Compacting Squares: Input-Sensitive In-Place
Reconfiguration of Sliding Squares

Hugo A. Akitaya = Erik D. Demaine &
University of Massachusetts Lowell, MA, USA Massachusetts Institute of Technology,
Cambridge, MA, USA

Matias Korman & Irina Kostitsyna &

Siemens Electronic Design Automation, Eindhoven University of Technology,
Wilsonville, OR, USA The Netherlands

Irene Parada = Willem Sonke &

Technical University of Denmark, Lyngby, Eindhoven University of Technology,
Denmark The Netherlands

Bettina Speckmann = Ryuhei Uehara &

Eindhoven University of Technology, Japan Advanced Institute of Science and
The Netherlands Technology, Ishikawa, Japan

Jules Wulms &
Technische Universitdt Wien, Austria

—— Abstract

Edge-connected configurations of square modules, which can reconfigure through so-called sliding

moves, are a well-established theoretical model for modular robots in two dimensions. Dumitrescu
and Pach [Graphs and Combinatorics, 2006] proved that it is always possible to reconfigure one
edge-connected configuration of n squares into any other using at most O(n2) sliding moves, while
keeping the configuration connected at all times.

For certain pairs of configurations, reconfiguration may require Q(nQ) sliding moves. However,
significantly fewer moves may be sufficient. We prove that it is NP-hard to minimize the number
of sliding moves for a given pair of edge-connected configurations. On the positive side we present
Gather&Compact, an input-sensitive in-place algorithm that requires only O(Pn) sliding moves to
transform one configuration into the other, where P is the maximum perimeter of the two bounding
boxes. The squares move within the bounding boxes only, with the exception of at most one square
at a time which may move through the positions adjacent to the bounding boxes. The O(Pn) bound
never exceeds O(n?), and is optimal (up to constant factors) among all bounds parameterized by
just n and P. Our algorithm is built on the basic principle that well-connected components of
modular robots can be transformed efficiently. Hence we iteratively increase the connectivity within
a configuration, to finally arrive at a single solid xy-monotone component.

We implemented Gather&Compact and compared it experimentally to the in-place modification
by Moreno and Sacristdn [EuroCG 2020] of the Dumitrescu and Pach algorithm (MSDP). Our
experiments show that Gather&Compact consistently outperforms MSDP by a significant margin,
on all types of square configurations.

2012 ACM Subject Classification Theory of computation — Computational geometry
Keywords and phrases Sliding cubes, Reconfiguration, Modular robots, NP-hardness

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.4

Related Version Full Version: https://arxiv.org/abs/2105.07997

Supplementary Material Software: https://alga.win.tue.nl/software/compacting-squares/

Funding Irene Parada was supported by Independent Research Fund Denmark grant 2020-2023 (9131-
00044B) “Dynamic Network Analysis” and Jules Wulms was supported partially by the Austrian
Science Fund (FWF) under grant P31119 and partially by the Vienna Science and Technology Fund
(WWTF) under grant ICT19-035.

© Hugo A. Akitaya, Erik D. Demaine, Matias Korman, Irina Kostitsyna, Irene Parada, Willem Sonke,
BY Bettina Speckmann, Ryuhei Uehara, and Jules Wulms;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 4; pp.4:1-4:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:hugo_akitaya@uml.edu
https://orcid.org/0000-0002-6827-2200
mailto:edemaine@mit.edu
https://orcid.org/0000-0003-3803-5703
mailto:matias_korman@mentor.com
mailto:i.kostitsyna@tue.nl
https://orcid.org/0000-0003-0544-2257
mailto:irmde@dtu.dk
https://orcid.org/0000-0003-2401-8670
mailto:w.m.sonke@tue.nl
https://orcid.org/0000-0001-9553-7385
mailto:b.speckmann@tue.nl
https://orcid.org/0000-0002-8514-7858
mailto:uehara@jaist.ac.jp
https://orcid.org/0000-0003-0895-3765
mailto:jwulms@ac.tuwien.ac.at
https://orcid.org/0000-0002-9314-8260
https://doi.org/10.4230/LIPIcs.SWAT.2022.4
https://arxiv.org/abs/2105.07997
https://alga.win.tue.nl/software/compacting-squares/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2

Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares

Acknowledgements Parts of this work were initiated at the 5th Workshop on Applied Geometric
Algorithms (AGA 2020) and at the 2nd Virtual Workshop on Computational Geometry. We thank
all participants for discussions and an inspiring and productive atmosphere. We thank Fabian Klute

for discussions on the computational experiments.

1 Introduction

Self-reconfigurable modular robots [20] promise adaptive, robust, scalable, and cheap solutions
in a wide range of technological areas, from aerospace engineering to medicine. Modular
robots are envisioned to consist of identical building blocks arranged in a lattice and are
intended to be highly versatile, due to their ability to reconfigure into arbitrary forms. An
actual realization of this vision depends on fast and reliable reconfiguration algorithms, which
hence have become an area of growing interest.

One of the best-studied paradigms of modular robots is the sliding cube model [11]. In
this model, a robot configuration is a face-connected set of cubic modules on the cubic grid.
The cubes can perform two types of (sliding) moves, illustrated in two dimensions in Figure 1.

o B — i © B — fm

Figure 1 Moves admitted by the sliding cube model: (a) slide, (b) convex transition.

First, a module can slide along two face-adjacent cubes to reach a face-adjacent empty grid
cell. Second, a module m can make a convez transition around a module m’ to end in an
edge-adjacent empty grid cell. For this second move to be feasible, also the grid cell (not
occupied by m’) face-adjacent to both the starting and the ending positions must be empty.
Moves need to maintain connectivity, that is, a cube ¢ is movable only if the configuration
without ¢ would still be face-connected. There are several prototypes of modular robots
that realize the sliding cube model in 2D [6, 9, 12]. Units of multiple other prototypes,
including expandable and contractible units [17, 18] as well as large classes of modular
robots [4, 16], can be arranged into cubic meta-modules consisting of several units such that
the meta-module can perform slide and convex transition moves. Thus, algorithmic solutions
in the sliding cube model can be applied to modular robot systems realizing other models.

Another well-studied model for modular robots is the pivoting cube model [7, 19]. This
model strengthens the free-space requirements for each move and has also been realized
by some existing prototypes. Previous work [2] showed very recently that in the pivoting
cube model in two dimensions it is PSPACE-hard to decide whether it is possible at all to
reconfigure one configuration into the other. However, if one allows six auxiliary squares
in addition to the input configuration, then there is a worst-case optimal reconfiguration
algorithm [1]. Other models for squares relax the face-connectivity condition [8], restrict or
enlarge the set of allowed moves [13], or relax the free-space requirements [5].

In this paper we study the reconfiguration problem for the sliding cube model in two
dimensions (the sliding square model). Given two configurations of n unlabeled squares (each
describing the relative positions of squares), we compute a short sequence of moves that
transforms one configuration into the other, while preserving edge-connectivity at all times.
Dumitrescu and Pach [10] described an algorithm which transforms any two configurations
of n squares into each other using O(n?) moves. This bound is worst-case optimal: there are
pairs of configurations (a horizontal and a vertical line) which require Q(n?) moves for any
transformation. However, for other pairs of configurations, significantly fewer moves suffice.

H. A. Akitaya et al.

We show in Section 2 that it is NP-hard to minimize the number of moves for a given
pair of edge-connected configurations. Due to the O(n?) upper bound on the number of
moves, the corresponding decision problem is NP-complete. In Section 3, we present an
input-sensitive and in-place algorithm for self-reconfiguration, based on the “compact-and-
deploy” approach. Using the basic principle that well-connected components of modular
robots can be transformed efficiently, our algorithm iteratively increases the connectivity
within a configuration, to arrive at a single solid zy-monotone component, before deploying it
into the target configuration. Hence, our algorithm builds the target configuration in such a
way that the lower left corner of the bounding boxes of both configurations are aligned. Our
algorithm is input-sensitive: it requires only O(Pn) moves to transform one configuration
into the other, where P is the maximum perimeter of the two bounding boxes. Our algorithm
is also in-place: only one square at a time is allowed to move outside the respective bounding
box, and then only through cells vertex-adjacent to the bounding box.

Lower bound. Our O(Pn) bound is optimal (up to constant factors) among all bounds
parameterized by just n and P. Given P and n, consider a source and target configuration
that each consist of a rectangle filled with squares, with dimensions z x y/2 and x/2 x y,
respectively, such that n = 2/2 -y = x-y/2 and P = ©(x + y). This is satisfied by choosing
r = O(P) and y = O(n/P). Without loss of generality assume x > ¥, so that P = O(x).
Given the source configuration, the target configuration may be built anywhere in the grid,
and for such a given target (configuration) position, we call all grid cells that should be filled
with squares target cells. For any target position, every source square s that is not in a target
cell requires at least as many moves as the Lo-distance ds (along the grid) between s and
its closest target cell. Given the set S of source squares not on target cells, the configuration

then requires at least > _ods moves. For any target position, S contains at least an /4 x y

ses

(2)

3.000 5.642 9.000 12.000 15.441

move 0

(b) |

20.000 40.000 60.000 80.000 92.074

Figure 2 A spiral configuration in a 40 x 40 bounding box. (a) Gather&Compact: gathering
done after 5.642 moves; total 15.441 moves. (b) MSDP [10, 15]: total 92.074 moves.
Video: B https://tinyurl.com/algaspiral.

4:3

SWAT 2022

https://tinyurl.com/algaspiral

4:4

Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares

rectangle R of squares, either to the left or to the right of the vertical strip occupied by
the target configuration. Each robot r in the i-th column of R has d,. > i, hence the total
required movement is at least Zfﬁ iy = 0((z/4)%y) = ©(an) = O(Pn).

Comparison with Dumitrescu and Pach. The algorithm by Dumitrescu and Pach [10]
constructs a canonical shape from both input configurations. In the original paper this
canonical shape is a strip that extends to the right of a rightmost square and hence, necessarily,
their algorithm always requires (n?) moves. Moreno and Sacristan [14, 15] modify the
algorithm of Dumitrescu and Pach to be in-place; their canonical shape is a rectangle within
the bounding box of the input. For either type of canonical shape their algorithm roughly
proceeds as follows. If there is a square which is a leaf in the edge-adjacency graph, then
the algorithm attempts to move this square along the boundary towards the canonical
configuration. If this leaf square “gets stuck” on the way, and hence increases its connectivity,
or if there is no leaf in the first place, then the algorithm identifies a 2-connected square
on the outside of the configuration which it can move towards the canonical configuration.
Hence, if configurations are tree-like (such as the spiral in Figure 2), then each square moves
along all remaining squares, for a total of Q(n?) moves (see Figure 2 bottom row). However,
the width and the height of this spiral configuration is O(y/n). Our algorithm gathers ©(y/n)
squares from the end of the spiral and then compacts in a total of O(n+/n) moves.

The in-place modification by Moreno and Sacristdn of Dumitrescu and Pach (henceforth
MSDP) has the potential to use fewer than ©(n?) moves in practice. In Section 4 we compare
our Gather&Compact to MSDP experimentally; Gather&Compact consistently outperforms
MSDP by a significant margin, on all types of square configurations.

2 Hardness of optimal reconfiguration
In this section we sketch the proof of Theorem 1, details can be found in the full version [3].

» Theorem 1. Let C and C’ be two configurations of n squares each and let k be a positive
integer. It is NP-complete to determine whether we can transform C into C' using at most k
moves while maintaining edge-connectivity at all times.

We provide a reduction from PLANAR MONOTONE 3SAT. In particular, we start from a
rectilinear drawing of a planar monotone 3SAT instance C with [variables and m clauses
(see Figure 3). We create a problem instance of the reconfiguration problem whose size is
polynomial in [and m; we show that C can be satisfied if and only if the corresponding
reconfiguration problem can be solved in at most 66m + 241 moves.

We replace each variable with a variable gadget, highlighted by an orange-shaded area
in Figure 4 and summarized in Figure 5a. Consecutive variable gadgets are connected by
a horizontal line of squares forming a central path of cycles through all variable gadgets
(pink squares). More precisely, the gadget associated with variable z; has k; O-shaped cycles
in the path of cycles, where k; is the number of times that the variable z; appears in C.
Each O-shaped cycle has two prongs (yellow squares). The spacing between gadgets is large
enough for different variable gadgets not to interact in an optimal reconfiguration process.

The source and target configurations in the variable gadgets are very similar. The only
difference is that the positions marked with x in Figure 5a must be emptied and the positions
marked with o must be occupied. Using an earth movers argument one can argue that a
square must be transferred from the right of the gadget to the left, and the minimum number
of moves required to do so is the horizontal distance between the positions, in this case

H. A. Akitaya et al.

20k; + 20. There are two paths that achieve this bound, namely a path along the top (shown
in Figure 5a) or one along the bottom. These correspond to setting the variable to true or
false, respectively. The remaining required changes need four additional moves.

» Lemma 2. At least 20k; + 24 moves are necessary to reconfigure the variable gadget x;.
Moreover, this number of moves can be achieved only by moving one of the right X squares to
the left o position at the same height, following the path shown in Figure 4 or the equivalent
path connecting the other X and o pair along the bottom.

Lemma 2 shows that to reconfigure using as few moves as possible we must transfer one
of the two x squares on the right to a o position on the left. During the process, the x

square creates cycles involving the central path of cycles and either all upper or lower prongs.

The clause gadget mainly consists of a set of squares forming a pitchfork (M) shape (blue
squares in Figure 5¢). The pitchfork has three tines consisting of two squares each. Each
tine corresponds to a literal in the clause. We add a path of squares connecting the rh shape

to the central path of cycles so that the source configuration is connected (gray squares).

Most squares are in both the source and the target configurations. The only exception is one

square (marked with x) that wants to be transferred to a nearby position (marked with o).

However, the move is initially not possible as it would disconnect the part.
The wire gadgets are connected to the variable gadgets and part of them is placed very
close to each of the tines of a pitchfork. A wire gadget is a path of squares that form a M

shape for positive literals and a LI shape for negative ones (see Figure 5b, green squares).

FEach wire gadget is attached to a different prong of the corresponding variable gadget. This
associates each literal in a clause to a wire gadget and a prong (note that there can be spare
prongs). The goal is to allow creating a different connection between the h of a clause gadget
and the central path of cycles in two moves as long as the prong is in a cycle.

To avoid interference between different gadgets we place the clause gadgets at different
heights and make the vertical separations between gadgets large enough.

» Lemma 3. At least siz moves are necessary to reconfigure a clause gadget, and six moves
suffice if and only if a prong associated to a literal in the clause is part of a cycle.

The six moves required by a clause gadget are in fact additional to the 20k; + 24 moves
required to reconfigure the gadget for variable x; and to the six moves required by any other
clause gadget. If we allow only the minimum number of moves per gadget, Lemma 2 forces

| 1 Vx5V Tg

| .1'1\/.’133\/.%‘5 |

| x1 VoV T3 | | 3V Ty V Ts |

| —zo V 3 V 1y | |ﬁ$5 V x5 V ﬁx6|

-1 \ X4 \ —Tg |

Figure 3 Rectilinear drawing of a PLANAR MONOTONE 3SAT instance. Our reduction attaches
the variable gadgets horizontally and the clause gadgets next to the rightmost literal in the clause.

4:5

SWAT 2022

4:6

Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares

T

]

E

I

B
:':

-
(M} [T

A

ey

Figure 4 An overview of the reduction. (Background colors match Figure 3).

ol

[T

that in each variable gadget either the upper or the lower prongs become part of cycles.
Moreover, Lemma 3 requires that for each clause there is a prong associated to a literal in
the clause that becomes part of a cycle as part of the reconfiguration of the variable gadgets.
This implies that if a reconfiguration sequence exists, the 3SAT instance must be satisfiable.
In the other direction, if the 3SAT instance is satisfiable, then we show how to order the
moves carefully to reconfigure with the minimum number of moves required.

» Lemma 4. A PLANAR MONOTONE 3SAT instance can be solved if and only if the
corresponding reconfiguration problem instance can be solved using 66m + 241 moves.

3 Input-sensitive in-place algorithm

To describe our input-sensitive reconfiguration algorithm, we first need to introduce the
following definitions and notations. Let C be an edge-adjacent configuration of squares on
the rectangular grid and let G be the edge-adjacency graph of C. In G each node represents
a square and two nodes are connected by an edge, if the corresponding squares are edge-
adjacent. With slight abuse of notation we identify the squares and the nodes in the graph.
A square s € C is a cut square if C \ {s} is disconnected. Otherwise, s is a stable square.

A configuration C is zy-monotone if C contains the entire leftmost column and bottommost
row of C’s bounding box, and each row or column of C forms a single contiguous set of
squares. A chunk is any inclusion-maximal set of squares in C enclosed by (and including) a
simple cycle o in G of length at least 4 (its boundary cycle), plus any squares with degree 1
in G edge-adjacent to o (its loose squares). A chunk constitutes a well-connected component
that can be efficiently transformed towards an xy-monotone configuration.

(Mgl

oL

(a) /39/5@ =N

]

m m

e

H (b)) T (o)

Figure 5 (a) Variable gadget. (b) Wire gadget. (c) Clause gadget.

H. A. Akitaya et al. 4:7

~0\®
X —>
[=]o]=] of[oJoJoJo]o cf,& & u L
_elslels] [of 8 4
[=]=] [o o| [=]=] [9] [e] [e] link square ®
[m]z|m]=z]oc]=]= olo[=[m] [O]
[ERERER o [*] [E] chunk square T
[2[o]m] [m] [=] [o]oJo]o]o]ofo
u[w u o[o] connector <«—E—e—H
EO0OC a
[eToTolo [=] loose square ®
(a) (b)

Figure 6 (a) A configuration C. (b) The corresponding component tree 7.

A link is a connected component of squares which are not in any chunk. A square
is a connector if it is a chunk square edge-adjacent to a square in a link or in another
non-overlapping chunk, or if it is the single overlapping square of two chunks. By definition a
connector is always a cut square. The size of a chunk C' is the number of squares contained
in C' (which includes its boundary cycle and any loose squares).

Figure 6a shows an example configuration with its chunks, links, connectors, and
cut /stable squares marked. Note that a square can be part of two chunks simultane-
ously, in which case it must be a connector (for example, see the leftmost connector in
Figure 6a). A chunk can contain both cut and stable squares.

The component tree T of C has a vertex for each chunk /link and an edge (u,v) iff the
chunks / links represented by u and v have edge-adjacent squares or share a square (when
chunks are adjacent), see Figure 6b. The component containing the leftmost square in the
bottom row of C, the root square, is the root of T'. Chunks in leaves of T" we call leaf chunks.

A hole in C is a finite maximal vertex-connected set of empty grid cells. The infinite
vertex-connected set of empty grid cells is the outside. If a chunk C' encloses a hole in C,
we say that C' is fragile. Otherwise, we say that C' is solid. The boundary of C is the set of
squares vertex-adjacent to any grid cell on the outside. The boundary of a hole H is the
set of squares vertex-adjacent to any grid cell in H. Note that the boundary of a hole is
edge-connected. We can construct 7' in O(n) time by walking along the boundary of C.

Consider now the bounding box B of C on the square grid. We refer to the bottommost
leftmost grid cell inside B as the origin. Let P be the perimeter of B, then any square in C
can be connected to the origin by an zy-monotone path of at most P/2 squares.

NW| N |NE

N

We—o—> L

PARN

SW| S | SE
yL
T
Let ¢ = (z,y) be a grid cell. We use compass directions (N, NE, E, etc.) to indicate
neighbors of ¢. When we use grid coordinates, we assume the usual directions (the z-
axis increases towards E and the y-axis increases towards N, so the N-neighbor of c is
(z,y + 1)). Similarly, we indicate slide moves using compass directions (‘a wW-move’) and
convex transitions using a sequence of two compass directions (‘a Ws-move’: a movement
toward w followed by a movement towards s).

SWAT 2022

4:8

Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares

Algorithmic outline. In the first phase of our algorithm we ensure that the leaves of the
component tree T are sufficiently large and well-connected. Specifically, we gather squares
from the leaves of T until each leaf is a chunk of size at least P. In Section 3.1 we explain
how to grow chunks using at most O(P) moves per square that was moved. During this
process, the final position of each square is chosen inside bounding box B, but squares can
move through the layer of grid cells adjacent to B.

After gathering, all leaves are heavy chunks of size at least P. Our goal is now to make
each leaf chunk contain the origin, while ensuring that all squares remain part of their chunk.
A heavy leaf chunk C' contains a sufficient number of squares to be transformed into a chunk
containing both the connector of C' and the origin: we can connect the connector with the
origin by an zy-monotone path of at most P/2 squares; two such paths, which are disjoint,
form a new boundary cycle for C'. We do not explicitly construct these two paths, but instead
we compact the configuration by filling holes and using lexicographically monotone movement
towards the origin for squares in heavy leaf chunks. In Section 3.2 we explain the details of
the compaction algorithm and prove that it leaves us with a solid zy-monotone component.

During compaction each square in a leaf chunk makes only lexicographic monotone moves
towards the origin while staying inside B: s- and w-moves (slides), as well as SW-, WS-,
NW-, and WN-moves (convex transitions). In some cases, a square in the leftmost column or
bottom row can exit B, and move along the bounding box to enter the same column/row
again closer to the origin. This is the only time a non-lexicographic monotone move is used,
and every square can perform it at most O(P) times. Hence compacting takes O(Pn) moves.

When compacting, every (heavy) leaf chunk will eventually contain a square at the
origin. This means that the whole configuration becomes a single chunk, as all leaves of
the component tree have merged into a single component. Therefore, once compacting has
finished we arrive at an xy-monotone configuration that fits inside B. If at any point during
this process the configuration becomes zy-monotone, then we simply stop. In particular, if
the configuration is xy-monotone at the start, for example squares in only a single row or
column, then we do not have to gather or compact, even though there are no heavy chunks.
See the top row of Figure 2 for a visual impression of our algorithm.

In the special case that the input configuration C contains less than P squares, we first
ensure that C contains the origin and then execute the gathering and compaction as before.
The number of moves is trivially bounded by O(Pn) = O(P?), see Section 3.4.

Finally, in Section 3.3 we show how to convert any xy-monotone configuration into a
different zy-monotone configuration with at most O(Pn) moves, where P is the maximum
perimeter of the bounding boxes of source and target configurations. Thus, since all moves are
reversible, we can transform the source into the target configuration via this transformation.

» Theorem 5. Let C and C' be two configurations of n squares each, let P and P’ denote the
perimeters of their respective bounding bozes, and let P = max{P, P'}. We can transform C
into C' using at most O(Pn) moves while maintaining edge-connectivity at all times.

Proof. For any two configurations C and C’ of n squares each, we can apply gathering and
compacting to find zy-monotone configurations M in O(Pn) and M’ in O(P’n) moves, for C
and C’ respectively. If we want to transform C into C’, we first gather and compact C into M,
transform M into M’ in O(Pn) moves, and proceed by reversing the sequence of steps for C’
to get configuration C’. In Sections 3.1, 3.2 and 3.3 we show that gathering, compacting and
transforming xy-monotone configurations require the appropriate number of moves, such
that the total number of moves is O(Pn + Pn + P'n) = O(Pn). <

H. A. Akitaya et al.

[TTTTT]
L]

2oL, 1

]] Hh= 1]
(a) [TT11 (b) [TTT1 (<) [TTT1

Figure 7 Light square s (green); filling cells e; and e2 makes s part of a chunk; a stable square
a (dark grey) moves towards e; along the boundary. (a) a reaches ei. (b) square b (brown) part
of a component outside of D, moving a to ¢ creates a chunk containing s. (c¢) square b part of a
component in D, moving a to c creates a hole; its inner boundary will not be traversed again.

3.1 Gathering

In this section we show how to gather squares from the leaves of the component tree T until
we create a chunk of size at least P that is a leaf of T. In the following, let s be a connector
or a cut square in a link. By definition, s lies on the boundary of C. Since s is a cut square,
removing s from C results in at least two connected components. One of these components

contains the root of T. We say that the other (up to three) components are descendants of s.

Let D be the set of squares in the descendant components of s. We say that the capacity
of s is |D|, and that s is light if its capacity is less than P and heavy otherwise.

» Lemma 6. Let s be a light square with descendant squares D. Then s can be made part of
a chunk with a sequence of O(P) moves by squares in D. This procedure is in-place.

Proof. Observe that there exist up to two empty cells e; (and es) neighboring s, such that
moving squares there results in a chunk component containing s (see Figure 7). Cell e; (and
e2) can be chosen such that they lie inside bounding box B: these cells must exist since
always at least three neighboring cells are inside B, unless B is a single row/column and the
configuration was already xy-monotone. If such cells are already occupied by squares then s
is already in a chunk. We argue that we can move squares from the descendant components
of s into these empty cells with at most O(P) moves. Once this is accomplished, we repeat
the process in the descendant components, for the next light square of maximal capacity,
until no light squares remain in the component tree below the chunk containing s.

Let D' C D be a subset of boundary squares in the descendants of s of the subconfiguration
D U {s}. Select an arbitrary stable square a € D’. Such a square exists because of the
following: if there is a link component in D that is a leaf in the component tree, then its
degree-1 node is stable; and if there is a chunk component in D that is a leaf in the component
tree, then an extremal square of the chunk in one of the NE, NW, SE, or SW directions is
stable (only one of them can be a connector square).

Consider moving a along the boundary of D towards e;. Let E, be the set of cells that a
needs to cross to reach e;. If E, is empty, then we simply move a to e; (see Figure 7a), and
repeat the procedure for ey (if it exists). In this case, a takes O(P) moves to get to ey, since
a can take a simple path along the at most P descendants in D.

Now consider the case where E, is not empty. Let b be the first square in E, on the
way from a to eg; let ¢ be the square in E, that is just before and edge-adjacent to b. As
b is not part of the boundary along which the path from a to e; is considered, it must be
vertex-adjacent to a square that is on that part of the boundary.

4:9

SWAT 2022

4:10

Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares

There can be two cases: either b ¢ D or b € D. In the first case, moving a to ¢ merges
a component in D with some component outside of D (see Figure 7b). Thus, a chunk is
created that contains s, resulting in s no longer being a light square.

In the second case, when b € D, moving a to ¢ creates a chunk within D (see Figure 7¢). In
this case we select another arbitrary stable square a’ in the new subconfiguration DU{s, c}\ a,
and repeat the procedure. Observe that the empty squares traversed by a are now part of a
hole in the new chunk. Thus the path from a’ to e; does not overlap with the path taken by
a. Let {ag,a1,as,...} be the sequence of such stable squares chosen by our algorithm as
candidates to be moved to e;. For any square a;, its path along the boundary to e; does
not overlap with any of the cells traversed by all a; with j < ¢. Thus, there is some %k such
that aj either reaches ey, or it merges the components within and outside of D into a chunk
containing s. The total number of empty cells traversed by all squares a; (0 < ¢ < k) is O(P).

We repeat the above procedure to fill ea. Note that the path taken by a (and a') may
not always be inside bounding box B. When this path exits B, it will always stay adjacent
to cells in C, and hence it will use only the single row/column of cells adjacent to B. |

Using the procedure described in Lemma 6, we can iteratively reduce the number of light
squares to obtain a component tree where all leaves are chunks of size at least P: any light
square with capacity P — 1 will form a chunk of size P with all its descendants.

» Lemma 7. An in-place reconfiguration of O(Pn) moves exists, which ensures that all
leaves in the component tree are chunks of size at least P.

Proof. By Lemma 6, we can make a light square s part of a chunk in O(P) moves by moving
cubes from D, the set of descendants of s. This in-place process creates new light squares
only if removal of a square a breaks a cycle in D. Thus, every new light square is part of D.

We repeat the procedure, selecting a light square of maximal capacity at every step.
Overall, a square can be light at most once in the process. Thus, after O(Pn) moves no light
squares remain, and all the leaves in the component tree are chunks of size at least P. Note
that, while the root square always has capacity n — 1, an adjacent square can have capacity
2 < |D| < P, and the resulting chunk will be the root component, either because the root
square is on the boundary cycle, or is a loose square. In case the adjacent square is too light,
namely |D| < 2, then the root component may stay a link. <

3.2 Compacting

After the gathering phase, each leaf of the component tree T is a heavy chunk, that is,
each leaf is a chunk of size at least P. In this section, we describe how we compact the
configuration in order to turn it into a left-aligned histogram containing the origin. A left
aligned histogram has a vertical base, and extends only rightward. Our procedure uses three
types of moves: LM-moves, corner moves, and chain moves, which we discuss below. We
iteratively apply any of these moves. The correctness of the algorithm does not depend on
the order in which moves are executed, as long as the moves are valid (defined below). Our
implementation assigns priorities to the various types of moves and chooses according to
these priorities whenever multiple moves are possible (see Section 4).

LM-moves. We say that a move is a lezicographically monotone move (LM-move for short)
if it is either an s- or w-move (slides), or an SW-, Ws-, NW-, or WN-move (convex transitions).
Note that an LM-move will never move a square to the east. Squares can move to the north,
but only when they also move to the west. Hence, if a square starts at coordinate (z,y), and
we perform a series of LM-moves, it stays in the region {(z’,y') | 2’ <z Ay <z —a' +y}.

H. A. Akitaya et al.

Let s be a square in a heavy leaf chunk C of C, and consider an LM-move made by s. We
say that this move is valid if s stays inside bounding box B, and all squares s’ € C are still
in a single chunk after the move. While compacting, we allow only valid LM-moves, that is,
we allow each chunk to grow, but a chunk can never lose any squares.

Corner moves. LM-moves on their own are not necessarily sufficient to compact a chunk
into a suitable left-aligned shape. For example, consider the configuration in Figure 8a, which
does not admit any valid LM-moves. However, it has a concave corner that we can fill with
two moves (see Figure 8b), to expand the chunk in that direction. Repeating such corner
moves allows us to make the chunk in the example left-aligned.

We define corners of a chunk C' with boundary cycle o as follows. A top corner (Figure 9a—
d) is an empty cell with squares by, by, b3 € o as N-, NE-, and E-neighbors. Similarly, a bottomn
corner (Figure 9e-h) is an empty cell with squares by, by, b3 € o as s-, SE-, and E-neighbors.
Note that a corner can be either inside a hole in C' (internal corner), or on the outside of C
(external corner), and we treat both of these in the same way.

Let s be a top corner in C' with neighbors b1, bs, b3 as above. In the case where by, bo, b
are consecutive squares in o (Figure 9a), we can fill s by two slide moves: first move either
b1 or b3 into s, and then move by into the cell left empty by the first move. We call this a
top corner move. We can fill a bottom corner with consecutive by, bo, bg (Figure 9e) in the
same way, just mirrored vertically (a bottom corner move). Just like for LM-moves, we say
that a corner move is valid if all squares s’ € C are still in a single chunk after the corner
move. Note that all corners where by, b, b3 are not consecutive in o (Figure 9b—d and 9f-h)
do not allow valid corner moves, as by and/or b becomes a connector.

Chain moves. Besides LM- and corner moves, we need a special move to prevent getting
stuck when each LM-move is invalid because it would move outside the bounding box B. For
example, some squares on the bottom row or leftmost column of B would be able to perform
LM-moves if they were situated in any other row/column of B, as shown in Figure 10.

A chain move is a series of moves that is started by such an LM-move that violates
validity only by leaving bounding box B. A chain move for a square s in the bottom row of B
requires an empty cell e = (x,0) closer to the origin, and works as follows. Square s must
be able to perform an LM-move, more precisely an Sw-move that is invalid only because
it leaves B. We want to place s in this empty cell e, unless it creates a link component,
which happens only if the square on position (z + 1,0) is a loose square. We slide such a
loose square upwards with a N-move, and identify the emptied cell as e. Note that e is again
the closest empty cell in the bottom row, closer to the origin. We can then move s to e by
performing an SwW-move, a series of W-moves, and finally a WN-move into e. For a square s
in the leftmost column, the direction of all moves is mirrored in x = y.

X
y
m[m[a]

[]

100
OO0
000

(a) > (b)

Figure 8 (a) A configuration that does not admit LM-moves. For example, an Nw-move (in red)
of the top-right square is not valid. (b) Two slide moves expand the concave corner in Sw direction.

»
>

4:11

SWAT 2022

4:12

Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares

o & diky ¢ e
%@ 8 &
@ O © @ © ©» @® M

Figure 9 Empty squares shown in red are corners. The boundary cycle of the chunk is shown in
orange. (a)—(d) Top corners; (e)—(h) bottom corners. Corners shown in (a) and (e) can be both
external and internal. Corners shown in (b)—(d) and (f)—(h) can only be internal.

]]

o] o]
OE00 OE00
O0O00C O000C
Ooooooo. nNooooon
'IIIIID]|| [HEOODOOLC

| —

Figure 10 Examples of chain moves: a square moves outside B to the first empty cell closer to
the origin. This may require a loose square to move as well.

» Lemma 8. Let C be a leaf chunk that does not admit valid LM-mowves, corner moves, or
chain moves. Then C' is solid, and its boundary cycle o outlines a left-aligned histogram.

Proof. We first show that C' is solid. Assume to the contrary that C has a hole. Consider
the top- and bottommost empty squares s; and s, of the rightmost column of empty squares
of any hole in C (s; may be equal to s). Let a and b be the N- and E-neighbors of s,
respectively, and let ¢ be the E-neighbor of s; (see Figure 11a). We know that a,b,c € o,
because otherwise moving a or b into s, or ¢ into sy, would be a valid LM-move. C' has at
most one connector &, which is part of 0. We now show that ¢ lies strictly between a and b
on o, and also that £ lies strictly between ¢ and a, to arrive at a contradiction.

Let ¢’ be the part of o strictly between a and b, walking along the boundary of C in
the clockwise order. If ¢ visits the row above a (leaving the row of a for the first time
at square a'), then there exists a bottom corner move filling the w-neighbor of a’ (see
Figure 11b). This move is valid since the part of C to the right of s; by definition does not
contain any holes. Similarly, if ¢’ visits the row below b (returning to the row of b for the
last time at square '), then there exists a top corner move filling the w-neighbor of b’ (see

1

RS

o - (b) (c) (d)
_Of e
1 1 | ‘__: 5 -
(=) Sl d ¢ TRl
X
(e) (f) (8) (h)

Figure 11 Lemma 8: (a) A chunk hole with s; and s, marked. (b)—(d) Possible valid moves
for o’. (e)—(g) Possible valid moves for ¢”. (h) If a chain move is not possible then ¢ is left of d.

H. A. Akitaya et al.

|_ .-
Figure 12 The boundary cycle o of the leaf Figure 13 The chunk C forms a double-I'
chunk C outlines a left-aligned histogram. shape, with one or two loose squares (orange).

Figure 11c). We conclude that the part of S attached to a and b is a protrusion of two rows
tall. The protrusion is non-empty, because otherwise we can either move a loose square with
an LM-move or fill s; with a corner move (see Figure 11d). Consider the rightmost column

of the protrusion. If this column contains a loose square, we can move it with an LM-move.

Hence, the column contains a square in the row of a and a square in the row of b. If neither
of these is &, then we can perform an LM-move. Hence, ¢’ contains &.

Let ¢” be the part of o strictly between ¢ and a in clockwise order. Walk over ¢ until
encountering the first square d whose N- and w-neighbors are adjacent to d on 0. Assume
that £ is not d or one of its neighbors. If d or the N-neighbor of d have a loose square attached
to them, we can perform an LM-move on this loose square. Otherwise, if the Nw-neighbor
of d is part of a hole in C, then this hole can be filled with a bottom corner move (see
Figure 11e). Otherwise, there are three cases: either (1) we can perform an S- or SW-move
on d (see Figure 11f), or (2) we can perform a horizontal chain move (see Figure 11g), or
(3) the chain move is impossible because no empty square e is available to move to (see
Figure 11h). In cases (1) and (2), by contradiction £ is d or one of its neighbors; in case (3),
¢ needs to be in the bottommost row. In any case, ¢” contains &.

As ¢’ and ¢” are disjoint, they cannot both contain &, which results in a contradiction.

Hence, C' is solid. To show that o outlines a left-aligned histogram, we observe that any
external corner (with neighbors by, ba, bs as defined above) admits a valid corner move. Indeed,
none of by, bo, by can be a loose square, as those would admit LM-moves. Furthermore, as C'is
solid, a boundary square cannot be a cut square for squares on the inside of o. Finally, since
C is a leaf chunk, the only cut square in ¢ is its connector. As only one out of b; and bs can
be this connector, we can perform a valid corner move starting with the other (non-connector)
square. Therefore, by our assumption that there are no corner moves in C', there cannot be
external corners, and thus o outlines a left-aligned histogram (see Figure 12). |

A set of squares is a double-I" if it fills the top two rows and left two columns of its
bounding box.

» Lemma 9. Let C be a leaf chunk that does not contain the origin and does not admit valid
LM-moves, corner moves, or chain moves. Then the squares of the boundary cycle of C are
a double-T' (see Figure 13).

Proof. Let C* be the set of squares outlined by ¢. By Lemma 8, C* is a left-aligned
histogram. Let {ry,r,...} be the rows in C*, ordered from top to bottom. The connector &
of C lies on o, and thus in C*. Assume that £ is in row r; (i > 3). In that case, the leftmost
square of r; has a valid move m: a wWs-move or a vertical chain move. In particular, m is
not blocked by a loose square in the leftmost column of C, because that column can contain
only one loose square in the last row of C* (otherwise one of the other loose squares would
admit a valid s-move). Similarly, C' cannot contain a loose square, which could block m,
in its topmost row. Indeed, such a loose square would admit a W-, Ws-move, or a vertical

4:13

SWAT 2022

4:14

Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares

chain move (if it has an s-neighbor in o), or it would admit an s-move (if it has a w- or
E-neighbor in o). The existence of m leads to a contradiction, so & lies on 1 or ry. Because
C* is 2-connected, this implies that |r1| = |r2|, forming the horizontal leg of the double-T'.
Consider the last row r; (k > 3) such that |r;| > 2. The rightmost square in 7 has a
valid sw-, s-move, or horizontal chain move (which, by a similar argument as before, cannot
be blocked by a loose square). On the other hand, |ri| > 2, again because of 2-connectivity.
Therefore, for all rows r; (i > 3), |r;| = 2, forming the vertical leg of the double-T. <

» Lemma 10. Let C be a configuration in which each leaf is a chunk of size at least P. Let
C’ be the result of exhaustively performing valid LM-moves, corner moves, or chain moves
on C. This reconfiguration is in-place and C' is xy-monotone.

Proof. In the compaction phase we iteratively apply LM-, corner, and chain moves on the
configuration in which each leaf chunk contains at least P squares. After compaction, a leaf
chunk can either contain the origin, or not. Consider such a chunk C' that does not contain
the origin. By Lemma 9, the cycle of C will outline a double-I', and since C' is a leaf, it has
at least P squares. Gathering and compacting are in-place, since squares always move to a
cell inside the initial bounding box B of the configuration. Even if a square moves outside B
during gathering or chain moves it always ends inside B (by Lemma 6 and by definition,
respectively). Hence the connector of C' will also be inside B. Since P is the perimeter of B,
any double-T" of P squares completely inside B will reach the bottom left corner of B. Thus,
C must contain the origin, as one of the top two rows connects to the connector inside B.
As a result, every leaf chunk contains the origin at some point during compaction.

Once every leaf chunk contains the origin, the whole configuration is one single chunk:
all leaves of the component tree form a single component now. Continuing the compacting
hence results in a left-aligned histogram, by Lemma 8. Finally consider the topmost row r of
this histogram that is longer than the row below it. During compaction, the rightmost cube
of r can perform a valid LM-move, namely a S- or SW-move to the row below it. Note that
these moves cannot put cubes outside of the original bounding box B of C. Thus, once the
compacting phase is completed, the configuration is xy-monotone inside B. |

» Lemma 11. There is an in-place reconfiguration of O(Pn) moves of a configuration in
which all leaves are chunks of size at least P to an xy-monotone configuration.

Proof. Using Lemmata 8, 9, and 10, we can transform a configuration C, in which all leaves
are chunks of size at least P, to an zy-monotone configuration. Let s = (z,y) be a square
in C. We assign to s the score d(s) =2z 4y, and let d =) . d(s). Each LM-, and bottom
corner move performed in C decreases d by at least 1, while every top corner move decreases d
by two. Initially, d < |C| - P, so the total number of LM- and corner moves is also at most
IC|- P. Every square s is involved in at most P/2 chain moves, since each chain move places s
closer to the origin in the bottom row/leftmost column. Furthermore, every chain move adds
at most one additional move for a loose square, which increases the above score by at most
two, hence the total number of moves as a result of chain moves is also at most O(|C|- P). <«

3.3 Transforming xzy-monotone configurations

After gathering and compacting we arrive at an zy-monotone configuration. However,
this configuration is not unique and hence we need to be able to transform between such
configurations. We use a potential function to guide this transformation.

H. A. Akitaya et al.

» Lemma 12. Let C; and Cy be two xy-monotone configurations of n squares each, let P
and P’ denote the perimeters of their respective bounding boxes, and let P = max{P, P'}.
We can reconfigure Cy into Co using at most O(Pn) moves, while remaining in-place.

Proof. Let C := C;. For each grid cell ¢ = (x, y), we define the potential of ¢ to be ¢(c) = z+y.

Let s be the bottommost square in C \ C; whose cell has maximum potential, and let e be
the topmost empty grid cell with minimum potential that is occupied in Co. We iteratively
move s to e in C until C = Cy. We first show that C remains zy-monotone. Removing s
cannot break this property: by definition of ¢ and since Cs is zy-monotone, s does not have
N-, NE-, or E-neighbors in C. Moreover, if it has a Nw-neighbor then, by zy-monotonicity
of C, it has a w-neighbor too. Similarly, adding a square in e maintains xy-monotonicity.
By the definition of ¢ and since Cy is xy-monotone, the cells neighboring e in the s, sw,
and W directions must be occupied if they are inside the bounding box of C. Moreover,
xy-monotonicity of C guarantees that e does not have N-, NE-, or E-neighbors.

In every step we move a square from a position occupied in C; to a position occupied
in Cy, hence the perimeter of the bounding box of configuration C is O(P + P’) = O(P).
Moving one square along the boundary of C is allowed for in-place reconfiguration. Since
this takes at most O(P) moves per square and no square is moved more than once, it takes
O(Pn) moves in total to reconfigure C; into Co. <

3.4 Light configurations

We say that a configuration C is light, if it consists of fewer than P squares, where P is the
perimeter of the bounding box of C. Our algorithm, as explained in the main text, cannot
directly handle such configurations if C does not contain the origin: there are too few squares
to guarantee that compacting will always result in a chunk that contains the origin. However,
we can use a simple preprocessing step to ensure that C will contain the origin.

For a light configuration C which does not contain the origin, we select a stable square as
in the gathering phase: a stable square in a link, or an extremal stable square in a chunk.
We iteratively move this stable square along the boundary of C to the empty cell e that is the
w-neighbor of the root square. We iteratively continue to do so until C contains the origin.
Note that e must necessarily be empty.

At this point, we can simply gather and compact C and arrive at an zy-monotone
configuration, for the following reason. The gathering phase works as in the main text, since
we can iteratively apply Lemma 6 on the light square closest to the root (which can be
the root itself), to get a single chunk. As the root square is located at the origin, and we
never move the root during gathering, we get a chunk containing the origin. Similarly, in

e

u| y//
4

u
7

[[aa]x]
OOSOERY

A A

OOOOooooooEm,
OOooooooooo|
O000000cC
O0O00c

O00c

u[m[n[n]=u[n]=]o]~]
OooooooO,|
u[u[n]n][n]n]n]=]"]

Figure 14 Transforming between two xy-monotone configurations. The dashed lines go through
cells with the same potential.

4:15

SWAT 2022

4:16

Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares

the compaction phase, this chunk will become a solid left-aligned histogram by Lemma 8.
Since it already contains the origin, and we do only monotone moves towards the origin, this
chunk still contains the origin. Finally the topmost row r of this histogram, that is longer
than the row below it, still has valid LM-moves. Hence C is zy-monotone after compaction.

There are at most P/2 empty cells to the left of the root. We fill each of these cells by
by walking along the boundary of C. Since configuration C consists of less than P squares,
this requires at most O(Pn) = O(P?) moves. Both gathering and compacting take O(Pn)
moves, as proven in the main text, so including the preprocessing, we still arrive at a bound
of O(Pn) for the number of moves.

4 Experiments

We experimentally compared our Gather&Compact algorithm to the JavaScript implementa-
tion! of the in-place modification by Moreno and Sacristdn [14, 15] of the Dumitrescu and
Pach [10] algorithm, which we refer to as MSDP in the remainder of this section. The original
algorithm by Dumitrescu and Pach always requires ©(n?) moves, since it builds a horizontal
line to the right of a rightmost square as canonical shape. The in-place modification of
Moreno and Sacristan has the potential to be more efficient in practice, since it builds a
rectangle within the bounding box of the input.

We captured the output (sequence of moves) of MSDP and reran the reconfiguration
sequences in our tool, to be able to verify movement sequences, count moves, and generate
figures. Doing so, we discovered that MDSP was occasionally executing illegal moves, see the
full version for details and for our corresponding adaptations [3]. Some of these issues could
be traced to the same origin: MSDP is breaking convex transitions into two separate moves
and sometimes acts on the illegal intermediate state. The number of moves we report in
Table 1 counts one move both for convex transitions and for slides; hence the numbers can be
lower than the numbers Moreno and Sacristan report. However, our adaptations do replace
illegal moves with the corresponding (and generally longer) legal movement sequences, and
hence the number of moves can also be higher than those they report.

We use square grids of sizes 10 x 10, 32 x 32, 55 x 55, 80 x 80, 100 x 100 for our experiments.
The data sets for MSDP were created by hand and are not available.? We attempted to
create meaningful data sets of the same nature by starting with a fully filled square grid and

! nttps://dccg.upc.edu/people/vera/TFM-TFG/Flooding/
2 V. Sacristdn, personal communication, April 2021.

Table 1 The number of moves for Gather&Compact and MSDP on various grid sizes (D x D,
such that P = 4D) and densities (in % of D x D). Averages and standard deviations (in % of
average) over 10 randomly generated instances are shown.

Gather& Compact MSDP
D 50% 70% 85% 50% 70% 85%
10 237 31% 156 16% 95 8% 502 19% 427 21% 233 35%

32 5.395 4% 4.188 5% 2.529 8% 28.759 12% 18.447 13% 10.027 8%
55 25.916 2% 20.024 3% 12.124 4% 193.390 8% 116.431 12% 61.617 8%
80 77745 2% 60.516 2% 36.395 3% 638.847 12% 344.529 9% 235.413 5%
100 150.666 1% 118.232 2% 69.488 3% 1.318.232 11% 743.133 17% 513.113 7%

https://dccg.upc.edu/people/vera/TFM-TFG/Flooding/

H. A. Akitaya et al.

o[o]e
SIolelo]
ofe]
°]o]
o]
olololo
=l o]
o] [e]c
[<]
[o]o]e]
[°]
EEE
0
olo
=[]
afa] [o]
OORE
OOOE
oooooooooo)

[elo]o
o[c]e
1o
[°] [eIclo]e
1<
[o]e
BED
ofofoJoJo]o
—~
Z
a[u]u]a]
[a]a]a]
[=]
OEOBRED
[m]m]m
u[n[u[n
]
=
]

(a) EE

0 EO0O0

i
i

Figure 16 Execution of the two algorithms on one of the input instances for grid size 10 x 10,
density 50 %. (a) Gather&Compact; (b) MSDP. Video: @ https://tinyurl.com/algal0x10.

then removing varying percentages of squares while keeping the configuration connected. We
arrived at three densities, namely (50 %, 70 %, 85 %), which arguably capture the different
types of inputs well (see Figure 15). For each value, the density of the configurations
generated is close to homogeneous. The configurations with 85% density are a generalization
of the “dense” configurations in the data sets for MSDP. The configurations with 70% density
correspond to the so-called “medium” configurations in the data sets for MSDP, which
combine the two different substructures considered for that density. The edge-adjacency
graphs of the configurations with 50% density are essentially trees and, especially in the
larger configurations, many leaves are not on the outer boundary (resembling the “nested”
configurations in the evaluation of MSDP). For both algorithms we count moves until they
reach their respective canonical configurations. Our online material® contains our code for
Gather&Compact, the input instances, and the adapted version of MSDP.

The compaction step of Gather&Compact does not rely on any particular order of the
available valid moves. Our implementation prioritizes squares by descending L..-distance to
the origin. We also prioritize downwards LM-moves (W, WS, sw, S) over upwards LM-moves
(WN, NW), and top corner moves over bottom moves.

Table 1 summarizes our results and Figure 16 shows snapshots for both algorithms on a
particular instance. We observe that Gather&Compact always uses significantly fewer moves
than MSDP, even on high density instances where most squares are already in place. This
is likely due to the fact that MSDP walks squares along the boundary of the configuration,
while Gather&Compact shifts squares locally into better position. Figure 16b shows this
behavior at move 600 where one can observe a square on its way along the bottom boundary.

3 https://alga.win.tue.nl/software/compacting-squares/

4:17

SWAT 2022

https://tinyurl.com/alga10x10
https://alga.win.tue.nl/software/compacting-squares/

4:18

Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares

5 Conclusion

We introduced the first universal in-place input-sensitive algorithm to solve the reconfiguration
problem for the sliding cube model in two dimensions. Our Gather&Compact algorithm
is input-sensitive with respect to the size of the bounding box of the source and target
configurations. We experimentally established that Gather&Compact not only improves the
existing theoretical bounds, but that it also leads to significantly fewer moves in practice.

We showed that minimizing the number of moves for reconfiguration is NP-complete
in two dimensions. The question then arises whether the problem admits approximation
algorithms. Our NP-hardness proof can be adapted to show APX-hardness in the 3D sliding
cube model and we conjecture that the problem is also APX-hard for sliding squares.

There may still be room to improve on the algorithm in this paper. Specifically, it may
be possible to improve the hidden constants, by gathering to leaf chucks of size P/2 instead
of P. These chunks still have enough squares to reach the origin, but they have to give up
2-connectivity to do so, and hence the algorithm becomes more complex. Once all leaves
create an ry-monotone path to the origin, the configuration again consists of a single chunk,
and thus the remaining parts of our algorithm still apply.

Finally, extending our algorithm to three dimensions is currently work in progress. While
well-connected components can also be transformed more efficiently in 3D, the algorithm
may require a higher degree of connectivity than 2-connectivity.

—— References

1 Hugo A. Akitaya, Esther M. Arkin, Mirela Damian, Erik D. Demaine, Vida Dujmovié, Robin
Flatland, Matias Korman, Belén Palop, Irene Parada, André van Renssen, and Vera Sacristén.

Universal reconfiguration of facet-connected modular robots by pivots: The O(1) musketeers.
Algorithmica, 83(5):1316-1351, 2021. doi:10.1007/s00453-020-00784-6.

2 Hugo A. Akitaya, Erik D. Demaine, Andrei Goncezi, Dylan H. Hendrickson, Adam Hesterberg,
Matias Korman, Oliver Korten, Jayson Lynch, Irene Parada, and Vera Sacristan. Characterizing
universal reconfigurability of modular pivoting robots. In Proc. 37th International Symposium
on Computational Geometry (SoCG), pages 10:1-10:20, 2021. doi:10.4230/LIPIcs.SoCG.
2021.10.

3 Hugo A. Akitaya, Erik D. Demaine, Matias Korman, Irina Kostitsyna, Irene Parada, Willem
Sonke, Bettina Speckmann, Ryuhei Uehara, and Jules Wulms. Compacting squares: Input-
sensitive in-place reconfiguration of sliding squares. CoRR, abs/2105.07997, 2021. arXiv:
2105.07997.

4 Greg Aloupis, Nadia Benbernou, Mirela Damian, Erik D. Demaine, Robin Flatland, John
Tacono, and Stefanie Wuhrer. Efficient reconfiguration of lattice-based modular robots. Com-
putational Geometry: Theory and Applications, 46(8):917-928, 2013. doi:10.1016/j.comgeo.
2013.03.004.

5 Greg Aloupis, Sébastien Collette, Mirela Damian, Erik D. Demaine, Robin Flatland, Stefan
Langerman, Joseph O’Rourke, Val Pinciu, Suneeta Ramaswami, Vera Sacristan, and Stefanie
Wubhrer. Efficient constant-velocity reconfiguration of crystalline robots. Robotica, 29(1):59-71,
2011. doi:10.1017/S026357471000072X.

6 Byoung Kwon An. EM-Cube: Cube-shaped, self-reconfigurable robots sliding on structure
surfaces. In Proc. 2008 IEEE International Conference on Robotics and Automation (ICRA),
pages 3149-3155, 2008. doi:10.1109/R0OBOT.2008.4543690.

7 Nora Ayanian, Paul J. White, Addm Hal4sz, Mark Yim, and Vijay Kumar. Stochastic
control for self-assembly of XBots. In Proc. ASME International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference (IDETC-CIE), pages
1169-1176, 2008. doi:10.1115/DETC2008-49535.

https://doi.org/10.1007/s00453-020-00784-6
https://doi.org/10.4230/LIPIcs.SoCG.2021.10
https://doi.org/10.4230/LIPIcs.SoCG.2021.10
http://arxiv.org/abs/2105.07997
http://arxiv.org/abs/2105.07997
https://doi.org/10.1016/j.comgeo.2013.03.004
https://doi.org/10.1016/j.comgeo.2013.03.004
https://doi.org/10.1017/S026357471000072X
https://doi.org/10.1109/ROBOT.2008.4543690
https://doi.org/10.1115/DETC2008-49535

H. A. Akitaya et al.

10

11

12

13

14

15

16

17

18

19

20

Nadia M. Benbernou. Geometric algorithms for reconfigurable structures. PhD thesis,
Massachusetts Institute of Technology, 2011.

Chih-Jung Chiang and Gregory S. Chirikjian. Modular robot motion planning using similarity
metrics. Autonomous Robots, 10:91-106, 2001. doi:10.1023/A:1026552720914.

Adrian Dumitrescu and Janos Pach. Pushing squares around. Graphs and Combinatorics,
22:37-50, 2006. doi:10.1007/s00373-005-0640-1.

Robert Fitch, Zack Butler, and Daniela Rus. Reconfiguration planning for heterogeneous
self-reconfiguring robots. In Proc. 2003 IEEE/RSJ International Conference on Intelligent
Robots and System, pages 2460-2467, 2003. doi:10.1109/IR0S.2003.1249239.

Kazuo Hosokawa, Takehito Tsujimori, Teruo Fujii, Hayato Kaetsu, Hajime Asama, Yoji
Kuroda, and Isao Endo. Self-organizing collective robots with morphogenesis in a vertical
plane. In Proc. 1998 IEEE International Conference on Robotics and Automation (ICRA),
pages 2858-2863, 1998. doi:10.1109/R0OBOT.1998.680616.

Othon Michail, George Skretas, and Paul G. Spirakis. On the transformation capability of
feasible mechanisms for programmable matter. Journal of Computer and System Sciences,
102:18-39, 2019. doi:10.1016/j.jcss.2018.12.001.

Joel Moreno. In-place reconfiguration of lattice-based modular robots. Bachelor’s thesis,
Universitat Politecnica de Catalunya, 2019.

Joel Moreno and Vera Sacristan. Reconfiguring sliding squares in-place by flooding. In Proc.
36th European Workshop on Computational Geometry (EuroCG), pages 32:1-32:7, 2020.
Irene Parada, Vera Sacristan, and Rodrigo I. Silveira. A new meta-module design for efficient
reconfiguration of modular robots. Autonomous Robots, 45(4):457-472, 2021. doi:10.1007/
s10514-021-09977-6.

Daniela Rus and Marsette Vona. A physical implementation of the self-reconfiguring crystalline
robot. In Proc. 2000 IEEE International Conference on Robotics and Automation (ICRA),
pages 1726-1733, 2000. doi:10.1109/R0OBOT.2000.844845.

John W. Suh, Samuel B. Homans, and Mark Yim. Telecubes: mechanical design of a module
for self-reconfigurable robotics. In Proc. 2002 IEEE International Conference on Robotics and
Automation (ICRA), pages 4095-4101, 2002. doi:10.1109/R0OB0T.2002.1014385.

Cynthia Sung, James Bern, John Romanishin, and Daniela Rus. Reconfiguration planning for
pivoting cube modular robots. In Proc. 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 1933-1940, 2015. doi:10.1109/ICRA.2015.7139451.

Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll, Hod Lipson, Eric Klavins,
and Gregory S. Chirikjian. Modular self-reconfigurable robot systems. IEEE Robotics &
Automation Magazine, 14(1):43-52, 2007. doi:10.1109/MRA.2007.339623.

4:19

SWAT 2022

https://doi.org/10.1023/A:1026552720914
https://doi.org/10.1007/s00373-005-0640-1
https://doi.org/10.1109/IROS.2003.1249239
https://doi.org/10.1109/ROBOT.1998.680616
https://doi.org/10.1016/j.jcss.2018.12.001
https://doi.org/10.1007/s10514-021-09977-6
https://doi.org/10.1007/s10514-021-09977-6
https://doi.org/10.1109/ROBOT.2000.844845
https://doi.org/10.1109/ROBOT.2002.1014385
https://doi.org/10.1109/ICRA.2015.7139451
https://doi.org/10.1109/MRA.2007.339623

	1 Introduction
	2 Hardness of optimal reconfiguration
	3 Input-sensitive in-place algorithm
	3.1 Gathering
	3.2 Compacting
	3.3 Transforming xy-monotone configurations
	3.4 Light configurations

	4 Experiments
	5 Conclusion

