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Abstract
The ZX-calculus is a powerful framework for reasoning in quantum computing. It provides in
particular a compact representation of matrices of interests. A peculiar property of the ZX-calculus
is the absence of a formal sum allowing the linear combinations of arbitrary ZX-diagrams. The
universality of the formalism guarantees however that for any two ZX-diagrams, the sum of their
interpretations can be represented by a ZX-diagram. We introduce a general, inductive definition
of the addition of ZX-diagrams, relying on the construction of controlled diagrams. Based on this
addition technique, we provide an inductive differentiation of ZX-diagrams.

Indeed, given a ZX-diagram with variables in the description of its angles, one can differentiate
the diagram according to one of these variables. Differentiation is ubiquitous in quantum mechanics
and quantum computing (e.g. for solving optimization problems). Technically, differentiation of
ZX-diagrams is strongly related to summation as witnessed by the product rules.

We also introduce an alternative, non inductive, differentiation technique rather based on the
isolation of the variables. Finally, we apply our results to deduce a diagram for an Ising Hamiltonian.
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1 Introduction

The ZX-calculus is a graphical language for manipulating linear maps. It was originally
introduced in [4] and proven to be complete for qubit quantum computation [13, 11, 16, 25].
A general introduction to the language alongside the overview of the main applications is
available in [24].
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13:2 Addition and Differentiation of ZX-Diagrams

Due to its flexibility, ZX-calculus became widely used to address different problems of
quantum computing. However, its application to the rapidly growing field of variational
algorithms [3] like QAOA [7] (quantum approximation optimization algorithm) and VQE [20]
(variational quantum eigensolver) are so far limited. Nevertheless as variational algorithms
do not require heavy resource for error-correction, the incoming emergence of NISQ devices
makes from them an object of particular attention [21]. We believe that the reason why they
are still unexplored with the means of ZX-calculus is the absence of a convenient way to
differentiate parametrized diagrams. Indeed, basic building blocks of variational algorithms
are parametrized circuits and the search of optimal parameter values is a crucial part of
these algorithms. The search is usually done by classical numerical optimization methods [8]
and most of them use derivatives.

The main difficulty for differentiation of ZX-diagrams comes from the product rules that
involve sums. Several attempts were made to face this problem [29, 23]. The paper [23]
extends the signature of ZX-category to formal sums of diagrams while [29] provides explicit
derivatives for diagrams with the number of parameter occurrences limited to two. The first
option that is to use formal sums has major disadvantages as there is no rules to manipulate
sums of ZX-diagrams.

In our approach the derivative of a parametrized ZX-diagram is another ZX-diagram.
Hence we avoid the extension of the signature with formal sums. In order to tackle sums
that appear in the product rule, we introduce an original technique to perform the addition
of diagrams entirely in the ZX-calculus. We use special diagrams called controlled states [15].
We suggest a way to represent every ZX-diagram by such a state. As we know how to sum
controlled states [15] the addition for arbitrary diagrams follows. An inductive definition of
the derivative is obtained by explicit diagrammatic representation of the product rules.

Very recently an independent work with a similar result, although obtained from a
different approach, was published on arXiv [27]. In contrast to our work, the authors of
[27] use algebraic ZX-calculus [26] and W-spiders [10] to express derivatives. Their paper
highlights the crucial role that W-spider plays in the representation of sums. However, it
does not provide an algorithm of diagrammatic addition for arbitrary diagrams.

In an attempt to give a ready-to-use toolbox for differentiation, we provide an easy and
convenient way to compute the derivative for the family of linear diagrams ZX(β) [15]. Most
of circuits for variational algorithms belong to ZX(β) and we believe that our formulas will
make the analysis of them much simpler.

In the end, we show how our result together with the Stone’s theorem [22] allows to find
a ZX-diagram for an Ising Hamiltonian - another key component of variational quantum
algorithms [9].

Structure of the paper

In the section 2, we give a brief introduction to the ZX-calculus. In the section 3, we recall the
properties of controlled states and give the definition of controlizer : a map that transforms
an arbitrary diagram to a controlled state. We show how to use controlizers to perform the
addition of ZX-diagrams. In the section 4, we introduce the formal semantics of derivative
of a parametrized diagram. The definition is followed by an algorithm for differentiation
that explicitly incorporates the product rule. Finally, we give two compact formulas for
derivatives in ZX(β) that may be directly used in computation. In the section 5, we show
how to apply our result to obtain a diagram for an Ising Hamiltonian. Most of proofs are
detailed in the full version of our paper that is available online [12].
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2 ZX-calculus

2.1 Syntax and Semantics

The ZX-diagrams are generated by green spiders α
. . .

. . .
, red spiders α

. . .

. . .
and Hadamard ,

where both kinds of spiders have an arbitrary number of inputs/outputs and are decorated
with angles. ZX-diagrams are also made of wires: the identity , the swap and also the

possibility to bend wires with a cup and a cap . Finally, the empty diagram is
denoted .

▶ Definition 1. ZX-diagrams are inductively defined as follows: for n,m ∈ N and α ∈ R/2πZ,

α
. . .

. . .

n

m

: n → m α
. . .

. . .

n

m

: n → m : 1 → 1 : 1 → 1

: 2 → 0 : 0 → 2 : 2 → 2 : 0 → 0

are ZX-diagrams, and for any ZX-diagrams D0 : a → b, D1 : b → c, and D2 : c → d,
D1 ◦D0 : a → c and D0 ⊗D2 : a+ c → b+ d are ZX-diagrams. Pictorially:

D1
. . .

. . .

◦ D0
. . .

. . .

=
D1
. . .

D0
. . .

. . .

and D0
. . .

. . .

⊗ D2
. . .

. . .

= D2
. . .

. . .

D0
. . .

. . .

A diagram with no input/ouput is called a scalar. In order to compactly write scalar
factors, we introduce syntactic sugar [−]⊗n. For any scalar d : 0 → 0 the notation d⊗n

corresponds to d⊗ · · · ⊗ d︸ ︷︷ ︸
n

.

Semantically, ZX-diagrams are standardly interpreted as linear maps, and thus they can
be used to represent quantum evolutions.

▶ Definition 2. For any ZX-diagram D : n → m, let JDK ∈ M2m,2n(C) be inductively defined
as: JD1 ◦D0K = JD1K ◦ JD0K, JD0 ⊗D2K = JD0K ⊗ JD2K, and

t

α
. . .

. . .

n

m

|

= |0⟩⊗m⟨0|⊗n + eiα|1⟩⊗m⟨1|⊗n,

t

α
. . .

. . .

n

m

|

= |+⟩⊗m⟨+|⊗n + eiα|−⟩⊗m⟨−|⊗n

r z
= |0⟩⟨0| + |1⟩⟨1|,

r z
= |+⟩⟨0| + |−⟩⟨1|, J K = 1

q y
= ⟨00| + ⟨11|,

r z
= |00⟩ + |11⟩,

r z
=

∑
i,j∈{0,1}

|ij⟩⟨ji|

where bra-ket notations are used: |0⟩ =
(1

0
)
, |1⟩ =

(0
1
)
, |+⟩ = |0⟩+|1⟩√

2 , |−⟩ = |0⟩−|1⟩√
2 ,

|xy⟩ = |x⟩ ⊗ |y⟩ and ⟨x| = |x⟩† is the adjoint (complex conjugate) of |x⟩.

Sometimes it is meaningful to consider diagrams with angles from a restricted sub-group
G of R/2πZ. Such restrictions lead to fragments of the language, denoted ZXG-calculus
[15]. The standard interpretation associates to each ZXG-diagram D : n → m a matrix
JDK ∈ M2m,2n(RG) with elements in the ring RG = Z

[
1√
2 , e

iG
]

- the smallest ring that
contains Z, 1√

2 and {eia|a ∈ G} [15].

FSCD 2022



13:4 Addition and Differentiation of ZX-Diagrams

In particular the π
2 - (resp. π-) fragment1, also called Clifford (resp. real Clifford) fragment,

enjoys nice properties [1, 6] but is not universal for quantum computing, even approximately.
Furthermore any quantum computation that can be expressed in this fragment can be
efficiently simulated on a classical computer. As soon as the group contains the angle π

4 , the
corresponding fragment is approximatively universal for quantum computing: any 2n × 2n
unitary transformation can be approximated by a ZX-diagram from this fragment with
arbitrary precision. In particular the π

4 -fragment, also called “Clifford+T” fragment has been
extensively studied [13, 17, 19]. Other finitely generated fragments have been considered
in [15].

Notice that for any sub-group G of R/2πZ that contains π
4 , ZXG-diagrams are universal [15]

in the sense that for any matrix M ∈ M2m,2n(RG) there exists a ZXG-diagram D : n → m

such that JDK = M .
In this work we extensively use triangle: - a syntactic sugar introduced in [13]. It

corresponds to a non-unitary transformation:
r z

= |0⟩⟨0| + |0⟩⟨1| + |1⟩⟨1|. The triangle
may be written in terms of red and green spiders as:

= π
4

π
4 − π

4

− π
4

π
2

(1)

2.2 The calculus
Two ZX-diagrams may have the same interpretation, as a consequence the language is
equipped with a set of rewrite rules (Figure 1) that allows to transform diagrams.

In addition, ZX-diagrams can be deformed at will: all wires may be bent in any manner
that keeps intact the order of inputs and outputs. It is also allowed to arbitrary change the
order of wires for green and red spiders and the Hadamard. Corresponding transformation
rules are aggregated under the paradigm Only topology matters:

= = == =

= ==

We denote ZX ⊢ D1 = D2 if D1 may be transformed to D2 by local application of
rewriting rules.

The ZX-calculus is sound, i.e. the rules preserve the semantics: if ZX ⊢ D1 = D2 then
JD1K = JD2K. The converse property is called completeness. The set of rules (1) was proven
complete for the π

4 -fragment [15], and a single extra-rule makes the language complete for
arbitrary diagrams [14]. Notice that alternative sets of rules have been shown to be complete
for general ZX-diagrams [11, 25]. We choose to consider the rules of Figure 1 as they have
been used to study diagrams with parameters in [14], which is an appropriate framework for
differentiation (see section 4).

1 I.e. the fragment of diagrams which angles are in the group generated by π
2 (resp. π)
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=
(S1)

β

. . .

. . .

α+β

. . .

. . .

α

. . .

. . .

. . . =
(S2)

=
(E)

π
4

−π
4

=
(B1)

=
(B2)

=
(K)

α

π

α

π -α
π

=
(EU)

π
2

−π
2

π
2

=
(H)

α

. . .

. . .

α

. . .

. . .

=
(SUP )

α α+π
2α+π

α

α β

βπ

-γ
γ =

(C)
α

αβ

β π

γ

-γ =
(BW )

− π
2

π
4

π
4
π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π

π

π
2

Figure 1 Axioms for ZX as presented in [15]. All rules stay true flipped upside down and with

inverted colors. Families of equations are given using “dots”: . . . means any number of wires,
. . .

means at least one wire.

3 Addition of ZX-diagrams

The ZX-calculus is a convenient tool for manipulating compositions and tensor products of
linear maps. These two operations have natural physical interpretations, corresponding to
sequential and parallel compositions respectively. The addition is a natural operation on
matrices and it can be interpreted as the superposition phenomenon in quantum mechanics.
However, the addition is not a physical process, hence it is not reflected in the standard ZX-
calculus [5]. On the other hand, for any two diagrams D1, D2 : n → m, the universality of the
ZX-calculus guarantees that there exists a diagram D : n → m such that JDK = JD1K + JD2K.

We provide in this section a general construction for such a diagram. As pointed out
in [15] for the definition of normal forms in the ZX-calculus, one can inductively define the
addition on “controlled” versions of the diagrams. A controlled version of a diagram D0 is
roughly speaking a diagram with an extra input such that when this extra input is set to
|1⟩ the diagram behaves as D0 and when it is set to |0⟩ the diagram behaves as a neutral
diagram. In order to construct controlled versions, we pass by controlled states:

▶ Definition 3 (Controlled state [15]). A ZX-diagram D : 1 → n is a controlled state if

JDK |0⟩ =
∑
x∈{0,1}n |x⟩ =

t

. . .︸ ︷︷ ︸
n

|

.

FSCD 2022



13:6 Addition and Differentiation of ZX-Diagrams

▶ Example 4. The diagram is a controlled state for the scalar 0. Indeed,
u

v
⊗2 }

~ =
35

J K = 1 and

u

v π
⊗2 }

~ =
s ⊗2{

× J π K =
s ⊗2{

× (1 + eiπ) = 0

Intuitively, a controlled state is a way to encode the state JDK |1⟩.
Controlled states have nice properties that allows to perform element-wise addition and

tensor product of corresponding vectors:

▶ Lemma 5 (Sum and tensor product [15]). For any controlled states D1, D2 : 1 → n and
D3 : 1 → m the diagrams:

D+ = D1 D2

. . . . . .

. . .

, D⊗ =
D1 D3

. . . . . .

(2)

are controlled states, JD+K |1⟩ = JD1K |1⟩ + JD2K |1⟩ and JD⊗K |1⟩ = JD1K |1⟩ ⊗ JD3K |1⟩.

Lemma 5 provides a way to obtain a sum of two diagrams in a controlled state form. In
order to extend the addition to arbitrary diagrams we introduce controlizers - maps that
associate diagrams with the corresponding controlled states. Formally,

▶ Definition 6 (Controlizer). We say that a map C : ZX(n,m) → ZX(1, n+m) that associates
to every diagram D : n → m a diagram C(D) : 1 → n + m is controlizer if the following
conditions hold for any ZX-diagram D:

(i) C(D) is a controlled state

(ii)

JDK =

u

wwwwwww
v

. . .
. . .

C(D)
π

n

m

⊗n+m

}

�������
~

(3)

In this definition (and what follows) ZX(n,m) denotes the set of ZX-diagrams with n

inputs and m outputs. If n and m are not specified, they may take arbitrary values.

▶ Example 7 (Inductive controlizer). We define the map C : ZX(n,m) → ZX(1, n+m) that
associates to each diagram D : n → m a diagram C(D) : 1 → n+m:
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(i) For the generators β , , , , , :

C
(

β
)

=
π

β

, C

( )
=

π
, C

( )
=

π

π
π
4

− π
4

C
( )

= C
( )

=
π

, C
( )

=

π

(4)

(ii) Generators α
. . .

. . .
and α

. . .

. . .
can be decomposed as follows using the above generators:

C

(
α

. . .

. . .

n

m

)
= C

 . . .α

n + m

. . .

 , C

(
α

. . .

. . .

n

m

)
= C

 . . .α

n + m

. . .


(iii) For tensor product D⊗ = D2 ⊗D1 and composition D◦ = D3 ◦D1 where D1 : n → m,

D2 : k → l and D3 : m → k:

C(D⊗) =
. . .

C(D1)

m

. . .

C(D2)

k ln

. . . . . .

, C(D◦) =
. . . . . .

C(D1)

n

. . .

C(D3)

k

⊗2m

(5)

▶ Lemma 8. The map from Example 7 satisfies the definition of controlizer.

▶ Remark 9. A step-by-step application of the map C may lead to different diagrams
depending on the order of decomposition on tensor products and compositions. However,
all possible outputs are semantically equivalent and by completeness of ZX-calculus are
equivalent as diagrams.

▶ Example 10. We show how to obtain C
(

π
)

using definition 7:

C

(
π
)

=

⊗2
π

π π
=
42
35

(S2)
π

=
46

=
44
35

(6)

▶ Theorem 11. For diagrams D1 : n → m and D2 : n → m the diagram

D+ =
. . .

. . .
C+

π
n

m

⊗n+m

, where C+ = C(D1) C(D2)
. . . . . .

. . .

is such that JD+K = JD1K + JD2K.

FSCD 2022
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Proof (Theorem 11). The theorem follows from the definition of controlizer and Lemma 5.
◀

We illustrate the diagrammatic addition with a simple example:

▶ Example 12. Using Theorem 11, we construct a diagram D as the addition of and
π , which can be simplified as follows, using the rules of the ZX-calculus:

D =
π

π

⊗2

=
35

(B1)
41

π

π

=
37
42

(7)

=
(B2)

44

=
45

=
(B1)

35

(8)

Indeed,
r z

+
r

π
z

= (|00⟩ + |11⟩) + (|01⟩ + |10⟩) = 2| + +⟩ =
s {

.

4 Differentiation of ZX-diagrams

Mathematically, ZX-diagrams form a symmetric monoidal category [4] with natural numbers
as objects and diagrams as morphisms. Notice that a definition of the differential category
with respect to morphism’s domain is given in [2]. In the current work, in contrast, we
operate parametrized morphisms and derivatives are considered with respect to parameters.
For example, for the category of matrices with elements that are smooth functions on some
variable β we are interested in the derivative over β. We say that a ZX-diagram D is
parametrized by β1, . . . , βk if its angles are some functions on β1, . . . , βk. We denote such a
diagram by D(β1, . . . , βk). 2

We want to define the formal semantics for the derivative of a parametrized diagram that
is consistent with existing definitions of derivatives in monoidal categories with parametrized
morphisms.

The work [23] defines the derivative for monoidal categories with sum 3 in the following
way.

▶ Definition 13 (Derivative [23]). A derivative ∂M : C(x, y) → C(x, y) in a monoidal
category M with sum (+) is a sum-preserving unary operator that satisfies the following
axioms (product rules):
◦-product rule: ∂M [A ◦B] = ∂M [A] ◦B +A ◦ ∂M [B]
⊗-product rule: ∂M [A⊗B] = ∂M [A] ⊗B +A⊗ ∂M [B]

2 We can evaluate each parametrized diagram D(β), β ∈ Rk in a point β0 ∈ Rk by replacing every
occurrence of βi with the respective value β0

i . The result of evaluation is a diagram D(β0) from ZXR.
3 Formally, sum (+) is a commutative monoid that maps each pair of morphisms with same domain-

s/codomains to another morphism. The sum is distributive with respect to composition and tensor
product.
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Because of the sums involved in product rules, we avoid to directly use the derivative
as defined above. Indeed, even if the Theorem 11 provides a fully diagrammatic way for
the addition of ZX-diagrams, the formal introduction of a sum monoid leads to unnecessary
complications.

On the other hand, for any group G the category M(G) of matrices with elements in G
admits a natural definition of sums: the sum (+M ) of two matrices is obtained by entrywise
addition. Therefore, we get the semantics of the derivative ∂M in M(G) directly from
Definition 13. It was proven in [23] that for the category of parametrized linear maps with
elements that are smooth functions S : Rn → C an entrywise differentiation of matrix
elements satisfies both axioms.

Taking previous remarks in consideration, we suggest an alternative semantics for the
derivative in the ZX-calculus. We use the fact that any parametrized ZX-diagram admits a
linear map interpretation and the derivative of a parametrized linear map is well-defined.
Therefore, in place of product rules we require the coherence between the derivatives in two
categories related by an interpretation functor:

▶ Definition 14 (Interpretation-coherent derivative). For two categories A,B that are related
by a standard interpretation J−K : A → B a derivative ∂A in A is an unary operator that
commutes with the standard interpretation:

∀D ∈ A : J∂ADK = ∂B JDK (9)

where the category B is equipped with sum monoid and ∂B is derivative in B satisfying the
Definition 13.

In the context of ZX-diagrams, the Definition 14 requires the derivative of a parametrized
diagram to map to the derivative of the corresponding matrix or, in other terms, to satisfy
the property of diagrammatic differentiation [23].

4.1 Linear diagrams
Between parametrized diagrams, we distinguish the family of linear diagrams:

▶ Definition 15 (Linear diagrams [14]). A ZX-diagram is linear in β1, . . . , βk with constants
in L ⊂ R if it is generated by α

. . .

. . .
, α

. . .

. . .
, , , , , , combined by tensor product and

composition with α of the form
∑
i niβi + c with ni ∈ Z and c ∈ L.

It was shown in [14] that for L = {nπ4 }n∈Z the Clifford+T axiomatization (Figure 1) is
complete for linear diagrams.

The family of linear diagrams may appear restricted compared to ZX-diagrams that allow
angles from a more general class of functions. It is, however, sufficient for applications in
variational quantum algorithms as they use circuits where parameters appear in a linear
fashion [3]. More importantly, for this family we demonstrate simple formulas for the
derivative. We believe that such formulas are not obtainable even for a slightly more general
fragment ZXAn where angles are in the group of affine functions An = {(β) → cTβ + c0|c ∈
Rn, c0 ∈ R}. Intuitively, the difficulty comes from the absence of a simple representation
for a general matrix over real numbers in terms of spiders. This restriction is removed in
algebraic ZX-calculus [26] at the cost of an extended set of generators.

In order to keep the notations simple in what follows we restrict our attention to one-
variable diagrams ZX(β). We denote the corresponding matrices by M(β). The derivative
∂M : M(β) → M(β) is defined by entrywise application of the derivative ∂β : kβ + c 7→ k.
All results may be easily extended to the case of partial derivatives ∂βi for linear diagrams
with an arbitrary number of variables.

FSCD 2022



13:10 Addition and Differentiation of ZX-Diagrams

4.2 Diagrammatic differentiation with controlizers

The derivative in M(β) is defined through product rules that involve sums. In this section we
use constructions from Section 3 to incorporate these rules in the diagrammatic framework.

In what follows we denote by C : ZX → ZX any map that satisfies Definition 6 of
controlizer.

▶ Definition 16. We call C-derivative a map ∆ : ZX(β) → ZX(β) that associates to a
diagram D : n → m another diagram ∆(D) : 1 → n+m defined as follows:

(i) Generators: For parametrized spiders: ∆
[

β
]

=
β

, ∆
[

−β
]

=
π − β

,

∆

 kβ

. . .

. . .

n

m

 = ∆


. . .

. . .

n

m

β

β

...k

 , ∆

 kβ

. . .

. . .

n

m

 = ∆

 kβ

. . .

. . .

n

m

 (10)

For all generators g : n → m that are independent on β ∆[g] = . . .︸ ︷︷ ︸
n+m

.

(ii) Tensor product: for D1 : n → m and D2 : l → k the diagram ∆(D2 ⊗D1) is:

∆(D2 ⊗D1) = C(D1)

m

. . .

∆(D2)

l kn

. . . . . .

∆(D1)C(D2)

. . .
. . .. . .

(11)

(iii) Composition: for D1 : n → m and D2 : m → k the diagram ∆(D2 ◦D1) is:

∆(D2 ◦D1) = C(D2)

k

. . .

∆(D1)

n

∆(D2)C(D1)

. . .. . .

⊗2m

(12)

▶ Remark 17. It follows from Lemma 5 that for every diagram D : n → m, ∆(D) : 1 → n+m

is a controlled state.

The Remark 9 on the dependency of the output on the decomposition order is also true
for the map ∆.
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▶ Definition 18. Given the C-derivative ∆, let ∂C : ZX(β) → ZX(β) be the unary operator
such that for any diagram D : n → m,

∂C [D] =
. . .

. . .
∆(D)

π
n

m

⊗n+m
π
π
2 (13)

▶ Theorem 19. The operator ∂C satisfies the Definition 14 of diagrammatic differentiation.

▶ Example 20. We apply Definition 18 to the simple diagram
−β β

π
=

−β β

π
. Notice

that C
(

⊗
)

=
π

π
π
4

− π
4

π

π
π
4

− π
4

=
43
(1)
37

ππ
, moreover C( π ) was

already found in Example 10. We obtain a diagram for C
(

π

)
:

ππ
=
46

=
46

⊗2

=
45

⊗2

(14)

We know from Lemma 48 that ∆
(

π

)
= . By definition, ∆

(
−β

β

)
=

π

β

π

−β β π − β

⊗3

and ∂C

−β β

π

 = π

β

π

−β β π − β

π
π
2

π
⊗2

The last diagram may be further simplified. However, we show later (Example 30) that
with our second approach a much simpler diagram for this expression may be obtained
directly.
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4.3 Formula for derivatives in ZX(β)
Although perfectly correct, the differentiation procedure described above leads to very
puzzling output even for small diagrams (see Example 20). In this section we provide a
simpler approach to obtain the derivative of a diagram in ZX(β). We formalize it in definitions
∂ZX and ∂P of unary operators that satisfy the property of diagrammatic differentiation
(Definition 14).

Let’s denote by Xβ(n,m) diagrams β . . . β︸ ︷︷ ︸
n

−β
. . .

−β︸ ︷︷ ︸
m

from ZX(β).

From the (S1) and (H) rules and the paradigm Only topology matters follows:

▷ Claim 21. Using the rules of ZX calculus, each diagram D(β) : i → o from ZX(β) may
be transformed into the form

D(β) = D1

. . . . . .
β β

. . .
−β −β

. . .

i n m

o

(15)

where n, m are some integer numbers and D1 : i+ n+m → o is constant with respect to β.
We call diagrams in this form β-factored.

A rigorous demonstration of the claim 21 may be found in [14].
We define the derivative for diagrams in β-factored forms:

▶ Definition 22. Given a diagram D(β) in β-factored form, let

∂ZX[D] = D1

. . . . . . . . .

. . .

∂ZX[Xβ(n, m)]

, where

∂ZX[Xβ(n,m)] = ∂ZX

 β . . . β︸ ︷︷ ︸
n

−β
. . .

−β︸ ︷︷ ︸
m

 =

= π

π
2

⊗n + m

π π π . . . π π

β β

π π π π

−β −β

n m

π . . .⊗3
(16)

▶ Theorem 23. The operator ∂ZX[−] from the Definition 22 satisfies the property of dia-
grammatic differentiation:

For any diagram D(β) ∈ ZX(β) in β-factored form J∂ZXD(β)]K = ∂M JD(β)K

We remark that according to the Definition 14 the derivative D′ : n → m of a diagram
D : n → m that is constant on β is such that JD′K = ∂M JDK = (0)n×m. Therefore,
Theorem 23 is a direct consequence of the following lemma:

▶ Lemma 24. For any n,m:

J∂ZXXβ(n,m)K = ∂M JXβ(n,m)K (17)

Proof (Lemma 24). We prove the lemma by induction. The demonstration is done for the
induction over n, the proof for m is directly obtainable in the same way.
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Base. We show that J∂ZXXβ(1, 0)K = ∂M

r
β

z
= ∂M

(
|+⟩ + eiβ |−⟩

)
= ieiβ |−⟩. Indeed,

J∂ZXXβ(1, 0)K =

u

w
v

π π π

β
⊗3

π
π
2

}

�
~ =

47
35

u

ww
v

⊗2
π
π
2

π

β

}

��
~ = ieiβ |−⟩

Step. By induction, we assume that the equation (17) holds for some n and m. We show
that, under this assumption, J∂ZXXβ(n+ 1,m)K = ∂M JXβ(n+ 1,m)K. The demonstration
follows from the claims below:

▷ Claim 25.

∂M JXβ(n+ 1,m)K = J∂ZX [Xβ(1, 0)] ⊗Xβ(n,m)K + JXβ(1, 0) ⊗ ∂ZX [Xβ(n,m)]K (18)

where (+) is the sum in M(β).

▷ Claim 26. We can find a controlled state X̃ : 1 → n+1+m and a constant scalar c ∈ ZX π
2

such that
s
c⊗

(
X̃ ◦

[
π
]){

= J∂ZX [Xβ(1, 0)] ⊗Xβ(n,m)K + JXβ(1, 0) ⊗ ∂ZX [Xβ(n,m)]K

(19)

▷ Claim 27.

ZX ⊢ ∂ZXXβ(n+ 1,m) = c⊗
(
X̃ ◦

[
π
])

(20)

◀

4.4 Simplified formula for paired spiders
Variational quantum algorithms use gradients in the search for optimal parameter values.
The objective minimized by these algorithms can be expressed as ⟨ψ(β)|H|ψ(β)⟩ where the
diagram for ⟨ψ(β)| = (|ψ(β)⟩)† is obtained out of the diagram for |ψ(β)⟩ by flipping up side
down followed by the change of signs in spiders. Therefore, parameters in the diagram for

⟨ψ(β)|H|ψ(β)⟩ appear in pairs
−β

β .
We suggest a more compact formula for diagrams in what we call pair-factored form:

D2 ◦ (D1 ⊗ Y (n)). In this expression Yβ(n) =
(

−β
β

)
. . .

(
−β

β

)
︸ ︷︷ ︸

n

.

▶ Lemma 28. The diagram:

∂P (Yβ(n)) =

⊗3

⊗2n − 1

π π π π π π. . .

−β β −β β

π
π
2 (21)

satisfies J∂P (Yβ(n))K = ∂M JYβ(n)K.

We prove Lemma 28 by applying the same approach as in the proof of Lemma 24. We
can then replace by (21) the expression (16) in Definition 22 and obtain the derivative for
diagrams in pair-factored form.
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▶ Observation 29. It is possible to extend Lemma 28 to find the derivative for Xβ(n,m)

when n ̸= m. Indeed, using the fact that
±β = we can balance the number of β and

−β. For instance, if n > m: ∂P (Xβ(n,m)) = σ ◦

 ∂P (Yβ(n))
. . . . . .

n−m 2m

⊗n − m

 where σ is

some wire permutation and

∂P (Yβ(n))
. . . . . .

n−m 2m

⊗n − m

=
(B1)

35

⊗3

⊗2m − 1

ππ π π π. . .

β −β β

π
π
2

n−m 2m

ππ

β

ππ . . .

(22)

▶ Example 30. We apply Lemma 28 to the same diagram as in Example 20:

∂P

(
−β β

π

)
=

⊗3
π π π

−β β

π

π
π
2 =

⊗3
π

π−β β

π

π
π
2 = π−2β

π

β

π
π
2

⊗2
(23)

5 Diagrammatic representation of Ising Hamiltonians

Parametrized quantum circuits are the main component of quantum-classical variational
algorithms such as QAOA [7] and VQE [20]. These algorithms are designed to (approximately)
solve problems of optimization over binary variables:

min
x∈{0,1}n

f(x) (24)

In order to be treated by a quantum computer an instance f : {0, 1}n → R of the
optimization problem (24) is encoded in a Hamiltonian - an operator Hf acting on qubit
states. The Hamiltonian is diagonal in computational basis, Hf : |x⟩ → f(x)|x⟩. The ground
state of Hf corresponds to the optimum of the problem.

For every input Hamiltonian Hf a quantum-classical optimization algorithm starts by
designing an anzatz Qf (β) : n → n [3]. An anzatz is a parametrized quantum circuit with
blocks that (possibly) depend on Hf . Classical optimization is used to determine the values
β̂ that minimize the expectation of the Hamiltonian ⟨ψ(β̂)|Hf |ψ(β̂)⟩ [7].

Many important optimization problems such as Maximum Cut and Maximum Independent
Set in a graph may be encoded in so called Ising Hamiltonians [18]:

▶ Definition 31. An Ising Hamiltonian H : n → n with integer coefficients is an operator:

H =
∑

1≤i≤n

hiZi +
∑

1≤i<j≤n

hijZiZj , hi, hij ∈ Z (25)

where Zi denotes Pauli-Z gate acting on the qubit i.

We observe that there is no direct way to transform the definition of the Hamiltonian (31)
to a ZX-diagram. Indeed, Hamiltonian is a non-unitary matrix equal to a sum of Pauli gates
that is inherently difficult to represent as a diagram. So far, all attempts in this direction
used formal sums of diagrams [23, 28]. As a consequence, the application of ZX-calculus to
variational algorithms was limited. We show how our formula (16) allows to find a diagram
for an Ising Hamiltonian H.
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Firstly, we remark that for an Ising Hamiltonians H the diagram DU (β) of the linear
map U(β) = eiβH is easy to find [24]. For Hamiltonians with integer coefficients the matrix
U(β) = eiβH belongs to M(β). It satisfies the definition of strongly continuous one-parameter
unitary group:

▶ Definition 32 (Unitary group [23]). A one-parameter unitary group is a unitary matrix
U : n → n in M(β) with U(0) = idn and U(β)U(β′) = U(β + β′) for all β, β′ ∈ R. It is
strongly continuous when limβ→β0 U(β) = U(β0) for all β0 ∈ R.

▶ Theorem 33 (Stone ([22])). There is a one-to-one correspondence between strongly continu-
ous one-parameter unitary groups U : n → n in M(β) and self-adjoint matrices H : n → n

in M. The bijection is given explicitly by U(β) = eiβH and H = −i(∂MU)(0).

We use the bijection from the Stone’s theorem to find the diagram h ∈ ZXR such that
JhK = H. Using the property U(0) = idn we obtain:

H = −i[∂MU(β)](0) = −i⊗ J[∂ZXDU ] (β)K (0) = −i⊗ J[∂ZXDU ] (0)K

=
t

π

− π
2

[∂ZXDU ] (0)
|

= JhK (26)

where the third equality is due to the fact that the evaluation commutes with the standard
interpretation.

We give an example of diagram for an Ising Hamiltonian obtained via our approach.

▶ Example 34. Let H : 2 → 2, H = Z1 − Z2 + Z1Z2. The diagram DU (β) for U(β) = eiβH

is:

DU (β) =
2β

−2β

−2β

β

π
=

β−β−β β

π

−β β−ββ

(27)

Using the formula (21) we find the derivative of DU(β):

∂ZXDU(β) = π

π π

−β β

π π π

−β β

π π

−β β

π π π

−β β

π

⊗4

⊗7

π
π
2 (28)

h =
π

− π
2

[
∂ZXDU(β)

]
β→0 =

π ππ π ππ π ππ

⊗5
(29)

6 Discussions

In this work, we have introduced for the first time an inductive definition for addition of
ZX-diagrams, that we have then used to introduce an inductive definition of the differentiation
of ZX-diagrams. Addition and differentiation are essential tools for the development and the
study of quantum algorithms, but, as a matter of fact, both of them are leading to large
diagrams, even when the initial diagrams are fairly simple. From a process theory point of
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view, contrary to sequential and parallel compositions, the addition is not physical operation,
hence it is not surprising that it is not a native or simple operation over ZX-diagrams. The
good news is that we can rely on the powerful equation theory of the ZX-calculus to simplify,
when it is possible, the diagrams representing the sum or the differentiation of diagrams.

In Section 4.3, we have shown that instead of simplifying the resulting diagrams a
posteriori, one can a priori put the initial diagrams in an appropriate form. While this
approach is not inductive anymore, it seems to ease the differentiation of diagrams in
practice. Notice that this last approach, in particular Definition 22, leads to a very similar
differentiation of diagrams to the one independently introduced in [27]. In their work, the
authors directly introduce the differentiation of ZX-diagrams in some particular form, in
contrast to the inductive definition we propose, but another important difference is actually
the diagrammatic language and its expressivity. While our work is based on the “vanilla” ZX-
calculus, the authors of [27] rely on the algebraic ZX-calculus, i.e. a ZX-calculus augmented
with boxes allowing, roughly speaking, the direct representation of a complex numbers,
whereas only angles can be used as parameters in the vanilla ZX-calculus. As a consequence
when an algebraic ZX-diagram is parameterised by an arbitrary derivable function f(x),
the differentiated algebraic ZX-diagram is parametrised by f ′(x). Such an approach is not
possible in the more constrained vanilla ZX-calculus thus we restrict our attention to a family
of functions (essentially the linear ones) which derivative can be expressed using the structure
of the vanilla ZX-calculus.

In most practical examples the vanilla ZX-calculus is sufficient to represent parametrised
computation. As an application we have shown that our result allows the construction of
diagrams for Ising Hamiltonians and for derivatives of parametrized circuits. Therefore,
it becomes possible to study variational algorithms entirely within the ZX-calculus. In
particular, we can use rewrite rules to simplify such expressions as ⟨ψ(β̂)|Hf |ψ(β̂)⟩ and
∂⟨ψ(β̂)|Hf |ψ(β̂)⟩

∂β . We believe that it will lead to a better understanding of the potential of
variational algorithms and of their applications to real-world problems.
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A ZX lemmas

A.1 Already proven lemmas [15]

▶ Lemma 35.

= =
⊗2

;

▶ Lemma 36.

π π
π

α β α + β

=

▶ Lemma 37.

π

π π
=

▶ Lemma 38.

=

▶ Lemma 39.

=

▶ Lemma 40.
π

π
=

▶ Lemma 41.
π

=

▶ Lemma 42.

=
π

π

▶ Lemma 43.

=

▶ Lemma 44.

=

▶ Lemma 45.

=

▶ Lemma 46.

π

=

and

=

A.2 New lemmas

▶ Lemma 47.

π π π

β =
π

β
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Proof.
π π π

β =
(B1)

41
35

π

β =
38

π

β (30)

◀

▶ Lemma 48. For all controlled states D : 1 → n and states D2, D3 that are D2 =
. . .︸ ︷︷ ︸
n

and D3 = . . .︸ ︷︷ ︸
m

:

D+0 = D1 D2

. . . . . .

. . .

= D1

. . .
, D×0 =

D1 D3

. . . . . .

= . . .︸ ︷︷ ︸
n+m

Proof. The equality for D+0 holds as =
43

=
(B1)

38
(S2)

The equality for D×0 follows from (B1) and the definition (3) of controlled states. ◀
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