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1 Introduction

Geometric covering problems have been a focus of research for decades. Here we are given a
set of points P and a set S where each s € S can cover some subsets of P. The subset of P is
generally induced by some geometric object. For example, P might be a set of points in the
plane, and s consists of the points contained within some disk in the plane. For most variants,
the problem is NP-hard and can easily be reduced to an instance of the combinatorial set
cover problem which has a polynomial-time O(logn)-approximation algorithm, which is
the best possible approximation under standard complexity assumptions [5]. The main
question therefore is to determine for which variants of geometric set cover we can obtain
polynomial-time approximation algorithms with approximation ratio o(logn), as any such
algorithm must exploit the geometry of the problem to achieve the result. This area has been
studied extensively, see for example [2, 14, 1], and much progress has been made utilizing
algorithms that are based on solving the standard linear programming relaxation.

Unfortunately this technique has severe limitations for some variants of geometric set
cover, and new ideas are needed to make progress on these variants. In particular, the
techniques are lacking when the points P we wish to cover is a simple polygon, and we wish
to place the smallest number of points in P that collectively “see” the polygon. This problem
is classically referred to as the art gallery problem as an art gallery can be modeled as a
polygon and the points placed by an algorithm represent cameras that can “guard” the art
gallery. This has been one of the most well-known problems in computational geometry for
many years, yet still to this date the best polynomial-time approximation algorithms for this
problem have approximation ratios that are w(1). The key issue is a fundamental lack of
understanding of the combinatorial structure of visibility inside simple polygons. It seems
that in order to develop powerful approximation algorithms for this problem, the community
first needs to better understand the underlying structure of such visibility.
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Visibility Graphs. A very closely related issue which has received a lot of attention in the
community is the visibility graph (VG) of a simple polygon. Given a simple polygon P, the
VG G = (V, E) of P has the following structure. For each vertex p € P, there is a vertex in
V', and there is an edge connecting two vertices in G if and only if the corresponding vertices
in P “see” each other (i.e., the line segment connecting the points does not go outside the
polygon). The VG of a simple polygon must contain a Hamiltonian cycle that corresponds
with the boundary of the P, and it generally is assumed that the input G comes with a labeled
Hamiltonian cycle. Three major open problems regarding VGs of simple polygons are the VG
characterization problem, the VG recognition problem, and the VG reconstruction problem.
The VG characterization problem seeks to define a set of properties that all VGs satisfy. The
VG recognition problem is the following. Given a graph G, determine if there exists a simple
polygon P such that G is the VG of P in polynomial time. The VG reconstruction problem
seeks to construct a simple polygon P such that a given VG G is the VG of P.

The problems of characterizing and recognizing the VGs of simple polygons have had
partial results given dating back to over 25 years ago [6] and remain open to this day with
only a few special cases being solved. Characterization and recognition results have been
given in the special cases of “spiral polygons” [4] and “tower polygons” [3]. There have been
several results [7, 4, 12] that collectively have led to four necessary conditions (NCs) that
a simple polygon VG must satisfy. That is, if the graph G does not satisfy all four of the
conditions then we know that G is not the VG for any simple polygon, and moreover it can
be determined if a graph G satisfies all of the NCs in polynomial time. Streinu, however,
has given an example of graph that satisfies all of the NCs but is not a VG for any simple
polygon [13], implying that the set of conditions is not sufficient and therefore a strengthening
of the NCs is needed. Unfortunately it is not even known if simple polygon VG recognition
is in NP. See [8] for a nice survey on these problems and other related visibility problems.

Pseudo-polygons. Given the difficulty of understanding simple polygon VGs, O’Rourke
and Streinu [10] considered the VGs for a special case of polygons called pseudo-polygons
which we will now define. An arrangement of pseudo-lines L is a collection of simple curves,
each of which separates the plane, such that each pair of pseudo-lines of £ intersects at
exactly one point, where they cross. Let P = {pg,pa, ..., pn_1} be a set of points in R?, and
let £ be an arrangement of (Z) pseudo-lines such that every pair of points p; and p; lie on
exactly one pseudo-line in £, and each pseudo-line in £ contains exactly two points of P.
The pair (P, L) is called a pseudo-configuration of points (pcp) in general position.
Intuitively a pseudo-polygon is determined similarly to a standard Euclidean simple
polygon except using pseudo-lines instead of straight line segments. Let L;; denote the
pseudo-line through the points p; and p;. We view L; ; as having three different components.
The subsegment of L; ; connecting p; and p; is called the segment, and we denote it p;p;.
Removing p;p; from L; ; leaves two disjoint rays. Let r; ; denote the ray starting from p;
and moving away from p;, and we let r;; denote the ray starting at p; and moving away
from p;. Consider the pseudo-line L; ;41 in a pep (indices taken modulo n and are increasing
in counterclockwise order throughout the paper). We let e; denote the segment of this line.
A pseudo-polygon is obtained by taking the segments e; for i € {0,...,n — 1} if (1) the
intersection of e; and e;41 is only the point p;1 for all ¢, and (2) for any ¢ and j such that
j > i+1, the segments e; and e; do not intersect. We call the segments e; the boundary edges.
A pseudo-polygon separates the plane into two regions: “inside” the pseudo-polygon and
“outside” the pseudo-polygon, and any two points p; and p; see each other if the segment p;p;
does not go outside of the pseudo-polygon. See Fig. 1 for an illustration. Pseudo-polygons
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Figure 1 (a) A pcp and pseudo-polygon. (b) The corresponding VG.

can be viewed as a combinatorial abstraction of simple polygons. Note that every simple
polygon is a pseudo-polygon (simply allow each L; ; to be the straight line through p; and
p;), and Streinu showed that there are pseudo-polygons that cannot be “stretched” into a
simple polygon [13].

O’Rourke and Streinu [10] give a characterization of vertez-edge VGs of pseudo-polygons.

In this setting, for any vertex v we are told which edges v sees rather than which vertices
it sees. Unfortunately, O’Rourke and Streinu showed that vertex-edge VGs encode more
information about a pseudo-polygon than a regular VG [11]. Gibson, Krohn, and Wang [9]
gave a characterization of the VGs of pseudo-polygons. Unfortunately this characterization
did not directly lead to a polynomial-time recognition or reconstruction algorithm.

Our Results. 1In this paper, we give results for the VGs of both pseudo-polygons and simple
polygons. First, we settle the remaining two open questions for the VGs of pseudo-polygons:
recognition and reconstruction. First, we present a polynomial-time algorithm that can decide
if a given graph G (with a labeled Hamiltonian cycle) is the VG for some pseudo-polygon,
settling the recognition problem for pseudo-polygons. To obtain the result, we give a slightly
different characterization of pseudo-polygon VGs than the one given in [9]. We then show
that we can extend the recognition algorithm to obtain a polynomial-time reconstruction
algorithm for pseudo-polygons. Our algorithm computes a vertex-edge VG that can then be
reconstructed into a pseudo-polygon using the technique described in [10].

2 Preliminaries

We begin with some definitions that were relied upon heavily in the characterization of [9]
that will be used in this paper as well. Note that the visibility graph G of a pseudo-polygon P
must contain a Hamiltonian cycle because each p; must see p;—1 and p; 1. Since determining
if a graph contains a Hamiltonian cycle is NP-hard, previous research has assumed that G
does have such a cycle C' and the vertices are labeled in counterclockwise order according to
this cycle. So now suppose we are given an arbitrary graph G = (V, E) with the vertices
labeled pg to p,—1 such that G contains a Hamiltonian cycle C' = (pg,p2,...,pn—1) in order
according to their indices. We are interested in determining if G is the visibility graph for
some pseudo-polygon P where C' corresponds with the boundary of P. For any two vertices
p; and p;, we let O(p;, p;) denote the vertices and boundary edges encountered when walking
counterclockwise around C' from p; to p; (inclusive). For any edge {p;,p;} in G, we say that
{pi,p;} is a visible pair, as their points in P must see one another. If {p;, p;} is not an edge
in G, then we call (p;,p;) and (p;, p;) invisible pairs. Note that visible pairs are unordered,
and invisible pairs are ordered (for reasons described below).
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Figure 2 (a) A visibility graph G. (b) A simple polygon using ps to block p1 and ps. (c) A
simple polygon using ps4 to block p1 and ps. (d) A pseudo-polygon using p2 to block p1 and ps. Note
that if the segment p1p3 does not exit the polygon then it would have to intersect Li 2 at least twice
(once at p1 and once in the dashed ray r2,1. (e) A pseudo-polygon using ps4 to block p1 and ps.

Consider any invisible pair (p;,p;). If G is the visibility graph for a pseudo-polygon P,
the segment p;p; must exit P. For example, suppose we want to construct a polygon P
such that the graph in Fig. 2 (a) is the visibility graph of P. Note that p; should not see
p3, and thus if there exists such a polygon, it must satisfy that p;ps exits the polygon. In
the case of a simple polygon, we view this process as placing the vertices of P in convex
position and then contorting the boundary of P to block p; from seeing p3. We can choose
P2 or py to block p; from seeing ps (see (b) and (c)). Note that as in Fig. 2 (b) when using
p2 € O(p1,p3) as the blocker in a simple polygon, the line segment p;ps does not go outside
P and the ray ro ; first exits P through a boundary edge in O(ps, p1). Similarly as in Fig. 2
(¢) when using ps € 9(ps,p1) as the blocker, the line segment p1p4 does not go outside of the
polygon and the ray 741 first exits the polygon through a boundary edge in 0(p1,p3). The
situation is similar in the case of pseudo-polygons, but since we do not have to use straight
lines to determine visibility, instead of bending the boundary of P to block the invisible pair
we can instead bend the pseudo-line. See Fig. 2 (d) and (e). Note that the combinatorial
structure of the pseudo-line shown in part (d) (resp. part (e)) is the same as the straight
line in part (b) (resp. in part (c)). The following definition plays an important role in our
characterization. Consider a pseudo-polygon P, and let p; and p; be two vertices of P that
do not see each other. We say a vertex p; € 0(p;,p;) of P is a designated blocker for the
invisible pair (p;, p;) if p; sees pi (i.e. the segment p;py is inside the polygon) and the ray
), first exits the polygon through an edge in d(p;, p;). The definition for py € d(p;,p;) to
be a designated blocker for (p;,p;) is defined similarly. Intuitively, a designated blocker is a
canonical vertex that prevents the points in an invisible pair from seeing each other.

The key structural lemma proved in [9] that led to their characterization was to show that
every invisible pair (p;,p;) in a pseudo-polygon must have exactly one designated blocker.
Moreover, the designated blocker must be one of at most two candidate blockers. There is
at most one candidate blocker in d(p;,p;) and there is at most one candidate blocker in
O(pj,pi). We will define the candidate blocker in 0(p;,p;), and the other case is handled
symmetrically. Starting from p;, walk clockwise towards p; until we reach the first point
pr such that {p;,pr} is a visible pair (clearly there must be such a point since {p;, piy+1}
is a visible pair). We say that py is a candidate blocker for (p;,p;) if there are no visible
pairs {ps,p;} such that ps € O(pi, pxk—1) and p; € O(pr+1,p;). If there is such a visible pair
{ps,pt}, then there is no candidate blocker (and therefore no designated blocker) for (p;,p;)
in d(p;,p;j). Note that a vertex may be a candidate blocker for (p;, p;) but not for (p;,p;),
and we view invisible pairs as ordered pairs for this reason. The formal statement of the
lemma proved in [9] is as follows.

» Lemma 1. For any invisible pair (p;,p;) in a pseudo-polygon P, there is exactly one
designated blocker py. Moreover, py, is a candidate blocker for the invisible pair (p;,p;) in
the visibility graph of P.
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Figure 3 (a) If py is the designated blocker for (p;,p;) and ps sees pr then py is the designated
blocker for (ps,p;). (b) If ps does not see pi, and p; is the designated blocker for (ps,px) then p¢ is
also the designated blocker for (ps,p;).

2.1 The Characterization of [9]

We now state the characterization of pseudo-polygon VGs given in [9]. The main idea is
that if G is the VG of some pseudo-polygon P, then each invisible pair must be able to be
assigned exactly one of its candidate blockers to serve as the designated blocker in P because
of Lemma 1. However, we cannot simply arbitrarily pick a candidate blocker to serve as
the designated blocker, as some choices may cause pseudo-lines to violate the pseudo-line
properties. That is, some assignments may force a pair of pseudo-lines to intersect more
than once and/or they may intersect at a vertex but not cross. The proof for each of the
following assignment properties (APs) from the characterization in [9] showed that if the AP
was violated then we would violate such a pseudo-line property. They later proved that if
one can assign a designated blocker to each invisible pair that satisfies all of these properties,
then G is in fact the VG for some pseudo-polygon (i.e., the properties are necessary and
sufficient). We remark that the first four properties will also be used in the characterization
in this paper, but the fifth property will be replaced with a new property to obtain a different
characterization that will better fit within the framework of our reconstruction algorithm.

Let (p;, pj) be an invisible pair, and let p; be the candidate blocker assigned to it. The
first AP uses the definition of pseudo-lines and designated blockers to provide additional
constraints on p; and p;. Note that while the condition is stated for px € 9(pi,p;), a
symmetric condition for when py € 9(p;, p;) clearly holds.

» Assignment Property 1. If p, € O(p;,p;) is the candidate blocker assigned to invisible
pair (p;,p;) then both of the following must be satisfied: (1) pi is assigned to the invisible
pair (pi,pe) for every py € O(pry1,p;) and (2) if (pr,pj) s an invisible pair then p; is not
the candidate blocker assigned to it.

Again let p, be the candidate blocker assigned to an invisible pair (p;,p;) such that
Pk € O(ps, p;). Since py, is a candidate blocker, we have that (ps,p;) is an invisible pair for
every ps € O(p;, pr—1). The next AP is a constraint on the location of designated blockers for
(ps,p;). In particular, if {ps,pr} is a visible pair, then p; must be the designated blocker for
(ps,p;). See Fig. 3 (a). If (ps,px) is an invisible pair, then it must be assigned a designated
blocker p;. In this case, p; must also be the designated blocker for (ps,p;). See Fig. 3 (b).

» Assignment Property 2. Let (p;,p;) denote an invisible pair, and suppose py is the
candidate blocker assigned to this invisible pair. Without loss of gemerality, suppose pj €
O(pi,pj), and let ps be any vertex in O(p;, pk—1). Then exactly one of the following two cases
holds: (1) {ps,pr} is a visible pair, and the candidate blocker assigned to the invisible pair
(ps,pj) 18 P, or (2) (ps,pi) is an invisible pair. If the candidate blocker assigned to (ps, px)
is p, then (ps,pj) is assigned the candidate blocker p,.

The next AP is somewhat similar to AP 2, except instead of introducing constraints on
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Figure 4 (a) If p; is the designated blocker for (p;,p;) and p; sees pi then pj is the designated
blocker for (pj,ps), (pj,pi), and (pj,p:). (b) If p; does not see pi, and p, is the designated blocker
for (p;,px) then pq is the designated blocker for (p;,ps), (pj, i), and (p;, p:). Moreover, (p;,pq) is
an invisible pair and py is its designated blocker.

the designated blockers for (ps,p;), it introduces constraints on the designated blockers for
(pj,ps) (where the order is reversed). Similar to the previous case, if p; sees py then p; must
block p; from seeing every ps € O(p;, px—1), but we can also see that p; must block p; from
any point p; such that p; is the designated blocker for (pg,p:). See Fig. 4 (a). If p; does not
see pg, then there must be a designated blocker p, for (p;,pr). See Fig. 4 (b). We show that
in this case, p, must be the designated blocker for all (p;, ps) and (p;, p). Also, (pi, pg) must
be an invisible pair with designated blocker py.

» Assignment Property 3. Let (p;,p;) denote an invisible pair, and suppose py is the
candidate blocker assigned to this invisible pair. Without loss of generality, suppose py €
O(pi,p;). Then exactly one of the following two cases holds:

1. (a) {p;,pr} is a visible pair. (b) For all ps € O(p;,pr—1), the candidate blocker assigned
to the invisible pair (p;, ps) is pr. (¢) If pt is such that p; is the candidate blocker assigned
to the invisible pair (pr,pt), then (p;,pe) is an invisible pair and is assigned the candidate
blocker py,.

2. (a) (pj,pr) is an invisible pair. Let p, denote the candidate blocker assigned to (pj,pr).
(b) (pi,pq) is an invisible pair, and py, s the candidate blocker assigned to it. (c) For all
Ps € O(pi, i), the candidate blocker assigned to the invisible pair (pj,ps) is pq. (d) If
is such that p; is the candidate blocker assigned to the invisible pair (px,pi), then (p;,pr)
is an invisible pair and is assigned the candidate blocker p,.

Suppose py, is a candidate blocker for an invisible pair (p;,p;) (or (p;,p:)), and suppose
without loss of generality that p; € O(p;, px). If pi is also a candidate blocker for an invisible
pair (ps, pt) such that ps, p; € O(pk, p;) then we say that the two invisible pairs are a separable
invisible pair. We have the following condition which is the same as Necessary Condition 3
for simple polygons in [8]. See Fig. 5 (a).

» Assignment Property 4. Suppose (p;,p;) and (ps,p:) are a separable invisible pair with
respect to a candidate blocker py. If pi, is assigned to (p;,p;) then it is not assigned to (ps,pt).

We now give the final AP. Let p;, p;, p¢, and ps be four vertices of G in “counter-clockwise
order” around the Hamiltonian cycle C. We say that they are {p;, p:}-pinched if there is
a pm € O(pi,pt) such that p; is the designated blocker for the invisible pair (p;, pm,) and
pt is the designated blocker for the invisible pair (ps,pm). See Fig. 5 (b). The notion of
{p;, ps}-pinched is defined symmetrically.

» Assignment Property 5. Let p;, p;, ps, and p; be four vertices of G in counter-clockwise
order around the Hamiltonian cycle C that are {p;, p:}-pinched. Then they are not {p;,ps}-
pinched.
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Figure 5 (a) If pi blocks one invisible pair of a separable invisible pair then it cannot block the
other one as well. (b) p;, pj,ps, and p; are {p;, p: }-pinched. If p; blocks p; from seeing some point,
then ps cannot also block p; from seeing that point.
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Figure 6 Illustrations for the proof of NC 1. (a) If wo is the designated blocker for (w1, w;) and
ws is the designated blocker for (wo,w;—1) then Lo will intersect the segment w;—1w; twice. (b) If
wo is the designated blocker for (w1, w;) and wi—1 is the designated blocker for (wo,w;—1) then Lo1
intersects Lo x—1 twice (once at wo and again in the dashed rays).

3 A New Characterization of Pseudo-Polygon VGs

In this section, we prove a different characterization of the VGs of pseudo-polygons. This
characterization proves a property that must be satisfied by all VGs of pseudo-polygons. We
then show that if G satisfies this property, then AP 5 is not needed. That is, if G satisfies
this property and we can find an assignment of candidate blockers to invisible pairs that
satisfies APs 1-4, then AP 5 must also be satisfied.

The property we prove is similar to the NC given by Ghosh [6] for simple polygon VGs;
however, the proof uses geometric arguments that do not apply to general pseudo-polygons and

therefore a new proof is needed. To state and prove the property, we first need some definitions.

Suppose wgp, w1, ..., wk—_1 form a cycle in G such that the vertices wg, ws, ..., wi_1 follow
the order in the Hamiltonian cycle C. Then, we say that wg, w1, ..., w,y_1 are an ordered
cycle. Note that the Hamiltonian cycle C' is an ordered cycle of all n vertices in G. An edge
in G connecting two non-adjacent vertices of an ordered cycle is called a chord.

» Necessary Condition 1. If G is the VG of a pseudo-polygon then any ordered cycle in G
of length at least 4 must have at least one chord.

Proof. Suppose G has an ordered cycle O of length k& > 4, and let wg,wq,...,wg_1 denote
the vertices around O in counterclockwise order, and for the sake of contradiction assume
that O does not have any chords. This implies that any w; € O sees no other vertices in O
other than w;_; and w;41 (indices taken modulo k). Moreover, since k > 4, this implies that
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there is at least one vertex on O that w; does not see. Let w; be such a vertex. Note that
any candidate blocker for (w;,w;) must be a vertex that is on O, because any vertex v not
on O is in O(wg, we41) for some a and w, sees w,41 since they are consecutive points on O.

So now consider wy. There is at least one vertex on O that w; does not see, and it must
be that either wy and ws is the designated blocker for any such invisible pairs. Without loss
of generality, assume that wg is a designated blocker for (wi,w;) for at least one w; € O.
Walking counterclockwise around O starting at ws, let w; be the first point we encounter
such that wy is the designated blocker for (wy,w;). Now note that ¢ — 1 > 2, in particular ¢
cannot be 2 because w; sees wy. Therefore (wp, w;—1) is an invisible pair and either wg_; or
wy must be its designated blocker. But if w; is its designated blocker, then Lg; will intersect
w;—1w; twice (see Figure 6 (a)). If wi_1 is its designated blocker then Lj_; o will intersect
L1 twice (see Figure 6 (b)). <

Ghosh [7] showed it can be determined if G satisfies this property in O(n?) time. Now
suppose that G does indeed satisfy this property. We will show then that it suffices to pick
an assignment of candidate blockers to invisible pairs that satisfies only APs 1-4. In order to
prove this, we prove two lemmas which will be used to prove the new characterization.

» Lemma 2. Let p;, p;, pi be three vertices of a pseudo-polygon VG in counterclockwise order.
If p; is a candidate blocker for invisible pair (p;,pr), then (pi,pr’) is an invisible pair for
any prr € O(pr, pi) such that p; is a candidate blocker for (p;, pi).

Proof. We will show that if pi sees pis then G violates NC 1. Suppose pg sees pgs. If pi sees
p; and pys sees p; then p;, pj, pr, pi is an ordered cycle of length four with zero chords, a
violation of NC 1. So now suppose that p, does not see p;. We will pick a “chain” C of
vertices (c1, ¢z, ... Cm) in O(pj, pi) such that: 1) the order of the vertices in C4 is in clockwise
order, and 2) a vertex ¢; only sees vertices ¢;—; and ¢;41 (if they exist) in C;. Initially we let
c¢1 = pi. Now suppose ¢; is the last vertex in C; we have found and we wish to find ¢; 1. We
start at p; and walk counterclockwise until we find the first vertex that sees ¢; (it may be p;
itself). If this vertex sees py/, then we throw out the current chain restart a new chain with
this vertex as c;, and otherwise we let this vertex be ¢;+1 in the current chain. We continue
this process until p; is added to C;. Note that p; cannot be c; since it does not see py/, and
therefore the length of C is at least 2.

We repeat a symmetric process to obtain a chain Co = (c},c,...,c,,) in d(pw,pi),
except we compute Cs with respect to the vertices of Cy. That is, when we have computed
c; and wish to compute ¢}, ;, we consider if it sees any of the vertices in C;. If it doesn’t,
then we add it to Cy as vertex c,'H_l. If it does see some vertex of C7, then we update both
chains. We restart Cy with this vertex as ¢}, and we will remove a “prefix” of C; depending
on what ¢} sees. Let z be the maximum integer such that ¢} sees ¢, of C;. Then we remove
all vertices from C; with index less than z. Note that ¢| cannot see p; or else p; would not
be a candidate blocker for (p;, pr), and therefore Cy still has length at least 2. We continue
this until p; gets added to Cs. Note that when p; is added to Cs, C7 is not reduced because
if p; saw any vertex in C; other than p; then p; would not be a candidate blocker for (p;, pr)-
Therefore C; and C5 both have length at least 2.

The following is an ordered cycle of length at least four that does not have any chords:
s Chiy Cmy Cm—1, - - . 1. Indeed we have that the only visible pairs that has one vertex
in 4 and the other in Cy are {c1,¢;} and {c},,, ¢} by construction. Note ¢, = p; and
¢m = Dpj. {pi,p;} must be a visible pair because they are candidate blockers for each other.
And finally there are no chords connecting two vertices of C; or two vertices of Cy by
construction of the chains. It follows that if py sees py/, then G violates NC 1. <
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» Lemma 3. Let p;,pj,ps, e be four vertices of a pseudo-polygon VG G in counterclockwise
order such that {p;,p;},{pi, s}, {pj,p:}, and {ps,p+} are visible pairs. Suppose we have an
assignment of candidate blockers to invisible pairs that satisfies AP 1-4. Let B be the set of
all vertices in O(pj, ps) such that for each p. € B, p; is the designated blocker for (p;,p.) and
ps s the designated blocker for (p:,p.). If |B| > 1, then there is at least one vertex py, € B
such that satisfies one property of set 1 and one property of set 2:

1. a. {pk,p;} is a visible pair, or

(pk,p;) is an invisible pair blocked by a designated blocker in O(p;, pr)

. {pk,ps} is a visible pair, or

(pr,ps) 1s an invisible pair blocked by a designated blocker in (pg,ps).

]

N
To T

Proof. We first show a fact about any point p, in B that does not satisfy the conditions of
the lemma. Suppose for p, at least one of the two sets of properties has both properties not
satisfied. Without loss of generality, assume it is the first set. Then (p.,p;) is an invisible

pair blocked by a candidate blocker p, € 9(p,,p;). We will show that p, must be in B.

To prove this, we first show that p, must be in d(p,+1,ps—1). p. cannot see any point in
O(pi,pj—1) or else p; would not be a candidate blocker for (p;,p.). If p, were in 9(ps, p;),
AP 3 case 2 (b) implies that p; must the designated blocker for (p;, py). But if this is true
then AP 1 case 1 implies that p; must be the designated blocker for (p;, ps), but {p;,ps} is a
visible pair. Therefore it must be py € O(p,+1,ps—1). We now show that p, € B. That is, it
must be that (pp, p;) and (py, p:) are both invisible pairs. If {p,, p;:} were a visible pair then
ps would not be a candidate blocker for (ps,p.). Also (p;, py) must be an invisible pair with
designated blocker p; by AP 3 case 2 (b). Therefore p; is indeed in B.

Now we show how to find a point in B that satisfies the conditions of the lemma. Walk
counterclockwise starting from p; until we find the first vertex that is in B, and let us call
this vertex p,,. If this vertex does not satisfy a property from each set, then it must be that
there is a blocker p,, that blocks p,, from p; (it must also block it from ps by AP 1). From
the above analysis p,, € B, and therefore p,, must be in 9(py,+1,ps—1) since p,, is the first
point encountered in B. Likewise, if p,, does not satisfy a property from each set, then
there must be a blocker p,, € B that blocks p,, from both p, and p;. Again we can see that
Dzs € O(Pwyt1,Ps—1)- Indeed, it cannot be in O(pj, px,—1) since none of these points are in
B, and it cannot be in 9(ps,, pz,—1) as that would contradict that p,, is a candidate blocker

for (ps,,ps). Inductively we repeat this until we find a point that satisfies the condition.

This process must terminate since if p,, does not satisfy a property from each set, it must be
blocked by a point in d(ps,+1,ps—1). Eventually we will run out of points in B and there
will be no more points to be the blocker, and therefore we will find the desired point. <

We are now ready to prove the our new characterization that removes the need to satisfy
AP 5 if G satisfies NC 1.

» Theorem 4. A graph G with a labeled Hamiltonian cycle is the visibility graph of some
pseudo-polygon if and only if it satisfies NC 1 and there is an assignment of candidate
blockers to the invisible pairs of G that satisfies APs 1-4.

Proof. Assuming that G satisfies NC 1, we will prove that if an assignment violates AP 5,
then it also violates one of the other APs. Assume AP 5 is violated. That is, let p;, p;, ps, p
be four vertices of G in counterclockwise order around C such that there is a py € 9(pj, ps)
and a py € O(p, ps) satisfying: 1) (p;, px) is an invisible pair that has been assigned p;, 2)

7:9

SWAT 2022



7:10

On the Visibility Graphs of Pseudo-Polygons: Recognition and Reconstruction

(pt,pr) is an invisible pair that has been assigned ps, 3) (pj, pi) is an invisible pair that has
been assigned p;, and 4) (ps, pr) is an invisible pair that has been assigned p;. Here, we pick
pr and pgs to be points that satisfy the conditions of Lemma 3.

Now note that (pg, pr-) must be an invisible pair by Lemma 2, and therefore there must
be a candidate blocker assigned to this invisible pair. Since p; is the candidate blocker
assigned to (p;,px) and p; is the candidate blocker assigned to (p;,px/), AP 3 implies that
the candidate blocker assigned to (pg,pxs) must be in d(pg, px) (i-e., the blocker is p; if py
sees p; or whatever point is blocking py from p; which must be in d(p;, pr) since py, satisfies
Lemma 3). However, we can apply the same argument symmetrically to ps and p; to see
that (pg, prr) must be assigned a blocker in 9(py, pxs). Therefore no matter which candidate
blocker we assign to (pg, pr’), it must be that AP 3 is violated. <

4 Recognition and Reconstruction Algorithms

In this section, we give a polynomial-time algorithm to determine whether or not a given
graph G with a labeled Hamiltonian cycle C is the VG for some pseudo-polygon. We
then extend the algorithm to obtain a polynomial-time algorithm that can reconstruct a
pseudo-polygon P such that G is the VG of P if the recognition algorithm returns YES.

Algorithm 1 Recognition Algorithm.

if G does not satisfy NC 1 then
Return NO
for all invisible pairs (p;,p;) do
Compute their (at most 2) candidate blockers.
Add (p;,p;) to the set of all invisible pairs I.
while there is an invisible pair (IP) (p;,p;) € I such that (p;,p;) has < 2 remaining

feasible candidate blockers do
7. if some IP has 0 remaining candidate blockers then

8: Return NO

9: else

10: if some IP has exactly 1 feasible candidate blocker then

11: Assign this candidate blocker to the IP.

12: Remove the IP from I.

13: For every other IP in I, remove any remaining candidate blocker if its selection

would violate APs 1-4.
14: Return YES

The recognition algorithm is stated formally in Algorithm 1. The algorithm itself is
fairly simple. We first check that G satisfies NC 1, and if it does not then we return NO.
If it satisfies this property, then for each invisible pair, we compute the set of at most two
candidate blockers for this invisible pair. If some invisible pair has 0 candidate blockers, we
return NO. If some invisible pair has only 1 candidate blocker, then it must be the designated
blocker so we assign it to the candidate blocker. We then remove any candidate blocker for
any other invisible pair if that candidate blocker would violate one of the APs. We then
repeat this until every invisible pair has been assigned a candidate blocker, or until every
remaining invisible pair has two candidate blockers remaining. In either case, we return YES.

The algorithm runs in polynomial time. Checking NC 1 can be done in O(n?) time [7].
There are at most O(n?) invisible pairs of G. Checking a violation of an AP involves only
2 invisible pairs, and this check can be done in constant time. The algorithm is clearly
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correct if we return NO or if we return YES because every invisible pair was assigned a
candidate blocker. We must prove that the algorithm is correct when we return YES because
every remaining invisible pair has two candidate blockers. We prove this constructively by
assigning a candidate blocker to each remaining invisible pair in I. The algorithm for this is
formally stated in Algorithm 2.

Algorithm 2 Candidate Blocker Assignment.

1: Let I denote the invisible pairs of G that are not assigned a candidate blocker by
Algorithm 1.

2: Let p, be any arbitrarily chosen vertex of G.

3: for all invisible pairs (p;,p;) € I do

4:  Walk counterclockwise around the Hamiltonian cycle C starting at p,. Let p, denote

which vertex of (p;, p;) is encountered first and let p, denote the other vertex.

Assign to (p;,p;) the candidate blocker in 9(pq, pp).

o

We now prove that the combination of candidate blocker assignments in Algorithm 1 and
in Algorithm 2 satisfies APs 1-4, thereby proving the correctness of Algorithm 1.

» Lemma 5. The combination of candidate blocker assignments in Algorithm 1 and in
Algorithm 2 assigns a valid candidate blocker to every invisible pair of G.

Proof. Each of the APs regards the feasibility of a pair of assigned candidate blockers. Since
we removed any candidate blocker that would have created a violation with a choice made
in Algorithm 1, we only need to consider candidate blockers assigned in Algorithm 2. We
go through each AP and show that any assignment we make will not violate the AP, which
completes the proof of the lemma.

AP 1. Case 1 states that if py € 9(pi, p;) is the candidate blocker assigned to invisible pair,
(pi, pj) then it must also be assigned (p;, p;) for every p; € O(pr41,p;). Since px € A(pi, p;),
it must be that p; = p, and p; = p, in Algorithm 2 implying that p, € (pj4+1,p:). Then
it also must mean that p; = p, and p; = p, when considering (p;,p:), and therefore
pi, will be assigned to (p;, p;). Case 2 states that if (py,p;) is an invisible pair then p;
is not assigned to it, but since p, € 9(pj+1,p;) it must be that p, = p, and p; = pp
when considering (pg,p;) and therefore we will assign to (pg,p;) the candidate blocker in
O(pk, pj) which is not p;.

AP 2. This AP applies when p, € 0(p;,p;) is assigned to invisible pair (p;,p;) and then
considers the invisible pairs (ps, p;) for each ps € O(ps, pr—1). If we choose pr € 9(pi,p;),
then it must be that p, € 0(p;+1,p:), and therefore we will assign to (ps,p;) the candidate
blocker in d(ps, pj). Case 1 of AP 2 states that if {p,,p} is a visible pair, then p, must be
assigned to (ps,p;), and indeed this is what we do if {ps, px} is a visible pair because no
point in O(ps, pr—1) can see any point in O(pry1,p;) or else pr, would not be a candidate
blocker for (p;,p;). Case 2 says that if (ps,px) is an invisible pair, then the candidate

blocker assigned to (ps,p;) must be the same as the candidate blocker assigned to (ps, pk)-

But given the location of p,, it must be that for both invisible pairs we have ps = p, in
Algorithm 2, and therefore we will assign the same candidate blocker to both invisible
pairs.

AP 3. This AP applies when p, € 9(p;,p;) is assigned to invisible pair (p;,p;) and then
considers the invisible pairs (p;,p;) as well as (p;,p;) for any p, such that p; is the
candidate blocker assigned to (px,p:). First we consider (p;,p;). If pr € 9(pi,p;) is
assigned to invisible pair (p;,p;), then it must be that p, € 9(pj+1,p;). This implies
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that when considering (p;, p;), we will assign the candidate blocker in d(p;, p;) to (pj,p:)-
Case 1 states that if {p;, pr} is a visible pair that this blocker must be py, and in fact this
the candidate blocker in d(p;,p;) because no point in d(p;, pr—1) can see any point in
O(pr41,p;) or else pi would not be a candidate blocker for (p;,p;). Case 2 states that if
(pj, pr) is an invisible pair, then whatever blocker is assigned to (p;, px) must be assigned
to (p;,pi), but here we have p; = p, in both scenarios, and therefore we will assign the
same blocker to both (pj;,px) and (pj,p;).

Now consider (p;,p;) for any p; such that p; is the candidate blocker assigned to (pg,pt).
The analysis is very similar to the previous case. If p, € 9(p;,p;) is assigned to invisible
pair (p;,p;) and p; € O(pt, i) is assigned to invisible pair (pg, p;), then it must be that
Pz € O(pj+1,p¢). This implies that p, = p, and p; = p, when considering (p;,p¢). For
the same reasons as in Case 1 for AP 3, we will assign the correct candidate blocker to
(Pj>pt)-

AP 4. Here we have (p;,p;) and (ps,p:) which are a separable invisible pair with respect
to candidate blocker py. If py is assigned to (p;,pj), then that implies that p; = p, and
pi = pp which means that p, € O(p;41,p;). This means that when we consider (ps, p;) we
will have ps; = p, and p; = pp, and therefore we will assign it the candidate blocker in
d(ps, pt) which is not py. <

This gives us the following theorem.

» Theorem 6. There is a polynomial-time algorithm that can determine whether a given
graph G with a labeled Hamiltonian cycle C is the visibility graph for some pseudo-polygon P
such that C' corresponds with the boundary of P.

We can then combine our Algorithms 1 and 2 into a reconstruction algorithm by building
a vertex-edge VG based on our computed assignment (details in [9]) and then reconstruct
the pseudo-polygon from this graph using the technique described in [10].

» Theorem 7. There is a polynomial-time algorithm that can construct a pseudo-polygon P
such that a given visibility graph G of a pseudo-polygon with a labeled Hamiltonian cycle C
is the visibility graph of P where C' corresponds to the boundary of P.

—— References

1  Greg Aloupis, Jean Cardinal, Sébastien Collette, Stefan Langerman, David Orden, and
Pedro Ramos. Decomposition of multiple coverings into more parts. In Proceedings of the
Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’09, pages 302—
310, Philadelphia, PA, USA, 2009. Society for Industrial and Applied Mathematics. URL:
http://dl.acm.org/citation.cfm?id=1496770.1496804.

2 Boris Aronov, Esther Ezra, and Micha Sharir. Small-size epsilon-nets for axis-parallel rectangles
and boxes. SIAM J. Comput., 39(7):3248-3282, July 2010. doi:10.1137/090762968.

3 Seung-Hak Choi, Sung Yong Shin, and Kyung-Yong Chwa. Characterizing and recognizing
the visibility graph of a funnel-shaped polygon. Algorithmica, 14(1):27-51, 1995. doi:
10.1007/BF01300372.

4  Hazel Everett and Derek G. Corneil. Negative results on characterizing visibility graphs.
Comput. Geom., 5:51-63, 1995. doi:10.1016/0925-7721(95)00021-Z.

5 Uriel Feige, Magnis M. Halldorsson, Guy Kortsarz, and Aravind Srinivasan. Approx-
imating the domatic number. SIAM J. Comput., 32(1):172-195, January 2003. doi:
10.1137/50097539700380754.

6  Subir Kumar Ghosh. On recognizing and characterizing visibility graphs of simple polygons.
In SWAT, pages 96-104, 1988.


http://dl.acm.org/citation.cfm?id=1496770.1496804
https://doi.org/10.1137/090762968
https://doi.org/10.1007/BF01300372
https://doi.org/10.1007/BF01300372
https://doi.org/10.1016/0925-7721(95)00021-Z
https://doi.org/10.1137/S0097539700380754
https://doi.org/10.1137/S0097539700380754

S. Ameer, M. Gibson-Lopez, E. Krohn, and Q. Wang

10

11

12

13

14

Subir Kumar Ghosh. On recognizing and characterizing visibility graphs of simple polygons.
Discrete & Computational Geometry, 17(2):143-162, 1997. doi:10.1007/BF02770871.

Subir Kumar Ghosh and Partha P. Goswami. Unsolved problems in visibility graphs of points,
segments, and polygons. ACM Comput. Surv., 46(2):22, 2013. doi:10.1145/2543581.2543589.
Matt Gibson, Erik Krohn, and Qing Wang. A characterization of visibility graphs for pseudo-
polygons. In ESA, pages 607-618, 2015.

Joseph O’Rourke and Ileana Streinu. Vertex-edge pseudo-visibility graphs: Characterization
and recognition. In Symposium on Computational Geometry, pages 119-128, 1997. doi:
10.1145/262839.262915.

Joseph O’Rourke and Ileana Streinu. The vertex-edge visibility graph of a polygon. Computa-
tional Geometry, 10(2):105-120, 1998. doi:10.1016/S0925-7721(97)00011-4.

G. Srinivasaraghavan and Asish Mukhopadhyay. A new necessary condition for the vertex
visibility graphs of simple polygons. Discrete & Computational Geometry, 12:65-82, 1994.
doi:10.1007/BF02574366.

Ileana Streinu. Non-stretchable pseudo-visibility graphs. Comput. Geom., 31(3):195-206, 2005.
doi:10.1016/j.comgeo.2004.12.003.

Kasturi R. Varadarajan. Epsilon nets and union complexity. In Symposium on Computational
Geometry, pages 11-16, 2009. doi:10.1145/1542362.1542366.

7:13

SWAT 2022


https://doi.org/10.1007/BF02770871
https://doi.org/10.1145/2543581.2543589
https://doi.org/10.1145/262839.262915
https://doi.org/10.1145/262839.262915
https://doi.org/10.1016/S0925-7721(97)00011-4
https://doi.org/10.1007/BF02574366
https://doi.org/10.1016/j.comgeo.2004.12.003
https://doi.org/10.1145/1542362.1542366

	1 Introduction
	2 Preliminaries
	2.1 The Characterization of [9]

	3 A New Characterization of Pseudo-Polygon VGs
	4 Recognition and Reconstruction Algorithms

