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Abstract
In an influential paper, Erdős and Selfridge introduced the Maker-Breaker game played on a
hypergraph, or equivalently, on a monotone CNF. The players take turns assigning values to
variables of their choosing, and Breaker’s goal is to satisfy the CNF, while Maker’s goal is to falsify
it. The Erdős–Selfridge Theorem says that the least number of clauses in any monotone CNF with
k literals per clause where Maker has a winning strategy is Θp2k

q.
We study the analogous question when the CNF is not necessarily monotone. We prove

bounds of Θp
?

2 k
q when Maker plays last, and Ωp1.5k

q and Oprk
q when Breaker plays last, where

r “ p1 `
?

5q{2 « 1.618 is the golden ratio.
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1 Introduction

In 1973, Erdős and Selfridge published a paper [3] with several fundamental contributions,
including:

Being widely regarded as the genesis of the method of conditional expectations. The
subsequent impact of this method on theoretical computer science needs no explanation.
Introducing the so-called Maker-Breaker game, variants of which have since been studied
in numerous papers in the combinatorics literature.

We revisit that seminal work and steer it in a new direction. The main theorem from [3]
can be phrased in terms of CNFs (conjunctive normal form boolean formulas) that are
monotone (they contain only positive literals). We investigate what happens for general
CNFs, which may contain negative literals. We feel that the influence of Erdős–Selfridge and
the pervasiveness of CNFs in theoretical computer science justify this question as inherently
worthy of attention. Our pursuit of the answer uncovers new techniques and invites the
development of further techniques to achieve a full resolution in the future.

In the Maker-Breaker game played on a monotone CNF, the eponymous players take
turns assigning boolean values to variables of their choosing. Breaker wins if the CNF
gets satisfied, and Maker wins otherwise; there are no draws. Since the CNF is monotone,
Breaker might as well assign 1 to every variable she picks, and Maker might as well assign
0 to every variable he picks. In the generalization to nonmonotone CNFs, each player can
pick which remaining variable and which bit to assign it during their turn. To distinguish
this general game, we rename Breaker as T (for “true”) and Maker as F (for “false”). The
computational complexity of deciding which player has a winning strategy has been studied
in [10, 11, 2, 5, 6, 1, 7, 8, 9].
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31:2 Erdős–Selfridge Theorem for Nonmonotone CNFs

A CNF is k-uniform when every clause has exactly k literals (corresponding to k distinct
variables). The Erdős–Selfridge Theorem answers an extremal question: How few clauses can
there be in a k-uniform monotone CNF that Maker can win? It depends a little on which
player gets the opening move: 2k if Breaker plays first, and 2k´1 if Maker plays first. The
identity of the player with the final move doesn’t affect the answer for monotone CNFs. In
contrast, “who gets the last laugh” matters a lot for general CNFs:

▶ Theorem 1 (informal). If F plays last, then the least number of clauses in any k-uniform
CNF where F has a winning strategy is Θp

?
2 kq.

▶ Theorem 2 (informal). If T plays last, then the least number of clauses in any k-uniform
CNF where F has a winning strategy is Ωp1.5kq and Oprkq where r “ p1 `

?
5q{2 « 1.618.

The most involved proof is the Ωp1.5kq lower bound in Theorem 2. We conjecture the
correct bound is Θprkq.

2 Results

In the unordered CNF game, there is a CNF φ and a set of variables X containing all variables
that appear in φ and possibly more. The players T and F alternate turns; each turn consists
of picking an unassigned variable from X and picking a value 0 or 1 to assign it.1 The game
ends when all variables are assigned; T wins if φ is satisfied (every clause has a true literal),
and F wins if φ is unsatisfied (some clause has all false literals). There are four possible
patterns according to “who goes first” and “who goes last.” If the same player has the first
and last moves, then |X| is odd, and if different players have the first and last moves, then
|X| is even.

▶ Definition 3. For k ě 0 and a, b P tT,Fu, we let Mk,a¨¨¨b be the minimum number of
clauses in φ, over all unordered CNF game instances pφ,Xq where φ is k-uniform and F has
a winning strategy when player a has the first move and player b has the last move.

▶ Theorem 1 (formal). Mk,T¨¨¨F “
?

2 k for even k, and 1.5
?

2 k´1 ď Mk,T¨¨¨F ď
?

2 k`1 for
odd k.

Let Fibk denote the kth Fibonacci number. It is well-known that Fibk “ Θprkq where
r “ p1 `

?
5q{2 « 1.618.

▶ Theorem 2 (formal). 1.5k ď Mk,T¨¨¨T ď Fibk`2 for all k.

▶ Observation 3. Mk,F¨¨¨b “ Mk´1,T¨¨¨b for all k ě 1 and b P tT,Fu.

Proof. Mk,F¨¨¨b ď Mk´1,T¨¨¨b: Suppose F wins pφ,Xq when T moves first, where φ is pk ´ 1q-
uniform. Then F wins pφ1, X Y tx0uq when F moves first, where x0 is a fresh variable (not
already in X) and φ1 is the same as φ but with x0 added to each clause. F’s winning strategy
is to play x0 “ 0 first and then use the winning strategy for pφ,Xq. Note that φ1 is k-uniform
and has the same number of clauses as φ.

Mk´1,T¨¨¨b ď Mk,F¨¨¨b: Suppose F wins pφ,Xq when F moves first, where φ is k-uniform.
Say the opening move in F’s winning strategy is ℓi “ 1, where ℓi P txi, xiu is some literal.
Obtain φ1 from φ by removing each clause containing ℓi, removing ℓi from each clause

1 This game is called “unordered” to contrast it with the related TQBF game, in which the variables
must be played in a prescribed order.
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containing ℓi, and removing an arbitrary literal from each clause containing neither ℓi nor ℓi.
Then F wins pφ1, X ´ txiuq when T moves first, and φ1 is pk ´ 1q-uniform and has at most
as many clauses as φ. ◀

▶ Corollary 4.
Mk,F¨¨¨F “

?
2 k´1 for odd k, and 1.5

?
2 k´2 ď Mk,F¨¨¨F ď

?
2 k for even k.

1.5k´1 ď Mk,F¨¨¨T ď Fibk`1 for all k.
(Observation 3 requires k ě 1, but the bounds in Corollary 4 also hold for k “ 0 since
M0,a¨¨¨b “ 1: F wins a CNF with an empty clause, and T wins a CNF with no clauses.)

3 Upper bounds

In this section, we prove the upper bounds of Theorem 1 and Theorem 2 by giving examples
of game instances with few clauses where F wins. In [3], Erdős and Selfridge proved the
upper bound for the Maker-Breaker game by showing a k-uniform monotone CNF with 2k

clauses where Maker (F) wins. The basic idea is that F can win on the following formula,
which is not a CNF:

px1 ^ x2q _ px3 ^ x4q _ ¨ ¨ ¨ _ px2k´1 ^ x2kq

Whenever T plays a variable, F responds by assigning 0 to the paired variable. By the
distributive law, this expands to a k-uniform monotone CNF with 2k clauses. We study
nonmonotone CNFs, which may have both positive and negative literals.

3.1 F plays last
▶ Lemma 5. Mk,T¨¨¨F ď

?
2 k for even k.

Proof. F can win on the following formula, which is not a CNF, with variables Xk “

tx1, . . . , xku.

px1 ‘ x2q _ px3 ‘ x4q _ ¨ ¨ ¨ _ pxk´1 ‘ xkq

Whenever T plays a variable, F responds by playing the paired variable to make them
equal. To convert this formula to an equivalent CNF, first replace each pxi ‘ xi`1q with
pxi _ xi`1q ^ pxi _ xi`1q. Then by the distributive law, this expands to a k-uniform CNF
φk where one clause is

ppx1 _ x2q _ px3 _ x4q _ ¨ ¨ ¨ _ pxk´1 _ xkqq

and for i P t1, 3, 5, . . . , k´1u, each clause contains either pxi _xi`1q or pxi _xi`1q. Therefore
φk has 2k{2 “

?
2 k clauses: one clause for each S Ď t1, 3, 5, . . . , k´1u. F wins in pφk, Xkq. ◀

▶ Lemma 6. Mk,T¨¨¨F ď
?

2 k`1 for odd k.

Proof. Suppose φk´1 is the pk ´ 1q-uniform CNF with
?

2 k´1 clauses from Lemma 5 (since
k ´ 1 is even). We take two copies of φk´1, and put a new variable xk in each clause of one
copy, and a new variable xk`1 in each clause of the other copy. Call this φk. Formally:

φk “
ľ

CPφk´1

pC _ xkq ^ pC _ xk`1q

Xk “ tx1, x2, . . . , xk`1u

SWAT 2022
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We argue F wins in pφk, Xkq. If T plays xk or xk`1, F responds by assigning 0 to the other
one. For other variables, F follows his winning strategy for pφk´1, Xk´1q from Lemma 5.
Since φk´1 is a pk ´ 1q-uniform CNF with

?
2 k´1 clauses, φk is a k-uniform CNF with

2
?

2 k´1 “
?

2 k`1 clauses. ◀

3.2 T plays last
Before proving Lemma 7 we draw an intuition. We already know that F wins on

px1 ^ x2q _ px3 ^ x4q _ ¨ ¨ ¨ _ px2k´1 ^ x2kq.

Now replace each pxi ^ xi`1q with pxi ^ pxi _ xi`1qq, which is equivalent. This does not
change the function expressed by the formula, so F still wins this T ¨ ¨ ¨ F game. To turn it
into a T ¨ ¨ ¨ T game, we can introduce a dummy variable x0. Since the game is equivalent to
a monotone game, neither player has any incentive to play x0, so F still wins this T ¨ ¨ ¨ T
game [4, Proposition 2.1.6].

If we convert it to a CNF, then by the distributive law it will again have 2k clauses. But
this CNF is not uniform – each clause has at least k literals and at most 2k literals. We
can do a similar construction that balances the CNF to make it uniform. This intuitively
suggests that

?
2 k ă Mk,T¨¨¨T ă 2k.

▶ Lemma 7. Mk,T¨¨¨T ď Fibk`2.

Proof. For every k P t0, 1, 2, . . .u we recursively define a k-uniform CNF φk on variables Xk,
where Xk “ tx0, x1, . . . , x2k´2u if k ą 0, and X0 “ tx0u (these φk, Xk are different than in
Subsection 3.1):

k “ 0: φ0 “ pq

k “ 1: φ1 “ px0q ^ px0q

k ą 1: φk “
Ź

CPφk´1

pC _ x2k´3q ^
Ź

CPφk´2

pC _ x2k´3 _ x2k´2q

Now we argue F wins in pφk, Xkq. F’s strategy is to assign 0 to at least one variable from
each pair tx1, x2u, tx3, x4u, tx5, x6u, . . . , tx2k´3, x2k´2u. Whenever T plays from a pair, F
responds by assigning 0 to the other variable. After T plays x0, F picks a fresh pair txi, xi`1u

where i is odd and assigns one of them 0, then “chases” T until T plays the other from
txi, xi`1u. Here the “chase” means whenever T plays from a fresh pair, F responds by
assigning 0 to the other variable in that pair. After T returns to txi, xi`1u, then F picks
another fresh pair to start another chase, and so on in phases. We prove by induction on k

that this strategy ensures φk is unsatisfied:
k “ 0: φ0 is obviously unsatisfied.
k “ 1: φ1 is obviously unsatisfied.
k ą 1: By induction, both φk´1 and φk´2 are unsatisfied. Now φk is unsatisfied since:
By F’s strategy, at least one of tx2k´3, x2k´2u is assigned 0. If x2k´3 “ 0 then one of the
clauses of φk that came from φk´1 is unsatisfied. If x2k´3 “ 1 and x2k´2 “ 0 then one of
the clauses of φk that came from φk´2 is unsatisfied.

Letting |φk| represent the number of clauses in φk, we argue |φk| “ Fibk`2 by induction on
k:

k “ 0: |φ0| “ 1 “ Fib2.
k “ 1: |φ1| “ 2 “ Fib3.
k ą 1: By induction, |φk´1| “ Fibk`1 and |φk´2| “ Fibk. So

|φk| “ |φk´1| ` |φk´2| “ Fibk`1 ` Fibk “ Fibk`2.

Therefore Mk,T¨¨¨T ď Fibk`2. ◀
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4 Lower bounds

4.1 Notation
In the proofs, we will define a potential value ppCq for each clause C. The value of
ppCq depends on the context. If φ is a CNF (any set of clauses), then the potential
of φ is ppφq “

ř

CPφ ppCq. The potential of a literal ℓi with respect to φ is defined as
ppφ, ℓiq “ pptC P φ : ℓi P Cuq. When we have a particular φ in mind, we can abbreviate
ppφ, ℓiq as ppℓiq.

Suppose φ is a CNF and ℓi, ℓj are two literals. We define the potentials of different sets
of clauses based on which of ℓi, ℓj , and their complements exist in the clause. For example,
apφ, ℓi, ℓjq is the sum of the potentials of clauses in φ that contain both ℓi, ℓj .

ℓj ℓj neither ℓj nor ℓj

ℓi a b c

ℓi d e f

neither ℓi nor ℓi g h

apφ, ℓi, ℓjq “ pptC P φ : ℓi P C and ℓj P Cuq

bpφ, ℓi, ℓjq “ pptC P φ : ℓi P C and ℓj P Cuq

cpφ, ℓi, ℓjq “ pptC P φ : ℓi P C and ℓj R C and ℓj R Cuq

dpφ, ℓi, ℓjq “ pptC P φ : ℓi P C and ℓj P Cuq

epφ, ℓi, ℓjq “ pptC P φ : ℓi P C and ℓj P Cuq

fpφ, ℓi, ℓjq “ pptC P φ : ℓi P C and ℓj R C and ℓj R Cuq

gpφ, ℓi, ℓjq “ pptC P φ : ℓi R C and ℓi R C and ℓj P Cuq

hpφ, ℓi, ℓjq “ pptC P φ : ℓi R C and ℓi R C and ℓj P Cuq

We can abbreviate these quantities as a, b, c, d, e, f, g, h in contexts where we have particular
φ, ℓi, ℓj in mind. Also the following relations hold:

ppℓiq “ a` b` c

ppℓiq “ d` e` f

ppℓjq “ a` d` g

ppℓjq “ b` e` h

When we assign ℓi “ 1 (i.e., assign xi “ 1 if ℓi is xi, or assign xi “ 0 if ℓi is xi), φ
becomes the residual CNF denoted φrℓi “ 1s where all clauses containing ℓi get removed,
and the literal ℓi gets removed from remaining clauses.

4.2 F plays last
▶ Lemma 8. Mk,T¨¨¨F ě

?
2 k for even k.

Proof. Consider any T ¨ ¨ ¨ F game instance pφ,Xq where φ is a k-uniform CNF with ă
?

2 k

clauses and |X| is even. We show T has a winning strategy. In this proof, we use ppCq “

1{
?

2 |C|. A round consists of a T move followed by an F move.

SWAT 2022



31:6 Erdős–Selfridge Theorem for Nonmonotone CNFs

▷ Claim 9. In every round, there exists a move for T such that for every response by F, we
have ppψq ě ppψ1q where ψ is the residual CNF before the round and ψ1 is the residual CNF
after the round.

At the beginning we have ppCq “ 1{
?

2 k for each clause C P φ, so ppφq ă
?

2 k{
?

2 k “ 1.
By Claim 9, T has a strategy guaranteeing that ppψq ď ppφq ă 1 where ψ is the residual
CNF after all variables have been played. If this final ψ contained a clause, the clause would
be empty and have potential 1{

?
2 0 “ 1, which would imply ppψq ě 1. Thus the final ψ

must have no clauses, which means φ got satisfied and T won. This concludes the proof of
Lemma 8, except for the proof of Claim 9. ◀

Proof of Claim 9. Let ψ be the residual CNF at the beginning of a round. T picks a literal
ℓi maximizing ppψ, ℓiq and plays ℓi “ 1.2 Suppose F responds by playing ℓj “ 1, and let ψ1

be the residual CNF after F’s move. Letting the a, b, c, d, e, f, g, h notation be with respect
to ψ, ℓi, ℓj , we have

ppψq ´ ppψ1q “ a` b` c` d` g ´
`

e` p
?

2 ´ 1qpf ` hq
˘

because:
Clauses from the a, b, c, d, g groups are satisfied and removed (since they contain ℓi “ 1
or ℓj “ 1 or both), so their potential gets multiplied by 0.
Clauses from the e group each shrink by two literals (since they contain ℓi “ 0 and
ℓj “ 0), so their potential gets multiplied by

?
2 ¨

?
2 “ 2.

Clauses from the f, h groups each shrink by one literal, so their potential gets multiplied
by

?
2.

By the choice of ℓi, we have ppℓiq ě ppℓiq and ppℓiq ě ppℓjq with respect to ψ, in other words,
a` b` c ě d` e` f and a` b` c ě b` e` h. Thus ppψq ě ppψ1q because

a` b` c` d` g ě a` b` c ě 1
2 pd` e` fq ` 1

2 pb` e` hq ě e` 1
2 pf ` hq

ě e` p
?

2 ´ 1qpf ` hq.

◁

Note: It did not matter whether k is even or odd! Lemma 8 is true for any k. Lemma 10
actually uses oddness of k. The main idea is to exploit the slack 1{2 ě

?
2 ´ 1 that appeared

at the end of the proof of Claim 9.

▶ Lemma 10. Mk,T¨¨¨F ě 1.5
?

2 k´1 for odd k.

Proof. Consider any T ¨ ¨ ¨ F game instance pφ,Xq where φ is a k-uniform CNF with ă

1.5
?

2 k´1 clauses and |X| is even. We show T has a winning strategy. In this proof, we use

ppCq “

#

1{
?

2 |C| if |C| is even.
1{1.5

?
2 |C|´1 if |C| is odd.

▷ Claim 11. In every round, there exists a move for T such that for every response by F,
we have ppψq ě ppψ1q where ψ is the residual CNF before the round and ψ1 is the residual
CNF after the round.

2 It is perhaps counterintuitive that T’s strategy ignores the effect of clauses that contain ℓi, which increase
in potential after playing ℓi “ 1. A more intuitive strategy would be to pick a literal ℓi maximizing
ppψ, ℓiq ´ p

?
2 ´ 1qppψ, ℓiq, which is the overall decrease in potential from playing ℓi “ 1; this strategy

also works but is trickier to analyze.
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At the beginning we have ppCq “ 1{1.5
?

2 k´1 for each clause C P φ (since |C| “ k, which
is odd), so ppφq ă 1.5

?
2 k´1{1.5

?
2 k´1 “ 1. By Claim 11, T has a strategy guaranteeing

that ppψq ď ppφq ă 1 where ψ is the residual CNF after all variables have been played. If
this final ψ contained a clause, the clause would be empty and have potential 1{

?
2 0 “ 1

(since 0 is even), which would imply ppψq ě 1. Thus the final ψ must have no clauses, which
means φ got satisfied and T won. This concludes the proof of Lemma 10, except for the
proof of Claim 11. ◀

Proof of Claim 11. Let ψ be the residual CNF at the beginning of a round. T picks a literal
ℓi maximizing ppψ, ℓiq and plays ℓi “ 1. Suppose F responds by playing ℓj “ 1, and let ψ1

be the residual CNF after F’s move. Letting the a, b, c, d, e, f, g, h notation be with respect
to ψ, ℓi, ℓj , we have

ppψq ´ ppψ1q ě a` b` c` d` g ´
`

e` 1
2 pf ` hq

˘

because:
Clauses from the a, b, c, d, g groups are satisfied and removed (since they contain ℓi “ 1
or ℓj “ 1 or both), so their potential gets multiplied by 0.
Clauses from the e group each shrink by two literals (since they contain ℓi “ 0 and
ℓj “ 0). Here odd-width clauses remain odd and even-width clauses remain even, so their
potential gets multiplied by

?
2 ¨

?
2 “ 2.

Clauses from the f, h groups each shrink by one literal. There are two cases for a clause
C in these groups:

|C| is even, so ppCq “ 1{
?

2 |C|. After C being shrunk by 1, the new clause C 1 has
potential ppC 1q “ 1{1.5

?
2 |C1

|´1 “ 1{1.5
?

2 |C|´2. So the potential of an even-width
clause gets multiplied by ppC 1q{ppCq “ 4{3.
|C| is odd, so ppCq “ 1{1.5

?
2 |C|´1. After C being shrunk by 1, the new clause C 1 has

potential ppC 1q “ 1{
?

2 |C1
| “ 1{

?
2 |C|´1. So the potential of an odd-width clause gets

multiplied by ppC 1q{ppCq “ 3{2.
So their potential gets multiplied by ď 3{2 (since 4{3 ď 3{2).

By the choice of ℓi, we have ppℓiq ě ppℓiq and ppℓiq ě ppℓjq with respect to ψ, in other words,
a` b` c ě d` e` f and a` b` c ě b` e` h. Thus ppψq ě ppψ1q because

a` b` c` d` g ě a` b` c ě 1
2 pd` e` fq ` 1

2 pb` e` hq ě e` 1
2 pf ` hq. ◁

4.3 T plays last
▶ Lemma 12. Mk,T¨¨¨T ě 1.5 k.

Proof. Consider any T ¨ ¨ ¨ T game instance pφ,Xq where φ is a k-uniform CNF with ă 1.5k

clauses and |X| is odd. We show T has a winning strategy. In this proof, we use ppCq “

1{1.5|C|.
For intuition, how can T take advantage of having the last move? She will look out

for certain pairs of literals to “set aside” and wait for F to assign one of them, and then
respond by assigning the other one the opposite value. We call such a pair “zugzwang,”
which means a situation where F’s obligation to make a move is a disadvantage for F. Upon
finding such a pair, T anticipates that certain clauses will get satisfied later, but other
clauses containing those literals might shrink when the zugzwang pair eventually gets played.
Thus T can update the CNF to pretend those events have already transpired. The normal
gameplay of TF rounds (T plays, then F plays) will sometimes get interrupted by FT rounds

SWAT 2022



31:8 Erdős–Selfridge Theorem for Nonmonotone CNFs

of playing previously-designated zugzwang pairs. We define the zugzwang condition so that
T’s modifications won’t increase the potential of the CNF (which is no longer simply a
residual version of φ). When there are no remaining zugzwang pairs to set aside, we can
exploit this fact – together with T’s choice of “best” literal for her normal move – to analyze
the potential change in a TF round. This allows the proof to handle a smaller potential
function and hence more initial clauses, compared to when F had the last move.

We describe T’s winning strategy in pφ,Xq as Algorithm 1. In the first line, the algorithm
declares and initializes ψ, Y, ζ, Z, which are accessed globally. Here ψ is a CNF (initially the
same as φ), and ζ is a set (conjunction) of constraints of the form pℓi ‘ ℓjq. We consider
pℓi ‘ ℓjq, pℓj ‘ ℓiq, pℓi ‘ ℓjq, pℓj ‘ ℓiq to be the same constraint as each other. The algorithm
maintains the following three invariants:
(1) Y and Z are disjoint subsets of X, and Y Y Z is the set of unplayed variables, and Y

contains all variables that appear in ψ, and Z is exactly the set of variables that appear
in ζ, and |Z| is even.

(2) For every assignment to Y Y Z, if ψ and ζ are satisfied, then φ is also satisfied by the
same assignment together with the assignment played by T and F so far to the other
variables of X.

(3) ppψq ă 1.
Now we argue how these invariants are maintained at the end of the outer loop in Algorithm 1.
Invariant (1) is straightforward to see.

▷ Claim 13. Invariant p2q is maintained.

Proof. Invariant (2) trivially holds at the beginning.
Each iteration of the first inner loop maintains (2): Say ψ and ζ are at the beginning

of the iteration, and ψ1 and ζ 1 denote the formulas after the iteration. Assume (2) holds
for ψ and ζ. To see that (2) holds for ψ1 and ζ 1, consider any assignment to the unplayed
variables. We will argue that if ψ1 and ζ 1 are satisfied, then ψ and ζ are satisfied, which
implies (by assumption) that φ is satisfied. So suppose ψ1 and ζ 1 are satisfied. Then ψ is
satisfied because each clause containing ℓi _ ℓj or containing ℓi _ ℓj is satisfied due to pℓi ‘ ℓjq

being satisfied in ζ 1, and each other clause is satisfied since it contains the corresponding
clause in ψ1 which is satisfied. Also, ζ is satisfied since each of its constraints is also in ζ 1

which is satisfied.
It is immediate that T’s and F’s “normal” moves in the outer loop maintain (2), because

of the way we update ψ and Y .
Each iteration of the second inner loop maintains (2): If an assignment satisfies ψ1 and ζ 1

(after the iteration) then it also satisfies ψ and ζ (at the beginning of the iteration) since T’s
move satisfies pℓk ‘ ℓmq – and therefore the assignment satisfies φ. ◁

▷ Claim 14. Invariant p3q is maintained.

Proof. Invariant (3) holds at the beginning by the assumption that φ has ă 1.5k clauses
(and each clause has potential 1{1.5k).

The first inner loop maintains (3) by the following proposition, which we prove later.

▶ Proposition 15. If FindZugzwang() returns pℓi, ℓjq, then ppψq ě ppψ1q where ψ and ψ1

are the CNFs before and after the execution of TfoundZugzwang().

The second inner loop does not affect (3). In each outer iteration except the last, T’s
and F’s moves from Y maintain (3) by the following proposition, which we prove later.
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Algorithm 1 T’s winning strategy in pφ,Xq.

initialize ψ Ð φ; Y Ð X; ζ Ð tu; Z Ð tu

while game is not over do
while FindZugzwang() returns a pair (ℓi, ℓj) do

TfoundZugzwang(ℓi, ℓj)

TplayNormal()
while F picks xk P Z and ℓk P txk, xku and assigns ℓk “ 1 do

TplayZugzwang(ℓk)

if |Y Y Z| “ 0 then halt
FplayNormal()

subroutine FindZugzwang():
if there exist distinct xi, xj P Y and ℓi P txi, xiu and ℓj P txj , xju such that (with
respect to ψ, ℓi, ℓj): a` e ě 5

4 pb` dq ` 1
2 pc` f ` g ` hq then return pℓi, ℓjq

return NULL

subroutine TfoundZugzwang(ℓi, ℓj):
/* T modifies ψ with the intention to make ℓi ‰ ℓj by waiting for F to touch

txi, xju */
ζ Ð ζ Y tpℓi ‘ ℓjqu; Z Ð Z Y txi, xju; Y Ð Y ´ txi, xju

remove from ψ every clause containing ℓi _ ℓj or containing ℓi _ ℓj

remove ℓi, ℓi, ℓj , ℓj from all other clauses of ψ

subroutine TplayZugzwang(ℓk):
/* T makes ℓm ‰ ℓk */
T picks xm P Z and ℓm P txm, xmu such that pℓk ‘ ℓmq P ζ and assigns ℓm “ 0
ζ Ð ζ ´ tpℓk ‘ ℓmqu; Z Ð Z ´ txk, xmu

subroutine TplayNormal():
T picks xi P Y and ℓi P txi, xiu maximizing ppψ, ℓiq ´ ppψ, ℓiq and assigns ℓi “ 1
ψ Ð ψrℓi “ 1s; Y Ð Y ´ txiu

subroutine FplayNormal():
F picks xj P Y and ℓj P txj , xju and assigns ℓj “ 1
ψ Ð ψrℓj “ 1s; Y Ð Y ´ txju;

SWAT 2022
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▶ Proposition 16. If FindZugzwang() returns NULL, then ppψq ě ppψ1q where ψ is the
CNF before TplayNormal() and ψ1 is the CNF after FplayNormal().

This concludes the proof of Claim 14. ◁

Now we argue why T wins in the last outer iteration. Right before TplayNormal(), |Y |

must be odd by invariant (1), because an even number of variables have been played so far
(since T has the first move) and |X| is odd (since T also has the last move) and |Z| is even.
Thus, T always has an available move in TplayNormal() since |Y | ą 0 at this point. When
T is about to play the last variable xi P Y (possibly followed by some Z moves in the second
inner loop), all remaining clauses in ψ have width ď 1. There cannot be an empty clause
in ψ, because then ppψq would be ě 1{1.50 “ 1, contradicting invariant (3). There cannot
be more than one clause in ψ, because then ppψq would be ě 2{1.51 ě 1. Thus ψ is either
empty (already satisfied) or just pxiq or just pxiq, which T satisfies in one move.

At termination, Y and Z are empty, and ψ and ζ are empty and thus satisfied. By
invariant (2), this means φ is satisfied by the gameplay, so T wins.

This concludes the proof of Lemma 12 except Proposition 15 and Proposition 16. ◀

Proof of Proposition 15. Since FindZugzwang() returns pℓi, ℓjq, the following holds with
respect to ψ, ℓi, ℓj :

a` e ě 5
4 pb` dq ` 1

2 pc` f ` g ` hq (♠)

We also have

ppψq ´ ppψ1q “ a` e´
` 5

4 pb` dq ` 1
2 pc` f ` g ` hq

˘

because:
Clauses from the a, e groups are removed (since they contain ℓi _ ℓj or ℓi _ ℓj), so their
potential gets multiplied by 0. (Intuitively, T considers these clauses satisfied in advance
since she will satisfy pℓi ‘ ℓjq later.)
Clauses from the b, d groups each shrink by two literals (since they contain two of
ℓi, ℓi, ℓj , ℓj which are removed), so their potential gets multiplied by 1.5 ¨ 1.5 “ 9{4. (Some
of these four literals will eventually get assigned 1, but since T cannot predict which ones,
she pessimistically assumes they are all 0.)
Clauses from the c, f, g, h groups each shrink by one literal (since they contain one of
ℓi, ℓi, ℓj , ℓj which are removed), so their potential gets multiplied by 1.5 “ 3{2.

Since (♠) holds, ppψq ě ppψ1q. ◀

Proof of Proposition 16. In TplayNormal(), T picks the literal ℓi maximizing ppψ, ℓiq ´

ppψ, ℓiq and plays ℓi “ 1.3 In FplayNormal(), F plays ℓj “ 1. With respect to ψ, ℓi, ℓj we
have

ppψq ´ ppψ1q “ a` b` c` d` g ´
` 5

4e` 1
2 pf ` hq

˘

because:
Clauses from the a, b, c, d, g groups are satisfied and removed (since they contain ℓi “ 1
or ℓj “ 1 or both), so their potential gets multiplied by 0.

3 Some other strategies would also work here, but this one is the simplest to analyze.
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Clauses from the e group each shrink by two literals (since they contain ℓi “ 0 and
ℓj “ 0), so their potential gets multiplied by 1.5 ¨ 1.5 “ 9{4.
Clauses from the f, h groups each shrink by one literal, so their potential gets multiplied
by 1.5 “ 3{2.

By the choice of ℓi (i.e., maximizing ppℓiq ´ ppℓiq), we have:

ppℓiq ´ ppℓiq ě ppℓjq ´ ppℓjq

ùñ a` b` c´ d´ e´ f ě b` e` h´ a´ d´ g

ùñ 2a` 0b` 1c` 0d´ 2e´ 1f ` 1g ´ 1h ě 0 (♣)

Since FindZugzwang() returns NULL, (♠) does not hold in ψ. Thus the following holds:

pa` eq ă 5
4 pb` dq ` 1

2 pc` f ` g ` hq

ùñ ´1a` 5
4b` 1

2c` 5
4d´ 1e` 1

2f ` 1
2g ` 1

2h ą 0 (♦)

Thus ppψq ě ppψ1q because the linear combination 9
16 p♣q ` 1

8 p♦q implies:
9

16
`

2a` 0b` 1c` 0d´ 2e´ 1f ` 1g ´ 1h
˘

`

1
8

`

´1a` 5
4b` 1

2c` 5
4d´ 1e` 1

2f ` 1
2g ` 1

2h
˘

ą 0
ùñ 1a` 5

32b` 5
8c` 5

32d´ 5
4e´ 1

2f ` 5
8g ´ 1

2h ą 0
ùñ 1a` 1b` 1c` 1d´ 5

4e´ 1
2f ` 1g ´ 1

2h ą 0
ùñ a` b` c` d` g ´

` 5
4e` 1

2 pf ` hq
˘

ą 0 ◀
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