
Encoding Type Universes Without Using Matching
Modulo Associativity and Commutativity
Frédéric Blanqui ! Ï

Université Paris-Saclay, INRIA, ENS Paris-Saclay, CNRS, Laboratoire Méthodes Formelles,
4 avenue des Sciences 91190 Gif-sur-Yvette, France

Abstract
The encoding of proof systems and type theories in logical frameworks is key to allow the translation
of proofs from one system to the other. The λΠ-calculus modulo rewriting is a powerful logical
framework in which various systems have already been encoded, including type systems with an
infinite hierarchy of type universes equipped with a unary successor operator and a binary max
operator: Matita, Coq, Agda and Lean. However, to decide the word problem in this max-successor
algebra, all the encodings proposed so far use rewriting with matching modulo associativity and
commutativity (AC), which is of high complexity and difficult to integrate in usual algorithms for
β-reduction and type-checking. In this paper, we show that we do not need matching modulo AC
by enforcing terms to be in some special canonical form wrt associativity and commutativity, and
by using rewriting rules taking advantage of this canonical form. This work has been implemented
in the proof assistant Lambdapi.

2012 ACM Subject Classification Theory of computation → Logic; Theory of computation → Type
theory; Theory of computation → Equational logic and rewriting

Keywords and phrases logical framework, type theory, type universes, rewriting

Digital Object Identifier 10.4230/LIPIcs.FSCD.2022.24

Supplementary Material Software (Source Code): https://github.com/Deducteam/lambdapi/blob/
master/src/core/term.ml

archived at swh:1:cnt:4fe22b374435a880877522ae26106c089df55178

Acknowledgements The author thanks Thiago Felicissimo for his testing and remarks on the imple-
mentation of the present work in https://github.com/Deducteam/lambdapi, Guillaume Genestier
for his careful reading of a first version of this paper, Gaspard Férey for his remarks on a first version
of this paper, as well as the anonymous reviewers for their suggestions.

1 Introduction

The complete formalization of important mathematical theorems or software is possible but
still very costly in terms of time and expertise (seL4, compcert, odd-order theorem, etc.).
Moreover, all these certifications are specific to a given prover, and rely on its implementation
and maintenance. And it is currently very difficult to automatically translate developments
done in one system to another system, especially if those systems are based on different, and
possibly incompatible, foundations. Hence, there is a lot of work duplication, and it gets
more and more difficult for new proof systems to emerge as the development of standard
libraries is time-consuming and not very rewarding.

Logical frameworks. A way to improve this situation is to encode the axioms and rules
of proof systems into a common language, called a logical framework, so that a feature
(e.g. polymorphism) that is common to two different systems is encoded by the same
construction [10]. Using a logical framework for n systems allows one to reduce the number
of translators necessary to translate each system to all the others from O(n2) to O(2n).

© Frédéric Blanqui;
licensed under Creative Commons License CC-BY 4.0

7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022).
Editor: Amy P. Felty; Article No. 24; pp. 24:1–24:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:frederic.blanqui@inria.fr
https://blanqui.gitlabpages.inria.fr/
https://orcid.org/0000-0001-7438-5554
https://doi.org/10.4230/LIPIcs.FSCD.2022.24
https://github.com/Deducteam/lambdapi/blob/master/src/core/term.ml
https://github.com/Deducteam/lambdapi/blob/master/src/core/term.ml
https://archive.softwareheritage.org/swh:1:cnt:4fe22b374435a880877522ae26106c089df55178;origin=https://github.com/Deducteam/lambdapi;visit=swh:1:snp:4746d104ac26fd901e807a427806b3ee6b8f5118;anchor=swh:1:rev:a7717902b83d9b4ef8a1bf7d4b0ae43aa30585aa;path=/src/core/term.ml
https://github.com/Deducteam/lambdapi
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Encoding Type Universes Without Using Matching Modulo AC

The λΠ-calculus modulo rewriting, λΠ/R, is a good candidate for such a logical frame-
work [10]. In [14] already, Cousineau and Dowek proved that any functional pure type
system (PTS) [7] can be encoded in λΠ/R. Then, several other systems have been encoded:
higher-order logic and the OpenTheory format used by HOL-Light and HOL4, the calculus
of inductive constructions and the proof systems of Matita [5], Coq [17] and Agda [19].

λΠ/R extends the logical framework LF [22] by allowing the definition of function symbols
and types by a set R of rewriting rules [34]. LF itself extends Church’s simply-typed λ-
calculus with dependent types, that is, object-indexed type families. Given a type A, written
A : Type, the product of an A-indexed family of types (B(x))x∈A is written Πx : A, B(x), and
simply A → B if B(x) does not depend on x. In LF, types equivalent modulo β-conversion
are identified while, in λΠ/R, types equivalent modulo βR-conversion are identified.

For the type conversion and type-checking of λΠ/R to be decidable, one usually requires
the rewrite relation generated by β-reduction and rewrite rules, −→β ∪ −→R, to preserve
typing, be confluent (the order of reductions does not matter) and terminating (there is no
infinite rewrite sequence), and various criteria have been developed to check those properties
(see for instance [9, 19, 17]).

Type universes are a way to reify types, that is, to see types as objects [28], which
allows one to express polymorphism (quantification over types) and build models of type
theory in type theory, like in set theory inaccessible cardinals allow one to build models of ZF.
By iterating this process, we get an ω-indexed sequence of type-theoretic universes U0, U1, . . .

with each one being an element of the next one, usually written Ui : Ui+1 in type theory.
However, to keep the system consistent, some care must be taken when defining universe
constructors. For instance, if A : Ui and, for all x : A, B(x) : Uj , then, with predicative
universes, we must have (Πx : A, B(x)) : Umax(i,j).

Following [14], one can easily encode such an infinite hierarchy of type universes in λΠ/R,
by using the following λΠ/R infinite signature and set of rules:1

for each universe Ui, the symbols Ui : Type and Ti : Ui → Type;
for each axiom Ui : Ui+1, the symbol ui : Ui+1 and the rewrite rule Ti+1ui −→ Ui;
for each product from Ui to Uj , the symbol πi,j : Πx : Ui, (Ti x → Uj) → Umax(i,j) and
the rewrite rule Tmax(i,j)(πi,j x y) −→ Πz : Ti x, Tj(y z).

To get a finite signature, one can represent type universes in Peano arithmetic using the
following algebra [5]:

▶ Definition 1 (Max-successor algebra). The max-successor algebra L is the first-order term
algebra made of the symbols z of arity 0, s of arity 1 and ⊔ of arity 2, written infix. We
moreover take ⊔ of smaller priority than s so that sx ⊔ y is the same as (sx) ⊔ y. Then, let
C = V ∪ {z} where V some set of variables disjoint from function symbols.

The interpretation of a term t wrt a valuation µ : V → N is as expected:
z is interpretated as 0: zµ = 0,
s is interpreted as the successor function: (s t)µ = tµ + 1,
⊔ is interpreted as the binary max function on N: (u ⊔ v)µ = max(uµ, vµ).

Two terms t, u are equivalent, written t ≃ u, if, for all valuations µ, tµ = uµ.
In the following, we will denote by ≃A the equational sub-theory of ≃ generated by the

equation (t ⊔ u) ⊔ v = t ⊔ (u ⊔ v), and by ≃AC the equational sub-theory of ≃ generated by
the equations u ⊔ v = v ⊔ u and (t ⊔ u) ⊔ v = t ⊔ (u ⊔ v).

1 In λΠ/R, rules are sometimes presented as part of the signature [13, 30].

F. Blanqui 24:3

By using this algebra, we can then encode in λΠ/R a type system with an infinite
hierarchy of type universes using the following finite signature:

the symbols L : Type, z : L, s : L → L, ⊔ : L → L → L and the rules z ⊔ y −→ y,
x ⊔ z −→ x, (s x) ⊔ (s y) −→ s (x ⊔ y);
the symbols U : L → Type and T : Πi : L, U i → Type;
the symbol u : Πi : L, U (s i) and the rewrite rule T _ (u i) −→ U i;
the symbol π : Πi : L, Πj : L, Πx : U i, (T i x → U j) → U (i ⊔ j) and the rewrite rule
T _ (π i j x y) −→ Πz : T i x, T j (y z).

The rules defining ⊔ are indeed sufficient to decide whether t ≃ u when t and u are closed
terms (i.e. terms with no variables), which is necessary for deciding the type conversion
relation of λΠ/R.

Universe variables. This representation with universe variables is also useful to represent
systems with floating/elastic universes or universe polymorphism like in Coq or Agda
[33, 32, 2]. However, in this case, the rules defining ⊔ do not allow one to decide ≃ on open
terms (i.e. terms with variables), even if one adds the associativity and commutativity of
⊔ in the type conversion because, for instance, x ⊔ x = x (⊔ is idempotent), x ⊔ sx = sx,
x ⊔ s(sx) = s(sx), . . .

The relation ≃ on open terms is decidable though since it is a sub-theory of Presburger
arithmetic [29]. So, one solution could be to use as logical framework not λΠ/R but an
extension of LF with decision procedures, like CoqMT [8]. But the translation from such
a logical framework to HOL-Light, Coq, Agda, etc. would be more difficult or introduce
undesirable axioms in the target system.

In [6], Assaf and his coauthors introduced a presentation of the max-successor algebra
to deal with universe variables. They replaced the successor symbol s by two new symbols:
1 of arity 0, and + of arity 2. However, they had to use rewriting with matching modulo
associativity and commutativity (AC) of ⊔, and associativity, commutativity and unit (ACU)
of + (as z is a neutral element of +), and extend type conversion with those theories too.
But matching modulo AC or ACU is NP-complete [24, 25].

Finally, in [20], Genestier introduced another presentation of the max-successor algebra
that can be decided by using ≃AC and matching modulo ≃AC only (more details will be
given in Section 3).

However, efficient implementations of matching modulo AC or AC-equivalence rely on
data structures for representing terms that are different from the ones used for implementing
β-reduction and type-checking in dependent type systems [4, 35, 12, 1]. For instance, in
[15, 16], an AC symbol f is considered as varyadic (i.e. can take any number of arguments) and
terms are “flattened” so that f has no argument headed by f . The addition of AC-matching
and AC-equivalence in a type-checker for λΠ/R can therefore introduce inefficiencies and
bugs, and greatly increase the size of the code. For instance, the addition of AC-matching
and AC-equivalence in Dedukti doubled the size of the code2.

We can therefore wonder whether there is another way to handle universe variables that
is easier to implement in a type-checker for λΠ/R.

2 See https://github.com/Deducteam/Dedukti/pull/219.

FSCD 2022

https://github.com/Deducteam/Dedukti/pull/219

24:4 Encoding Type Universes Without Using Matching Modulo AC

Outline. In this paper, we give yet another presentation of the max-successor algebra
together with a new convergent rewrite system for deciding it that does not use matching
modulo AC. This can be achieved by keeping terms in some AC canonical form, following a
technique introduced in [11].

We start by giving a direct proof of decidability of the word problem in the max-successor
algebra. This will allow us to introduce some notions, like the one of canonical form, that is
at the basis of our new presentation. For the sake of completeness, we then recall Genestier’s
rewrite system with matching modulo AC. Then, in Section 4, we give a new presentation
of the max-successor algebra and a convergent rewrite system for deciding the equivalence
of two AC-canonical terms of a shape ensured by our translation. Finally, in Section 5, we
explain how to modify the code of a λΠ/R type-checker to ensure that every term can always
be in AC-canonical form. This work has been implemented in the proof assistant Lambdapi
and the code is freely accessible on https://github.com/Deducteam/lambdapi.

2 Word problem in the max-successor algebra

We first give a direct proof of decidability of ≃ by recalling the notion of canonical form for
the max-successor algebra introduced by Genestier in [20], by showing that two equivalent
terms have equal canonical forms, and by providing a recursive functional program for
computing the canonical form of a term. To this end, we reuse a terminology that is common
in the study of hetegeneous signatures [18, 21]:

▶ Definition 2 (Aliens, combs and caps). Given a binary symbol f , let aliensf : L → L+

be the function mapping every term to a non-empty list of terms such that aliensf (t) =
aliensf (u)aliensf (v) (the list concatenation being written by juxtaposition) if t = fuv, and
aliensf (t) = t (the singleton list) otherwise.

Conversely, let combf : L+ → L be the function mapping a non-empty list of terms to a
term such that combf [t] = t and, for all n ≥ 2, combf [t1, . . . , tn] = ft1combf [t2, . . . , tn].

Let an f-context be a term whose symbols are f or a distinguished variable □. Given
an f -context C with n occurrences of □ at the respective (disjoint) positions3 p1 < . . . < pn

(ordered lexicographically4), and n terms t1, . . . , tn, let C[t1, . . . , tn] be the term obtained by
replacing the occurrence of □ at position pi by ti for every i.

Given a term t, let capf (t) be the (unique) biggest f -context C such that t = C[aliensf (t)].

▶ Example. aliens⊔((x ⊔ y) ⊔ z) = [x; y; z], comb⊔[x; y; z] = x ⊔ (y ⊔ z), cap⊔((x ⊔ y) ⊔ z) =
((□⊔□)⊔□), Pos((x⊔y)⊔z) = {ε, 1, 2, 11, 12}, and cap⊔((x⊔y)⊔z)[t1, t2, t3] = (t1 ⊔ t2)⊔ t3.

▶ Lemma 3.
For all terms t, t ≃A comb⊔(aliens⊔(t)).
For all sequences of terms l, m and terms t, u, comb⊔(ltum) ≃AC comb⊔(lutm).
For all terms t1, . . . , tn, s(comb⊔[t1, . . . , tn]) ≃ comb⊔[s(t1), . . . , s(tn)]

Proof.
By definition, t = cap⊔(t)[aliens⊔(t)]. Let C be the canonical form of cap⊔(t) wrt the con-
vergent rewrite system made of the rewrite rule (x⊔y)⊔z → x⊔(y⊔z). We have cap⊔(t) ≃A

C, cap⊔(t)[aliens⊔(t)] ≃A C[aliens⊔(t)] and C[aliens⊔(t)] = comb⊔(aliens⊔(t)). Therefore,
t ≃A comb⊔(aliens⊔(t)).

3 The set Pos(t) of the positions in a term t is defined as usual as words on N: Pos(x) = {ε} where ε is
the empty word, and Pos(ft1 . . . tn) = {ε} ∪ {ip | 1 ≤ i ≤ n, p ∈ Pos(ti)}.

4 ip < jq if i < j or else i = j and p < q.

https://github.com/Deducteam/lambdapi

F. Blanqui 24:5

By induction on l.
Case l empty. If m is empty, comb⊔(tu) ≃AC comb⊔(ut). Otherwise, comb⊔(tum) =
t ⊔ (u ⊔ comb⊔(m)) ≃AC u ⊔ (t ⊔ comb⊔(m)) = comb⊔(utm).
Case l = al′. comb⊔(ltum) = a ⊔ comb⊔(l′tum). By induction hypothesis,
comb⊔(l′tum) ≃AC comb⊔(l′utm). Therefore, comb⊔(ltum) ≃AC comb⊔(lutm).

First note that, for all x and y, s(x ⊔ y) ≃ (sx) ⊔ (sy). We then proceed by induction
on n. If n = 1, this is immediate since comb⊔[t] = t. If n ≥ 2, s(comb⊔[t1, . . . , tn]) =
s(t1 ⊔ comb⊔[t2, . . . , tn]) ≃ (st1) ⊔ (s(comb⊔[t2, . . . , tn])). By induction hypothesis,
s(comb⊔[t2, . . . , tn]) ≃ comb⊔[s(t2), . . . , s(tn)]. Therefore,
s(comb⊔[t1, . . . , tn]) ≃ comb⊔[s(t1), . . . , s(tn)]. ◀

▶ Definition 4 (s-terms, S-function and total order on s-terms). A term is an s-term if it
contains no ⊔ symbol.

For all s-terms t, there is a unique pair (k, x) ∈ N × C such that t = S k x, where
S : N → L → L is the (meta-level) function such that S 0 t = t and, for all n ≥ 1,
S n t = S (n − 1) (s t).

Assuming that C is totally ordered, we define a total order on s-terms by taking Spx ≤ Sqy

iff x ≤ y or else x = y and p ≤ q.

▶ Definition 5 (Canonical forms). A term t ∈ L is in canonical form if:
t = comb⊔[aliens⊔(t)],
aliens⊔(t) is a strictly increasing list of s-terms (in the order of Definition 4),
t is linear (every variable occurs at most once),
if S k z and S l x are aliens of t then k > l.

▶ Lemma 6.
Two equivalent canonical forms are equal.
Every term is equivalent to a canonical form.

Proof.
Let t and u be two equivalent canonical forms. t and u have the same variables x1, . . . , xn

since, otherwise, they could not have the same interpretation for all valuations. Let
Sk1x1, . . . , Sknxn be the aliens of t not of the form Skz, and Sl1x1, . . . , Slnxn be the
aliens of u not of the form Skz.
Assume that t has an alien of the form Sk0z and u has no alien of the form Skz. Then,
n > 0 and 0 ≤ kn < k0. But, by taking xiµ = 0 for all i, we get tµ = k0 and uµ = 0,
which is not possible since t ≃ u.
Assume that t has an alien of the form Sk0z and u has an alien of the form Sl0z. By
taking xiµ = 0 for all i, we get tµ = k0 and uµ = l0. Therefore, k0 = l0.
Let now M = max({ki|1 ≤ i ≤ n} ∪ {li|1 ≤ i ≤ n}), N = max(M, k) if t and u have
an alien of the form Skz, and N = M otherwise. For all i ≥ 1, let µi be the valuation
mapping xi to N and all other variables to 0. Then, tµ = N + ki and uµ = N + li.
Therefore, ki = li for all i, and t = u.
We prove that, for all terms t, there is a canonical form t′ such that t ≃ t′, by induction
on the size of t.

Case t is a variable or z. This is immediate since t is in canonical form.
Case t = su. By induction hypothesis, u ≃ u′ in canonical form. Let [u1, . . . , un] be
the aliens of u′. We have t ≃ su′ = s(comb⊔[u1, . . . , un]) ≃ comb⊔[s(u1), . . . , s(un)].
[s(u1), . . . , s(un)] is a strictly increasing list of s-terms. Moreover, if Skz and Slx are
elements of this list, then k > l. Therefore, comb⊔[s(u1), . . . , s(un)] is a canonical
form.

FSCD 2022

24:6 Encoding Type Universes Without Using Matching Modulo AC

Case t = u ⊔ v. By induction hypothesis, u ≃ u′ in canonical form, and v ≃ v′ in
canonical form. Given a list of s-terms, let sort(l) be the function putting the elements
of l in increasing order. We have comb⊔(l) ≃AC comb⊔(sort(l)). Given an increasing
list of s-terms, let merge(l) be the function that, starting from l:
∗ replaces any two (adjacent) terms Spx, Sqx by the single term S(p ⊔N q)x,
∗ removes any term Spz if there is also some term Sqx with p ≤ q.
We have comb⊔(l) ≃ comb⊔(merge(l)) since Spx ⊔ Sqx ≃ S(p ⊔N q)x and Spz ⊔
Sqx ≃ Sqx if p ≤ q. Let now l = aliens⊔(u′) and m = aliens⊔(v′). Then,
t ≃ u′ ⊔ v′ = comb⊔(aliens⊔(u′ ⊔ v′)) = comb⊔(lm) ≃AC comb⊔(sort(lm)) ≃
comb⊔(merge(sort(lm))), which is in canonical form. ◀

It follows that, for checking whether t ≃ u, it suffices to compute and syntactically
compare the canonical forms of t and u. This could be easily done in any programming
language. However, we are interested in implementing this in the logical framework λΠ/R
and its implementation Lambdapi, which allows one to define functions by using rewriting
rules with syntactic matching only. However, before showing that this can indeed be done,
we are first going to see a solution using rewriting with matching modulo AC proposed in
[20] and implemented in Dedukti thanks to the addition of matching modulo AC in Dedukti
by Gaspard Férey (see p. 92 in [17]).

3 Decision procedure using matching modulo AC

In this section, we recall the rewriting system using matching modulo AC proposed by
Genestier in [20] for deciding ≃. The idea is to represent the terms of L as the maximum of
a natural number and of a finite set of expressions corresponding to the terms S l x with x a
variable. To do so, Genestier uses a multi-sorted term algebra with three sorts:5

The sort N with the constructors 0 : N, s : N → N, + : N × N → N and ⊕ : N × N → N written
infix, with ⊕ of priority smaller than s, to represent arithmetic expressions on natural
numbers. The sort N is interpreted as N, 0 as 0, s as the successor function, + as the
addition, and ⊕ as the maximum.
The sort E with the constructors ∅ : E, a : N × L → E, ∪ : E × E → E written infix, and
A : N×E → E, to represent the maximum of a finite set of arithmetic expressions. The sort
E is interpreted as N ∪ {−∞}, ∅ as −∞, a and A as the addition with x + (−∞) = −∞,
and ∪ as the maximum. a k t represents the singleton set {k + t}, and the auxiliary
function A k E (called mapPlus in [20]) adds k to every element of E.
The sort L with the constructor m : N × E → L. The sorts L is interpreted as N, and m as
the maximum.

A term of L is translated to a term of sort L with the same interpretation as follows:
|x| = x,
|z| = m 0 ∅,
|s t| = m (s 0) (a (s 0) |t|)
|u ⊔ v| = m 0 ((a 0 |u|) ∪ (a 0 |v|))

Then, Genestier introduces a rewrite system, that we will call G, made of the rewrite
rules of Figure 1 and of the rewrite rules of Figure 2. The second rule for ∪ corresponds to
the equation (p + x) ⊕ (q + x) = (p ⊕ q) + x. It allows one to have at most one occurrence of

5 In [20], ⊔ is denoted by max, E by LSet, a by ⊕, A by mapPlus, and m by Max.

https://blanqui.gitlabpages.inria.fr/
https://github.com/Deducteam/dedukti
https://github.com/Deducteam/dedukti

F. Blanqui 24:7

0 + q −→ q

s p + q −→ s (p + q)

p ⊕ 0 −→ p

0 ⊕ q −→ q

s p ⊕ s q −→ s (p ⊕ q)

Figure 1 Rewrite rules for addition and maximum on natural numbers.

X ∪ ∅ −→ X

(a p x) ∪ (a q x) −→ a (p ⊕ q) x

A p ∅ −→ ∅
A p (a q x) −→ a (p + q) x

A p (X ∪ Y) −→ (A p X) ∪ (A p Y)

m 0 (a 0 x) −→ x

m p (a q (m rX)) −→ m (p ⊕ (q + r)) (A q X)
m p ((a q (m rX)) ∪ Y) −→ m (p ⊕ (q + r)) ((A q X) ∪ Y)

Figure 2 The system G for computing canonical forms with matching modulo AC includes the
above rules as well as the rules of Figure 1.

every variable x. The second rule of A corresponds to the equation p + (q + x) = (p + q) + x,
while the third rule of A corresponds to the equation p + (x ⊕ y) = (p + x) ⊕ (p + y). The
rules of m are the main rules for computing the canonical form. The first rule corresponds to
the equation 0 ⊕ (0 + x) = x. The second rule corresponds to the equation p ⊕ (q + (r ⊕
(k1 + x1) ⊕ . . . ⊕ (kn + xn))) = (p ⊕ (q + r)) ⊕ (q + k1 + x1) ⊕ . . . (q + kn + xn). The last rule
is similar.

Genestier then proves the following properties:
The rewrite relation −→G,AC generated by G using matching modulo associativity and
commutativity of ∪ is not confluent on terms with variables of sort N or E.
For all terms t in L, any −→G,AC-normal form of |t| is either a variable or of the form
m p ((a q1 x1) ∪ . . . ∪ (a qn xn)) with x1, . . . , xn distinct variables and, for all k, qk ≤ p.
Two such normal forms are equal modulo associativity-commutativity of ∪.

To these results, we can add:

▶ Lemma 7. The relation −→G/AC = ≃AC−→G≃AC generated by G on AC-equivalence
classes, which contains −→G,AC , terminates.

Proof. It can be automatically proved by, for instance AProVE [3], using 3 consecutive strictly
monotone polynomial interpretations on N, and then formally certified in Isabelle/HOL by
CeTA6. ◀

6 http://cl-informatik.uibk.ac.at/software/ceta/

FSCD 2022

http://cl-informatik.uibk.ac.at/software/ceta/

24:8 Encoding Type Universes Without Using Matching Modulo AC

4 Getting rid of matching modulo AC

In this section, we present our main contribution: a new presentation of L and a new rewrite
system not using matching modulo AC. It is inspired by the decidability proof of Section 2.

The main problem for computing the canonical form of a term is to be able to replace an
expression of the form Spx ⊔ (Sry ⊔ Sqx) by S(p ⊕ q)x ⊔ Sry. One way to do it is by using
the rule (4) of Figure 3 with matching modulo AC. Indeed, we have Spx ⊔ (Sry ⊔ Sqx) ≃AC

Spx ⊔ (Sqx ⊔ Sry) −→R S(p ⊕ q)x ⊔ Sry. Another way to do it is to make sure that
the aliens of a term are always ordered so that two aliens Spx and Sqx sharing the same
variable x are always put side by side. Following [11], this can be achieved by replacing
constructors by construction functions, that is here, ⊔ by some new function symbol ⊔′

which will rearrange its aliens so as to get such an AC-canonical form. Hence, we get
Spx ⊔′ (Sry ⊔′ Sqx) ≃AC Spx ⊔ (Sqx ⊔ Sry) −→R S(p ⊕ q)x ⊔ Sry.

Again, we translate terms of L into a multi-sorted term algebra. However, our algebra is
simpler than Genestier’s algebra. Like [20], we distinguish expressions representing natural
numbers from the other expressions by using distinct sorts. However, we do not introduce
a new sort for sets but simply extend L-terms with a new symbol S corresponding to the
(meta-level) function S of Definition 4.

We consider the multi-sorted term algebra I with two sorts N and L, and the constructors
0 : N, s : N → N, + : N × N → N and ⊕ : N × N → N written infix, z : L, S : N × L → L and
⊔ : L → L → L. Again, we assume that ⊕ is of priority smaller than s. All the sorts are
interpreted as N, 0 as 0, s as the successor function, + and S as the addition, and ⊕ as the
maximum.

▶ Definition 8 (Guarded terms). An I-term is guarded if every occurrence of an element
x ∈ C of sort L is in a subterm of the form S p x.

The idea behind guarded terms is to represent an L-term of the form S k x by the I-term
S k x, where k is the representation of k in N.

An L-term is translated into a guarded I-term of sort L with the same interpretation in
N as follows:

|x| = S 0 x ⊔ S 0 z
|z| = S 0 z
|s t| = S (s 0) |t|
|u ⊔ v| = |u| ⊔ |v|

For each occurrence of a variable, we add an occurrence of z so that, after normalization
(see below), we get a term of the form S p1 x1 ⊔ . . . ⊔ S pn xn ⊔ S q z with pi ≤ q.

▶ Definition 9 (AC-canonical forms). Let ≤ be any total order on I-terms such that S p x ≤
S q y iff x < y or else x = y and p ≤ q.7

An I-term t is in AC-canonical form if t = comb⊔[sort(aliens⊔(t))] and every element
of aliens⊔(t) − {t} is in AC-canonical form, where sort(l) is the elements of l in increasing
order wrt ≤.

Let ↠AC be the relation mapping every term t to its unique AC-canonical form [t].

Two terms are AC-equivalent iff their AC-canonical forms are equal.

7 Take for instance the lexicographic path ordering generated by any total precedence on function symbols
and variables, and right-to-left comparison of the arguments of S.

F. Blanqui 24:9

Note that AC-canonization is a canonizer in the sense of Shostak [31]. It satisfies the
properties (CAN-1) to (CAN-5) explicited in [26]: (CAN-1) it is idempotent; (CAN-2) it
decides ≃AC ; (CAN-3) it preserves variables; (CAN-4) every subterm of a canonical term is
canonical; and (CAN-5) it commutes with order-preserving variable renamings.

We now introduce the rewrite relation that we will use to decide ≃:

▶ Definition 10 (Rewriting modulo AC-canonization). Let −→AC
R = −→R↠AC , where R is

made of the rewrite rules of Figures 1 and 3.

An −→AC
R step is a standard −→R step with syntactic matching followed by AC-

canonization. We will see in Section 5 that AC-canonization is easily implemented by
replacing constructors by construction functions, so that AC-canonization is implicitly done
at term construction time [11]. In other words, our decision procedure reduces to standard
rewriting with syntactic matching but on a restricted set of terms, namely the terms in
AC-canonical form.

This notion of rewriting is close to the notion of normal rewriting [27], which consists
in applying a standard rewrite step after normalization wrt a convergent rewrite system S.
The difference is that AC-canonization cannot defined by a convergent rewrite system.

One can easily check that the rules of R preserve guardedness (if t is guarded and
t −→AC

R u, then u is guarded too) and are semantically correct (−→AC
R ⊆ ≃). Indeed, the

first rule corresponds to the associativity of +: p + (q + x) = (p + q) + x. The second rule
corresponds to the distributivity of + over ⊕: p+(x⊕y) = (p+x)⊕ (p+y). On the contrary,
the last two rules factorize identical monoms that are side by side: (p+x)⊕(q+x) = (p⊕q)+x.

(1) S p (S q x) −→ S (p + q) x

(2) S p (x ⊔ y) −→ S p x ⊔ S p y

(3) S p x ⊔ S q x −→ S (p ⊕ q) x

(4) S p x ⊔ (S q x ⊔ y) −→ S (p ⊕ q) x ⊔ y

Figure 3 Rewrite system on canonical forms.

We now prove that the relation −→AC
R terminates and is confluent on guarded terms

with no variables of sort N.

▶ Lemma 11. The relation −→R/AC = ≃AC−→R≃AC , which contains −→AC
R , terminates.

Proof. AProVE8 automatically proves the termination of −→R/AC by a succession of 3
strictly monotone polynomial interpretations on N, and its result can be formally checked by
CeTA:

PSx1x2 = 3 + x1 + 3x1x2 + 3x2
P+x1x2 = x1 + 2x1x2 + x2
P⊔x1x2 = 3 + x1 + x2
Psx1 = x1
P⊕x1x2 = 1 + x1 + x2
P0 = 1

validates all the rules as well as the AC axioms of ⊔9 and strictly orients all the rules except
the last rules of + and ⊕.

8 http://aprove.informatik.rwth-aachen.de/
9 A polynomial P xy validates the AC axioms iff P xy = axy + b(x + y) + c with b(b − 1) = ac.

FSCD 2022

http://aprove.informatik.rwth-aachen.de/

24:10 Encoding Type Universes Without Using Matching Modulo AC

P+x1x2 = x1 + x2
P⊔x1x2 = 3 + 3x1 + 2x1x2 + 3x2
Psx1 = 3 + x1
P⊕x1x2 = 1 + x1 + 2x2

validates all the rules and equations and strictly orients the last rule of ⊕.

P+x1x2 = 3 + 3x1 + 2x1x2 + 2x2
P⊔x1x2 = 3 + 3x1 + 2x1x2 + 3x2
Psx1 = 3 + 2x1

validates all the rules and equations and strictly orients the last rule of +. ◀

▶ Lemma 12. The rewrite relation −→N generated by the rules of Figure 1 terminates and
is confluent. Moreover, for all closed terms p, q, r of sort N, the following pairs of terms are
joinable with −→N :

(p + q) + r = p + (q + r)
p + q = q + p

(p ⊕ q) ⊕ r = p ⊕ (q ⊕ r)
p ⊕ q = q ⊕ p

p + (q ⊕ r) = (p + q) ⊕ (p + r)

Proof. The relation −→N terminates since it is included in the lexicographic path ordering
with +, ⊕ > s. It is confluent since it is weakly orthogonal. So, every term of sort N has a
unique normal form. Hence, it is sufficient to prove that the above equations are valid in the
equational theory generated by N .

A closed term of sort N in normal form wrt −→N cannot contain a subterm of the form
p + q or p ⊕ q since, otherwise, the smallest such subterm would be reducible by one of the
rules of N . Hence, every closed term of sort N in normal form wrt −→N is of the form Sk0
with k ∈ N, where the (meta-level) function S is defined in Definition 4.

It therefore suffices to prove the above equations by using only induction on natural
numbers and the rules of N . This can easily be done in Lambdapi for instance. See
https://github.com/fblanqui/lib. ◀

▶ Lemma 13. −→AC
R is locally confluent on AC-canonical guarded terms with no variables

of sort N.

Proof. We show that every critical pair is joinable using −→AC
R and Lemma 12. In the

following, the terms that are not between square brackets are in AC-canonical form. We also
write [p ⊕ q] to denote either p ⊕ q or q ⊕ p.
(1) S p (S q x) −→ S (p + q) x is overlapped by:

(1) By taking x = Srx. We have
t = Sp(Sq(Srx)) −→AC

1 S(p + q)(Srx) −→AC
1 S((p + q) + r)x

and t −→AC
1 Sp(S(q + r)x) −→AC

1 S(p + (q + r))x.
(2) By taking x = x ⊔ y. We have

t = Sp(Sq(x ⊔ y)) −→AC
1 S(p + q)(x ⊔ y) −→AC

2 s(p + q)x ⊔ S(p + q)y
and t −→AC

2 Sp(Sqx ⊔ Sqy) −→AC
2 Sp(Sqx) ⊔ Sp(Sqy)

−→AC
1 [S(p + q)x ⊔ Sp(Sqy)] −→AC

1 S(p + q)x ⊔ S(p + q)y.
(2) S p (x ⊔ y) −→ S p x ⊔ S p y is overlapped by:

(3) By taking x = Sqx and y = Srx. We have
t = Sp(Sqx ⊔ Srx) −→AC

2 Sp(Sqx) ⊔ Sp(Srx) −→AC
1 [S(p + q)x ⊔ Sp(Srx)]

−→AC
1 [S(p + q)x ⊔ S(p + r)x] −→AC

3 S[(p + q) ⊕ (p + r)]
and t −→AC

3 Sp(S(q ⊕ r)x) −→AC
1 S(p + (q ⊕ r))x.

https://github.com/fblanqui/lib

F. Blanqui 24:11

(4) By taking x = Sqx and y = Srx ⊔ y. We have
t = Sp(Sqx ⊔ (Srx ⊔ y)) −→AC

2 [Sp(Sqx) ⊔ Sp(Srx ⊔ y)]
−→AC

1 [S(p + q)x ⊔ Sp(Srx ⊔ y)] −→AC
2 [S(p + q)x ⊔ (Sp(Srx) ⊔ Spy)]

−→AC
1 [S(p + q)x ⊔ (S(p + r)x ⊔ Spy)] −→AC

4 [S[(p + q) ⊕ (p + r)]x ⊔ Spy]
and t −→AC

4 [Sp(S(q ⊕ r)x ⊔ y)] −→AC
2 [Sp(S(q ⊕ r)x) ⊔ Spy]

−→AC
1 [S(p + (q ⊕ r))x ⊔ Spy].

(3) S p x ⊔ S q x −→ S (p ⊕ q) x is overlapped by:
(1) By taking x = Srx. We have

t = Sp(Srx) ⊔ Sq(Srx) −→AC
3 S(p ⊕ q)(Srx) −→AC

1 S((p ⊕ q) + r)x
and t −→AC

1 [S(p + r)x ⊔ Sq(Srx)] −→AC
1 [S(p + r)x ⊔ S(q + r)x]

−→AC
3 S[(p + r) ⊕ (q + r)]x.

(2) By taking x = x ⊔ y. We have
t = Sp(x ⊔ y) ⊔ Sq(x ⊔ y) −→AC

3 S(p ⊕ q)(x ⊔ y) −→AC
2 [S(p ⊕ q)x ⊔ S(p ⊕ q)y]

and t −→AC
2 [(Spx ⊔ Spy) ⊔ Sq(x ⊔ y)] −→AC

2 [(Spx ⊔ Spy) ⊔ (Sqx ⊔ Sqy)]
−→AC

3 [Spx ⊔ (Sqx ⊔ S(p ⊕ q)y)] −→AC
4 [S(p ⊕ q)x ⊔ S(p ⊕ q)y].

(4) S p x ⊔ (S q x ⊔ y) −→ S (p ⊕ q) x ⊔ y is overlapped by:
(1) By taking x = Srx. We have

t = Sp(Srx) ⊔ (Sq(Srx) ⊔ y) −→AC
4 [S(p ⊕ q)(Srx) ⊔ y]

−→AC
1 [S((p ⊕ q) + r)x ⊔ y]

and t −→AC
1 [S(p + r)x ⊔ (Sq(Srx) ⊔ y)]

−→AC
1 [S(p + r)x ⊔ (S(q + r)x ⊔ y)] −→AC

4 [S[(p + r) ⊕ (q + r)]x ⊔ y].
(2) By taking x = x1 ⊔ x2. We have

t = Sp(x1 ⊔ x2) ⊔ (Sq(x1 ⊔ x2) ⊔ y) −→AC
4 [S(p ⊕ q)(x1 ⊔ x2) ⊔ y]

−→AC
2 [S(p ⊕ q)x1 ⊔ (S(p ⊕ q)x2 ⊔ y)] = u

and t −→AC
2 [(Spx1 ⊔ Spx2) ⊔ (Sq(x1 ⊔ x2) ⊔ y)]

−→AC
2 [(Spx1 ⊔ Spx2) ⊔ ((Sqx1 ⊔ Sqx2) ⊔ y)] = v.

Since t is guarded, wlog we can assume that
aliens⊔(y) = l1, Sr1x1, .., Srmx1, l2, Ss1x2, .., Ssnx2, l3.
Then, u can be reduced to comb⊔[l1, Sax1, l2, Sbx2, l3], where
a = comb⊕[r1, .., p ⊕ q, .., rm] and b = comb⊕[s1, .., p ⊕ q, .., sn],
by applying m + n times −→AC

4 ,
and v can be reduced to comb⊔[l1, Sa′x1, l2, Sb′x2, l3], where
a′ = comb⊕[r1, .., p, .., q, .., rm] and b′ = comb⊕[s1, .., p, .., q, .., sn],
by applying m + n + 2 times −→AC

4 .
(3) By taking y = Srx. We have

t = Spx ⊔ (Sqx ⊔ Srx) −→AC
4 [S(p ⊕ q)x ⊔ Srx] −→AC

3 S((p ⊕ q) ⊕ r)x
and t −→AC

3 [Spx ⊔ S(q ⊕ r)x] −→AC
3 S(p ⊕ (q ⊕ r))x.

(4) By taking y = Srx ⊔ y. We have
t = Spx ⊔ (Sqx ⊔ (Srx ⊔ y)) −→AC

4 [S(p ⊕ q)x ⊔ (Srx ⊔ y)] = u

and t −→AC
4 [Spx ⊔ (S(q ⊕ r)x ⊔ y)] = v.

Since t is guarded, wlog we can assume that aliens⊔(y) = Sr1x, .., Srmx, l.
Then, u can be reduced to comb⊔[Sra, l], where
a = comb⊕[r0, .., p ⊕ q, .., rm] and r0 = r, by applying m + 1 times −→AC

4 ,
and v can be reduced to comb⊔[Sa′x, l],
where a′ = comb⊕[r0, .., p, .., q, .., rm], by applying m + 2 times −→AC

4 . ◀

Hence, every L-term has, after translation into an I-term, a unique normal form wrt
−→AC

R . We now prove that this normal form is almost a canonical form, and that it is
sufficient to decide ≃.

FSCD 2022

24:12 Encoding Type Universes Without Using Matching Modulo AC

▶ Lemma 14. For all L-terms t and u, we have t ≃ u iff [|t|] and [|u|] have the same normal
form wrt −→AC

R , where [|t|] is the AC-canonical form of the translation of t in I.

Proof. Wlog we can assume that x ≤ z for all x.
Let T be the set of I-terms containing z that are guarded and have no variable of sort N.
First note that every T -term that is in normal form wrt −→AC

R is of the form S p1 x1 ⊔
. . . ⊔ S pn xn ⊔ S q z with x1 < . . . < xn < z and pi ≤ q for all i. Hence, the −→AC

R -normal
form of [|t|] is t′ = S p1 x1 ⊔ . . . ⊔ S pm xm ⊔ S q z with x1 < . . . < xm < z and pi ≤ q, and the
−→AC

R -normal form of [|u|] is u′ = S p′
1 x′

1 ⊔ . . . ⊔ S p′
n x′

n ⊔ S q′ z with x′
1 < . . . < x′

n < z and
p′

i ≤ q′.
Note also that t ≃ |t| ≃ [|t|] ≃ t′, and similarly for u and u′.
Hence, if t′ = u′ then t ≃ u.
Conversely, assume that t ≃ u. Then, t′ ≃ u′, and t′ and u′ have the same canonical

form. But a −→AC
R -normal form S p1 x1 ⊔ . . . ⊔ S pn xn ⊔ S q z with x1 < . . . < xn < z and

pi ≤ q is almost a canonical form: it is a canonical form iff n = 0 or pn < q. Moreover, if it
is not canonical, then n > 0 and pn = q, and its canonical form is S p1 x1 ⊔ . . . ⊔ S pn xn. So,
m = n and, for all i, pi = p′

i and xi = x′
i. Moreover, since t′ ≃ u′, we have pn < q iff p′

n < q′.
Therefore, q = q′ and t′ = u′. ◀

▶ Remark. The function mapping every L-term t to the unique −→AC
R normal form of [|t|]

is not a canonizer in the sense of Shostak as it is not an endofunction. On the other hand,
the function mapping every term of T (guarded terms containing z with no variable of
sort N) to its −→AC

R normal form is a canonizer in the sense of Shostak as it satisfies the
following properties [26]: (CAN-1) it is idempotent; (CAN-2) it decides ≃ on T ; (CAN-3)
it preserves variables; (CAN-4) every subterm of a canonical term is canonical; and even
(CAN-5) canonization commutes with order-preserving variable renamings.

5 Implementation of AC-canonization

To implement AC-canonization in Lambdapi [23], we use an approach introduced in [11].
AC-canonization is done at term construction time. More precisely, we use the mechanism of
private data type of OCaml. A private data type is a semi-abstract data type: it is defined
as an inductive data type so that users can pattern-match on values of this type but, to build
values of this type, one needs to use construction functions. With this mechanism, one can
easily enforce some invariant like, here, to have only terms in AC-canonical form. To do so,
we only have to replace constructors by construction functions, which is easy and does not
require big changes in the code, and implement those construction functions10. Moreover,
to implement them, we can take advantage of the fact that their arguments are themselves
already in AC-canonical form. Finally, note that, by doing so, we get AC-equivalence in
the type conversion of Lambdapi for free. On the other hand, we had to slightly adapt the
normalization algorithm of Lambdapi [23] to take into account the fact that terms are now
put in AC-canonical form after each rewriting step, which may generate new redexes.

10 See https://github.com/Deducteam/lambdapi/pull/639.

https://github.com/Deducteam/lambdapi/pull/639

F. Blanqui 24:13

References
1 B. Accattoli and B. Barras. Environments and the complexity of abstract machines. In

Proceedings of the 19th International Conference on Principles and Practice of Declarative
Programming, 2017. doi:10.1145/3131851.3131855.

2 Agda sort system. https://agda.readthedocs.io/en/latest/language/sort-system.html.
3 http://aprove.informatik.rwth-aachen.de/.
4 A. Asperti, W. Ricciotti, C. Sacerdoti Coen, and E. Tassi. A bi-directional refinement algorithm

for the calculus of (co)inductive constructions. Logical Methods in Computer Science, 8:1–49,
2012. doi:10.2168/LMCS-8(1:18)2012.

5 A. Assaf. A framework for defining computational higher-order logics. PhD thesis, École
Polytechnique, France, 2015. URL: https://tel.archives-ouvertes.fr/tel-01235303/.

6 A. Assaf, G. Dowek, J.-P. Jouannaud, and J. Liu. Encoding proofs in Dedukti: the case of Coq
proofs, 2016. Presented at the First International Workshop on Hammers for Type Theories
(HaTT). URL: https://hal.inria.fr/hal-01330980.

7 H. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of logic in computer science. Volume 2. Background: computa-
tional structures, pages 117–309. Oxford University Press, 1992.

8 B. Barras, J.-P. Jouannaud, P.-Y. Strub, and Q. Wang. CoqMTU: a higher-order type
theory with a predicative hierarchy of universes parameterized by a decidable first-order
theory. In Proceedings of the 26th IEEE Symposium on Logic in Computer Science, 2011.
doi:10.1109/LICS.2011.37.

9 F. Blanqui. Type safety of rewrite rules in dependent types. In Proceedings of the 5th
International Conference on Formal Structures for Computation and Deduction, Leibniz
International Proceedings in Informatics 167, 2020. doi:10.4230/LIPIcs.FSCD.2020.13.

10 F. Blanqui, G. Dowek, E. Grienenberger, G. Hondet, and F. Thiré. Some axioms for
mathematics. In Proceedings of the 6th International Conference on Formal Structures
for Computation and Deduction, Leibniz International Proceedings in Informatics 195, 2021.
doi:10.4230/LIPIcs.FSCD.2021.20.

11 F. Blanqui, T. Hardin, and P. Weis. On the implementation of construction functions for
non-free concrete data types. In Proceedings of the 16th European Symposium on Programming,
Lecture Notes in Computer Science 4421, 2007. 15 pages. doi:10.1007/978-3-540-71316-6_8.

12 M. Boespflug, M. Dénès, and B. Grégoire. Full reduction at full throttle. In Proceedings of the
1st International Conference on Certified Programs and Proofs, Lecture Notes in Computer
Science 7086, 2011. doi:10.1007/978-3-642-25379-9_26.

13 J. Chrząszcz. Modules in Coq are and will be correct. In Proceedings of the International
Workshop on Types for Proofs and Programs, Lecture Notes in Computer Science 3085, 2003.
doi:10.1007/978-3-540-24849-1_9.

14 D. Cousineau and G. Dowek. Embedding pure type systems in the lambda-Pi-calculus modulo.
In Proceedings of the 8th International Conference on Typed Lambda Calculi and Applications,
Lecture Notes in Computer Science 4583, 2007. doi:10.1007/978-3-540-73228-0_9.

15 S. Eker. Fast matching in combinations of regular equational theories. In Proceedings of the 1st
International Workshop on Rewriting Logic and Applications, Electronic Notes in Theoretical
Computer Science 4, 1996. doi:10.1016/S1571-0661(04)00035-0.

16 S. Eker. Associative-commutative rewriting on large terms. In Proceedings of the 14th
International Conference on Rewriting Techniques and Applications, Lecture Notes in Computer
Science 2706, 2003. doi:10.1007/3-540-44881-0_3.

17 G. Férey. Higher-Order Confluence andUniverse Embedding in theLogical Framework. PhD
thesis, Université Paris-Saclay, France, 2021.

18 M. Fernández and J.-P. Jouannaud. Modular termination of term rewriting systems revisited.
In Proceedings of the 10th International Workshop on Specification of Abstract Data Types,
Lecture Notes in Computer Science 906, 1994. doi:10.1007/BFb0014432.

FSCD 2022

https://doi.org/10.1145/3131851.3131855
https://agda.readthedocs.io/en/latest/language/sort-system.html
http://aprove.informatik.rwth-aachen.de/
https://doi.org/10.2168/LMCS-8(1:18)2012
https://tel.archives-ouvertes.fr/tel-01235303/
https://hal.inria.fr/hal-01330980
https://doi.org/10.1109/LICS.2011.37
https://doi.org/10.4230/LIPIcs.FSCD.2020.13
https://doi.org/10.4230/LIPIcs.FSCD.2021.20
https://doi.org/10.1007/978-3-540-71316-6_8
https://doi.org/10.1007/978-3-642-25379-9_26
https://doi.org/10.1007/978-3-540-24849-1_9
https://doi.org/10.1007/978-3-540-73228-0_9
https://doi.org/10.1016/S1571-0661(04)00035-0
https://doi.org/10.1007/3-540-44881-0_3
https://doi.org/10.1007/BFb0014432

24:14 Encoding Type Universes Without Using Matching Modulo AC

19 G. Genestier. Dependently-Typed Termination and Embedding of Extensional Universe-
Polymorphic Type Theory using Rewriting. PhD thesis, Université Paris-Saclay, 2020. URL:
https://hal.inria.fr/tel-03167579.

20 G. Genestier. Encoding agda programs using rewriting. In Proceedings of the 5th International
Conference on Formal Structures for Computation and Deduction, Leibniz International
Proceedings in Informatics 167, 2020. doi:10.4230/LIPIcs.FSCD.2020.31.

21 B. Gramlich. Modularity in term rewriting revisited. Theoretical Computer Science, 464:3–19,
2012. doi:10.1016/j.tcs.2012.09.008.

22 R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the ACM,
40(1):143–184, 1993. doi:10.1145/138027.138060.

23 G. Hondet and F. Blanqui. The new rewriting engine of dedukti. In Proceedings of the
5th International Conference on Formal Structures for Computation and Deduction, Leibniz
International Proceedings in Informatics 167, 2020. doi:10.4230/LIPIcs.FSCD.2020.35.

24 D. Kapur and P. Narendran. NP-completeness of the associative-commutative unification
and related problems. Unpublished Manuscript. Computer Science Branch, General Electric
Corporate Research and Development, Schenectady, NY. See [25], 1986.

25 D. Kapur and P. Narendran. Matching, unification and complexity. SIGSAM Bull., 21(4):6–9,
1987. doi:10.1145/36330.36332.

26 S. Krstić and S. Conchon. Canonization for disjoint unions of theories. Information and
Computation, 199(1-2):87–106, 2005. doi:10.1016/j.ic.2004.11.001.

27 C. Marché. Normalized rewriting: an alternative to rewriting modulo a set of equations.
Journal of Symbolic Computation, 21(3):253–288, 1996. doi:10.1006/jsco.1996.0011.

28 P. Martin-Löf. An intuitionistic theory of types: predicative part. In
H. E. Rose and J. C. Shepherdson, editors, Proceedings of the 1973 Logic
Colloquium, volume 80 of Studies in Logic and the Foundations of Mathemat-
ics. North-Holland, 1975. URL: http://archive-pml.github.io/martin-lof/pdfs/
An-Intuitionistic-Theory-of-Types-Predicative-Part-1975.pdf.

29 M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen,
in welchem die Addition als einzige Operation hervortritt. In Sprawozdanie z I Kongresu
Matematykow Krajow Slowcanskich, Warszawa, Poland, 1929.

30 R. Saillard. Type checking in the Lambda-Pi-calculus modulo: theory and practice. PhD
thesis, Mines ParisTech, France, 2015. URL: https://pastel.archives-ouvertes.fr/
tel-01299180.

31 R. Shostak. Deciding combination of theories. Journal of the ACM, 31(1):1–12, 1984.
32 M. Sozeau. Polymorphic universes.

https://coq.inria.fr/refman/addendum/universe-polymorphism.html.
33 M. Sozeau and N. Tabareau. Universe polymorphism in Coq. In Proceedings of the 5th

International Conference on Interactive Theorem Proving, Lecture Notes in Computer Science
8558, 2014. doi:10.1007/978-3-319-08970-6_32.

34 TeReSe. Term rewriting systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

35 B. Ziliani and M. Sozeau. A comprehensible guide to a new unifier for CIC including
universe polymorphism and overloading. Journal of Functional Programming, 27(E10), 2017.
doi:10.1017/S0956796817000028.

https://hal.inria.fr/tel-03167579
https://doi.org/10.4230/LIPIcs.FSCD.2020.31
https://doi.org/10.1016/j.tcs.2012.09.008
https://doi.org/10.1145/138027.138060
https://doi.org/10.4230/LIPIcs.FSCD.2020.35
https://doi.org/10.1145/36330.36332
https://doi.org/10.1016/j.ic.2004.11.001
https://doi.org/10.1006/jsco.1996.0011
http://archive-pml.github.io/martin-lof/pdfs/An-Intuitionistic-Theory-of-Types-Predicative-Part-1975.pdf
http://archive-pml.github.io/martin-lof/pdfs/An-Intuitionistic-Theory-of-Types-Predicative-Part-1975.pdf
https://pastel.archives-ouvertes.fr/tel-01299180
https://pastel.archives-ouvertes.fr/tel-01299180
https://coq.inria.fr/refman/addendum/universe-polymorphism.html
https://doi.org/10.1007/978-3-319-08970-6_32
https://doi.org/10.1017/S0956796817000028

	1 Introduction
	2 Word problem in the max-successor algebra
	3 Decision procedure using matching modulo AC
	4 Getting rid of matching modulo AC
	5 Implementation of AC-canonization

