
Solvability for Generalized Applications
Delia Kesner ! Ï

Université de Paris, CNRS, IRIF, France
Institut Universitaire de France, France

Loïc Peyrot !Ï

Université de Paris, CNRS, IRIF, France

Abstract
Solvability is a key notion in the theory of call-by-name λ-calculus, used in particular to identify
meaningful terms. However, adapting this notion to other call-by-name calculi, or extending it
to different models of computation – such as call-by-value – , is not straightforward. In this
paper, we study solvability for call-by-name and call-by-value λ-calculi with generalized applications,
both variants inspired from von Plato’s natural deduction with generalized elimination rules. We
develop an operational as well as a logical theory of solvability for each of them. The operational
characterization relies on a notion of solvable reduction for generalized applications, and the logical
characterization is given in terms of typability in an appropriate non-idempotent intersection type
system. Finally, we show that solvability in generalized applications and solvability in the λ-calculus
are equivalent notions.

2012 ACM Subject Classification Theory of computation → Lambda calculus; Theory of computation
→ Rewrite systems; Theory of computation → Type theory

Keywords and phrases Lambda-calculus, Generalized applications, Solvability, CBN/CBV, Quanti-
tative types

Digital Object Identifier 10.4230/LIPIcs.FSCD.2022.18

1 Introduction

The λ-calculus with generalized applications ΛJ [24, 25] can be seen as a Curry-Howard
interpretation of natural deduction with generalized elimination rules, a system developed in
parallel by Tenant [34] and von Plato [35]. Like the usual λ-calculus, ΛJ is a call-by-name
(CBN) calculus: the arguments of a function are substituted in its body without any other
prior computation. In the call-by-value (CBV) paradigm instead, the arguments are always
reduced before substitution [33]. CBV parameter passing is a choice made by many functional
programming languages such as OCaml, Scheme or Coq. Very recently, a CBV variant of
ΛJ , called ΛJv, was introduced by Espírito Santo [16]. It is surprisingly simple, implements
general strong reduction (inside abstractions), and is very close to the CBN formalism ΛJ :
they both share the same notion of reducible expression (a.k.a. redex), so that every function
application is always reducible, because only the underlying notion of substitution differs.

The study of λ-calculi with generalized applications is of special interest for the under-
standing of the semantics of programming language. They give a fresh look at applications,
and also bear similarities with explicit substitutions [1, 27] and the sequent calculus [19].
However, while many previous works [15, 17] were dedicated to the proof-theory underlying
different calculi with generalized applications, very few semantical properties have been
studied so far in this framework. In this paper, we show that existing tools and techniques
for solvability can be adapted to this more general model of computation.

Solvability is used to identify meaningful terms. Indeed, all solvable terms progressively
unveil a stable structure along the reduction process: this gives a step-by-step partial result
that is later integrated into the definitive structure of the fully normalized term. Thus, the
set of solvable terms contains all normalizable terms, but also a strict subset of the divergent

© Delia Kesner and Loïc Peyrot;
licensed under Creative Commons License CC-BY 4.0

7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022).
Editor: Amy P. Felty; Article No. 18; pp. 18:1–18:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kesner@irif.fr
https://www.irif.fr/~kesner
https://orcid.org/0000-0003-4254-3129
mailto:lpeyrot@irif.fr
https://www.irif.fr/~lpeyrot
https://orcid.org/0000-0002-1398-7460
https://doi.org/10.4230/LIPIcs.FSCD.2022.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Solvability for Generalized Applications

ones. On the contrary, if a term containing an unsolvable subterm u converges to a result,
then u can be replaced by any other term, still giving the same result and thus justifying the
designation of unsolvable as meaningless (Genericity Lemma [8]). In semantical models of
the λ-calculus, equating all unsolvable terms (e.g. to bottom) turns out to be consistent, but
this is not the case if one equates in addition terms which are not normalizing [36].

Whilst being an important semantical property, solvability also has a very elegant
operational theory. A solvable term may reduce to any other term when closed by abstractions
and applied to a suitable sequence of arguments (i.e. plugged inside a head context). In the
CBN λ-calculus, a term t is solvable iff t has a head normal form iff t head-normalizes [36]. But
because of the different normalization behaviors of CBN/CBV, their corresponding notions of
solvability do not perfectly coincide. In fact, it is only recently that a characterization of CBV
solvability making use of some proper notion of CBV reduction has been achieved [7, 12].

In this paper, we give an operational characterization of solvability for CBN/CBV
generalized applications in terms of an appropriate reduction relation for each case. Indeed,
we define a notion of solvable reduction for CBN (resp. CBV) for which all and only CBN
(resp. CBV) solvable terms normalize. We take advantage of the similarity between CBN
and CBV with generalized applications (given by the fact that they both share the same
notion of redex, in contrast to the λ-calculus case) to highlight the divergences of the two
kinds of solvability. On the one hand, our results show the robustness of the operational
theory of solvability. On the other hand, our study of solvability is a step forward in the
understanding of programming language semantics based on generalized applications.

In addition to the previously mentioned operational characterizations, we also provide
logical characterizations of CBN/CBV solvability as typability in quantitative (a.k.a. non-
idempotent intersection) type systems. More precisely, we deduce an equivalence between (1)
being normalizable for the newly defined solvable reduction relations, (2) being (quantitatively)
typable and (3) being solvable. In the λ-calculus, such a result was already well-known for
CBN (see [11] for a survey), and it has recently been obtained [5] for CBV, serving as the
starting point for our CBV characterization. We will then also prove equivalence between
solvability in the CBN/CBV λ-calculus and solvability in CBN/CBV generalized applications
by simply reasoning on their associated quantitative type systems. A further advantage of
quantitative types is that they enable simple combinatorial proofs of normalization. They
also have strong ties with denotational semantics, as it is generally possible to derive a
relational model from a quantitative type system.

The adaptation of CBN/CBV solvability in our framework is not trivial, because of the
particular syntactical structure of generalized applications which facilitates the existence
of blocked redexes. To this end, the original calculi with generalized applications ΛJ and
ΛJv use a permutative/commutative conversion π on top of the primary rule β for CBN and
βv for CBV, respectively. This rule is needed to unblock these stuck redexes. Instead, we
work with distant variants (λJ for CBN [18], written here λJn, and a novel distant variant
λJv for CBV). Thus, we integrate the permutations into the primary rules, in the spirit of
calculi with explicit substitutions at a distance [6]. In this way, the reduction rules focus on
the computational behavior of the language and not on syntactical accidents. In particular,
only primary reductions (and not permutations) create divergence, and thus unsolvability.
This choice also reflects the logical model in a better way: in our framework, quantitative
type systems are neutral to permutations rules (specifically: the size of derivations does not
change), as quantitativity is only related to the computational rules. Yet, we show that our
results also apply to the original calculi ΛJ and ΛJv.

To summarize, our main contributions are the following:

D. Kesner and L. Peyrot 18:3

We define appropriate notions of head contexts and solvable reductions in calculi with
generalized applications and distance.
We show operational characterizations of CBN/CBV solvability in this setting.
We also provide (logical) quantitative characterizations of these notions of solvability.
We derive characterizations of solvability for the original calculi with generalized applica-
tions (without distance).
We show that our definition of solvability corresponds to the one of the λ-calculus.

Plan of the paper

In Sec. 2 we present the distant calculi with generalized applications for both CBN and CBV.
We then introduce their respective notions of solvability in Sec. 3. We give operational and
logical characterizations of CBN (resp. CBV) solvability in Sec. 4 (resp. Sec. 5). In Sec. 6
we extend our results to the original (non-distant) calculi ΛJ and ΛJv and we relate these
results to solvability in the λ-calculus. Related works and conclusions are detailed in Sec. 7.

2 The Distant Calculi with Generalized Applications

In this section we define the syntax and operational semantics of two distant λ-calculi with
generalized applications for call-by-name and call-by-value, noted λJn and λJv respectively.

2.1 Syntax
Given a countably infinite set X of variables x, y, z . . . , the set of terms generated by the
following grammar is called TJ .

(Values) v ::= x ∈ X | λx.t (Terms) t, u, r, s ::= v | t(u, x.r)

From now on, values are denoted by v and arbitrary terms by t, u, r or s. The term x is a
variable, λx.t is an abstraction and t(u, x.r) is a generalized application, whose part
x.r – that is not a subterm itself – is called a continuation. A generalized application can
be seen as a let-binding/explicit substitution under the (informal) translation of t(u, x.r) to
let x = tu in r. Free and bound variables of terms are defined as expected, in particular,
fv(λx.r) := fv(r) \ {x} and fv(t(u, x.r)) := fv(t) ∪ fv(u) ∪ (fv(r) \ {x}), so that both λx.r and
t(u, x.r) bind the variable x in the term r. We work modulo α-conversion, so that bound
variables can be renamed when necessary. A generalized application t(u, x.r) is said to be
non-relevant if x /∈ fv(r).

We set some special terms that will be used in forthcoming examples and definitions:
I := λz.z, δ := λx.x(x, z.z), Ω := δ(δ, z.z), as well as a family of projection terms on :=
λxn . . . λx0.x0 parametrized by a natural number n.

Contexts (C) are terms with one occurrence of the hole ♢, and distant contexts (D)
are special contexts used to define the operational semantics of the calculi:

C ::= ♢ | λx.C | C(u, x.r) | t(C, x.r) | t(u, x.C) D ::= ♢ | t(u, x.D)

The term C⟨t⟩ is obtained by replacing ♢ in the context C by the term t, so that capture of
variables may eventually occur. When the free variables of t are not captured by C, we may
write C⟨⟨t⟩⟩ instead of C⟨t⟩. Notice that every term can be (uniquely) decomposed into D⟨v⟩,
where D is a distant context and v a value. Thus for example, let t := x1(u, y.x2(y, z.z)).
Then, there are three possible decompositions of t in terms of distance contexts: t =
D0⟨x1(u, y.x2(y, z.z))⟩ with D0 = ♢, t = D1⟨x2(y, z.z)⟩ with D1 = x1(u, y.♢) and t = D2⟨z⟩
with D2 = x1(u, y.x2(y, z.♢)).

FSCD 2022

18:4 Solvability for Generalized Applications

2.2 CBN and CBV Operational Semantics
The CBN operational semantics relies on a notion of right substitution, which is the
expected capture-free meta-level substitution on TJ -terms:.

{u/x}x := u {u/x}(λy.t) := λy.{u/x}t

(x ̸= y) {u/x}y := y {u/x}(t(s, y.r)) := ({u/x}t)({u/x}s, y.{u/x}r)

The CBV operational semantics is based on left substitution:

{v\\x}t := {v/x}t {s(u, y.r)\\x}t := s(u, y.{r\\x}t)

Notice however that left substitution of a value invokes the right substitution, and left
substitution of a generalized application performs a commutative/permutative conversion.
Thus for example, {I\\x}(x(I, y.y)) = {I/x}(x(I, y.y)) = I(I, y.y) and {I(I, y.y)\\z′}z =
I(I, y.{y\\z′}z) = I(I, y.{y/z′}z) = I(I, y.z). Given the unique decomposition of a term u

into D⟨v⟩, we can alternatively define left substitution as: {u\\x}t = {D⟨v⟩\\x}t := D⟨{v/x}t⟩.
This alternative definition highlights the principle of CBV, which consists of only substituting
values. Thus, in the last example, although z′ is different from z, the context I(I, y.♢) is not
erased, as it is pushed out of the substitution. Notice that {u\\x}v is a value if and only if u

is a value. Notice also that {t\\x}x = t.
Before giving the reduction rules of our calculi, we first define some general notations. We

denote a reduction rule r ⊆ TJ × TJ as 7→r. In this paper, reduction relations, denoted
by →R, are generated by a finite set of reduction rules closed under some particular contexts.
Given a reduction relation →R, we write →∗

R (resp. →+
R) for the reflexive-transitive (resp.

transitive) closure of →R. A term t is said to be in R-normal form (written R-nf) iff there
is no t′ such that t →R t′.

The reduction relation →n of the original CBN calculus ΛJn [24, 25] is defined as the
closure under all contexts of the following two reduction rules β and π. The reduction relation
→v of the original CBV calculus ΛJv [16] is defined as the closure under all contexts of rules
βv and π.

(CBN β-Rule) (λx.t)(u, y.r) 7→β {{u/x}t/y}r

(CBV βv-Rule) (λx.t)(u, y.r) 7→βv {{u\\x}t\\y}r

(Permutative π-Rule) t(u, x.r)(u′, y.r′) 7→π t(u, x.r(u′, y.r′))

We use instead a distant operational semantics, where permutations are directly integrated
in the primary CBN/CBV rule of the calculus. We do not dispense with permutations
altogether, as they are necessary to unblock β/βv-redexes when the function is not exactly
next to its argument. This way, the distant paradigm focuses on the computational content of
the calculus by using demand-driven permutations, only when primary redexes are blocked.

▶ Definition 1. The CBN calculus λJn is defined by the grammar TJ equipped with the
distant call-by-name reduction relation →dn [18]. The relation →dn is generated by the
closure under all contexts C of the reduction rule: D⟨λx.t⟩(u, y.r) 7→dβ {D⟨{u/x}t⟩/y}r.

An intuitive explanation of this rule can be given through the previous informal translation of
generalized applications to let-bindings: D⟨λx.t⟩(u, y.r) corresponds to let y = D⟨λx.t⟩u in r.
In this first term, the computation in the foreground comes from the function D⟨λx.t⟩ and
its argument u. We get an intermediate result by substituting u for x in t inside the distant
context D, thus obtaining let y = D⟨{u/x}t⟩ in r. This intermediate result can then be fed

D. Kesner and L. Peyrot 18:5

to the continuation by unfolding the let-binding, which means substituting it for y in r, thus
obtaining the contractum {D⟨{u/x}t⟩/y}r. Both the distant context and the term {u/x}t

may be duplicated, or, on the contrary, simply erased, such as in this example:

t0 = (λx.x(I, y.y))(I, z′.z) →dn {{I/x}(x(I, y.y))/z′}z = {I(I, y.y)/z′}z = z

Although the original CBN calculus ΛJn is based on rules β and π, the distant CBN
calculus λJn integrates a different permutative rule p2 to β, in the sense that dβ can be
generated by several p2-steps followed by a β-step, where:

(Permutative p2-Rule) t(u, y.λx.r) 7→p2 λx.t(u, y.r).

Integrating the π-rule to define a distant CBN calculus would give instead the alternative
rule D⟨λx.t⟩(u, y.r) 7→ D⟨{{u/x}t/y}r⟩, where the distant context D is neither duplicated nor
erased: there is exactly one occurrence of D in the contractum. But this feature corresponds
to a CBV behavior, and is not quantitatively well-behaved for a CBN semantics (see [18]).
This same remark is true for the original CBN calculus ΛJn.

▶ Definition 2. The CBV calculus λJv is defined by the grammar TJ equipped with the
distant call-by-value reduction relation →dv. The relation →dv is generated by the closure
under all contexts C of the reduction rule: D⟨λx.t⟩(u, y.r) 7→dβv

D⟨{{u\\x}t\\y}r⟩.

Notice that we also use a distance semantics for CBV, whereas the original ΛJv-calculus relies
on rules π and βv (dβv where D is empty). Both reductions →dn and →dv enjoy confluence.
It is also worth noticing that CBN and CBV reducible expressions (a.k.a. redexes) are the
same. In particular, no dβv-redex is stuck because the argument is not a value. This is a
major difference with most CBV calculi. However, the right-hand sides of the rules dβ and
dβv differ in two ways: the kind of substitution used (right for CBN, left for CBV) and the
fact that D might be erased or duplicated in CBN, but not in CBV. To illustrate the first
difference, we sketch the CBV reduction of the previous term t0:

t0 = (λx.x(I, y.y))(I, z′.z)
7→dβv

{{I\\x}(x(I, y.y))\\z′}z = {I(I, y.y)\\z′}z = I(I, y.z) = (λx.x)(I, y.z)
7→dβv

{{I\\x}x\\y}z = {I\\y}z = z

In line two, the substitutions are exactly the ones already detailed after the definition of left
substitution. The two (nested) left substitutions on the last line act on values, so that they
fall back to the usual right substitution. While in CBN a single step was sufficient to reach
the normal form z, in CBV we need one additional step.

As usual, CBV does not duplicate computations (outside abstractions), but tries to reduce
every argument to a value, and this may create divergent computations. Take for instance
t1 = δ(δ, z.y). In CBN, t1 normalizes to y, while in CBV t1 loops indefinitely.

(CBN) δ(δ, z.y) 7→dβ {{δ/x}(x(x, z.z))/z}y = {δ(δ, z.z)/z}y = y

(CBV) δ(δ, z.y) 7→dβv
{{δ\\x}(x(x, z.z))\\z}y

= {{δ/x}(x(x, z.z))\\z}y = {δ(δ, z.z)\\z}y = δ(δ, z.{z\\z}y) = δ(δ, z.y)

We illustrate the different uses of distant contexts in CBN and CBV on a last example.
Let t2 = x1(u, x2.λx.x)(v, y.y(y, z.z)), that can be written as D⟨λx.x⟩(v, y.y(y, z.z)), where
D = x1(u, x2.♢). Using the distant semantics, the term v turns out to be an argument of the
function λx.x, and thus the redex can be fired, although both terms are separated by the
(distant) context D:

FSCD 2022

18:6 Solvability for Generalized Applications

(CBN) t2 →∗
dβ {D⟨{v/x}x⟩/y}(y(y, z.z)) = {D⟨v⟩/y}(y(y, z.z))

= D⟨v⟩(D⟨v⟩, z.z) = x1(u, x2.v)(x1(u, x2.v), z.z)
(CBV) t2 →∗

dβv
D⟨{{v\\x}x\\y}(y(y, z.z))⟩ = D⟨{v\\y}(y(y, z.z)⟩

= D⟨v(v, z.z)⟩ = x1(u, x2.v(v, z.z))

The way distant contexts are handled in both variants is reminiscent of how the result of
the β-reduction is treated by the two different substitution operations, as the applications
inside the distant context are duplicated or erased only in CBN. This difference is justified
by the use of distinct underlying permutation rules: p2 for CBN and π for CBV.

As a last remark, notice that βv-reduction preserves π-normal forms. Thus, an alternative
to distant CBV reduction is to “pre-process” all terms by using full π-normalization, so
that neither distance nor permutations are needed for the CBV computation, which is then
defined only on terms in π-nf. Yet, instead of computing only with π-nf, we choose to work
in a more general framework with arbitrary terms, by applying only those permutations that
are necessary to fire β-redexes, following the same philosophy used in CBN.

3 Solvability for Generalized Applications

In this section we give definitions of solvability for CBN and CBV by using the key notion
of head context. In contrast to the λ-calculus, the syntax of generalized applications makes
the identification of the head of a term very subtle. In particular, whereas it is possible
to use vectorial meta-notations in the λ-calculus, we must use inductive definitions in this
framework. Head contexts are given by the following grammar:

H ::= ♢ | λx.H | H(u, x.H′⟨⟨x⟩⟩) | t(u, x.H)

While, in general, there are several possibilities to decompose a term into a head con-
text surrounding a subterm, there is a closely related notion of head variable, which
deterministically distinguishes a particular variable in each term:

hv(x) = x

hv(t) = x

hv(λy.t) = x

hv(r) = y hv(t) = x

hv(t(u, y.r)) = x

hv(r) = x x ̸= y

hv(t(u, y.r)) = x

In the third rule we assume w.l.o.g. that y is not bound in r. Notice that the head variable
may be either free or bound, since y can be equal to x in the second rule. To understand
the last two rules, we use the previous analogy with let-bindings. To an application t(u, y.r)
corresponds a binding let y = tu in r, and to find the head variable of this term, we look
inside r. For instance, the head variable of let x = zz in y, corresponding to z(z, x.y), is y.
But if we take let x = zz in x, corresponding to z(z, x.x), its head variable is z. Thus, the
head variable of a term with generalized applications is the head variable of the corresponding
term where all the let-binding have been unfolded. In the example, z is the head variable of
z(z, x.x) because x is itself the head variable of the subterm x inside the continuation.

Given a term t verifying hv(t) = x, there is a unique head context H such that (1) t = H⟨x⟩,
or (2) t = H⟨⟨x⟩⟩ if x ∈ fv(t). Thus for example, given t3 := z(z, x.y), we have hv(t3) = y

as well as t3 = H⟨⟨y⟩⟩ with H = z(z, x.♢). Given t′
3 := z(z, x.x), we have hv(t′

3) = z as well
as t′

3 = H′⟨⟨z⟩⟩ with H′ = ♢(z, x.H0⟨⟨x⟩⟩) and H0 = ♢. An example where the head variable is
bound is hv(λy.t3) = y, where λy.t3 = H′′⟨y⟩ and H′′ = λy.z(z, x.♢).

D. Kesner and L. Peyrot 18:7

▶ Definition 3 (Solvability). Let t ∈ TJ . Then:
t is CBN-solvable iff there is a head (resp. distant) context H and D such that H⟨t⟩ →∗

dn D⟨I⟩.
t is CBV-solvable iff there is a head context H such that H⟨t⟩ →∗

dv I.

In the CBN λ-calculus, several equivalent definitions of solvability for a λ-term M coexist.
In particular: (1) there is a head context H such that H⟨M⟩ →∗

β I; (2) for all λ-term N ,
there is a head context H such that H⟨M⟩ →∗

β N . The head contexts here are the usual
head contexts of the λ-calculus. The proof that (1) implies (2) is trivial, since IN →β N

always hold in the CBN λ-calculus. On the contrary, in Plotkin’s original CBV, the two
formulations are not equivalent [20], since IN only reduces to N when N is a value. In our
CBV framework, the equivalence of these alternative definitions is straightforward: for any
TJ -term u, I(u, z.z) 7→dβv

u always holds. Moreover, our definition of CBN-solvability for a
term t is equivalent to an alternative one stating that for all TJ -term u there exist H and D
such that H⟨t⟩ →∗

dn D⟨u⟩. Indeed, D⟨I⟩(u, z.z) 7→dβ D⟨u⟩ for any u.
Notice in our definition of CBN-solvability that the reduction yields an identity plugged

inside a distant context, and not just an identity alone. Take e.g. the term t4 = Ω(y, z.I)
containing a non-relevant continuation, as z /∈ fv(I). In the λ-calculus, t4 translates to
(λz.I)(Ωy), which is solvable since (λz.I)(Ωy) →β I. This suggests introducing a garbage
collection-like rule for generalized applications which reduces in this case Ω(y, z.I) →gc I.
This would be consistent with different models of CBN, such as our quantitative type
system. However, we prefer to avoid such ad-hoc solution, which can be simply seen as an
implementation detail, as it does not change the operational and denotational behavior of
terms.

Now, why does our notion of CBV solvability not use this distant context? Take again the
term t4 = Ω(y, z.I) and its translated λ-term (λz.I)(Ωy). CBV reduction in the λ-calculus
loops on the argument Ωy, that could only be erased if Ωy is reduced to a value. Therefore,
having a definition of solvability which reduces to D⟨I⟩ in CBV would be too liberal, and
incoherent with the λ-calculus and its associated models.

Although the two definitions of CBN/CBV solvability are slightly different, they both
share the same notion of head context, which is independent from the operational semantics.

Head reduction in the λ-calculus is the reduction relation generated by the closure of the
rule β under head contexts. A key (operational) property is that a term t is CBN solvable
iff t normalizes for the head reduction, that is why we say that it is a solvable reduction.
In Subsec. 4.1, we define a notion of solvable reduction for λJn, and show that it also has
this crucial property. For λJv, we will see in Subsec. 5.1 that the solvable relation is bigger
than plain CBN solvable reduction. Nevertheless, the solvable reduction we give mimics the
behavior of a solvable reduction for the CBV λ-calculus.

4 Call-by-Name Solvability

This section is organized in two parts. We first give an operational characterization of
solvability through a solvable reduction relation, and then a quantitative type system
providing a logical characterization of it.

4.1 Operational Characterization of CBN Solvability

The following solvable reduction relation for λJn plays the same role as the head reduction
plays for the λ-calculus.

FSCD 2022

18:8 Solvability for Generalized Applications

▶ Definition 4. The CBN solvable reduction →sn is defined as the closure of the following
reduction rule under head contexts.

D⟨λx.t⟩(u, y.H⟨⟨y⟩⟩) 7→dβh {D⟨{u/x}t⟩/y}H⟨⟨y⟩⟩

Notice that the solvable reduction is not based on the full dβ rule, as it only reduces redexes
to which (one of the hereditary) head variables is bound. Thus, the term t4 = Ω(y, z.I) is
sn-normal but not dβ-normal.

▶ Lemma 5. The following grammar NFsn characterizes sn-nfs.

(CBN Neutral Normal Contexts) G ::= ♢ | G(u, x.G⟨⟨x⟩⟩) | t(u, y.G)
(CBN Solvable Normal Terms) NFsn ::= x | λx. NFsn | G⟨⟨x⟩⟩(u, y. NFsn)

| t(u, x. NFsn) where x ̸= hv(NFsn)

The previous grammar NFsn is used to show the following key result:

▶ Lemma 6. Let t be an sn-normalizable term. Then t is CBN solvable.

To give some intuition about the proof, we know t sn-normalizable implies there is some
sn-normal form t′ such that t →∗

sn t′. The goal of the proof is to construct a head context
H such that H⟨t′⟩ →∗

dn D⟨I⟩ for some D. This is done by induction on the grammar NFsn.
Therefore t is solvable since H⟨t⟩ →∗

dn H⟨t′⟩ →∗
dn D⟨I⟩.

▶ Example 7. Let t5 = y1(I, z1.x)(y2(I, z2.z2), z3.λy.z3) ∈ NFsn. Notice that hv(t5) = x.
We take H = (λx.♢)(o1, z.z)(I, z.z) (remember that o1 = λx1λx0.x0). Then,

H⟨t5⟩ = (λx.y1(I, z1.x)(y2(I, z2.z2), z3.λy.z3))(o1, z.z)(I, z.z)
→dn y1(I, z1. o1)(y2(I, z2.z2), z3.λy.z3)(I, z.z)
→dn (λy.y1(I, z1. o0))(I, z.z)
→dn y1(I, z1. o0)

Taking D = y1(I, z1.♢), we get a term of the expected form D⟨I⟩ (since o0 = I).

4.2 Logical Characterization of CBN Solvability
We now give a type system, called ∩N , in which typability and normalization of solvable
reduction coincide, i.e. not only does typability imply normalization, but the converse
implication also holds. In system ∩N , terms can be assigned several types. However, they
are not typed with sets – which would give an idempotent intersection type system [13] – ,
but with multisets, which give a quantitative flavor to the type system. Also, non-idempotent
types justify the use of rule p2, instead of π, to obtain a distant notion for CBN with
generalized applications which is quantitatively well behaved ([18]). Moreover, as in other
calculi with non-idempotent intersection types, the proofs of normalization are notably
simplified: reducibility or computability arguments can be replaced by simple combinatorial
proofs based on the fact that the size of the type derivations strictly decreases along each
solvable sn-step.

Given a countable infinite set BTV of base type variables a, b, c, . . ., we define the following
sets of types:

(Types) σ, τ, ρ ::= a ∈ BT V | M → σ

(Multiset types) M, N ::= [σi]i∈I where I is a finite set

D. Kesner and L. Peyrot 18:9

The empty multiset is denoted []. Environments, written Γ, ∆, Λ, are functions from
variables to multiset types assigning the empty multiset to all but a finite set of variables.
A typing is a pair of an environment and a type. The domain of Γ is given by dom(Γ) :=
{x | Γ(x) ̸= []}. The union of environments, written Γ ∧ ∆, is defined by (Γ ∧ ∆)(x) :=
Γ(x)⊔∆(x), where ⊔ denotes multiset union. This notion is extended to several environments
as expected, so that ∧i∈IΓi denotes a finite union of environments (∧i∈IΓi is to be understood
as the empty environment when I = ∅). We write Γ\\ x for the environment such that
(Γ\\ x)(y) = Γ(y) if y ̸= x and (Γ\\ x)(x) = []. We write Γ; ∆ for Γ ∧ ∆ when dom(Γ) ∩
dom(∆) = ∅. A sequent has the form Γ ⊢ t : σ, where (Γ, σ) is a typing and t is a term.

x : [σ] ⊢ x : σ
(var)

Γ; x : M ⊢ t : σ

Γ ⊢ λx.t : M → σ
(abs)

(Γi ⊢ t : σi)i∈I

∧i∈IΓi ⊢ t : [σi]i∈I

(many)

Γ ⊢ t : [Mi → σi]i∈I ∆ ⊢ u : ⊔i∈IMi Λ; x : [σi]i∈I ⊢ r : τ

Γ ∧ ∆ ∧ Λ ⊢ t(u, x.r) : τ
(app)

Figure 1 System ∩N .

The quantitative type system ∩N is defined in Fig. 1. Notice that the system is relevant,
as there is no weakening. It is a natural extension of Gardner’s [21] and De Carvalho’s [14]
systems to generalized applications. Rule (many) may give the empty multiset to any term
(case I = ∅), so being typable with [] means in fact being untyped. The interesting rule is
(app), where both t and u are assigned multiset types, since x is not necessarily linear in
r. Because u is the argument of t, it is assigned all the types on the left of the arrow of t.
For n ∈ N, we write Γ ⊩n

∩N t : σ or simply Γ ⊩n t : σ if there is a derivation in system ∩N

ending in Γ ⊢ t : σ and containing n occurrences of rule (app). This derivation measure is
sufficient to capture the fact that each sn-step deletes at least one (app) rule (c.f. Lem. 10).

▶ Example 8. Take again t4 = Ω(y, z.I) (we expand I to λx.x in the derivation). Although
the evaluation of the subterm Ω is not terminating (and thus Ω can only be typed with the
empty multiset), t4 is typable:

⊢ Ω : []
(many)

⊢ y : []
(many)

x : [σ] ⊢ x : σ
(var)

⊢ λx.x : [σ] → σ
(abs)

⊢ Ω(y, z.λx.x) : [σ] → σ
(app)

We now prove that terms typable in ∩N are exactly the ones that normalize with →sn.
The proof relies on two key lemmas.
1. Weighted subject reduction does not only state that the typing of a term is preserved

along reduction – as usual – , but also that the size of the typing derivation decreases at
each sn-step. From this we can deduce that typable terms normalize with →sn.

2. Subject expansion is the opposite of subject reduction: if t reduces to a term t′ and t′ is
typable, then t is also typable with the same typing as t′. It is also possible to attach
quantitative information to the subject expansion lemma, proving that the size of the
type derivation of t′ is smaller than the one of t, but this will not be useful here.

FSCD 2022

18:10 Solvability for Generalized Applications

Subject reduction and subject expansion give soundness and completeness of →dn w.r.t. to
the type system. This is a peculiarity of intersection type systems, which makes it possible
to derive a denotational semantics from the typing itself. In the case of quantitative type
systems, it is a relational model, i.e. a model in the category Rel of sets and relations [9].

Soundness
To prove subject reduction, we first need to prove a substitution lemma, as usual. Because we
are in a quantitative model, this lemma also relates the sizes of the corresponding derivations.

▶ Lemma 9 (Substitution for ∩N). If Γ; x : M ⊩n
∩N t : σ and ∆ ⊩m

∩N u : M, then there is a
derivation Γ ∧ ∆ ⊩m+n

∩N {u/x}t : σ.

▶ Lemma 10 (Weighted Subject Reduction for ∩N). If Γ ⊩n1
∩N t1 : σ and t1 →sn t2, then

Γ ⊩n2
∩N t2 : σ with n1 > n2.

Proof. The proof is by induction on the reduction step t1 →sn t2. The base case is t1 =
D⟨λx.t⟩(u, y.H⟨⟨y⟩⟩) 7→sn {D⟨{u/x}t⟩/y}H⟨⟨y⟩⟩ = t2, which we decompose into a series of
p2-permutation steps followed by a βh-step (a dβh-step with an empty distant context):
t1 7→∗

p2 (λx.D⟨t⟩)(u, y.H⟨⟨y⟩⟩) 7→βh t2. We prove subject reduction independently for p2 and βh.
For the last one, we apply the substitution lemma twice. The permutative and the inductive
cases (reduction under head contexts) are straightforward by the induction hypothesis. ◀

The size of type derivations is a natural number decreasing at every step, so that soundness
is a direct corollary. Notice that no reducibility proof is needed.

▶ Corollary 11 (Soundness for λJn). If Γ ⊩n
∩N t : σ, then t is sn-normalizable and the number

of sn-steps needed to normalize t is bounded by n.

Completeness
To show that every sn-normalizable term is typable, we need subject expansion. This
property, like subject reduction, needs a preliminary lemma, this time anti-substitution.

▶ Lemma 12 (Anti-Substitution for ∩N). If Γ ⊩ {u/x}t : σ, then there exists Γt, Γu and M
such that Γt; x : M ⊩ t : σ, Γu ⊩ u : M and Γ = Γt ∧ Γu.

▶ Lemma 13 (Subject Expansion for ∩N). If Γ ⊩∩N t2 : σ and t1 →dn t2, then Γ ⊩∩N t1 : σ.

Proof. Notice that the statement is about full dn reduction, which is useful in the proof of
Thm. 16. The proof is by induction on t1 →dn t2 and uses the anti-substitution lemma. ◀

Another component of the completeness proof is the fact that sn-normal forms are typable.

▶ Lemma 14 (Typing sn-nfs). Let t ∈ NFsn. Then there exists σ such that
1. If t = H⟨⟨x⟩⟩ for some x, then there is τ such that x : [τ] ⊩ t : σ.
2. Otherwise, ∅ ⊩ t : σ.

▶ Corollary 15 (Completeness for λJn). Let t ∈ TJ be sn-normalizable. Then t is typable in
system ∩N .

Proof. By definition, the term t is reducible to a sn-normal form t′. By Lem. 14, t′ is typable.
Subject Expansion gives typability of t. ◀

D. Kesner and L. Peyrot 18:11

Characterization of CBN Solvability
We can now derive the main theorem of this section.

▶ Theorem 16 (CBN Characterization). Let t ∈ TJ . Then t is CBN solvable iff t is ∩N -typable
iff t is sn-normalizable.

Proof. Normalizable =⇒ solvable holds by Lem. 6. Typable =⇒ normalizable holds by
Cor. 11. For solvable =⇒ typable: take t solvable, so that there are contexts H, D such that
H⟨t⟩ →∗

dn D⟨I⟩. Since D⟨I⟩ is ∩N -typable by Lem. 14, and the system ∩N satisfies subject
expansion (Lem. 13), then H⟨t⟩ is ∩N -typable, which implies t is ∩N -typable. ◀

5 Call-by-Value Solvability

As in the previous section, we first give an operational characterization of solvability and
then a quantitative type system characterizing it.

5.1 Operational Characterization of CBV Solvability
In CBN, the method to get the identity from a term plugged into a head context is to
successively erase all the arguments, by replacing the head variable by a projection term
on = λxn . . . x0.x0. But in CBV, arguments which are not values cannot be erased: in order
to be erased they need to be potentially valuable.

▶ Definition 17. A term t is potentially valuable iff there exist a distant context D and a
value v such that D⟨t⟩ →∗

dv v.

The distant context in the previous definition can be seen as a list of substitutions – eventually
affecting the free variables of t – used to transform t into a value.

▶ Example 18. Let t6 = x(Ω, z.z). In CBN, it is sufficient to take the head context
H = I(o1, x.♢) so that H⟨t6⟩ →dn o1(Ω, z.z) →dn I simply erases the diverging term Ω. In
CBV, however, this is not possible since H⟨t6⟩ →dv o1(Ω, z.z) →dv δ(δ, x.I), which diverges.
The term t6 is only solvable in CBN. On the contrary, the term x(λy.Ω, z.z) is solvable in
both CBN and CBV because the argument λy.Ω can be erased.

Interestingly, there is a (non-deterministic) reduction relation →pv such that the normal-
izing terms for →pv are exactly the potentially valuable terms (c.f. Thm. 34). It is in fact a
weak reduction relation in which reduction can occur anywhere but below abstractions. We
detail this result before tackling the CBV solvable reduction.

▶ Definition 19. The valuable reduction relation →pv is defined by the following rules:

t 7→dβv
t′

t →pv t′
t →pv t′

t(u, y.r) →pv t′(u, y.r)
u →pv u′

t(u, y.r) →pv t(u′, y.r)
r →pv r′

t(u, y.r) →pv t(u, y.r′)

▶ Lemma 20. Consider the following grammar:

(Valuable Neutral Normal Terms) NEpv ::= x | NEpv(NFpv, y. NEpv)
(Valuable Normal Terms) NFpv ::= x | NEpv(NFpv, y. NFpv) | λx.t

Then, t ∈ NFpv iff t is in pv-normal form.

FSCD 2022

18:12 Solvability for Generalized Applications

This grammar is used to show the following property, whose converse is obtained in Thm. 34.

▶ Lemma 21. Let t be a pv-normalizable term. Then t is potentially valuable.

Note that being potentially valuable is weaker than being solvable, because values are
always potentially valuable but not necessarily solvable, like λx.Ω. We are now ready to
build the solvable reduction on top of the valuable one.

▶ Definition 22. The CBV solvable reduction relation →sv is defined as follows:

t 7→dβv
t′

t →sv t′
t →sv t′

λx.t →sv λx.t′

t →pv t′

t(u, x.r) →sv t′(u, x.r)
u →pv u′

t(u, x.r) →sv t(u′, x.r)
r →sv r′

t(u, x.r) →sv t(u, x.r′)

An equivalent formulation can be given by the closure of dβv under head contexts, plus the
first and second rules for closure under application. With these rules, we make sure that
in an application t(u, x.r), the subterms t and u are pv-normalizable, and thus potentially
valuable. In case there is a divergent term in u or t, the solvable reduction will diverge. This
relation is strictly bigger than the CBN solvable relation →sn, as it diverges on more terms.

▶ Lemma 23. Let us consider the following grammar:

(CBV Solvable Normal Terms) NFsv ::= x | λx. NFsv | NEpv(NFpv, y. NFsv)

Then, t ∈ NFsv iff t is in sv-normal form. Notice that NFsv ⊂ NFpv.

▶ Lemma 24. Let t be an sv-normalizable term. Then t is CBV solvable.

A hint of the proof: since t is sv-normalizable, there is some sv-normal form t such that
t →∗

sv t′. We must construct a head context H such that H⟨t′⟩ →∗
dv I. This is done by

induction on the grammar NFsv. Therefore, t is solvable since H⟨t⟩ →∗
dv H⟨t′⟩ →∗

dv I. A
difference with Lem. 6 for CBN is that the head context must erase all applications of t′,
even the ones which are non-relevant, making the proof more involved.

▶ Example 25. Once again, the goal is to construct a head context for the sv-normal form
of t. Take for instance the term t5 = y1(I, z1.x)(y2(I, z2.z2), z3.λy.z3) from Ex. 7, also in
NFsv. This time, we take H = (λy1.λx.λy2.♢)(o1, z.z)(o1, z.z)(o1, z.z)(I, z.z). Indeed,

H⟨t5⟩ = (λy1.λx.λy2.y1(I, z1.x)(y2(I, z2.z2), z3.λy.z3))(o1, z.z)(o1, z.z)(o1, z.z)(I, z.z)
→3

dv o1(I, z1. o1)(o1(I, z2.z2), z3.λy.z3)(I, z.z) →3
dv o1(o1(I, z2.z2), z3.λy.z3)(I, z.z)

→dv o1(I, z3.λy.z3)(I, z.z) →dv (λy. o0)(I, z.z) →dv o0 = I

5.2 Logical Characterization of CBV Solvability
We will now define a quantitative type system characterizing CBV solvability. The grammar
of types is different from Subsec. 4.2, as multiset types are considered as types and in
particular may also occur on the right hand-side of an arrow.

(Types) σ, τ ::= a ∈ BTV | M | M → σ

(Multiset types) M, N ::= [σi]i∈I where I is a finite set

D. Kesner and L. Peyrot 18:13

x : M ⊢ x : M
(var)

(Γi; x : Mi ⊢ t : σi)i∈I

∧i∈IΓi ⊢ λx.t : [Mi → σi]i∈I

(abs)

Γ ⊢ t : [M → N] ∆ ⊢ u : M Λ; x : N ⊢ r : σ

Γ ∧ ∆ ∧ Λ ⊢ t(u, x.r) : σ
(app)

Figure 2 System ∩V .

We use a unique type system ∩V , defined in Fig. 2, to characterize both potential
valuability and solvability. The type system is inspired from [10]. Again, we write Γ ⊩n

∩V t : σ

if the sequent Γ ⊢ t : σ is derivable in this system with a derivation of size n (containing n

occurrences of (app)). We will show that typability in ∩V is equivalent to normalizability
of the valuable reduction. To logically characterize solvable terms, we constraint typability
to a particular set of types, where the empty multiset type cannot appear anymore on the
right-hand sides of arrows. We take this idea from [5], where these types are called solvable.

▶ Definition 26 (Solvable types). A solvable type is not an empty multiset, and has no
empty multiset on the right of an arrow. Formally,

(Solvable types) σs, τ s ::= a ∈ BTV | Ms | M → σs

(Solvable multiset types) Ms, N s ::= [σs
i]i∈I where I is a non-empty finite set

Unlike CBN, where the empty multiset [] is used to mark untyped subterms, being typable
in CBV with [] is equivalent to being potentially valuable. The unsolvable term λx.Ω, for
instance, can be typed with [] by rule (abs) with I empty. But it cannot be typed with
any other type, and in particular with a solvable one, otherwise Ω would need to be typable.
Notice also that the terms t and u in rule (app) must always be typed, at least with type [].
That is why the term t4 of Ex. 8, typable in ∩N , is not typable in ∩V .

We now prove that terms typable in ∩V are exactly those that are normalizable for
the valuable reduction, and among them, those typable with a solvable type are the ones
normalizing for the solvable reduction. The proof method is the same as for CBN (Subsec. 4.2),
but the statements cover both reduction relations at the same time.

Soundness
Soundness follows the same scheme used for CBN (no reducibility proof is needed): a weighted
subject reduction property, based on a substitution lemma, is used to show that typability
implies normalization.

▶ Lemma 27 (Substitution for ∩V). Let Γ; x : M ⊩n
∩V t : σ and ∆ ⊩m

∩V u : M.
If u is a value, then Γ ∧ ∆ ⊩n+m

∩V {u/x}t : σ.
For any u, Γ ∧ ∆ ⊩n+m

∩V {u\\x}t : σ.

▶ Lemma 28 (Weighted Subject Reduction for ∩V). Let Γ ⊩n1
∩V t1 : σ and t1 →dv t2. Then

Γ ⊩n2
∩V t2 : σ with n1 ≥ n2. Moreover:

1. If t1 →pv t2, then n1 > n2.
2. If t1 →sv t2 and σ is a solvable type, then n1 > n2.

FSCD 2022

18:14 Solvability for Generalized Applications

▶ Corollary 29 (Soundness for ∩V). Let Γ ⊩n
∩V t : σ. Then,

1. The term t is pv-normalizing and the number of pv-steps needed to normalize t is bound
by n.

2. If σ is a solvable type, then t is sv-normalizing and the number of sv-steps needed to
normalize t is bound by n.

Completeness
Completeness also follows the same scheme used for CBN: we show that normal forms are
typable, together with a subject expansion property, based on an anti-substitution lemma.

▶ Lemma 30 (Anti-substitution for ∩V).
If Γ ⊩∩V {v/x}t : σ, then there are Γt, Γv and M such that Γt; x : M ⊩∩V t : σ, Γv ⊩∩V

v : M and Γ = Γt ∧ Γv.
If Γ ⊩∩V {u\\x}t : σ, then there are Γt, Γu and M such that Γt; x : M ⊩∩V t : σ,
Γu ⊩∩V u : M and Γ = Γt ∧ Γu.

▶ Lemma 31 (Subject Expansion for ∩V). Let Γ ⊩∩V t2 : σ and t1 →dv t2. Then Γ ⊩∩V t1 : σ.

▶ Lemma 32 (Typing NFpv-nfs). Let t ∈ TJ .
1. If t ∈ NFpv, then there exists Γ such that Γ ⊩∩V t : [].
2. If t ∈ NFsv, then there exist Γ and σs solvable such that Γ ⊩∩V t : σs.

▶ Corollary 33 (Completeness for ∩V). Let t ∈ TJ .
1. If t is pv-normalizing, then t is typable in ∩V .
2. If t is sv-normalizing, then t is typable in ∩V with a solvable type.

Characterization of CBV Solvability
We can now derive the main theorem of this section.

▶ Theorem 34 (Characterization). Let t ∈ TJ . Then,
t is potentially valuable iff t is ∩V -typable iff t is pv-normalizable, and
t is CBV solvable iff t is ∩V -typable with a solvable type iff t is sv-normalizable.

Proof. pv/sv-normalizable =⇒ potentially valuable/CBV solvable holds respectively by
Lem. 21/Lem. 24. Typable/Typable with a solvable type =⇒ pv/sv-normalizable: both
hold by Cor. 29. For potentially valuable/CBV solvable =⇒ typable: similar to Thm. 16,
with the corresponding Lem. 31 and Lem. 32, and using the following two facts: (1) every
value is typable and (2) I is typable with a solvable type. ◀

6 Extension to ΛJn, ΛJv and the λ-calculus

We have argued in favor of endowing generalized applications with a distant operational
semantics: permutations are only used when they are necessary to unblock redexes, thus
putting the focus on the computational content on the calculus, and also bringing the
operational semantics of the calculus closer to the quantitative model. Nonetheless, this
choice should not have an influence on overall properties such as strong normalization,
solvability or potential valuability. We also wish to be conservative with respect to the
original CBN and CBV calculi ΛJn and ΛJv. In this section we show that. More precisely,

D. Kesner and L. Peyrot 18:15

we prove the equivalence of CBN/CBV solvability with and without distance using the
quantitative type systems introduced in previous sections. We also show that our CBN/CBV
notion of solvability is equivalent to the original one for the λ-calculus, a result which is
expected but not evident.

6.1 Solvability for ΛJn and ΛJv

Remember that →n (resp. →v) is the reduction relation associated to the original CBN (resp.
CBV) calculus. In what follows we write local to mean non-distant.

▶ Definition 35 (Local Solvability). Let t ∈ TJ .
(ΛJn) t is CBN local solvable iff there is a head context H and a distant context D such

that H⟨t⟩ →∗
n D⟨I⟩.

(ΛJv) t is CBV local solvable iff there is a head context H such that H⟨t⟩ →∗
v I.

Notice that the terms t4 = Ω(y, z.I) and t6 = x(Ω, z.I) are CBN but not CBV locally
solvable. The term t5 = y1(I, z1.x)(y2(I, z2.z2), z3.λy.z3) is both CBN and CBV solvable.

▶ Definition 36. The CBN local solvable reduction →lsn is generated by the closure of
the following rules βh and πh under head contexts.

(λx.t)(u, y.H⟨⟨y⟩⟩) 7→βh {{u/x}t/y}H⟨⟨y⟩⟩
t(u, x.r)(u′, y.H⟨⟨y⟩⟩) 7→πh t(u, x.r(u′, y.H⟨⟨y⟩⟩))

The local valuable reduction →lpv and CBV local solvable reduction →lsv are defined
by the closure of rules βv and π under the same contexts used in their distant counterparts
(Def. 19 and Def. 22 respectively).

▶ Theorem 37 (Local Characterization). Let t ∈ TJ . Then,
CBN: t is CBN local solvable iff t is ∩N -typable iff t is lsn-normalizable.
CBV: t is CBV local potentially valuable iff t is ∩V -typable iff t is lpv-normalizable, and

t is CBV local solvable iff t is ∩V -typable with a solvable type iff t is lsv-normalizable.

Since the same notion of typability is used in the distant and local characterizations, this
gives the following equivalence for free.

▶ Corollary 38. CBN (resp. CBV) solvability is equivalent to CBN (resp. CBV) local
solvability.

6.2 Equivalence with Solvability in the λ-Calculus
We also relate solvability of generalized applications to solvability in the λ-calculus. More
precisely, we consider λ-calculi with explicit substitutions. The set of terms with explicit
substitutions TES is generated by the following grammar:

M, N ::= x | λx.M | MN | [N/x]M

The last clause is an alternative notation for a let-binding let x = N in M .
We show that the following standard translations preserve solvability in both directions.

▶ Definition 39 (Translations).

(TJ 7→ TES) x∗ := x (λx.t)∗ := λx.t∗ t(u, x.r)∗ := [t∗u∗/x]r∗

(TES 7→ TJ) x◦ := x (λx.M)◦ := λx.M◦

(MN)◦ := M◦(N◦, z.z) ([N/x]M)◦ := I(N◦, x.M◦)

FSCD 2022

18:16 Solvability for Generalized Applications

Our proofs use quantitative types. For CBN, we call N the type system in [28, 10], which
characterizes head normalization and thus solvability. For CBV, we call V an alternative
but faithful presentation of the type system in [5] for which all and only solvable terms are
typable with a solvable type.

Indeed, we show that the translation of a TJ -term typable in system ∩N (resp. ∩V) is
also typable in system N (resp. V), and vice-versa.

▶ Theorem 40 (Preservation of Typing). Let t ∈ TJ and M ∈ TES.
Γ ⊩∩N t : σ implies Γ ⊩N t∗ : σ and Γ ⊩N M : σ implies Γ ⊩∩N M◦ : σ.
Γ ⊩∩V t : σ implies Γ ⊩V t∗ : σ and Γ ⊩V M : σ implies Γ ⊩∩V M◦ : σ.

As CBN/CBV solvability in the λ-calculus is equivalent to N -typability/V-typability
with a solvable type, we get the final results:

▶ Corollary 41. Let t be a TJ -term.
t is CBN solvable if and only if t∗ is CBN solvable in the λ-calculus.
t is CBV solvable if and only if t∗ is CBV solvable in the λ-calculus.

7 Related Works and Conclusion

Solvability for Plotkin’s CBV calculus has been first studied in [32], where some key concepts
(notably potentially valuable terms and solvable types) are introduced. Another contribution
in this same framework is [20], where a genericity lemma is proved. An operational charac-
terization of CBV solvability in terms of CBV reduction appears in [7], for a distant CBV
calculus with explicit substitutions. In [12], a similar result is obtained for Plotkin’s CBV
λ-calculus combined with permutative rules used to unblock redexes. The authors of op.cit.
also give a relational model of solvability, based on quantitative types. We draw inspiration
from all these works to address the challenge of solvability in generalized applications, where
stuck redexes are produced by the particular applicative structure of the calculus.

More generally, finding good operational formalisms for call-by-value is an active topic of
research (see [4]), with new insights from linear logic [2, 22] and the sequent calculus [23].
We believe that λJv holds a singular place among them, thanks to its natural way to deal
with stuck redexes. An open problem is to find a fully abstract model for the CBV λ-calculus.
We would like to see whether generalized applications help in this quest. In particular, it
would be interesting to understand CBV approximation for generalized applications, CBV
Böhm trees [8, 26] based on the solvable reduction, as well as separability [31].

Idempotent intersection types for ΛJn are proposed in [30]. Although intersection types
achieve to characterize all and only strongly normalizable terms, they do not reject π as
a permutation rule for CBN, albeit quantitatively unsound. Quantitative types for CBN
and λJn are introduced in [18], where only strong normalization has been addressed. Our
quantitative CBN and CBV type systems can be seen as the first relational models for
generalized applications. They are adapted from [10], but we take the key insight about
solvable types from [5]. It would be interesting to see if the techniques developed for tightness
[3, 29] can also be adapted to this framework.

References
1 Martín Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit substitu-

tions. J. Funct. Program., 1(4):375–416, 1991. doi:10.1017/S0956796800000186.
2 Beniamino Accattoli. Proof nets and the call-by-value λ-calculus. Theoretical Computer

Science, 606:2–24, November 2015. doi:10.1016/j.tcs.2015.08.006.

https://doi.org/10.1017/S0956796800000186
https://doi.org/10.1016/j.tcs.2015.08.006

D. Kesner and L. Peyrot 18:17

3 Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. Tight typings and split
bounds, fully developed. J. Funct. Program., 30:e14, 2020. doi:10.1017/S095679682000012X.

4 Beniamino Accattoli and Giulio Guerrieri. Open call-by-value. In Programming Languages
and Systems, volume abs/1609.00322, pages 206–226. Springer International Publishing, 2016.
doi:10.1007/978-3-319-47958-3_12.

5 Beniamino Accattoli and Giulio Guerrieri. Call-by-value solvability and multi types. CoRR,
abs/2202.03079, 2022. arXiv:2202.03079.

6 Beniamino Accattoli and Delia Kesner. The structural λ-calculus. In Computer Science Logic,
pages 381–395. Springer Berlin Heidelberg, 2010. doi:10.1007/978-3-642-15205-4_30.

7 Beniamino Accattoli and Luca Paolini. Call-by-value solvability, revisited. In Functional
and Logic Programming, pages 4–16. Springer Berlin Heidelberg, 2012. doi:10.1007/
978-3-642-29822-6_4.

8 Henk Pieter Barendregt. The Lambda Calculus - Its Syntax and Semantics. Elsevier, 1984.
doi:10.1016/c2009-0-14341-6.

9 Antonio Bucciarelli, Thomas Ehrhard, and Giulio Manzonetto. Not enough points is enough.
In Jacques Duparc and Thomas A. Henzinger, editors, Computer Science Logic, volume 4646
of Lecture Notes in Computer Science, pages 298–312. Springer Berlin Heidelberg, Lausanne,
Switzerland, September 2007. doi:10.1007/978-3-540-74915-8_24.

10 Antonio Bucciarelli, Delia Kesner, Alejandro Ríos, and Andrés Viso. The bang calculus revisited.
In Functional and Logic Programming, pages 13–32. Springer International Publishing, 2020.
doi:10.1007/978-3-030-59025-3_2.

11 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types
for the lambda-calculus. Logic Journal of the IGPL, 25(4):431–464, July 2017. doi:10.1093/
jigpal/jzx018.

12 Alberto Carraro and Giulio Guerrieri. A semantical and operational account of call-by-value
solvability. In Lecture Notes in Computer Science, volume 8412, pages 103–118. Springer
Berlin Heidelberg, 2014. doi:10.1007/978-3-642-54830-7_7.

13 M. Coppo and M. Dezani-Ciancaglini. A new type assignment for λ-terms. Archiv für
Mathematische Logik und Grundlagenforschung, 19(1):139–156, December 1978. doi:10.1007/
bf02011875.

14 Daniel De Carvalho. Execution time of λ-terms via denotational semantics and intersection
types. Mathematical Structures in Computer Science, 28(7):1169–1203, January 2017. doi:
10.1017/s0960129516000396.

15 José Espírito Santo. Delayed substitutions. In Lecture Notes in Computer Science, pages
169–183. Springer Berlin Heidelberg, 2007. doi:10.1007/978-3-540-73449-9_14.

16 José Espírito Santo. The call-by-value lambda-calculus with generalized applications. In
28th EASCL Annual Conference on Computer Science Logic (CSL 2020). Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany, 2020. doi:10.
4230/LIPICS.CSL.2020.35.

17 José Espírito Santo, Maria João Frade, and Luís Pinto. Permutability in proof terms for
intuitionistic sequent calculus with cuts. In Silvia Ghilezan, Herman Geuvers, and Jelena
Ivetić, editors, 22nd International Conference on Types for Proofs and Programs (TYPES
2016), volume 97 of Leibniz International Proceedings in Informatics (LIPIcs), pages 10:1–
10:27, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.TYPES.2016.10.

18 José Espírito Santo, Delia Kesner, and Loïc Peyrot. A faithful and quantitative notion
of distant reduction for generalized applications. In Proc. of the 24th Int. Conference on
Foundations of Software Science and Computation Structures (FoSSaCS), LNCS, April 2022.
arXiv:2201.04156.

19 José Espírito Santo and Luís Pinto. A calculus of multiary sequent terms. ACM Transactions
on Computational Logic, 12(3):1–41, May 2011. doi:10.1145/1929954.1929959.

FSCD 2022

https://doi.org/10.1017/S095679682000012X
https://doi.org/10.1007/978-3-319-47958-3_12
http://arxiv.org/abs/2202.03079
https://doi.org/10.1007/978-3-642-15205-4_30
https://doi.org/10.1007/978-3-642-29822-6_4
https://doi.org/10.1007/978-3-642-29822-6_4
https://doi.org/10.1016/c2009-0-14341-6
https://doi.org/10.1007/978-3-540-74915-8_24
https://doi.org/10.1007/978-3-030-59025-3_2
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1007/bf02011875
https://doi.org/10.1007/bf02011875
https://doi.org/10.1017/s0960129516000396
https://doi.org/10.1017/s0960129516000396
https://doi.org/10.1007/978-3-540-73449-9_14
https://doi.org/10.4230/LIPICS.CSL.2020.35
https://doi.org/10.4230/LIPICS.CSL.2020.35
https://doi.org/10.4230/LIPIcs.TYPES.2016.10
https://doi.org/10.4230/LIPIcs.TYPES.2016.10
http://arxiv.org/abs/2201.04156
https://doi.org/10.1145/1929954.1929959

18:18 Solvability for Generalized Applications

20 Álvaro García-Pérez and Pablo Nogueira. No solvable lambda-value term left behind. Logical
Methods in Computer Science, 12(2), June 2016. doi:10.2168/lmcs-12(2:12)2016.

21 Philippa Gardner. Discovering needed reductions using type theory. In Masami Hagiya and
John C. Mitchell, editors, Lecture Notes in Computer Science, pages 555–574. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1994. doi:10.1007/3-540-57887-0_115.

22 Giulio Guerrieri, Luca Paolini, and Simona Ronchi Della Rocca. Standardization and con-
servativity of a refined call-by-value lambda-calculus. Logical Methods in Computer Science ;
Volume 13, 2017. doi:10.23638/LMCS-13(4:29)2017.

23 Hugo Herbelin and Stéphane Zimmermann. An operational account of call-by-value minimal
and classical λ-calculus in “natural deduction” form. In Pierre-Louis Curien, editor, Typed
Lambda Calculi and Applications, Lecture Notes in Computer Science, pages 142–156, Berlin,
Heidelberg, 2009. Springer. doi:10.1007/978-3-642-02273-9_12.

24 Felix Joachimski and Ralph Matthes. Standardization and confluence for a lambda calculus
with generalized applications. In Rewriting Techniques and Applications, pages 141–155.
Springer Berlin Heidelberg, 2000. doi:10.1007/10721975_10.

25 Felix Joachimski and Ralph Matthes. Short proofs of normalization for the simply-typed λ-
calculus, permutative conversions and Gödel’s T. Archive for Mathematical Logic, 42(1):59–87,
2003. doi:10.1007/s00153-002-0156-9.

26 Emma Kerinec, Giulio Manzonetto, and Michele Pagani. Revisiting Call-by-value Böhm trees
in light of their Taylor expansion. Logical Methods in Computer Science, Volume 16, Issue 3,
July 2020. doi:10.23638/LMCS-16(3:6)2020.

27 Delia Kesner. A theory of explicit substitutions with safe and full composition. Log. Methods
Comput. Sci., 5(3), 2009. arXiv:0905.2539.

28 Delia Kesner and Daniel Ventura. Quantitative types for the linear substitution calculus.
In Josep Diaz, Ivan Lanese, and Davide Sangiorgi, editors, Lecture Notes in Computer
Science, pages 296–310, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. doi:10.1007/
978-3-662-44602-7_23.

29 Delia Kesner and Andrés Viso. Encoding tight typing in a unified framework. In Florin
Manea and Alex Simpson, editors, 30th EACSL Annual Conference on Computer Science
Logic, CSL 2022, February 14-19, 2022, Göttingen, Germany (Virtual Conference), volume
216 of LIPIcs, pages 27:1–27:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.CSL.2022.27.

30 Ralph Matthes. Characterizing strongly normalizing terms for a lambda calculus with gen-
eralized applications via intersection types. In Proc. ICALP 2000 (Geneva), volume 8 of
Proceedings in Informatics, pages 339–353, 2000.

31 Luca Paolini. Call-by-Value Separability and Computability. In Antonio Restivo, Si-
mona Ronchi Della Rocca, and Luca Roversi, editors, Theoretical Computer Science, Lec-
ture Notes in Computer Science, pages 74–89, Berlin, Heidelberg, 2001. Springer. doi:
10.1007/3-540-45446-2_5.

32 Luca Paolini and Simona Ronchi Della Rocca. Call-by-value solvability. RAIRO - Theoretical
Informatics and Applications, 33(6):507–534, November 1999. doi:10.1051/ita:1999130.

33 Gordon Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theoretical Computer
Science, 1:125–159, 1975. doi:10.1016/0304-3975(75)90017-1.

34 Neil Tennant. Ultimate normal forms for parallelized natural deductions. Logic Journal of
IGPL, 10(3):299–337, 2002. doi:10.1093/jigpal/10.3.299.

35 Jan von Plato. Natural deduction with general elimination rules. Archive for Mathematical
Logic, 40(7):541–567, 2001. doi:10.1007/s001530100091.

36 Christopher P. Wadsworth. The relation between computational and denotational properties
for scott’s D∞-models of the lambda-calculus. SIAM Journal on Computing, 5(3):488–521,
September 1976. doi:10.1137/0205036.

https://doi.org/10.2168/lmcs-12(2:12)2016
https://doi.org/10.1007/3-540-57887-0_115
https://doi.org/10.23638/LMCS-13(4:29)2017
https://doi.org/10.1007/978-3-642-02273-9_12
https://doi.org/10.1007/10721975_10
https://doi.org/10.1007/s00153-002-0156-9
https://doi.org/10.23638/LMCS-16(3:6)2020
http://arxiv.org/abs/0905.2539
https://doi.org/10.1007/978-3-662-44602-7_23
https://doi.org/10.1007/978-3-662-44602-7_23
https://doi.org/10.4230/LIPIcs.CSL.2022.27
https://doi.org/10.1007/3-540-45446-2_5
https://doi.org/10.1007/3-540-45446-2_5
https://doi.org/10.1051/ita:1999130
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1093/jigpal/10.3.299
https://doi.org/10.1007/s001530100091
https://doi.org/10.1137/0205036

D. Kesner and L. Peyrot 18:19

A Main proofs

In this section, we detail the crucial proofs showing that normalizability of a term t w.r.t.
the CBN/CBV solvable reductions implies that t is CBN/CBV solvable. First, we define the
number of head applications of a term as follows.

|x|@ = 0 |λx.t|@ = |t|@ |t(u, x.r)|@ =
{

|r|@ + |t|@ + 1, if x = hv(r)
|r|@, otherwise

Each proof will be decomposed in two statements. A first lemma states that solvable
normal forms can be reduced to a value (surrounded by a distant context in the CBN case).
The main property can then be shown by constructing an appropriate head context.

A.1 Call-by-Name
The following intermediate lemma is stated with β-reduction, instead of dβ-reduction. This
enables us to use it in the characterizations of both distant and non-distant CBN.

▶ Lemma 42. For all t = H⟨⟨x⟩⟩ ∈ NFsn, n ≥ |t|@ and distant context D0, there is m ≥ 0,
there are variables x1, . . . , xm and distant contexts D, D1, . . . Dm such that {D0⟨on⟩/x}t →∗

β

D⟨λxm.Dm⟨. . . λx1.D1⟨on−|t|@⟩⟩⟩. In particular, if t is neutral normal, then m = 0.

Proof. By induction on ⟨|t|@, t⟩. We reason by cases on the form of the normal term t.
t = x, so that |t|@ = 0 (this is the base case of the induction). We let m = 0, D = D0 and
conclude since {D0⟨on⟩/x}x = D⟨on⟩ = D⟨on−|x|@⟩.
t = λy.t′, where t′ = H′⟨⟨x⟩⟩ (x ≠ y). We suppose w.l.o.g that y /∈ fv(D0⟨on⟩). Let
n ≥ |t|@ = |t′|@. By the i.h. there are m′, x1, . . . , xm′ and D′, D1, . . . , Dm′ such that
{D0⟨on⟩/x}t′ →∗

β D′⟨λxm′ .Dm′⟨. . . λx1.D1⟨on−|t′|@⟩⟩⟩. Thus we obtain {D0⟨on⟩/x}t →∗
β

λy.D′⟨λxm′ .Dm′⟨. . . λx1.D1⟨on−|t′|@⟩⟩⟩ since |t|@ = |t′|@. We conclude by taking m =
m′ + 1, xm = y, Dm = D′ and D = ♢.
t = s(u, y.r), where r = H′⟨⟨y⟩⟩ (y ̸= x) and s = G⟨⟨x⟩⟩. We have |t|@ = |s|@ + |r|@ + 1.
Let n ≥ |t|@ > |s|@. Applying the i.h. on the neutral normal term s, we know that for
any D0, there is D′ such that {D0⟨on⟩/x}s →∗

β D′⟨on−|s|@⟩.
Let n′ = n − |s|@ − 1. Then n′ ≥ |r|@ and we can show that {D0⟨on′+1⟩/x}r ∈ NFsn and
|{D0⟨on′+1⟩/x}r|@ = |r|@. Moreover, {D0⟨on′+1⟩/x}r is of the form H′′⟨⟨y⟩⟩, for some H′′.
We can then apply the i.h. on {D0⟨on′+1⟩/x}r, so there are m′, x1, . . . , xm′ , D, D1, . . . , Dm′

such that {D′⟨on′⟩/y}{D0⟨on′+1⟩/x}r →∗
β D⟨λxm′ .Dm′⟨. . . λx1.D1⟨on′−|r|@⟩⟩⟩. We take

m = m′. In the case where t is neutral normal, we have m = 0 as required. Since
n′ − |r|@ = n − |t|@, we conclude as follows:

{D0⟨on⟩/x}t = {D0⟨on⟩/x}s({D0⟨on⟩/x}u, y.{D0⟨on⟩/x}r)

→∗
β D′⟨on′+1⟩({D0⟨on⟩/x}u, y.{D0⟨on⟩/x}r)

→β {D′⟨on′
⟩/y}{D0⟨on⟩/x}r →∗

β D⟨λxm.Dm⟨. . . λx1.D1⟨on−|t|@⟩⟩⟩.

t = s(u, y.t′), where y ̸= hv(t′). Let n ≥ |t|@ = |t′|@. By the i.h. on t′, for all D0 there are
m′, x1, . . . , xm′ , D′, D1, . . . , Dm′ s.t. {D0⟨on⟩/x}t′ →∗

β D′⟨λxm′ .Dm′⟨. . . λx1.D1⟨on−|t′|@⟩⟩⟩.
In particular m′ = 0 if t′ is neutral normal. We set D = {D0⟨on⟩/x}s({D0⟨on⟩/x}u, y.D′)
and m = m′. Since |t′|@ = |t|@, then {D0⟨on⟩/x}t →∗

β D⟨λxm.Dm⟨. . . λx1.D1⟨on−|s|@⟩⟩⟩.
◀

FSCD 2022

18:20 Solvability for Generalized Applications

▶ Lemma 6. Let t be an sn-normalizable term. Then t is CBN solvable.

Proof. Since t is sn-normalizable, then there is a solvable normal term t′ ∈ NFsn such that
t →∗

sn t′ (and thus t →∗
dn t′). Let hv(t′) = x. The term t′ can take two shapes:

1. t′ = H′⟨⟨x⟩⟩ if x ∈ fv(t′);
2. t′ = Dl⟨λxl. . . . λx2.D1⟨λx1.H′⟨⟨x⟩⟩⟩⟩ for x ∈ {x1, . . . , xl}, if x /∈ fv(t′).
In both cases, we must give a head context H such that H⟨t⟩ →∗

dn D⟨I⟩ for a distant context D.
We start with the first case (x is free in t′). Let n = |t′|@. By Lem. 42, there are

m ≥ 0, variables y1, . . . , ym and distant contexts D′, D1, . . . , Dm such that {on /x}t′ →∗
β

D′⟨λym.Dm⟨. . . λy1.D1⟨I⟩⟩⟩, which is also a dn-step. We let H = (λx.♢)(on, z.z)(I, z.z)
m

.
Then, we have:

H⟨t⟩ →∗
dn H⟨t′⟩ = (λx.t′)(on, z.z)(I, z.z)

m
→dn {on /x}t′(I, z.z)

m

→∗
dn D′⟨λym.Dm⟨. . . λy1.D1⟨I⟩⟩⟩(I, z.z)

m
→m

dn D′⟨{I/ym}Dm⟨. . . {I/y1}D1⟨I⟩⟩⟩

We conclude by taking D = D′⟨{I/ym}Dm⟨. . . {I/y1}D1⟩⟩.
In the second case (x is not free in t′), let 1 ≤ i ≤ l such that x = xi. Let us consider the

following reduction sequence:

t′(I, z.z)
l−i

= Dl⟨λxl. . . . D1⟨λx1.H′⟨⟨x⟩⟩⟩⟩(I, z.z)
l−i

→l−i
dn D′′⟨λx.H′′⟨⟨x⟩⟩⟩

where D′′ = Dl⟨{I/xl}Dl−1⟨. . . {I/xi+1}Di⟩⟩ and H′′ = {I/xj}i<j≤lDi−1⟨λxi−1. . . . D1⟨λx1.H′⟩⟩.
The subterm H′′⟨⟨x⟩⟩ above is obtained by substituting a sn-normal term with variables
different from the head variable. This kind of substitution preserves the property of being
sn-normal, so that H′′⟨⟨x⟩⟩ is sn-normal.

Let n = |H′′⟨⟨x⟩⟩|@. Then Lem. 42 applied to {on /x}H′′⟨⟨x⟩⟩ gives integers m, y1, . . . , ym

and distant contexts D′, D′
1, . . . , D′

m such that (this is also a dn-step):

{on /x}H′′⟨⟨x⟩⟩ →∗
β D′⟨λym.D′

m⟨. . . λy1.D′
1⟨I⟩⟩⟩.

To conclude, we let H = ♢(I, z.z)
l−i

(on, z.z)(I, z.z)
m

, where m and n were obtained
before. The whole reduction from H⟨t⟩ goes as follows:

H⟨t⟩ →∗
dn H⟨t′⟩ = t′(I, z.z)

l−i
(on, z.z)(I, z.z)

m

= Dl⟨λxl. . . . D1⟨λx1.H′⟨⟨x⟩⟩⟩⟩(I, z.z)
l−i

(on, z.z)(I, z.z)
m

→l−i
dn D′′⟨λx.H′′⟨⟨x⟩⟩⟩(on, z.z)(I, z.z)

m

→dn D′′⟨{on /x}H′′⟨⟨x⟩⟩⟩(I, z.z)
m

→∗
dn D′′⟨D′⟨λym.D′

m⟨. . . λy1.D′
1⟨I⟩⟩⟩⟩(I, z.z)

m

→m
dn D′′⟨D′⟨{I/ym}D′

m⟨. . . {I/y1}D′
1⟨I⟩⟩⟩⟩

where D′′ = Dl⟨{I/xl}Dl−1⟨. . . {I/xi+1}Di⟩⟩ and H′′ = {I/xj}i<j≤lDi−1⟨λxi−1. . . . D1⟨λx1.H′⟩⟩.
We conclude by taking D = D′′⟨D′⟨{I/ym}D′

m⟨. . . {I/y1}D′
1⟩⟩⟩ so that H⟨t⟩ →∗

dn D⟨I⟩. ◀

A.2 Call-by-Value
Before showing the property that sv-normalizable terms are CBV solvable, we need to show
that pv-normalizable terms are potentially valuable. Here also, we use an intermediate lemma
to prove that pv-nfs can be reduced to a value. The main difference between this lemma, as
well as the one for sv, and the corresponding one in CBN, is that we must assign arbitrary
terms on to free variables of t, and not just to the head variable. This lemma proceeds by
induction on the grammar NFpv, we do not give the proof for lack of space.

D. Kesner and L. Peyrot 18:21

▶ Lemma 43. For all t ∈ NFpv with fv(t) ⊆ {x1, . . . , xm}, there exists h ≥ |t|@ such that
for all n1, . . . , nm ≥ h there exists a value v such that {onm /xm} . . . {on1 /x1}t →∗

βv
v. If

t ∈ NEpv with hv(t) = xi (necessarily free), then v = oni−|t|@ .

▶ Lemma 21. Let t be a pv-normalizable term. Then t is potentially valuable.

Proof. Since t is pv-normalizable, then there is a pv-normal term t′ such that t →∗
pv t′.

Therefore t′ ∈ NFpv by Lem. 20. Let fv(t) = {x1, . . . , xm}, so that fv(t′) ⊆ {x1, . . . , xm}.
By Lem. 43, there is h ≥ |t′|@ such that {oh /xm} . . . {oh /x1}t′ →∗

βv
v for some value v.

Consider D = I(oh, x1.I(oh, x2. . . . I(oh, xm.♢) . . .)). Then,

D⟨t⟩ →∗
pv I(oh, x1. . . . I(oh, xm.t′)) →βv I(oh, x2. . . . I(oh, xm.{oh /x1}t′) . . .)

→∗
βv

{oh /xm} . . . {oh /x1}t′ →∗
βv

v (by Lem. 43)

As a consequence, D⟨t⟩ →∗
dv v. ◀

We are now ready to prove the property for sv-reduction. First, the intermediate Lemma.

▶ Lemma 44. For all t ∈ NFsv with fv(t) ⊆ {x1, . . . , xm}, there exist h ≥ |t|@, k ≥
0 such that for all n1, . . . , nm+k ≥ h there exists n ≥ 0 such that the following holds
{onm /xm} . . . {on1 /x1}t(onm+1 , . . . , onm+k , z.z) →∗

βv
on.

Proof. By induction on t ∈ NFsv.
t is a variable, thus t = xi. We take h = 0 = |xi|@, k = 0 so that for all n1, . . . , nm ≥ 0
we have {onm /xm} . . . {on1 /x1}t = oni . We let n = ni ≥ 0 and we conclude.
t = λx.s with s ∈ NFsv. We suppose w.l.o.g that x /∈ {x1, . . . , xm}. Then, fv(s) ⊆
{x, x1, . . . , xm}. By the i.h., there exist h′ ≥ |s|@ = |t|@, k′ ≥ 0 such that for all
n′, n1, . . . , nm+k ≥ h′ there exists n ≥ 0 such that

{on′
/x}{onm /xm} . . . {on1 /x1}s(onm+1 , . . . , onm+k′ , z.z) →∗

βv
on .

Taking h = h′ and k = k′ + 1 we have:

{onm /xm} . . . {on1 /x1}t(on′
, onm+1 , . . . , onm+k′ , z.z)

= λx.{onm /xm} . . . {on1 /x1}s(on′
, onm+1 , . . . , onm+k′ , z.z)

→βv {on′
\\x}{onm /xm} . . . {on1 /x1}s(onm+1 , . . . , onm+k′ , z.z)

= {on′
/x}{onm /xm} . . . {on1 /x1}s(onm+1 , . . . , onm+k′ , z.z) →∗

βv
on (by the i.h.)

t = s(u, y.r) with s ∈ NEpv, u ∈ NFpv and r ∈ NFsv. We suppose w.l.o.g that y /∈
{x1, . . . , xm}. Thus fv(r) ⊆ {y, x1, . . . , xm}. Let xj = hv(s) for some 1 ≤ j ≤ m. By
Lem. 43 and the i.h.respectively:

1. There is hs ≥ |s|@ s.t. for all ns
1, . . . , ns

m ≥ hs we have {ons
m /xm} . . . {ons

1 /x1}s →∗
βv

ons
j −|s|@ .

2. There is hu ≥ |u|@ such that for all nu
1 , . . . , nu

m ≥ hu there is a value v such that
{onm /xm} . . . {on1 /x1}u →∗

βv
v.

3. There are hr ≥ |r|@, k′ ≥ 0 such that for all ny, nr
1, . . . , nr

m+k′ ≥ hr there is n ≥ 0 such
that {ony /y}{onm /xm} . . . {on1 /x1}r(onm+1 , . . . , onm+k′ , z.z) →∗

βv
on.

We take h = max (hs + hr + 1, hu) ≥ |t|@ and we consider any n1, . . . , nm ≥ h.
We have h ≥ hs +hr +1 and thus n1, . . . , nm ≥ h implies in particular n1, . . . , nm ≥ hs.
This gives {onm /xm} . . . {on1 /x1}s →∗

βv
onj−|s|@ by (1).

FSCD 2022

18:22 Solvability for Generalized Applications

We have h ≥ hu and thus n1, . . . , nm ≥ h implies in particular n1, . . . , nm ≥ hu. This
gives {onm /xm} . . . {on1 /x1}u →∗

pv v by (2).
We have h ≥ hr + 1 > hr and thus n1, . . . , nm ≥ h implies in particular n1, . . . , nm ≥
hr + hs + 1 ≥ hr + |s|@ + 1 > hr. This gives n ≥ 0 such that by the i.h. (3)
{onj−|s|@−1 /y}{onm /xm} . . . {on1 /x1}r(onm+1 , . . . , onm+k′ , z.z) →∗

βv
on.

In summary, we reduce as follows:

{onm /xm} . . . {on1 /x1}t(onm+1 , . . . , onm+k , z.z)

→∗
βv

onj−|s|@(v, y.{onm /xm} . . . {on1 /x1}r)(onm+1 , . . . , onm+k , z.z)

→βv {onj−|s|@−1 /y}{onm /xm} . . . {on1 /x1}r(onm+1 , . . . , onm+k , z.z)
→∗

βv
on (by the i.h. (3)) ◀

▶ Lemma 24. Let t be an sv-normalizable term. Then t is CBV solvable.

Proof. Since t is sv-normalizable, then there is an sv-normal term t′ such that t →∗
sv t′.

Therefore t′ ∈ NFsv by Lem. 23. Let fv(t) = {x1, . . . , xm}, so that fv(t′) ⊆ {x1, . . . , xm}.
By Lem. 42, there are h, k ∈ N such that for all n1, . . . , nm+k ≥ h there is n ≥ 0
such that {onm /xm} . . . {on1 /x1}t′(onm+1 , . . . , onm+k , z.z) →∗

βv
on, which is also a dv-

step. We take n1, . . . , nm+k = h. We can then write (oh, . . . , oh, z.z) as (oh, z.z)
k
. Let

H = I(oh, xm. . . . I(oh, x1.♢) . . .)(oh, z.z)
k
(I, z.z)

n
. Then:

H⟨t⟩ →∗
sv H⟨t′⟩ →m

βv
dv{oh /xm} . . . {oh /x1}t′(oh, z.z)

k
(I, z.z)

n
→∗

βv
on (I, z.z)

n
→n

βv
I

As a consequence, H⟨t⟩ →dv I. ◀

B Quantitative Type Systems for λ-calculi with Explicit Substitutions

We use the following type system for the proofs of equivalence between our calculi and the
λ-calculus with explicit substitutions in Sec. 6.

We start with the CBN type system of [28]. The grammar of types is the same as ours
for the CBN system. This system differs, in the presentation only, by the fact that we write
(many) as a separate rule.

x : [σ] ⊢ x : σ
(ax)

(Γi ⊢ M : σi)
∧i∈IΓi ⊢ M : [σi]i∈I

(many)
Γ; x : M ⊢ M : σ

Γ ⊢ λx.M : M → σ
(→i)

Γ ⊢ M : M → σ ∆ ⊢ N : M
Γ ∧ ∆ ⊢ MN : σ

(→e)
Γ; x : M ⊢ M : σ ∆ ⊢ N : M

Γ ∧ ∆ ⊢ [N/x]M : σ
(cut)

For the CBV type system, we define a new type system using the rules of the system
from [5], but using our CBV type grammar. A difference in the presentation is that we
include rule (many) inside the rules for variables and abstractions. Typability is equivalent
in both systems.

x : M ⊢ x : M
(ax)

(Γi; x : Mi ⊢ M : σi)i∈I

∧i∈IΓi ⊢ λx.M : [Mi → σi]i∈I

(λ)

Γ ⊢ M : [M → N] ∆ ⊢ N : M
Γ ∧ ∆ ⊢ MN : N

(@)
Γ; x : M ⊢ M : σ ∆ ⊢ N : M

Γ ∧ ∆ ⊢ [N/x]M : σ
(es)

	1 Introduction
	2 The Distant Calculi with Generalized Applications
	2.1 Syntax
	2.2 CBN and CBV Operational Semantics

	3 Solvability for Generalized Applications
	4 Call-by-Name Solvability
	4.1 Operational Characterization of CBN Solvability
	4.2 Logical Characterization of CBN Solvability

	5 Call-by-Value Solvability
	5.1 Operational Characterization of CBV Solvability
	5.2 Logical Characterization of CBV Solvability

	6 Extension to Lambda Jn, Lambda Jv and the lambda-calculus
	6.1 Solvability for Lambda Jn and Lambda Jv
	6.2 Equivalence with Solvability in the lambda-Calculus

	7 Related Works and Conclusion
	A Main proofs
	A.1 Call-by-Name
	A.2 Call-by-Value

	B Quantitative Type Systems for lambda-calculi with Explicit Substitutions

