) when applied to Bi. For 0 ≤ i ≤ u − 1, the size of Bi at
iteration i is 2mi+1−1; and according to Lemma 12, for 1 ≤ j ≤ k, mj ≤ ⌊log(j) N⌋ + 2.
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Therefore, for 0 ≤ i ≤ u− 1, |Bi| = 4 log(i)(N)− 1. Also, since |Bu| = 2, the cost of calling
NoS on Bu is a constant. Summing over all gi(N, p, Q) terms yields

u−1∑
i=0

gi(N, p, Q) ≤
k∑

i=0
gi(N, p, Q) = 1

1−H(p) (C1 + C2 + C3 + C4) ,

where C1 =
∑k

i=0 log(i+1)
2 N , C2 =

∑k
i=0 O(log(i+2) N), C3 =

k∑
i=1

O

(√
log(i+1) N log(3k/Q) · log log(i+1) N

log(3k/Q)

)
+ O

(√
log N log(3/Q) · log log N

log(3/Q)

)
,

and C4 =
∑k

i=1 O(log(3k/Q)) + O(log(3/Q)).
We inspect each of the four terms individually. For the first term, C1, we have simply∑k+1

i=1 log(i)
2 N , which is

∑k
i=1 log(i)

2 N plus a small constant. For the second term, C2, the
quantity folds into O(log log N). For the third term, C3, with large enough N , we have

k∑
i=1

O(
√

log(i+1) N log(3k/Q)) + O(
√

log N log(3/Q)) ≤ O(
√

log N log Q−1) .

And for 1 ≤ i ≤ k the multiplicative factor of C3 satisfies log log(i+1) N
log(3k/Q) ≤ log log N

log Q−1 , and
log log N

log(3/Q) ≤ log log N
log Q−1 . The fourth term, C4, adds up to O(k log(k/Q)), and it absorbs

the cost of Unbounded. We thus obtain the bound of Theorem 5. ◀

Although tight, the upper bound in Theorem 5 does not immediately provide a clear
perspective on the bound. Consider the worst-case query complexity of NoSU. In our
setting, we have

∑k
i=1 log(i)

2 N +O(k log k) < log2 N +O(log log N), so the Theorem 5 bound
is at most

1
1−H(p)

(
log2 N + O(log log N) + O(

√
log N log Q−1 log log N

log Q−1 ) + O(k log Q−1)
)

.

This is remarkably similar to the bound in Theorem 2. We now prove Corollary 6.

Proof of Corollary 6. Recall that Unbounded requires O
(
(1−H(p))−1 log(k/Q)

)
many

queries, which resolves to o(log N) under our setting. For i ∈ [0, k], the call of NoS on Bi

only results at most log(i+1)
2 N + o(log(i+1) N) queries, as |Bi| = 4 log(i) N − 1. The cost of

searching in Bu is again a small constant. Corollary 3 hence confirms NoSU has expected
query complexity (1−Q)/(1−H(p))

∑k
i=1 log(i)

2 N + o(log N). ◀

6 The Lower Bound

This section is dedicated to prove Theorem 7, a lower bound on the expected query complexity
for the predecessor problem under UnboundedNoisy. Let γ̄ be the expected query complex-
ity of an arbitrary algorithm A that solves the predecessor problem under UnboundedNoisy,
parameterized by 0 < p < 1/2 and 0 < Q < 1/2. We lower bound γ̄.

The idea of the lower bound proof is to reduce to the predecessor problem under Un-
boundedNoisy, from a well-studied task in information theory. The proof for the Noisy
setting by Ben-Or and Hassidim [4] is not directly applicable.

First we introduce some basic concepts and terminologies in information theory. In a
classic communication problem, we have a transmitter, A, who wants to send some information
to a receiver, B. The information is from a source set S, and it is sent via a communication
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channel where only special symbols are allowed to travel, one at a time. In our context, we
focus on a binary channel that transmits only a binary string bit by bit. A codeword w

from a binary alphabet is defined as a non-empty binary string, i.e., w ∈ {0, 1}+. A code
scheme is an injective mapping c : S → {0, 1}+ that maps an item in the source set S to its
unique codeword. The communication channel we consider here is a noisy binary symmetric
memoryless channel with feedback (BSM-F). The channel is noisy if for every bit sent from A

to B, upon arrival, it could be flipped (from 1 to 0 or from 0 to 1) independently with certain
probability. A channel is symmetric if the probability of flipping is the same for the bit 1
and 0, and memoryless if the probability also does not vary throughout the transmission,
independent to the transmission history before that bit. A communication channel has
a feedback channel if for every bit A sends, A knows what B receives from the feedback
(sometimes called backward) channel. The feedback is useful here as A is adaptive to the
noise and can make a decision on the next bit to transmit accordingly.
From the full version of the paper by Ben-Or and Hassidim [4] we have:

▶ Fact 16 (Theorem B.1 of full version [4]). For a fixed flipping probability 0 < p < 1/2 and
a failure probability 0 < Q < 1/2, consider the communication problem where A sends a
message to B over a BSM-F. A bit is received wrongly with probability p, and the message is
of length η. Besides, the codeword is correctly received with probability at least 1−Q. Let τ(η)
be the expected number of bits A has to send to achieve the goal. Then for a large enough η,
we have τ(η) > (1−Q) η

1−H(p) − 10.

Define a communication task Comm that requires A to send to B the information, an item
of S = {1, 2, . . . }, over a BSM-F. This naturally induces an UnboundedNoisy instance
with error probability p and failure probability Q. Denote by A an algorithm that solves the
predecessor problem under UnboundedNoisy. We invoke A to solve Comm, and the lower
bound on Comm implies a lower bound on the query complexity of A.

The following construction of the communication protocol between A and B is inspired
by the proof of Theorem 2.8 by Ben-Or and Hassidim [4]. B employs Algorithm A to identify
the index of the item in S (which is equivalent to the item itself in this case) that A wants
to send; and B also uses the feedback channel to inform A which index it wants to query.
Specifically, A sends back a bit 0 if F (i) = −1, and a bit 1 if F (i) = 1 via the noisy channel
to B. The communication is terminated once Algorithm A decides that the target index is
found, i.e., B knows the target item in S. In the above definition of the feedback channel, A

only knows the bit B received from the last transmission, i.e., the noisy answer for the latest
query. However, we can achieve the same effect by simulating algorithm A on A as well as
on B. As both A and B know the same queried answer, each copy of the algorithm yields
the same steps. Conceptually, we can think of the feedback channel is capable of requesting
a specific item index to inquire.

As alluded to earlier, the channel handles not directly the index N of the item but a
binary code, which we refer to as the codeword of N . Algorithm A defines a code scheme
c : S → {0, 1}+, where c(N) is the codeword for the index N transmitted in the channel
when none of the bits of c(N) is flipped by the noise. Intuitively, when B receives from A

successfully the information of N , c(N) is the message that B actually discovers from the
transmission. B may not receive exactly the bits in c(N) but after correcting errors caused
by the channel noise, B should be able to conclude that the right codeword is c(N).

We define a code scheme to connect Comm to Theorem 16. Let ηN =
∣∣c(N)

∣∣ be the
number of bits of c(N). Crucially, as observed by Bentley and Yao [5], the code scheme c

determines a prefix code, i.e., c(i) is not a prefix of c(j) for all i < j. This is also easy to
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verify, because if for some i, c(i) is a prefix of another codeword, then algorithm A will not
know whether to terminate or not when c(i) arrives. They proved the following lower bound
on the message length of a prefix-code codeword.

▶ Fact 17 (Theorem A, section 3 of [5]). Let k = log∗ N . We have ηN >
∑k

i=1 log(i)
2 N − 2k .

Our lower bound result (Theorem 7) follows from Fact 16 and Fact 17.

7 Conclusion

In this work, we provide improved algorithms for both Noisy and UnboundedNoisy settings
of predecessor search. For the former, our algorithm NoS achieves, in the leading term, query
complexity (log n)(1−H(p))−1 and expected complexity ((1−Q) log n)(1−H(p))−1. For the
latter, our algorithm NoSU achieves, in the leading term, query complexity

∑k
i=1(log N)(1−

H(p))−1 and expected complexity (1−Q)(
∑k

i=1 log N)(1−H(p))−1. Our expected upper
bounds also closely match lower bounds. We construct NoSU by creatively combining
results from the Unbounded and Noisy settings. Our result emphasizes obtaining the best
constant on the leading term, particularly in the UnboundedNoisy setting.

Since our NoS algorithm is derived from algorithms designed for graph searches, it would
be interesting in future to explore the unbounded setting in graphs and test if our idea can be
generalized to more general graphs as well. The error model assumes here that the probability
of the oracle making a mistake is the same for all queries. In a more flexible setting, the
error probability follows a different distribution, rather than the uniform distribution. As
others found [16, 17], our algorithm could potentially be applied as a subroutine to many
more problems that rely on the predecessor problem.
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