
A Novel Prediction Setup for Online Speed-Scaling
Antonios Antoniadis #Ñ

University of Twente, Enschede, The Netherlands

Peyman Jabbarzade #

University of Maryland, College Park, MD, USA

Golnoosh Shahkarami #Ñ

Max Planck Institut für Informatik, Saarbrücken, Germany
Universität des Saarlandes, Saarbrücken, Germany

Abstract
Given the rapid rise in energy demand by data centers and computing systems in general, it is
fundamental to incorporate energy considerations when designing (scheduling) algorithms. Machine
learning can be a useful approach in practice by predicting the future load of the system based on,
for example, historical data. However, the effectiveness of such an approach highly depends on the
quality of the predictions and can be quite far from optimal when predictions are sub-par. On the
other hand, while providing a worst-case guarantee, classical online algorithms can be pessimistic
for large classes of inputs arising in practice.

This paper, in the spirit of the new area of machine learning augmented algorithms, attempts to
obtain the best of both worlds for the classical, deadline based, online speed-scaling problem: Based
on the introduction of a novel prediction setup, we develop algorithms that (i) obtain provably low
energy-consumption in the presence of adequate predictions, and (ii) are robust against inadequate
predictions, and (iii) are smooth, i.e., their performance gradually degrades as the prediction error
increases.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases learning augmented algorithms, speed-scaling, energy-efficiency, scheduling
theory, online algorithms

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.9

Related Version Full Version: https://arxiv.org/abs/2112.03082

1 Introduction

Energy is a major concern in society in general and computing environments in particular.
Indeed, data centers alone are estimated to consume 200 terawatt-hours (TWh) per year,
which is likely to increase by a factor of 15 by year 2030 [21]. Hardware manufacturers
approach this problem by incorporating energy-saving capabilities into their hardware, with
the most popular one being dynamic speed scaling, i.e., one can adjust the speed of the
processor or device. A higher speed implies a higher energy consumption but also more
processing capacity. In contrast, a lower speed incurs energy savings while being able to
perform less processing per unit of time. Naturally, to take advantage of this energy-saving
capability, scheduling algorithms need to decide on what speed to use at each timepoint
and consider the energy consumption of the produced schedule alongside more “traditional”
quality-of-service considerations.

This paper studies online, deadline-based speed-scaling scheduling, augmented with
machine-learned predictions. More specifically, a set of jobs J , each job j ∈ J with an
associated release time rj , deadline dj and processing requirement wj , arrives online and has
to be scheduled on a single speed-scalable processor. A scheduling algorithm needs to decide
for each timepoint t on: (i) the processor speed s(t) and (ii) which job j ∈ J to execute at t

© Antonios Antoniadis, Peyman Jabbarzade, and Golnoosh Shahkarami;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 9; pp. 9:1–9:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.antoniadis@utwente.nl
http://www.antoniosantoniadis.net
https://orcid.org/0000-0003-2152-7883
mailto:peymanj@terpmail.umd.edu
mailto:gshahkar@mpi-inf.mpg.de
https://people.mpi-inf.mpg.de/~gshahkar/
https://orcid.org/0000-0002-6169-7337
https://doi.org/10.4230/LIPIcs.SWAT.2022.9
https://arxiv.org/abs/2112.03082
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 A Novel Prediction Setup for Online Speed-Scaling

(j(t)). Both decisions have to be made by the algorithm at any timepoint t while only having
knowledge of the jobs with a release time equal to or less than t. A schedule is said to be
feasible if the whole processing requirement of every job j is executed within the respective
release time and deadline interval, i.e., if

∫
t:j(t)=j

s(t)dt ≥ wj . The energy consumption of
a schedule, which we seek to minimize over all feasible schedules, is given by

∫ +∞
0 s(t)αdt,

where α > 1 is a constant, which in practice is between 1.1 and 3 depending on the employed
technology [15, 31]. The offline setting of the problem in which the complete job set J
including their release times, deadlines, and workloads are known in advance was solved in
the seminal paper by Yao, Demers, and Shenker [32] who gave an optimal offline algorithm
called YDS. The arguably more interesting online setting in which the characteristics of a job
j only become known at its release time rj has been extensively studied [32, 10, 12, 11, 3],
and the currently best known online algorithm is qOA, by Bansal et al. [11] achieving a
competitive ratio of 4α/(2e1/2α1/4).

However, the purely online setting may be too restrictive in many practical scenarios
for which one can predict – with reasonable accuracy – the characteristics of future jobs,
for example, by employing a learning approach on historical data. Learning augmented
algorithms is a very novel research area (arguably first introduced in 2018 by Lykouris and
Vassilvitskii [23]) trying to capture such scenarios in which predictions of uncertain quality
are available for future parts of the input. The goal in learning augmented algorithms
is to design algorithms that are at the same time (i) consistent, i.e., obtain an improved
competitive ratio in the presence of adequate predictions, (ii) robust, i.e., there is a worst case
guarantee independently of the prediction accuracy (ideally within a constant factor of the
competitive ratio of the best known online algorithm that does not employ any predictions)
and (iii) smooth, i.e., the performance guarantee degrades gracefully with the quality of the
predictions.

Previous Predictions Setups and Our Setup

Online Speed-Scaling with machine learned predictions has been investigated before by
Bamas et al. [8] who consider a prediction setup in a sense orthogonal to ours; the release
times and deadlines of jobs are known in advance, and there is a prediction on the processing
requirement. Although any input instance (with integer release times and deadlines) can
be modeled in such a way (by considering all possible pairs of release times and deadlines
and a processing requirement of zero for the pairs that do not correspond to a job), this can
be computationally quite expensive. Bamas et al. present a consistent, robust, and smooth
algorithm for the particular case in which the interval length of each job is the same and
generalize their consistency and robustness results to the general case (in which each job can
have an arbitrary interval length). For this more general setting, the proof of smoothness is
omitted because “. . . the prediction model and the measure of error quickly get complex and
notation heavy”.

In the current paper, we consider the novel prediction setup in which predictions on the
release times and deadlines are provided to the algorithm. To keep the model simple, we
assume that the actual processing requirement of each job j ∈ J , as well as the number
of jobs n are known. It may be useful for the reader to think about our setup as having
as many unit-size jobs as total processing volume in the instance, and a prediction on the
release time and deadline of each such job. We note, however, that our actual setup requires
significantly fewer predictions than this simplified one.

In this context, the main contribution of the current paper is to introduce a natural
alternative prediction setup and error measure as well as an algorithm (SwP) within that
setup, which possesses the desired properties of consistency, smoothness, and robustness in

A. Antoniadis, P. Jabbarzade, and G. Shahkarami 9:3

the general setting. It should be pointed out that since the two papers consider different
prediction settings and in turn also error measures, the algorithms as well as their guarantees
are incomparable. However one can consider the two prediction setups as complementary of
each other.

Our Contribution

We show how the predictions can be used to develop an algorithm called Scheduling with
Predictions (SwP), that improves upon qOA when the predictions are reasonably accurate.
More formally, in Section 3 we show the following theorem:

▶ Theorem 1. Given a parameter λ, algorithm SwP achieves a competitive ratio of(
1

1−µ

)α−1 (2η+1
1−2λ

)α−1
if η ∈ (0, λ), and 2α−1αα

(
1
µ

)α−1
otherwise.

Here, η is the error of the prediction (defined formally later) that captures the distance
between the predicted and the actual input instances, and 0 ≤ λ < 1/2, 0 ≤ µ ≤ 1 are two
hyperparameters that can be thought of as the confidence in the prediction. Theorem 1 implies
that SwP is at the same time consistent, smooth and robust where the exact consistency,
smoothness and robustness depend on the choice of the hyperparameters λ and µ.

Additionally, in Section 4 we obtain improved results for the restricted case in which all
jobs have a common deadline d, and we are given predictions regarding the release times of
the jobs. The corresponding algorithm is called Common-Deadline-Scheduling with
Predictions (CDSwP) and obtains the following improved competitive ratio:

▶ Theorem 2. Given a parameter λ, algorithm CDSwP achieves a competitive ratio of(
1+η
1−λ

)α−1
if η ∈ (0, λ), and 2α

(
1+λ
1−λ

)α−1
otherwise.

Although restricted, this case seems to capture the difficulty of the online setting for
the problem, as supported by the fact that the strongest lower bound of eα−1/α on the
competitive ratio for online algorithms for the problem is proven on such an instance [11].

Finally, in Section 5 we present an empirical evaluation of our results on a real-world
data-set, which suggests the practicality of our algorithm. The actual results are preceded
by Section 2 which contains preliminary results and observations. All omitted proofs can be
found in the supplementary material.

1.1 Related Work

1.1.1 Online Energy-Efficient Scheduling
As already mentioned, speed-scaling was first studied from an algorithmic point of view
by [32]. They studied the deadline-based version of the problem also considered here, and in
addition to providing the optimal offline algorithm called Y DS, two online algorithms called
Optimal Available (OA) and Average Rate (AVR). OA recalculates an optimal offline schedule
for the remaining instance at each release time, whereas AVR “spreads” the processing
volume equally between its release time and deadline in order to determine the speed for each
timepoint t. The actual schedule then is simply an Earliest Deadline First (EDF) schedule
with these speeds. They show that AVR obtains a competitive ratio of 2α−1αα which is
essentially tight as shown by [10]. Algorithm OA, on the other hand, was analyzed by [11]
who proved a tight competitive ratio of αα.

SWAT 2022

9:4 A Novel Prediction Setup for Online Speed-Scaling

The currently best known algorithm for the problem, at least for modern processors which
satisfy α = 3 is the aforementioned qOA algorithm, which for any parameter q ≥ 1 sets the
speed of the processor to be q times the speed that the optimal offline algorithm would run
the jobs in the current state. Algorithm qOA attains a competitive ratio of 4α/(2e1/2α1/4),
for q = 2 − 1/α ≈ 1.667.

The multiprocessor version of online, deadline-based, speed-scaling has also been studied,
see [3, 5] as well as other objectives, for example, flow time [4, 13]. We refer the interested
reader to surveys [2, 20].

1.1.2 Further Results on Learning Augmented Algorithms
[23] was arguably the seminal paper in the area, considered the online caching problem.
Subsequently, [27] considered the ski-rental problem as well as non-clairvoyant scheduling.
Similar to the current work, the robustness and consistency guarantees were given as a
function of a hyperparameter that is part of the input to the algorithm. Both the caching
and the ski-rental problem have since been extensively studied in the literature (see for
example [28, 6, 30] and [29, 18]).

Several other online problems have been investigated through the lens of learning-
augmented algorithms and results of similar flavor were obtained. Examples include scheduling
and queuing problems [26, 24], online selection and matching problems [7, 16], or the more
general framework of online primal-dual algorithms [9]. We direct the interested reader to a
recent survey [25].

2 Preliminaries

We consider online, deadline-based speed-scaling as described in the introduction. Given a
scheduling algorithm A on the set jobs J , the energy consumption of A on J is denoted
by EA(J). When clear from the context, we may write EA instead of EA(J) to simplify the
notation.

As usual for online problems, the performance guarantees are given by employing com-
petitive analysis. Following the speed-scaling literature (see for example [11]) we use the
strict competitive ratio. Formally, the (strict) competitive ratio of algorithm A for the online,
deadline-based speed-scaling problem, on input instance I is given by

max
I

EA(I)

EY DS(I)
,

where EA(I) is the cost that algorithm A incurs on instance I, and the maximum is taken
over all possible input instances I. The competitive ratio in many cases will depend on the
prediction error.

Prediction Setup

The algorithm initially gets information about the number of jobs n, the corresponding
processing volumes wj , ∀j ∈ J , as well as for every job j ∈ J a prediction pj for the release
time rj and another prediction qj for the deadline dj . Again, the actual values of rj and dj

only become known at timepoint rj . Let R = {r1, . . . rn}, D = {d1, . . . dn}, P = {p1, . . . pn}
and Q = {q1, . . . qn}. Note that in the special case where all jobs have a common deadline d

we naturally only obtain predictions for the release times.

A. Antoniadis, P. Jabbarzade, and G. Shahkarami 9:5

The quality of the prediction is measured in terms of a prediction error η, which intuitively
η measures the distance between the predicted values and the actual ones. We start by
defining the individual prediction error ηi for each job i ∈ J .

▶ Definition 3. Let the prediction error for job i be ηi = max
{

|pi−ri|
qi−pi

, |qi−di|
qi−pi

}
.

Note that we implicitly assume that pi ≤ qi for all i ∈ J since otherwise, it is immediately
obvious that the quality of the predictions is low, and one could just run a classical online
algorithm for the problem. Furthermore, if the instance has a common deadline then ηi

simplifies to ηi = |pi−ri|
d−pi

.
The (total) prediction error η of an input instance is then given by η = maxi ηi. We call

this max-norm-error.

▶ Definition 4. We say that the total error η is a max-norm-error if η is given by the infinity
norm of the vector of the respective errors for each job. More formally,

η = ∥η∥∞ = max(η1, η2, . . . ηn).

Performance Guarantees

In the following we formalize the performance guarantees used to evaluate our algorithms.

▶ Definition 5. We say that an algorithm within the above prediction setup is:
Consistent, if its competitive ratio is strictly better than that of the best online algorithm
without predictions for the problem, whenever η = 0.
Robust, if its competitive ratio is within a constant factor from that of the best online
algorithm without predictions for the problem. Note that Robustness is independent of the
prediction quality.
Smooth, if its competitive ratio is a smooth function of η.

Shrinking of Intervals

The most straightforward way to consider the predictions would arguably be to blindly trust
the predictions, i.e., schedule jobs assuming that the predicted instance is the actual instance.

Consider the instance JP Q (resp. JRD) in which every job has the corresponding predicted
(resp. actual) release time and deadline. The naive algorithm would compute the optimal
offline schedule Y DS(JP Q) and try to schedule tasks according to it. If the predictions are
perfectly accurate, then this clearly is an optimal schedule, and the best one can do. However,
if the predictions are even slightly inaccurate, then the resulting schedule may be infeasible.
Moreover, our goal is to have a robust algorithm, which cannot be obtained by following the
predictions blindly. For these reasons, one has to trust the predictions more cautiously and
not blindly.

One of our crucial ideas is to slightly shrink the interval between each job’s release time
and deadline before scheduling it. The intuition is that if the predictions are only slightly off,
then a YDS schedule for the newly obtained instance will be feasible at a slight increase in
energy consumption over the YDS schedule of the predicted instance. The following lemmas
formalize this intuition. We note that a similar result is also presented in [8]; however, given
that the actual setups are different new proofs are required (the proofs of these lemmas can
be found in the supplementary material).

SWAT 2022

9:6 A Novel Prediction Setup for Online Speed-Scaling

▶ Lemma 6. Consider a common deadline instance J , and another common deadline
instance Ĵ constructed from J such that every job ĵi ∈ Ĵ has workload ŵi = wi, d̂ = d, and
r̂i = ri + (1 − ci) · (d − ri) for some shrinking parameter 0 < ci ≤ 1. Set c = maxi ci. Then,

EY DS(Ĵ) ≤ (1/c)α−1EY DS(J).

▶ Lemma 7. Consider a (general) instance J , and another instance Ĵ in which every job
ji ∈ J corresponds to a job ĵi ∈ Ĵ with workload ŵi = wi, r̂i = ri + 1−c

2 · (di − ri) and
d̂i = di − 1−c

2 · (di − ri) for some shrinking parameter 0 < c ≤ 1. Then,

EY DS(Ĵ) ≤ (1/c)α−1EY DS(J).

It will be useful to bound the energy consumption of (the possibly infeasible for the
original input instance) schedule Y DS(JP Q). We compute the energy consumption of
schedule Y DS(JP Q) in the following lemma.

▶ Lemma 8. For any η ≥ 0 there holds

EY DS(JP Q) ≤ (2η + 1)α−1EY DS(JRD).

Proof. Consider two sets P ∗ = {p∗
1, . . . p∗

n} and Q∗ = {q∗
1 , . . . q∗

n}, with p∗
i = pi − ηi(qi − pi)

and q∗
i = qi + ηi(qi − pi).

By the definition of ηi, p∗
i and q∗

i , we have (ri, di) ⊆ (p∗
i , q∗

i), and therefore

EY DS(JP ∗Q∗) ≤ EY DS(JRD).

By having c = 1
(2η+1) , and J = JP ∗Q∗ (ri = p∗

i , di = q∗
i) in Lemma 7, we obtain J ′ = JP Q

and therefore,

EY DS(JP Q) ≤ (2η + 1)α−1EY DS(JP ∗Q∗). ◀

Using Lemma 6, we can obtain a similar result for common deadline instances.

▶ Corollary 9. In common deadline instances for any parameter η ≥ 0, there holds

EY DS(JP) ≤ (η + 1)α−1 · EY DS(JR).

The idea of shrinking intervals as described above will be useful for the general case as
well as the restricted common deadline case.

How much each algorithm will shrink the predicted job intervals will depend on the
confidence. This will be denoted by a confidence parameter 0 < λ ≤ 1/2 that will be given
as input to the respective algorithm. In the following, we define the shrunk prediction set
of release times and deadlines parametrized by this λ, and use the above lemmas to argue
about how this “shrinking” actually affects the energy consumption of the corresponding
Y DS-schedule.

▶ Definition 10. Let P ′ = {p′
1, . . . , p′

n} and Q′ = {q′
1, . . . , q′

n} be the shrunk prediction set of
release times and deadlines respectively in which p′

i = ⌊pi+λ(qi−pi)⌋ and q′
i = ⌈qi−λ(qi−pi)⌉

for all i ∈ [n].

We first observe that any schedule that considers the sets P ′ and Q′ as the actual release
times and deadlines of the jobs will be feasible, as long as the error η is not larger than λ.

A. Antoniadis, P. Jabbarzade, and G. Shahkarami 9:7

▶ Observation 11. Under the assumption that η ∈ (0, λ), it follows that ri ≤ p′
i and q′

i ≤ di

hold for every job i.

Therefore, the schedule Y DS(JP ′Q′) is feasible. Although shrinking the intervals and
then running YDS is not a robust algorithm, it will be useful to bound its energy consumption
when η ≤ λ holds.

▶ Lemma 12. For any η ∈ (0, λ) there holds

EY DS(JP ′Q′) ≤
(

2η + 1
1 − 2λ

)α−1
· EY DS(JRD).

Proof.

EY DS(JP ′Q′) ≤ 1
(1 − 2λ)(α−1) · EY DS(JP Q) ≤

(
2η + 1
1 − 2λ

)α−1
· EY DS(JRD). (1)

By Lemma 7 we have the first inequality in (1), and the second inequality holds because of
Lemma 8. ◀

Similarly for common deadline instances, since we shrink from one side, we obtain a
better competitive ratio.

▶ Corollary 13. For any η ∈ (0, λ) in common deadline instances there holds

EY DS(JP ′) ≤
(

1 + η

1 − λ

)α−1
· EY DS(JR).

Proof.

EY DS(JP ′) ≤ 1
(1 − λ)(α−1) · EY DS(JP) ≤

(
1 + η

1 − λ

)α−1
· EY DS(JR).

By Lemma 6 we have the first inequality, and the second inequality holds because of
Corollary 9. ◀

3 General Case

In this section we present algorithm ScheduleWithPredictions(λ, µ) (SwP(λ, µ) for
short) for the general learning-augmented speed-scaling setting. Parameter 0 ≤ λ < 1/2
describes for which range of prediction errors we would like to obtain an improved competitive
ratio. The smaller the λ, the smaller that range but the better the corresponding competitive
ratio for η < λ. On the other hand, parameter 0 ≤ µ ≤ 1 allows us to set the desired trade-off
between consistency and robustness. As we will see, perfect predictions and λ = µ = 0 would
give a competitive ratio of 1.

Inspired by [8] algorithm SwP begins by partitioning each time slot It = [t, t + 1), t ∈ Z
into two parts: Iℓ

t = [t, t + (1 − µ)) and Ir
t = [t + (1 − µ), t + 1). We call Iℓ

t the left part,
and Ir

t the right part of time slot It. The idea is to reserve the left parts of time-slots for
following the prediction, and the right parts of the time-slots are, roughly speaking, intended
for safeguarding against inaccurate predictions. A key component of our algorithm consists
of elegantly and dynamically distributing the processing volume of each job upon its arrival
among the two parts. This distribution is crucial in order to obtain a trade-off between
consistency and robustness, based on the parameters λ and µ. The algorithm consists of two
steps, the preprocessing and the online step which we now describe in more detail.

SWAT 2022

9:8 A Novel Prediction Setup for Online Speed-Scaling

Preprocessing: Partition left parts into intervals and assign jobs to them

Upon receiving the predictions (P, Q), SwP computes a YDS-schedule S′ for instance (P ′, Q′)
– which is obtained by “shrinking” (P, Q) as described above. Although S′ may not be feasible
for the actual instance (R, D), it will be used to partition the left parts into intervals and
subsequently assign each such interval of the partition to a specific job.

To this end, let It(j) := [t + at(j), t + bt(j)) ⊆ It be the maximal subinterval of It during
which j is executed under S′. Note that It(j) could be empty for some combinations of j

and t. Furthermore, since by definition there are no release times or deadlines within It, and
YDS schedules according to EDF, there can be at most one execution interval of j within It.
Let, for every job j and left part Iℓ

t , Iℓ
t (j) := [t + aℓ

t(j), t + bℓ
t(j)), where aℓ

t(j) = at(j)/(1 − µ)
and bℓ

t(j) = bt(j)/(1 − µ), be the subinterval of Iℓ
t assigned to job j.

To obtain some intuition, scheduling the whole processing volume of each job j at a uniform
speed throughout intervals Iℓ

t (j) would result in a “compressed” version of Y DS(P ′Q′) where
each time-slot is sped-up by a factor of 1/(1 − µ) to fit in the left part only, thus having an
energy consumption increased by a factor of (1/(1 − µ))α over that of Y DS(P ′Q′). Although
(as we will see) such a compressed schedule would be consistent, it may not be robust (or
even feasible) in the presence of subpar predictions. For this reason, we will eventually only
schedule part of the volume of each job in the associated left parts whenever feasible, and
the remaining volume will be processed on right parts.

Online Step: Job arrivals and processing

SwP needs to decide exactly when each job is to be processed within each time-slot and at
what speed. This is done by (i) distributing the processing volume of each job j to right
parts of different time-slots It and associated left parts Iℓ

t (j) upon its arrival, and (ii) feasibly
scheduling the whole volume assigned to the current time-slot (both to its left and right
part), within the time-slot itself. In the following we discuss how this is accomplished.

(i) Job Arrivals: Upon arrival of job j at rj , let δj = wj/(dj − rj) be its density and
ℓ(j) :=

∑
t∈[rj ,dj) |Iℓ

t (j)| be the total processing time reserved for job j on the left parts
during the preprocessing step that can actually be feasibly used for job j. Furthermore let
Vt(j) be the total volume currently (from jobs 1, 2, . . . j − 1) assigned to Ir

t , for all t (thus
Vt(1) = 0).

The algorithm assigns some amount of volume yt
j (to be determined later) of job j to

interval Ir
t (thus Vt(j + 1) := Vt(j) + yt

j), for all t ∈ [rj , dj), with 0 ≤ yt
j ≤ δj . Finally

the remaining volume Xj := wj −
∑

t yt
j is assigned to the left parts Iℓ

t (j) with t ∈ [rj , dj),
proportionally to their length, i.e., an interval Iℓ

t (j) with t ∈ [rj , dj) receives an |Iℓ
t (j)|/ℓ(j)-

fraction of Xj which implies that the average speed within Iℓ
t (j) must be Xj/ℓ(j). To gain

some intuition on the values of yt
j , it is useful to think of the algorithm as waterfilling the

volume of j to both the left and the right parts such that no right part receives more than δj

amount of volume. More formally, the yt
j , with 0 ≤ yt

j ≤ δj and t ∈ [rj , dj) are defined such
that they satisfy the following inequalities:

Vt(j)
µ

≥ Xj/ℓ(j) ∀t ∈ [rj , dj) with yt
j = 0 (2)

Vt(j) + yt
j

µ
= Xj/ℓ(j) ∀t ∈ [rj , dj) with 0 < yt

j < δj (3)

Vt(j) + yt
j

µ
≤ Xj/ℓ(j) ∀t ∈ [rj , dj) with yt

j = δj . (4)

A. Antoniadis, P. Jabbarzade, and G. Shahkarami 9:9

Time

Speed

0 1 2 3 4 5 6 7 8 9

Figure 1 The speed profile corresponds to an instance with µ = 0.25. Job i arrives at ri = 2,
with di = 9, and wi = 7. Hence, δi = wi

di−ri
= 1. For this instance, Y DS(P ′Q′) runs job i only in 3

blocks, so we have ℓ(i) = 3 · 0.75 = 2.25. For the first four blocks we have yt
i = 0 and inequality (2)

holds. In the fifth and sixth blocks, 0 < yt
i < δi and equality (3) holds. And in the last block,

yt
i = δi = 1 and inequality (4) holds.

Note that the left hand side in each of the above inequalities corresponds exactly to
Vt(j + 1)/µ and therefore to the average speed required to process the volume assigned to t

before the arrival of job j + 1 within Ir
t . We prove the existence of such yt

j and describe how
they can be computed in Appendix A.

(ii) Processing: For each It, t = rj , . . . rj+1 − 1 the algorithm processes job j′ ≤ j within
every Iℓ

t (j′) at a speed of Xj′/ℓ(j′), and the assigned volume to Ir
t is processed within Ir

t at
a speed of Vt(j + 1)/µ, with the order of the jobs within each Ir

t being determined by EDF.
The online step gets repeated upon the arrival of each job. We next show that the

resulting schedule is feasible.

▶ Lemma 14. In the schedule output by SwP(λ, µ) a volume of wj is fully processed for
each job j within [rj , dj).

Proof. It is relatively easy to see that a total volume of wj is assigned to left and right parts
of It’s with t ∈ [rj , dj): Indeed, by the algorithm definition volume of wj only gets assigned
to Iℓ

t ⊂ It or Ir
t ⊂ It with t ∈ [rj , dj). In addition, a volume of

∑
t yt

j gets assigned to the
right parts and wj −

∑
t yt

j to the left parts for a total volume assignment of wj . It therefore
remains to show that all the assigned volume is feasibly processed in the processing step.

Consider some It with rj ≤ t < rj+1 and the corresponding Iℓ
t and Ir

t . Note that by
the above argument, for any such t no job with an index greater than j will assign any
volume, and that only job j′ ≤ j may be assigned to Iℓ

t (j′). Therefore a speed of Xj′/ℓ(j′)
throughout every such Iℓ

t (j) is sufficient to schedule all volume assigned to it. Finally, since
there are no release times or deadlines within each individual interval, the total volume of
Vt(j + 1) can be feasibly scheduled within Ir

t at a speed of Vt(j + 1)/µ. ◀

We next show consistency and robustness of the algorithm.

▶ Lemma 15 (Consistency & Smoothness). For any η ∈ (0, λ) there holds

ESwP ≤
(

1
1 − µ

)α−1(2η + 1
1 − 2λ

)α−1
EY DS(RD).

SWAT 2022

9:10 A Novel Prediction Setup for Online Speed-Scaling

Proof. We can express ESwP as:

ESwP =
n∑

j=1

 Xα
j

ℓ(j)α−1 +
∑

t∈[rj ,dj)

(
Vt(j + 1)α

µα−1 − Vt(j)α

µα−1

)
=

n∑
j=1

 Xα
j

ℓ(j)α−1 +
∑

t∈[rj ,dj)

((
Vt(j) + yt

j

)α

µα−1 − Vt(j)α

µα−1

)
≤

n∑
j=1

wα
j

ℓ(j)α−1 =
(

1
1 − µ

)α−1
Ej

Y DS(JP ′Q′).

The inequality holds by convexity of the power function and by the fact that Vt(j + 1)/µ ≤
Xj/ℓ(j) for each t such that yt

j > 0 (Equations 3 and 4). The last equality follows since for
η ∈ (0, λ), for every job j there holds [rj , dj) ⊇ [p′

j , q′
j) (Observation 11), and by construction

ℓ(j) is 1/(1 − µ) times the total processing time reserved for job j under YDS(P ′Q′).
The lemma directly follows, since by Lemma 12,

EY DS(JP ′Q′) ≤
(

2η + 1
1 − 2λ

)α−1
· EY DS(JRD). ◀

▶ Lemma 16 (Robustness). For any instance, we have

ESwP ≤ 2α−1αα

(
1
µ

)α−1
EY DS(JRD).

Proof. Note that by the algorithm definition there holds that Vt(j) ≥ Vt(i), for j > i and
any t, since upon each release time new volume gets assigned but volume never gets removed.
We therefore have

ESwP ≤
n∑

j=1

(
Xα

j

ℓ(j)α−1

)
+
∑

t

(
Vt(n + 1)α

µα−1

)

≤
∑

t


(∑

j:t∈[rj ,dj) δj

)α

µα−1

 =
(

1
µ

)α−1
EAV R.

The second inequality follows by the convexity of the power function and the fact that
Vt(n + 1)/µ ≥ Vt(j + 1)/µ ≥ Xj/ℓ(j) for each t such that yt

j < δj (Equations 3 and 2). The
lemma follows by the competitive ratio of AVR [10]. ◀

Lemmas 15 and 16 together directly imply Theorem 1. Note that Theorem 1 not only
implies consistency and robustness, but also smoothness: the competitive ratio gracefully
degrades as the error increases.

4 All Jobs Have a Common Deadline

In this section, we present a simpler algorithm that achieves improved consistency and
robustness over SwP for the special case in which all jobs have the same deadline, i.e., dj = d

for all j ∈ J . Since the deadline is the same for all jobs, we only consider predictions on the
n release times R = {r1, . . . , rn} and denote these by a set P = {p1, . . . , pn}.

A. Antoniadis, P. Jabbarzade, and G. Shahkarami 9:11

We begin by analyzing a framework for combining different algorithms before presenting
an algorithm in Subsection 4.1 that is based on combining two different algorithms; the
classic online algorithm qOA that has a worst-case guarantee independent of the prediction
error, and a second one, that considers the predictions and has a good performance in the
case of small prediction error.

The general idea of combining online algorithms has been repeatedly employed in the
past in the areas of online algorithms and online learning, see, for example, the celebrated
results of Fiat et al. [17], Blum and Burch [14], Herbster and Warmuth [19], Littlestone and
Warmuth [22]. Such a technique has also been used in the learning augmented setting, see
Antoniadis et al. [6] for an explicit framework for combining algorithms, and Lykouris and
Vassilvtiskii [23] as well as Rohatgi [28] for implicit uses of such algorithm combinations.
However, as we will see, the specific problem considered in this paper allows for way more
flexibility in such algorithm combinations since it is possible to simulate the parallel execution
of different algorithms by increasing the speed. This allows us to obtain a much more tailored
result with at most one switch between the different algorithms and more straightforward
analysis. We start with the following structural lemma.

▶ Lemma 17. Consider a partition of the job set of instance J into m job sets J1, J2, . . . Jm,
and furthermore consider m schedules C1, C2, . . . Cm with speed functions s1(t), s2(t), . . . sm(t)
respectively, such that Ci is a feasible schedule for Ji for all i = 1, . . . m. Then there exists a
schedule C with speed function sC(t) =

∑
i si(t) that is feasible for the complete job set J

and has an energy consumption of EC ≤ mα−1∑
i Ei, where for each i, Ei =

∫
t
si(t)αdt is the

energy consumption of the respective schedule.

4.1 Algorithm CommonDeadlineScheduleWithPredictions (CDSwP)
At a high level CDSwP(λ) (almost) follows the optimal schedule for the predicted instance as
long as the prediction error is not higher than λ and switches to a classical online algorithm
(i.e., one without predictions) in case the prediction error becomes higher than λ.

More formally, the algorithm can reside in one of two modes: follow the prediction (FtP)
mode, and recovery mode. Initially, before the release time r1 of the first job the algorithm
is in the FtP-mode and has an associated speed-profile given by s(FtP (0), t) = 0 for all
t ∈ [0, d]. Upon each release time ri, i = 1, . . . n, and while in the FtP-mode, CDSwP(λ)
does the following:

If ηi ≤ λ, CDSwP remains in the FtP-mode and updates the speed profile from s(FtP (i−
1), t) to s(FtP (i), t) for [ri, d] with the help of a job instance J i. Instance J i consists of:

One job i′ with release time ri′ = ri, workload wi′ equal to the total amount of
unfinished workload at ri workload that was released at any timepoint t ≤ ri, and
deadline d.
For each job j not yet released at rj , include job j with a release time of p′

j , a deadline
of d and a volume of wj in J i.

The new speed-profile s(FtP (i), t) is given for any t ∈ [ri, d] by

s(FtP (i), t) :=
{

s(Y DS(J ′), t), if Y DS(J ′) runs job i′ at t,
0, otherwise.

Algorithm CDSwP now runs at s(FtP (i), t) for any t ∈ [ri, ri+1), and remains in the
FtP-mode.
Otherwise, if ηi > λ then CDSwP switches to the recovery-mode, and sets k := i.

SWAT 2022

9:12 A Novel Prediction Setup for Online Speed-Scaling

Time

Speed

0 1 2 3 4 5 6 7 8 9

Figure 2 A common deadline instance with η > λ. The first time point with ηi > λ is time 5
in which we start to run qOA for the rest of the jobs (blue part) while we continue running Y DS

for the jobs released before 5 (red part). At time point 7.5, the workload of the first set of jobs is
finished.

When in recovery-mode, the algorithm runs at speed s(t) = s(FtP (k−1), t)+s(qOA(k), t)
at each timepoint t until d, where s(FtP (k − 1), t) is the last speed-profile generated in
the FtP-mode, and s(qOA(k), t), is the speed that the online algorithm qOA would have at
timepoint t when presented (in an online fashion) with (the actual) jobs k, . . . n.

Note that defining the speed at any timepoint t is sufficient in order to fully describe
the algorithm. Indeed, since all jobs have a common deadline of d, it is irrelevant which
job (among the active jobs) is being processed at any timepoint t. Nevertheless, to simplify
the presentation we will implicitly assume in the following that at timepoint t the currently
active and unfinished job with the earliest release time is the one being processed – and ties
are broken arbitrarily. We first prove that the algorithm produces feasible schedules:

▶ Observation 18. Algorithm CDSwP fully processes the whole processing volume of each
job wj, within [rj , d].

Proof. Note that by the algorithm definition, no job starts being processed before its arrival
in any mode. So it suffices to show that the complete processing volume of each job is
completed before its deadline. Assume first that the algorithm remains in the FtP-mode
until d. By the definition of the job instances J i, any still unfinished processing volume wn′

will be assigned to job n′ at timepoint rn and YDS will schedule it within [rn, d) according
to YDS at a speed of wn′/(d − rn). So the resulting schedule is feasible in that case. If
the algorithm switches to the recovery mode at some rk, then by the above argument the
speed profile s(FtP (k − 1), t) is sufficient to finish jobs 1, . . . k − 1, and furthermore speed
profile s(qOA(k), t) is feasible for for jobs k, . . . n, by the feasibility of algorithm qOA. So
the overall speed profile s(FtP (k − 1), t) + s(qOA(j), t) is sufficient for processing the whole
volume. ◀

We begin by showing the following theorem which will imply consistency and smoothness.

▶ Lemma 19 (Consistency & Smoothness). Under the assumption that η ∈ (0, λ), there holds

ECDSwP ≤
(

1 + η

1 − λ

)α−1
· EY DS(JR).

A. Antoniadis, P. Jabbarzade, and G. Shahkarami 9:13

Before proving Lemma 19 we show the following intermediate result.

▶ Lemma 20. Assuming that η ∈ (0, λ), there holds

ECDSwP ≤ EY DS(JP ′)

Proof. Consider job instance J i′ which consists of:
A job ji−1 with release time ri, deadline d and volume wji−1 := w′

i − wi equal to the
total volume of jobs 1, . . . i − 1 that is still unfinished at ri,
Job i with release time at p′

i (and still deadline d and processing volume wi),
For each job j not yet released at rj , include job j with a release time of p′

j , a deadline of
d and a volume of wi in J i′.

Note that, instance J i′ differs from J i only in that job i is considered separately, and not
together with all previously released jobs that are still not finished. By Observation 11 a
YDS schedule for the former is a feasible schedule for the later, and therefore by optimality
of YDS,

E [ri,∞)
CDSwP (Ji) ≤ E [ri,∞)

CDSwP (Ji′), (5)

where E [a,b]
A(J), refers to the energy consumption that the schedule produced by algorithm A

on instance J has within interval [a, b].
Using this notation, we can express the total energy-consumption of the CDSwP as

ECDSwP =
n∑

i=1
E [ri,ri+1)

CDSwP (Ji)

=
n−2∑
i=1

E [ri,ri+1)
CDSwP (Ji) + E [rn−1,rn)

CDSwP (Jn−1) + E [rn,d)
CDSwP (Jn)

≤
n−2∑
i=1

E [ri,ri+1)
CDSwP (Ji) + E [rn−1,rn)

CDSwP (Jn−1) + E [rn,d)
CDSwP (Jn′)

=
n−2∑
i=1

E [ri,ri+1)
CDSwP (Ji) + E [rn−1,d)

CDSwP (Jn−1)

...

≤ E [r1,d)
CDSwP (J1) ≤ EY DS(JP ′),

where the inequalities follow by applying Equation (5). ◀

Proof of Lemma 19. By combining Lemmas 20 and 13 we have,

ECDSwP ≤ EY DS(JP ′) ≤
(

1 + η

1 − λ

)α−1
· EY DS(JR),

and the lemma directly follows. ◀

We note that the above proof also works in exactly the same way when only a subset A

of the job set is processed.

▶ Corollary 21. Consider a set of jobs A ⊆ J and assume that ηi ∈ (0, λ) holds for every
job i ∈ A. Then

ECDSwP (A) ≤ EY DS(JP ′ (A))

SWAT 2022

9:14 A Novel Prediction Setup for Online Speed-Scaling

We next analyze the case of inadequate predictions.

▶ Lemma 22. (Robustness) With a parameter η /∈ (0, λ), we have

ECDSwP ≤ 2α

(
1 + λ

1 − λ

)α−1
· EqOA.

Proof. As in the definition of CDSwP, let k be the smallest index, such that ηk > λ. Hence,
the algorithm switches to the recovery mode at rk. We partition the job set into two subsets
A = {1, · · · , k − 1} and B = {k, · · · , n}. By Lemma 17, and by the fact that by Corollary 21
the energy consumption for set B is at most the energy consumption of qOA for the whole
job instance, it suffices to upper bound the energy consumption required for set A by the
total energy that qOA(k) uses.

We transform the schedule obtained by CDSwP for job set A through three intermediate
steps to the schedule produced by Y DSJ(R). Since EY DSJ (R) ≤ EqOAJ (R) this will imply
the theorem.

Step 1. Let JA be the job instance that contains all jobs in A, along with jobs j =
k, k + 1, . . . n with respective release time p′

j , deadline d and processing volume wj .
Let EA

CDSwP , and EA
Y DS(JA) be the energy consumptions incured while scheduling the

subset of jobs A for CDSwP(J) and Y DS(JA) respectively. By Corollary 21,

EA
CDSwP ≤ EA

Y DS(JP ′).

Let JA
P be the job instance, consisting of the predicted release times (pi) of jobs in set A

and the “shrunk” predicted release times (p′
i) for the remaining jobs. Note that JA

P differs
from JA only in the release-times of jobs in set A. Since ηi ≤ λ for any i ∈ A, there holds
for any such i that d − p′

i = 1/(1 − λ)(d − pi). By Lemma 6, there therefore holds

EA
Y DS(JP ′) ≤

(
1

1 − λ

)α−1
· EA

Y DS(JA
P

).

Consider set P ∗ = {p∗
1, . . . p∗

k−1, p′
k, . . . , p′

n} with p∗
i = pi − ηi(qi − pi) for all j ∈ [k − 1].

There holds

EY DS(JA
P

) ≤ (1 + λ)α−1EY DS(JP ∗) ≤ (1 + λ)α−1EY DS(JA). (6)

By having c = 1
(1+λ) , and J = JP ∗ (ri = p∗

i) in Lemma 6, we obtain J ′ = JP . Since we
have ηj < λ for all j < k, the first inequality in (6) holds. For every job i ∈ A there holds
(ri, d) ⊆ (p∗

i , d). More specifically, a feasible schedule for JA is feasible for JP ∗ as well. The
second inequality in (6) then directly follows by the optimality of Y DS.

Putting things together we therefore have

EA
CDSwP ≤

(
1 + λ

1 − λ

)α−1
· EA

Y DS(JA), (7)

Step 2. In this step, we want to compare EA
Y DS(JA) with the energy of Y DS algorithm for

a new job instance in which we consider the real release times for some jobs in set B that
their shrinking predictions are after their real release times.

A job instance J l is defined, consisting of the real release times of jobs in set A, the real
release times of job j in set B for which rj ≤ p′

j , and the shrunk prediction (p′
j) for the rest.

Since moving the release times of the future jobs to the left could increase the speed (and
hence increases energy) in the first part,

EA
Y DS(JA) ≤ EA

Y DS(Jl).

A. Antoniadis, P. Jabbarzade, and G. Shahkarami 9:15

Step 3. In the last step, we want to compare EA
Y DS(Jl) with the optimum offline algorithm

(Y DS) for the complete job instance J and their real release time JR. We want to show

EA
Y DS(Jl) ≤ EJ

Y DS(Jl) ≤ EJ
Y DS(JR).

The first inequality holds because A ⊆ J . Consider the difference between two job instances
JR and J l. Since for each job i, its available time in JR is a subset of its available time in J l,
Y DS(JR) is a feasible algorithm for job instance J l. Therefore, the second inequality holds.

So far we proved that

EA
CDSwP ≤

(
1 + λ

1 − λ

)α−1
· EJ

Y DS(JR).

Since we run qOA for the job set B,

EB
CDSwP = EB

qOA(JR) ≤ EJ
qOA(JR).

And by Lemma 17,

ECDSwP ≤ 2α−1 · (
(

1 + λ

1 − λ

)α−1
· EJ

Y DS(JR) + EJ
qOA(JR)).

Since EJ
Y DS(JR) ≤ EJ

qOA(JR),

ECDSwP ≤ 2α−1 · (EqOA)(
(

1 + λ

1 − λ

)α−1
+ 1) ≤ 2α

(
1 + λ

1 − λ

)α−1
· (EqOA). ◀

Lemmas 19 and 22 together imply Theorem 2.

5 Discussion on Confidence Parameters λ and µ

In order to give some intuition on how the confidence parameters µ and λ affect the obtained
performance guarantees of SwP, we perform some numerical experiments for different settings.
Moreover, we compare our algorithm with the currently best-known online algorithm qOA
and the optimum offline algorithm YDS using real-world data. All experiments were run on
a typical laptop computer.

We only consider α = 3 for the experiments, as this is the typical value of α for real-world
processors, see for example [15, 31]. Furthermore for qOA, we only consider q = 2− 1

α ≈ 1.667
since this is the value that minimizes the competitive ratio [11].

The input data for our experiments is the same as in [1]. There, jobs are generated
from http requests received on EPAs web-server. For practical reasons, we limit our input
instances to the first 1000 jobs of their sample. In order to generate predictions for the input,
we use a normal distribution with a mean of 0, and a standard deviation of 0.01, 0.05, or 0.1.
For each job, two samples from this distribution are taken and each of them is scaled by the
real interval length of the job. The result is then added to each job’s actual release time and
deadline to obtain predictions for them.

In order to illustrate the effect of parameters λ and µ, we run SwP for different combin-
ations of these values. In particular we consider λ = 0, 0.1, 0.2, 0.3 and µ = 0.1, 0.2, · · · , 1.
Our results with standard deviation 0.05 can be found in Figure 3. Our results with standard
deviations 0.01, and 0.1 can be found in the supplementary material.

SWAT 2022

9:16 A Novel Prediction Setup for Online Speed-Scaling

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

2

2.5

3

3.5
·109

µ

en
er

gy
co

ns
um

pt
io

n

SwP, λ = 0
SwP, λ = 0.1
SwP, λ = 0.2
SwP, λ = 0.3

qOA
YDS

Figure 3 Prediction set 2, stddev=0.05.

To gain some intuition on the results, recall that µ denotes the portion of each block
for which AVR is run. In particular, for µ = 1 the SwP algorithm becomes identical to the
AVR algorithm and disregards the predictions, whereas the smaller µ’s value the more the
predictions are trusted. This explains why the competitive ratio increases with µ. Similarly,
recall that λ defines how much the predicted interval will be shrunk and that the improved
competitive ratio is only proven for η ≤ λ but on the other hand the bigger λ gets the smaller
that improvement in the competitive ratio will be. Although the best choices for λ and µ

depend on the quality and/or structure of the predictions, our experiments highlight that
for appropriate such choices, one can significantly improve upon the energy-consumption of
qOA. To summarize, in practice the most sensible settings of λ and µ will depend on the
quality as well as structure of the predictions and it may be worthwhile experimenting with
different such settings.

6 Conclusion

In this paper, we have presented a consistent, smooth, and robust algorithm for the general
classical, deadline-based, online speed-scaling problem using ML predictions for release times
and deadlines.

We can remove the assumption of knowing the number of jobs n, by slightly adapting
the error definition, so that the prediction is considered to be inadequate if the predicted
number of jobs is wrong.

It remains an interesting open question on whether a similar robust, consistent and
smooth algorithm exists for the more general setup in which the workloads of the jobs are
not known in advance but predicted along with their release times and deadlines. Although
we were able to extend SwP under the assumption that it satisfies a natural monotonicity
property, it is unclear if that property holds in general.

A. Antoniadis, P. Jabbarzade, and G. Shahkarami 9:17

References
1 Ahmed Abousamra, David P. Bunde, and Kirk Pruhs. An experimental comparison of

speed scaling algorithms with deadline feasibility constraints. CoRR, abs/1307.0531, 2013.
arXiv:1307.0531.

2 Susanne Albers. Energy-efficient algorithms. Commun. ACM, 53(5):86–96, 2010.
3 Susanne Albers, Antonios Antoniadis, and Gero Greiner. On multi-processor speed scaling

with migration. J. Comput. Syst. Sci., 81(7):1194–1209, 2015.
4 Susanne Albers and Hiroshi Fujiwara. Energy-efficient algorithms for flow time minimization.

ACM Trans. Algorithms, 3(4):49, 2007.
5 Eric Angel, Evripidis Bampis, Fadi Kacem, and Dimitrios Letsios. Speed scaling on parallel

processors with migration. J. Comb. Optim., 37(4):1266–1282, 2019.
6 Antonios Antoniadis, Christian Coester, Marek Elias, Adam Polak, and Bertrand Simon.

Online metric algorithms with untrusted predictions. In International Conference on Machine
Learning, pages 345–355. PMLR, 2020.

7 Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online
matching problems with machine learned advice. In NeurIPS, 2020.

8 Étienne Bamas, Andreas Maggiori, Lars Rohwedder, and Ola Svensson. Learning augmented
energy minimization via speed scaling. In NeurIPS, 2020.

9 Étienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning
augmented algorithms. In NeurIPS, 2020.

10 Nikhil Bansal, David P. Bunde, Ho-Leung Chan, and Kirk Pruhs. Average rate speed scaling.
Algorithmica, 60(4):877–889, 2011.

11 Nikhil Bansal, Ho-Leung Chan, Dmitriy Katz, and Kirk Pruhs. Improved bounds for speed
scaling in devices obeying the cube-root rule. Theory Comput., 8(1):209–229, 2012.

12 Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage energy and temper-
ature. J. ACM, 54(1), March 2007.

13 Nikhil Bansal, Kirk Pruhs, and Clifford Stein. Speed scaling for weighted flow time. SIAM J.
Comput., 39(4):1294–1308, 2009.

14 Avrim Blum and Carl Burch. On-line learning and the metrical task system problem. Machine
Learning, 39(1):35–58, 2000.

15 Dale L. Critchlow, Robert H. Dennard, and Stanley Schuster. Design and characteristics of
n-channel insulated-gate field-effect transistors. IBM J. Res. Dev., 44(1):70–83, 2000.

16 Paul Dütting, Silvio Lattanzi, Renato Paes Leme, and Sergei Vassilvitskii. Secretaries with
advice. In EC, pages 409–429. ACM, 2021.

17 Amos Fiat, Yuval Rabani, and Yiftach Ravid. Competitive k-server algorithms. Journal of
Computer and System Sciences, 48(3):410–428, 1994.

18 Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-or-buy with expert
advice. In ICML, 2019.

19 Mark Herbster and Manfred K Warmuth. Tracking the best expert. Machine learning,
32(2):151–178, 1998.

20 Sandy Irani and Kirk Pruhs. Algorithmic problems in power management. SIGACT News,
36(2):63–76, 2005.

21 Nicola Jones. How to stop data centers from gobbling up the world’s electricity, 2018. [Online;
accessed 02-August-2021].

22 N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Information and
Computation, 108(2):212–261, 1994. doi:10.1006/inco.1994.1009.

23 Thodoris Lykouris and Sergei Vassilvtiskii. Competitive caching with machine learned advice.
In International Conference on Machine Learning, pages 3296–3305. PMLR, 2018.

24 Michael Mitzenmacher. Scheduling with predictions and the price of misprediction. In ITCS,
volume 151 of LIPIcs, pages 14:1–14:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020.

SWAT 2022

http://arxiv.org/abs/1307.0531
https://doi.org/10.1006/inco.1994.1009

9:18 A Novel Prediction Setup for Online Speed-Scaling

25 Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. In Beyond the
Worst-Case Analysis of Algorithms, pages 646–662. Cambridge University Press, 2020.

26 Benjamin Moseley, Sergei Vassilvitskii, Silvio Lattanzi, and Thomas Lavastida. Online
scheduling via learned weights. In SODA, 2020.

27 Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml
predictions. In Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

28 Dhruv Rohatgi. Near-optimal bounds for online caching with machine learned advice. In
SODA, 2020.

29 Shufan Wang and Jian Li. Online algorithms for multi-shop ski rental with machine learned
predictions. In AAMAS, pages 2035–2037. International Foundation for Autonomous Agents
and Multiagent Systems, 2020.

30 Alexander Wei. Better and simpler learning-augmented online caching. In APPROX/RANDOM,
volume 176 of LIPIcs, pages 60:1–60:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020.

31 Adam Wierman, Lachlan L. H. Andrew, and Ao Tang. Power-aware speed scaling in processor
sharing systems: Optimality and robustness. Perform. Evaluation, 69(12):601–622, 2012.

32 F. Frances Yao, Alan J. Demers, and Scott Shenker. A scheduling model for reduced CPU
energy. In FOCS, pages 374–382. IEEE Computer Society, 1995.

A Calculating the yt
i’s

First we show the following lemma.

▶ Lemma 23. For any given 0 ≤ X ≤ ℓ(j) maxt∈[rj ,dj)(Vt(j) + δj)/µ there exist values yt
j,

with 0 ≤ yt
j ≤ δj so that equations (3),(4) and (2) are satisfied for all t ∈ [rj , dj), with X in

place of Xj . Furthermore for any t, t′ with yt
j ≤ yt′

j there holds Vt′(j) ≤ Vt(j), and
∑

yt
j is a

continuous and non-decreasing function in X.

Proof. If X/ℓ(j) < mint∈[rj ,dj) Vt(j)/µ, then it is easy to verify that yt
j = δj for all t ∈ [rj , dj)

satisfies all equations. So we assume for the remainder of this proof that mint∈[rj ,dj) Vt(j)/µ ≤
X/ℓ(j) ≤ maxt∈[rj ,dj)(Vt(j) + δj)/µ.

For any t ∈ [rj , dj), let

yt
j :=


0, if Vt(j)/µ ≥ X/ℓ(j),
δj , if (Vt(j) + δj)/µ ≤ X/ℓ(j),
µX/ℓ(j) − Vt(j), otherwise.

(8)

It is easy to verify that for the above definition of yt
j , equations (3), (4) and (2) are satisfied

with X in place of Xj , and that for any t, t′ with yt
j ≤ yt′

j there holds Vt′(j) ≤ Vt(j). Finally,∑
yt

j is a continuous function as a sum of a finite number of continuous functions, and
non-decreasing in X (as each yt

j is by definition a non-increasing function of X). ◀

▶ Lemma 24. For any set of values Vt(j), there exist values yt
j, with 0 ≤ yt

j ≤ δj so that
equations (3),(4) and (2) are satisfied for all t ∈ [rj , dj).

Proof. Note that it suffices to show that there exists Xj = wj −
∑

t yt
j where the yt

j are as
defined in the proof of Lemma 23, since then by Lemma 23 the equations (3),(4), and (2)
would hold for Xj = wj −

∑
t yt

j .
First, let X = wj and compute the values of yt

j via (8). If
∑

t yt
j = 0 , then we have found

the desired X and are done. Assume therefore, that 0 <
∑

t yt
j ≤ wj . By Lemma 23,

∑
t yt

j is

A. Antoniadis, P. Jabbarzade, and G. Shahkarami 9:19

a non-decreasing and continuous function of X within [0, wj] that obtains value 0 for X = 0,
and a value ≤ wj for X = wj . Equivalently the function wj −

∑
t yt

j is non-increasing and
continuous in X within [0, wj] and obtains value wj for X = 0 and a value ≥ 0 for X = wj .
Therefore, by the intermediate value theorem there must exist an Xj ∈ [0, wj], such that
wj −

∑
t yt

j obtains a value of Xj , which concludes the proof of the lemma. ◀

Algorithm

Lemmas 23 and 24 directly imply an algorithm for identifying such values of yt
j . In particular,

since for any t, t′ with yt
j ≤ yt′

j there holds Vt′(j) ≤ Vt(j), we can order all relevant t’s by
Vt(j) and find (through enumeration) t′, t′′ such that for any Vt(j) ≥ V ′

t (j) we have yt
j = 0,

for any Vt(j) ≤ Vt′′(j), yt
j = δj and for all other t there holds 0 < yt

j < δj . Let N be the
number of t’s such that yt

j = δj , and Z = wj − Nδj be the remaining processing volume that
needs to be assigned through the yt

j ’s for t’s with Vt′′(j) < Vt(j) < Vt′(j). In other words we
need to find 0 < yt

j < δj so that Z −
∑

t yt
j = Xj , and for each individual such yt

j , we have
yt

j = µXj/ℓ(j) − Vt(j). This implies a system of k + 1 equations (for some k) with k + 1
unknowns, that by Lemma 24 has a solution assuming that t′, t′′ were chosen correctly.

B Missing Plots of Section 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

1

2

3

·109

µ

en
er

gy
co

ns
um

pt
io

n

SwP, λ = 0
SwP, λ = 0.1
SwP, λ = 0.2
SwP, λ = 0.3

qOA
YDS

Figure 4 Prediction set 1, stddev=0.01.

SWAT 2022

9:20 A Novel Prediction Setup for Online Speed-Scaling

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

1

2

3

·109

µ

en
er

gy
co

ns
um

pt
io

n

SwP, λ = 0
SwP, λ = 0.1
SwP, λ = 0.2
SwP, λ = 0.3

qOA
YDS

Figure 5 Prediction set 3, stddev=0.1.

	1 Introduction
	1.1 Related Work
	1.1.1 Online Energy-Efficient Scheduling
	1.1.2 Further Results on Learning Augmented Algorithms

	2 Preliminaries
	3 General Case
	4 All Jobs Have a Common Deadline
	4.1 Algorithm CommonDeadlineScheduleWithPredictions (CDSwP)

	5 Discussion on Confidence Parameters lambda and mu
	6 Conclusion
	A Calculating the y_i^t's
	B Missing Plots of Section 5

