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—— Abstract

Implicit Computational Complexity (ICC) drives better understanding of complexity classes, but it
also guides the development of resources-aware languages and static source code analyzers. Among the
methods developed, the mwp-flow analysis [23] certifies polynomial bounds on the size of the values
manipulated by an imperative program. This result is obtained by bounding the transitions between
states instead of focusing on states in isolation, as most static analyzers do, and is not concerned with
termination or tight bounds on values. Those differences, along with its built-in compositionality,
make the mwp-flow analysis a good target for determining how ICC-inspired techniques diverge
compared with more traditional static analysis methods. This paper’s contributions are three-fold:
we fine-tune the internal machinery of the original analysis to make it tractable in practice; we
extend the analysis to function calls and leverage its machinery to compute the result of the analysis
efficiently; and we implement the resulting analysis as a lightweight tool to automatically perform
data-size analysis of C programs. This documented effort prepares and enables the development
of certified complexity analysis, by transforming a costly analysis into a tractable program, that
furthermore decorrelates the problem of deciding if a bound exist with the problem of computing it.
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1 Introduction: letting ICC drive the development of static analyzers

Certifying program resource usages is possibly as crucial as the specification of program
correctness, since a guaranteed correct program whose memory usage exceeds available
resources is, in fact, unreliable. The field of Implicit Computational Complexity (ICC)
theory [15] pioneers in “embedding” in the program itself a guarantee of its resource usage,
using e.g., bounded recursion [8, 27] or type systems [6, 26]. This field initiated numerous
distinct and original approaches, primarily to characterize complexity classes in a machine-
independent way, with increasing expressivity, but these approaches have rarely materialized
into concrete programming languages or program analyzers: even if, as opposed to traditional
complexity, its models are generally expressive enough to write down actual algorithms [30,
p. 11}, they rarely escape the sphere of academia or extend beyond toy languages, with a few
exceptions [5, 22]. However, by abstracting away constant factors and insignificant orders of
magnitude, it is frequently conjectured that ICC will allow sidestepping some of the difficult
issues one usually has to face when inferring the resource usage of a concrete program.

This work reinforces this conjecture by adjusting, improving and implementing an existing
ICC technique, the mwp-bounds analysis [23], which certifies that the values computed by
an imperative program will be bounded by polynomials in the program’s input. This flow
analysis is elegant but computationally costly, and it missed an opportunity to leverage its
built-in compositionality: we address both issues by revisiting and expanding the original flow
calculus, and further make our point by implementing it on a subset of the C programming
language. While the theory has been improved to allow analysis of function definitions and
calls — including recursive ones, a feature not widely supported [21, p. 359] — , its integration
into the implementation is underway, as we placed primary focus on developing an efficient
and implementable technique for program analysis. Implementing a tool along the theory
enabled testing improvements in real-life, which in return drove adjustments to the theory.

Our enhanced technique answers positively two questions asked by the authors of the
original analysis [23, Section 1.2], namely
1. Can the method be extended to richer languages?

2. Can it lead to powerful and convenient tools?

It also supports the conjecture that ICC can be used to construct concrete tools, but highlights
that doing so requires adjusting the theory to make it tractable in practice. This work also
provides better insight into the original analysis, by e.g., separating the algorithm to decide
the existence of a bound from its evaluation into a concrete bound; and by illustrating its
plasticity: while our analysis conservatively extends the original one, it nevertheless greatly
alters its internal machinery to ease its implementability. Last but not least, our technique
is orthogonal to most static analysis methods, which focus on worst-case resource-usage
complexity or termination, while ours establishes that the growth rate of variables values is
at most polynomially related to their inputs.

Our paper starts by recalling the “original” mwp-bounds analysis [23] — to which we
refer for a more gentle introduction — and discuss its limitations (Sect. 2). In Sect. 3, we
motivate, introduce and justify two modifications to this original analysis, and state that
this calculus can be reduced to the original one. We then extend this analysis along two
axis (Sect. 4): we detail how functions calls can be analyzed, and how the structures we
implemented allowed to speed up some very costly operations. Finally, Sect. 5 presents and
discuss our implementation, and Sect. 6 concludes. The proofs, some additional details on
semi-rings and the detail of our benchmarks are in appendix, with the exception of some
tedious proofs relative to semi-rings that are only in our technical report [4].



C. Aubert, T. Rubiano, N. Rusch, and T. Seiller

2 Background: the original flow analysis

The original analysis [23] computes a polynomial bound — if it exists — on the sizes (of the
value itself) of variables in an imperative while programming language, extended with a
loop operator, by computing for each variable a vector that tracks how it depends on other
variables — and the program itself gets assigned a matrix collecting those vectors. While this
does not ensure termination, it provides a certificate guaranteeing that the program uses
throughout its execution at most a polynomial amount of space, and as a consequence that
if it terminates, it will do so in polynomial time.

2.1 Language analyzed: fragments of imperative language

» Definition 1 (Imperative Language). Letting natural number variables range over X and Y
and boolean expressions over b, we define expressions e and commands C as follows:

e=X||X-v|Xx+Y]|] Xxx*xV
C:=X = e || if b then C else C || while b do {C} || loop X {C} || ¢ ; C

where loop X {C} means “do C X times” and C;C is used for sequentiality (“do C, then C”).
We write “program” for a series of commands composed sequentially.

This language assumes that the program’s inputs are the only variables, and that assigning
a value to a variable inside the program is not permitted. Extending flow calculi to those
operations has been discussed [23, p. 3] and proven possible [9], but we leave this for future
work — in particular, our C examples will be of foo functions with their variables listed as

1

parameters'. However, we disallow w.l.o.g. composed expressions of the form X + Y * Y,

which can always be dealt with in the style of three-address code.

2.2 A flow calculus of mwp-bounds for complexity analysis

Flows characterize controls from one variable to another, and can be, in increasing growth
rate, of type 0 — the absence of any dependency — maximum, weak polynomial and polynomial.
The bounds on programs written in the syntax of Sect. 2.1 are represented and calculated
thanks to vectors and matrices whose coefficients are elements of the mwp semi-ring.

» Definition 2 (The mwp semi-ring and matrices over it). Letting MWP = {0, m, w,p} with
0<m< w< p, and o, B, vy range over MWP, the mwp semi-ring (MWP,0,m,+, X) is
defined with + = max, a X 8 = max(«, 3) if a, 8 # 0, and 0 otherwise.

We denote M((MWP) the matrices over MWP, and, fixzingn € N, M for n xn matrices over
MWP, M;; for the coefficient in the ith row and jth column of M, @ for the componentwise
addition, and ® for the product of matrices defined in a standard way. The 0-element for
addition is 055 = 0 for all i,j, and the 1-element for product is 1;; =m, 1;; =0 if i # j, and
the resulting structure (M(MWP),0,1,®,®) is a semi-ring that we simply write M(MWP).
The closure operator -* is M* =1®& M & (M?) @ ..., for M* =1, M™H = M @ M™.

1 Our implementation allows to relax this condition, as exemplified in inline_variable.c, without losing
any of the results expressed in this paper. Assuming a fixed number of variables, known ahead of time,
is mostly a theoretical artifact used to simplify the analysis.
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—  F1 E2
P X {7} Foc e : {¥] Xi € var(e)}
*E{—‘r,—} l_JKXiEVI. l_JKXj:‘/QE?) *€{+7_} l_JKXifVI. l_JKXj:.V.zE4
Fix XixXj : pV1 @ Vo Fix XixXj : V; @ pVs

(a) Rules for assigning vectors to expressions.

Fxe:V A FwCL:iM byc2: My
FXj=e:1V Fu C1; C2: My ® Mo

FiCl: My FycC2: M
Fix if b then Cl else C2: M ® M>y

FxC: M
Fik Loop X1 {C}: M* @ {{— j | 3i, M; = p}

. *
Vi, M} =m

FxC: M
F,x while b do {C}: M*

Vi, Mj; = m and Vi, 7, M # p
(b) Rules for assigning matrices to commands.

Figure 1 Original non-deterministic (“Jones-Kristiansen”) flow analysis rules.

Although not crucial to understand our development, details about (strong) semi-rings
and the mwp semi-ring, and the construction of a semi-ring whose elements are matrices with
coefficients in a semi-ring — so, in particular, M(MWP) — are given in our technical report [4,
A.1 and A.2] and sketched in appendix Appendix A.

Below, we let Vi, V5 be column vectors with values in MwP, aV; be the usual scalar
product, and Vi @ V5 be defined componentwise. We write {¢'} for the vector with 0
everywhere except for « in its ith row, and {g,f }for {¢} @ {f }.

Replacing in a matrix M the jth column vector by V is denoted M & V. The matrix
M with M;; = a and 0 everywhere else is written {#— j}, and the set of variables in the
expression e is written var(e). The assumption is made that exactly n different variables are
manipulated throughout the analyzed program, so that n-vectors are assigned to expressions
— in a non-deterministic way, to capture larger classes of programs [23, Section 8] —and n x n
matrices are assigned to commands using the rules presented Fig. 1 [23, Section 5].

The intuition is that if F;x ¢ : M can be derived, then all the values computed by ¢
will grow at most polynomially w.r.t. its inputs [23, Theorem 5.3], e.g., will be bounded by
max(Z, p1(y)) + p2(%), where p; and py are polynomials and Z (resp. ¥, Z) are m-(resp. w-,
p-)annotated variables in the vector for the considered output. Since the derivation system is
non-deterministic, multiple matrices and polynomial bounds — that sometimes coincide — may
be assigned to the same program. Furthermore, the coefficient at M; j carries quantitative
information about the way Xi depends on Xj, knowing that 0- and m-flows are harmless and
without constraints, but that w- and p- flows are more harmful w.r.t. polynomial bounds and
need to be handled with care, particularly in loops — hence the condition on the L and W
rules. The derivation may fail — some programs may not be assigned a matrix — if at least one
of the variables used in the body of a loop depends “too strongly” upon another, making it
impossible to ensure polynomial bounds on the loop itself. We will use the following example
as a common basis to discuss possible failure, non-determinism, and our improvements.
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» Example 3. Consider loop X3 {X2 = X1 + X2}. The body of the loop command admits
three different derivations, obtained by applying A to one of the three derivation of the
expression X1 + X2, that we name 7g, m; and ms:

— El 5 El
}—JKX1:<8> I—JKX2:<m)
07 E3

P m
I—JKx1+x2:(rgz> I—JKx1+x2:(8>

__E1 __El
th:(g) th2;<m) - m2
0/ pq th1+x2;( )

From g, the derivation of loop X3 {X2 = X1 + X2} can be completed using A and L, but
since L requires having only m coefficients on the diagonal, 71 cannot be used to complete

SISESS

the derivation, because of the p coefficient in a box below:

© o

57T1
Fix X1 + X2: (7’31) m
0 I—JKX1+X2:(8)
0
FJKX2=X1+X2:(%I1€LO) A
0 m L m m 0
mp 0 FxX2 =X1 +X2:| 0[p] O
hKloopxs{x2=x1+x2}:<8mo) 0 0 m
p m

Similarly, using A after 7o gives a w coefficient on the diagonal and makes it impossible
to use L, hence only one derivation for this program exists.

2.3 Limitations and inefficiencies of the mwp analysis

Even if the proof techniques are far from trivial, with only 9 rules and skipping over boolean
expressions (observe that the condition b has no impact in the rules I or W), the analysis
is flexible and easy to carry out — at least mathematically. It also has inherent limitations:
while the technique is sound, it is not complete and programs such as greatest common
divisor fail to be assigned a matrix. We will discuss in Sect. 5.2, the benefits and originality of
this analysis, but we would now like to stress how it is computationally inefficient, since the
non-determinacy makes the analysis costly to carry out and can lead to memory explosions.

Abstracting Example 3, one can see that the base case of non-determinism — e.g., to assign
a vector to X1 x X2-yields vectors (2) (using E1 then E3), () (using E1 then E4) and
(%) (using E2). Since none of those vectors is less than the others, only two strategies are
available to analyze a larger program containing X1 x X2: either the derivations for this base

case are considered one after the other, or they are all stored in memory at the same time.

Considering the derivations for the base case one after the other can lead to a time explosion,
as a program of n lines can have 3™ different derivations — as exemplified by explosion.c, a
simple series of applications — and it is possible that only one of them can be completed, so
all must be explored. On the other hand, storing those three vectors and constructing all the
matrices in parallel leads to a memory explosion: the analysis for two commands involving
6 variables, with 3 choices — which cannot be simplified as explained previously — would
result in 9 matrices of size 6 x 6, i.e., 324 coefficients. All in all, a program of n lines with z
different variables can require ¢} different derivations, which can produce up to (¢ x x)?
coefficients to store for some constants cy, cs.

Beyond inefficiency, there are additional limitations: while the analysis is naturally
compositional, this feature is not leveraged in the original system; furthermore, an occurrence
of non-polynomial flows in the matrix causes the analysis to simply stop, thus not capturing
failure in a meaningful way. We will discuss our solutions to these deficiencies next.
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A
et Fxikj (0= {T 5 o= {{THoe@2—={{J} .
El\r’[ Es
Fxi *Xj:{f,gu Fxic {7}
(a) Rules for assigning vectors to expressions.
Fe:V A Fct:M; Fc2: M Fct: M, Fc2: M
|-Xj=e:1<iV Fc1; c2: My ® M, F if b then Clelse C2: M; @ M,
Fc: M L

F loop X1 {C}:M*@{;?O—)j|M;j %m}@{?i_)j|3i7Mi?:p}

Fc: M Wee
while b do {C}: M* @ {¥—j | M}; #m} & {{°— j| M;; = p}

(b) Rules for assigning matrices to commands.

Figure 2 Deterministic improved flow analysis rules.

3 A deterministic, always-terminating, declension of the mwp analysis

The problem of finding a derivation in the original calculus is in NP [23, Theorem 8.1]. But
since all the non-determinism is in the rules to assigning a vector, the potentially exponential
number of derivations are actually extremely similar. Hence, instead of having the analysis
stop when failing to establish a derivation and re-starting from scratch, storing the different
vectors and constructing the derivation while keeping all the options open seems to be a
better strategy, but, as we have seen, this causes a memory blow-up. We address it by
fine-tuning the internal machinery: to represent non-determinism, we let the matrices take
as values either functions from choices to coefficients in MWP or coefficients in MWP, so that
instead of mapping choices to derivations, all the derivations are represented by the same
matrix that internalizes the different choices. Sect. 3.1 discusses this improvement, which
results in a notable gain: getting back to the example of Sect. 2.3, a program involving 6
variables, with 3 choices, would now be assigned a (unique) 6 x 6 matrix that requires 66
coefficients instead of the 324 we previously had — this is because 30 coefficients are “simple”
values in MWP, and 6 are functions from a set of choices {0, 1,2} to values in MWP, each
represented with 6 coefficients.

For the choices that give coefficients fulfilling the side condition of L or W, the derivation
can proceed as usual, but when a particular choice gives a coefficient that violates it,
we decided against simply removing it. Instead, to guarantee that all derivations always
terminate, we mark that choice by indicating that it would not provide a polynomial bound.
This requires extending the MWP semi-ring with a special value oo that represents failure in
a local way, marking non-polynomial flows, and is detailed in Sect. 3.2. As a by-product,
this enables fine-grained information on programs that do not have polynomially bounded
growth, since the precise dependencies that break this growth rate can be localized.

Taken together (Sect. 3.3), our improvements ensure that exactly one matrix will always
be assigned to a program while carrying over the correctness of the original analysis. We
give in Fig. 2 the deterministic system we are introducing in full, but will gently introduce it
though the remaining parts of this section: note that the rules A, C and I are unchanged, up
to the fact that the matrices, sum and product are in a different semi-ring.
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3.1 Internalizing non-determinism: the choice data flow semi-rings

Internalizing the choice requires altering the semi-ring used in the analysis: we want to
replace the three vectors over MWP that can be assigned to an expression by a single vector
over {0,1,2} — MWP that captures the same three choices. For a program needing to decide
p times between the 3 available choices, this means replacing the 3 x p different matrices in
M(MwP) by a single matrix in M({0, 1,2}? — MwP). For any strong semi-ring S and family of
sets (A;)i=1,...p, both A; — S and M(Hf:1 A; — S) are semi-rings, using the usual cartesian
product of sets, and there exists an isomorphism M(JT}_, A; — S) 2 [T?_, 4; — M(S) {4,
A.3]. This dual nature of the semi-ring considered is useful:
the analysis will now assign an element M of M([]?_, A; — MWP) to a program;
representing M as an element of [[?_; A; — M(MwP) allows one to use an assignment
a=(ai,...,ap) € [T7_; A; to produce a matrix M[a] € M(MWP), recovering the mwp-flow
that would have been computed by making the choices aq,...,a, in the derivation.

» Remark 4. As the unique degree of non-determinism to assign a matrix to commands is
3, our modification of the analysis flow consists simply of recording the different choices by
letting A; = {0,1,2} for all i = 1,...,p where p is the number of times a choice had to be
taken. Starting with Sect. 4, function calls will require potentially different sets A;.
» Notation 5. In the following and in the implementation alike, we will denote a function
(af x -+ xa) — ag) + -+ (af X -+ X ak — o) in AP — MWP with Card(A) = k by,
omitting the product, (apd(af,0)---8(ad, p))+- -+ (ard(af,0) - 5(ak, p)), with 6(i, j) = m
if the jth choice is i, 0 otherwise. Example 8 will justify and explain this choice.

Our derivation system replaces the E3 and E4 rules with a single rule E* (“additive”),
and splits E2 in two exclusive rules, EM for “multiplicative” and ES for “simple” (atomic)
expressions — Theorem 11 will prove how they are equivalent.

m

» Example 6. We represent the vectors (%), ( p ) and (%) from Example 3 with a single
p&(0,0)+md(1,0)+wd(2,0) {0—p,l—m,2—w} .
vector | ms(0,0)+ps(1,0)+ws(2,0) |, that can be read as | {o—m,1~p,2w} |, where we write O
0 0
for {0~ 0,1+ 0,2~ 0}2. Since in particular®, M({0,1,2} — MwP) = {0, 1,2} — M(MWP),
m

the obtained vector can be rewritten as 0 — (vgz ;1= p ,2 = % .

3.2 Internalizing failure: de-correlating derivations and bounds

The original analysis stops when detecting a non-polynomial flow, puts an end to the chosen
strategy (i.e., set of choices) and restarts from scratch with another one. We adapt the rules
so that every derivation can be completed even in the presence of non-polynomial flows,
thanks to a new top element, oo, representing failure in a local way.

Ignoring our previous modification in this subsection, the semi-ring MWP> we need to
consider is (MWP U {oo},0,m, +, x*), with co > a for all @ € MWP, +°° = max as before,
and a x*® f=0if o, # 0o and « or § is 0, max(c, ) otherwise. This different condition
in the definition of x°° ensures that once non-polynomial flows have been detected, they
cannot be erased (as co X 0 = 00).

2 The implementation supports both coefficients from MWP and coefficients from {0,1,2}? — MmwP, cf.
e.g., a simple assignment example assign_expression.c.

3 This is a variant of Lemma 21 [4, A.3]. While the latter lemma applies to algebras of square matrices, a
similar result holds for rectangular matrices of a fixed size; the algebraic structure is no longer that of a
semi-ring as rectangular matrices do not possess a proper multiplication, but the proof can be adapted
to show the existence of an isomorphism of modules between the considered spaces.
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The only cases where the original analysis may fail is if the side conditions of L or W
(Fig. 1) are not met. We replace those by L>° and W (Fig. 2), which replace the problematic
coeflicients with oo, marking non-polynomial dependencies, and carry on the analysis.

» Example 7. The program from Example 3 would now receive three derivations (omitting
the one obtained from 7y, as the resulting matrix is identical):

m Px1+x2:(w)
I—X1+X2:(p) 0
0 A mw 0 A
mm 0 I—X2=X1+X2:(0wo)
FX2=X1+X2:({0poO 00m I
0 0m Le° m w 0 L
mp 0 l—loopXB{X2=X1+X2}:<OooO)
|—100px3{x2=x1+x2}:(8ooo) 00m
p m

Of course, neither of those two derivations would yield polynomial bound — since they
contain oo coefficients — but it becomes possible to determine that the last one is “better” —
since (%) > (%O) — and to observe how their “failure” would propagate in larger programs,
possibly establishing that one fares better than the other in terms of non-polynomial growths.
This could imply, for instance, that particular programs without polynomial bounds could
still be considered “reasonnable” if they are exponential only in some variables that are
known to have smaller values in input.

3.3 Merging the improvements: illustrations and proofs

We prove that our system captures the original system in the sense that set aside co
coefficients, both systems agree (Theorem 11), but also that exactly one matrix is produced
per program (Theorem 10) — i.e., that we can analyze as many programs as originally, and
still be correct regarding the bounds. Before doing so, we would like to give more specifics
on our system, by combining the semi-rings and intuitions from the previous two subsections.
We have discussed our “axiomatic” (EA, EM, ES) and “loop” rules (> and W), but remain
to discuss the rules for assignment (A), if (I) and composition (C) — which is where both
improvements meet. Mathematically speaking, adopting the semi-ring defined over matrices
with coefficients in {0, 1,2}? — MwWP U {oo} is straightforward, and we simply write & and ®
the operations resulting from merging the two transformations. We discuss in Sect. 4.3 how,
however, those operations are computationally costly and how we address this challenge.

» Example 8. Using our deterministic system presented in Fig. 2, consider the following:
— _EA - E*
. _ Yy
I—x1+x2.V1 A Fx1 )(3.V1 A
FX1=X1+X2:1<V FX1=X1-X%X3:1«<V' I

F if b then {X1 = X1 + X2} else {Xt = X1 - X3}: (1 & V)e (1 <iV’)

with
V=0~ {5}ol={{5} 02 {15}
V=0 {T3lel-{{3 o2~ {3}
1 (0—m)®(1 —p)B(2—w) 0 0 md(0,0)®pd(1,0)Pwd(2,0) 0 0
1+ V=21 (0=pa@d »m@2-=w)m 0 | = | p§(0,00@ms(1,0)Gws(2,0) m 0
0 0 m 0 0 m
1 , (0—m)B(1 —p)B(2—w) 0 0 mé(0,1)dpds(1,1)dwd(2,1) 0 0
1+ V' = 0 m 0 = 0 m 0
(0—=p)B(1 —»m)P(2—w) 0 m pd(0,1)md(1,1)Pwd(2,1) 0 m
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Some care is needed to perform the addition for the I rule: the choices in the left and
right branches are independent, so we must use coefficients in {0,1,2}? — MwP for the 23
choices. While the mapping notation would require to use positions to describe which choice
is being refereed to, the J notation makes it immediate, as it encodes in the second value of
0 that two choices are considered, numbering the choice in the left branch 0. Hence we can
sum the coefficients and obtain the matrix that can be observed in our implementation by
analyzing example7.c.

» Example 9. Our deterministic system now assigns to loop X3 {X2 = X1 + X2} from Exam-
ple 3 the unique matrix

0 (0—»m)®(1 —oo)®(2—00) 0 0 md(0,0)®00d(1,0)Pood(2,0) 0

m (0—p)H(1 —»m)d(2—w) 0 m pd(0,0)dmd(1,0) dws(2,0) 0
(O (0—p)B(1 —0)B(2—0) m) N (0 pé(0,0)B06(1,0)H05(2,0) m)

where we observe that

1. only one choice, one assignment, 0, gives a matrix without oo coefficient, corresponding
to the fact that, in the original system, only 7y could be used to complete the proof,

2. the choice impacts the matrix locally, the coefficients being mostly the same, independently
from the choice,

3. the influence of X2 on itself is where possible non-polynomial growth rates lies, as the oo
coefficient are in the second column, second row.

We are now in possession of all the material and intuitions needed to state the correspon-
dence between our system and the original one of Jones and Kristiansen.

» Theorem 10 (Determinancy and termination). Given a program P, there erists unique
p €N and M € M({0,1,2}? — MWP>) such that - P : M.

Proof. The existence of the matrix is guaranteed by the completeness of the rules, as any
program written in the syntax presented in Sect. 2.1 can be typed with the rules of Fig. 2.
The uniqueness of the matrix is given by the fact that no two rules can be applied to the
same command. Details are provided in Appendix B. <

» Theorem 11 (Adequacy). Ift P : M, then for all @ € AP, by P : MId] iff co ¢ M|d].

Proof. The proof uses that P cannot be assigned a matrix in the original calculus iff the
deterministic calculus introduce a co coefficient, and from the fact that both calculus coincide
in all the other cases. Details are provided in Appendix B. |

» Corollary 12 (Soundness). If P : M and there exists @ € AP such that oo ¢ M|ad), then
every value computed by P is bounded by a polynomial in the inputs.

Proof. This is an immediate corollary of the original soundness theorem [23, Theorem 5.3]
and of Theorem 11. <

This proves that the two analyses coincide, when excluding co, and that we can re-use the
original proofs. However, our alternative definition should be understood as an important
improvement, as it enables a better proof-search strategy while optimizing the memory usage,
and hence enables the implementation (Sect. 5). It also lets the programmer gain more
fine-grained feedback, and illustrates the flexibility of the analysis: the latter will also be
demonstrated by the improvements we discuss in the next section.
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4 Extending and improving the analysis: functions and efficiency

To improve this analysis, one could try to extract a tight bound, to certify it, or to port it to a
compiler’s intermediate representation. Adding constant values is arguably immediate [23, p.
3] but handling pointers, even if technically possible, would probably require significant work.
This illustrates at the same time the flexibility of the analysis, and the distance separating
ICC-inspired techniques from their usage on actual programs. We decided to narrow this
gap along two axes: the first one consists of allowing function definitions and calls in our
syntax. It is arguably a small improvement, but illustrates nicely the compositionality of
the analysis, and includes recursively defined functions. The second extension intersects the
theory and the implementation: it details how our semi-ring structure can be leveraged to
maintain a tractable algorithm to compute costly operations on our matrices, and to separate
the problem of deciding if a bound exists from computing its form.

4.1 Leveraging compositionality to analyze function calls

Thanks to its compositionality, this analysis can easily integrate functions and procedures,
by re-using the matrix and choices of a program implementing the function called. We begin
by adding to the syntax the possibility of defining multiple functions and calling them:

» Definition 13 (Functions). Letting R (resp. f) range over variables (resp. function names),
we add function calls* to the commands (Def. 1) and allow function declarations:

C:=Xi = f(X1, ..., Xn) F:= f(X1, ..., Xn){C; return R}

In a function declaration, f(X1, ..., Xn) is called the header, and the body is simply C (i.e.,
return R is not part of the body). A program is now a series of function declarations such
that all the function calls refer to previously declared functions — we deal with recursive calls
in Sect. 4.2 — and a chunk is a series of commands.

Now, given a function declaration computing f, we can obtain the matrix My by analyzing
the body of f as previously done. It is then possible to store the assignments d, . .., dx, for
which no oo coefficients appear®, and to project the resulting matrices to only keep the vector
at R that provides quantitative information about all the possible dependencies of the output
variable R w.r.t. input values, possibly merging choices leading to the same result. After
this, we are left with a family (M¢[do])[r, ..., (Ms[dx])|g of vectors — as the syntax here is
restricted to functions with a single output value, even if accommodating multiple return
values would be dealt with the same way — that we can re-use when calling the function.

The analysis of the command calling f is then dealt with the F rule below:

- F
FXi= FQX1,..., Xn) : 14— ((My[do))|)8(0,¢) @ --- @ ((Mg[ar])|g)d(k, c))

This rule introduces a choice ¢ over k possible matrices, and it is possible that k& # 3, but
this is not an issue, since our semi-ring construction can accommodate any set of choice A.

4 Function calls that discard the output — procedures — could also be dealt with easily, but are vacuous in
our effect-free, in particular pointer-free, language

5 Allowing oo coefficients would not change the method described nor its results, but it does not seem
relevant to allow calling functions that are not polynomially bounded.
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» Example 14. Consider the following two programs Q and P:

int f£(X1, X2){ int foo (X1, X2){
g— ¥hile b do {X2=X1+X1}; p_  X2=X1+X1;
return X2; X1=f (X2, X2);
} }

We first have - X2 = Xt + X1 : V for V = ("2 p‘s(o’o)@pé%’o)@w‘s(Q’o)), and since V* =
(78 p5(0,0)€9p5(771{0)®w6(2,0))’ applymg W gives FQq: (m oo6(0,0)€9005(1,0)69w6(2,0)). Notlng

0 m

that only one choice gives an co-free matrix, we can now carry on the analysis of P:
: 1 F
Fx2=x1+X1:V FX1=£X&2, X2):1+ ((;£)d(0,¢)) C

PV ®1 & ((2)5(0,c)
In this particular case, the ¢ choice can be discarded, since only one option is available.

Now, to prove that the F rule faithfully extends the analysis (Theorem 17), i.e., preserves
Corollary 12, we prove that the analysis of the program “inlining” the function call — as
defined below — is, up to some bureaucratic variable manipulation and ignoring some oo
coefficients, the same as the analysis resulting from using our rule. Intuitively, this mechanism
provides the expected result because the choices in the function do not affect the program
calling it, and because their sets of variables are disjoint — except for the return variable.

» Definition 15 (In-lining function calls). Let P be a chunk containing a call to the function
f, and F be the function declaration computing the function f. The context P[], a chunk
containing a slot [-], is obtained by replacing in P the function call Xi=f(X1, ..., Xn),
with X’1=X1; ...; X’n=Xn; [| Xi=R, for R, X’1, ..., X’n fresh variables added to the header
containing the chunk.

The chunk F is obtained from the body of F by renaming the input variables to X’1, ...,
X’n, and the variable returned by F to R. The code P[F| is finally obtained by computing the
chunk F, and inserting it in place of the symbol [] in P[].

That P and P[F] have, at the end of their executions, the same values stored in the
variables of P is straightforward in our imperative programming language.

» Example 16. The in-lining of q in P from Example 14 would give the following chunk Q
and context P[-], P[q] being obtained by replacing in the latter [] with the former:

int foo(X1, X2, X’1, R){
X2=X1+X1;
- X’1=X2;
= while b do {R=X’1+X’1}; PJ||=
[]
X1=R;
}

The analysis of P (excluding the function call) and q is implemented at examplelb5a.c,
and of P[Q] at examplelbb.c: this latter diverges with Example 14 only up to projection
and oo-coefficients that are removed by F but not when in-lining the function call.

Now, we need to prove that the matrices M (P) — obtained by analyzing P and using the F
rule for Xi=f (X1, ..., Xn); —and M (P[F]) — obtained by analyzing the inlined P[F] — are the
same. However, to avoid conflict with the variables and to project the matrices on the relevant
values, some bureaucracy is needed: we write IIp(M(P[F])) (resp. (1 — IIp)(M(P[F]))) the
projection of M (P[F]) onto the variables in (resp. not in) P. Some non-deterministic choices
may appear within the (modified) chunk F' inside P[F], i.e.,
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the coefficients of M(P) are elements of the semi-ring Hf:ll A; = M(MwP), with one
particular choice corresponding to the F rule — we write the corresponding index 4¢;
the coefficients of M (P[F]) are elements of the semi-ring Hf;rlk B; — M(MmwP), where k
choices are made within the chunk £ — we write the corresponding indexes 7j1, ja, - - . , ji
(note these are in fact consecutive indexes).
We note 7 : {1,...,p+ k} — {1,...,p + 1} the projection of the choices in P[F] onto
j if j < ji
the corresponding choices in P, i.e., w(j) = 19 if j3 <j <jr . We note that
j—k+1 ifje<y
each matrix used as axiom in the function call corresponds to a specific assignment on
indexes j1,...,jk. We write ¥ : A, — Hzijl B; the corresponding injection, extended to
U A - Hfi(f B; straightforwardly.

» Theorem 17. For all d@ in Hf;rll A;, (M(P))[@) = (1 —Tp)(M(P[F]))[¥(a)], and for all
B in Hf’:éc B; not in the image of ¥, (1 —Tp)(M(P[F))[8]) contains co.

Proof. It is sufficient to prove it for the simplest chunk P containing only one command
Xi = £(X1, ..., Xn). This comes from the compositional nature of the analysis, as a sequence
of commands is assigned the product of the matrices of each individual command. Then,
checking the theorem in this case is a straightforward, though tedious (due to keeping track
of all indices), computation. |

4.2 Integrating recursive calls, the easy way

The question of dealing with self-referential, or recursive, calls, naturally arises when extending
to function calls. It turns out that our approach makes such cases easy to handle.

A program implementing a function rec calling itself cannot use the F rule presented
above as is, since the result of the analysis of rec is precisely what we are trying to establish.
However, if rec takes two input variables X1 and X2 and its return value is assigned to a
third variable X3, then we already know that the vector at 3 will need to be replaced by the
vector capturing the dependency between X1, X2, and the return variable of rec (which we
will take to be X3 in our example). The solution consists in replacing the actual values in
this vector by variables «, § ranging over values in MWP®°, terminating the analysis with
those variables, and then to resolve the equation — which is easy given the small size of the
MWP™ semiring.

As an example®, consider the following program and compute the corresponding matrix:

0 3 a
0)®1<—(€>
m

amé(0,0)Baps(1,0)dawd(2,0)
apd(0,0)Bams(1,0)daws(2,0)H6
0

int rec(X1, X2){
X1 = X1 + X2;

X3 = rec(X1l, X2); mé(0,0)®ps(1,0)Dws(2,0)
return X3; = (p5(0,0)®m6(1,0)®w6(2,0)
0

mé(0,0)Bpé(1,0)Bws(2,0)
( p3(0,0)®m4(1,0)Dws(2,0)
0

oc3oco3o

}

. . . m 0 am p 0 ap w 0 ow
Using the assignments 0, 1 and 2 gives ( pm ap@ﬁ), (m m amea/a) and (w m aw@ﬁ),
00 0 00 0 00 0

«
and since the third vector should be equal to (g ), this gives three systems of equations:

6 Where we use variables that are not parameters, following footnote 1, and where our recursive call does
not terminate: we are focusing on growth rates and not on termination, and keep the example compact.
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{ am = « { ap = « { aw = «
ap®p = am®p = f awdp =

The smaller solution to the first (resp. second, third) equational system is {a = m; 8 = p}
(resp. {a = p; 8 =p} , {a = w; 8 = w}), and as a consequence, we find two meaningful
solutions (all others being larger than those): (g) and (%)

4.3 Taking advantage of polynomial structure to compute efficiently

Ensuring that the analysis is tractable is an important part of our contribution. For a
program accepting n different derivations and having k different derivations that cannot be
completed, the original flow calculus must run at most k£ + 1 times to find one derivation,
while our analysis outputs the k + n different derivations in one run, and then sorts them —
as discussed next — by listing all the evaluations and looking for oo values. In this task, the
C rule, that lets building programs from commands, is obviously crucial and consists simply
in multiplying two matrices: however, since we are internalizing the choices, those matrices
contain a mixture of functions from choices to coefficients in MWP*® and of coefficients in
MWP. Multiplying such matrices is more costly, but also essential: an 8-line program such
as explosion.c requires to multiply elements of its matrix 34,992 times”. This forces to
represent and manipulate the elements of [[}_, A; — M(MWP) — setting aside co coefficients
for a moment — cleverly: simple comparison showed that the improved algorithm presented
below made the analysis roughly five times faster (Sect. C.3).

As discussed in Notation 5, elements of this semi-ring are represented as polynomi-
als w.r.t. the generating set given by the functions (i, j) : [[/_; 4; — MwWP defined by
8(i,5)(a1,...,ap) = mif a; = ¢ and 6(¢,5)(a1,...,ap) = 0 otherwise, i.e., an element of
[T5_, A; — MWP is represented as a polynomial Y ;" | a; Hle 8(a;,j,b;,;) with a; € MWP.

This basis has an important property: the monomials c; H?’:l 0(a;,j,b; ;) in a polynomial
can be ordered so that the product with another monomial is ordered, i.e., if a < § and
both a x v and B x  are non-zero, then o x v < 8 x . This order is leveraged to obtain
efficient algorithms, similar to what is done using Grébner bases for computation of standard
polynomials [35]. For instance, the algorithm for multiplication of polynomials uses this
property to compute the product of an ordered polynomial P with > 1" | a; Hle d(aij, bij):

51: (5(&2"]‘, bi,j) for all i;

compare and order a list L of all the first elements of those polynomials;

1. compute the products P; = P x a; []

append the smallest element to the result and remove it from the corresponding P;;

insert the (new) first element of P; to the list L if it exists;

gk wN

if L is non-empty, go back to step 3.
When adding or multiplying polynomials, which consist of monomials, we check if a
monomial is contained or included by another, and exclude all redundant cases (cf. contains

or includes). This is also done when inserting monomials. Thus we keep polynomials free
of implementation choices that we would otherwise have to handle during evaluation.

7 The need to optimize functions is made even more obvious when we discuss benchmarking in Sect. 5.1.
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4.4 Deciding the existence of a bound faster thanks to delta graphs

Adopting the [T?_; A; = MWP® semi-ring permits to complete all derivations simultaneously,
but remains to determine if there exists an assignment @ € [[?_, A; s.t. the resulting matrix
is oo-free, to decide whenever a program accepts a polynomial bound: this is the evaluation
step. Despite the optimizations detailed above that simplifies the task, this phase remains
particularly costly, since the number of assignment grows exponentially w.r.t. the number
of choice, which is linear in the number of variables. While this step is necessary (in one
form or another) if one wishes to produce the actual mwp matrices certifying polynomial
bounds, we implemented a specific data structure to keep track of assignments resulting in
oo coefficients on the fly, thus allowing the analysis to provide a qualitative answer quickly.
This section details how those delta graphs allow to immediately determines whenever a
polynomial bound exists without having to compute the corresponding matrix, something
that was not possible in the original, non-deterministic, calculus.

A delta graph is a graph whose vertices are monomials. The graph is populated during
the analysis by adding those monomials that appear with an infinite coefficient — i.e., possible
choices leading to oo in the resulting matrix. This graph is structured in layers: each layer
corresponds to the size of the monomials (the number of deltas) it contains. The intuition is
that a monomial — or rather a list of deltas 6(_, ) — defines a subset of the space [[%_; A4;;
the less deltas in the monomial, the greater the subspace represented®. As we populate
the delta graph, we create edges within a given layer to keep track of differences between
monomials: we add an edge labeled ¢ between two monomials if and only if they differ only on
one delta 6(_, 1) (i.e., one is obtained from the other by replacing the first index of §(_,1)).
This is used to implement a fusion method on delta graphs, which simplifies the structure:
as soon as a monomial m in layer n has Card(4;) — 1 outgoing edges labelled i, we can
remove all these monomials and insert a shorter monomial in layer n — 1, obtained from m
by simply removing 6(__,4). This implements the fact that Zgirodmi)*l md(k,j) = m.

Now, remember the delta graph represents the subspace of assignments for which an co
appears. If at some point the delta graph is completely simplified (i.e., “fusions” to the graph
with a unique monomial consisting in an empty list of §(_, )), it means the whole space of
assignments is represented and no mwp-bounds can be found. On the contrary, if the analysis
ends with a delta graph different from the completely simplified one, at least one assignment
exists for which no infinite coefficients appear, and therefore at least one mwp-bound exists.
This allows one to answer the question “Is there at least one mwp-bound?” without actually
computing said bounds. Based on the information collected in the delta graph and the matrix
with polynomial coefficients, one can however recover all possible matrix assignments by
going through all possible valuations.

This last part is implemented with a specific iterator that leverages the information
collected in the delta graph to skip large sets of valuations in a single step. For instance,
suppose the monomial (1, 1) lies in the delta graph — i.e., that an infinite coefficient will be
reached if the second index is equal to 1. When asked the valuation after (0,0,2,2) (and
supposing that Card(A;) = 3 for all ¢), our delta_iterator will jump directly to (0,2,0,0),
skipping all intermediate valuation of the form (0,1, a,b) in a single step. Similarly, it will
jump from (1,0,2,2) to (1,2,0,0), again skipping several valuations at a time, providing a

8 Our intuitions here come from the standard topological structure of spaces of infinite sequences, where
such a monomial represents a “cylinder set”, i.e., an element of the standard basis for open sets.
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faster analysis. Note that the implementation required care, to correctly jump when given
additional informations from the delta graph, e.g., to produce (2,0,1,0) as the successor of
(0,0,2,2) if §(0,0), §(1,1) and 6(0,2) all belong to the delta graph.

5 Implementing, testing and comparing the analysis

Demonstrating the implementability of the improved and extended mwp-bounds analysis
requires an implementation. Our open-source solution, packaged through Python Package
Index (PyPI) as pymwp, is a standalone command line tool, written in Python, that automat-
ically performs growth-rate analysis on programs written in a subset of the C programming
language. For programs that pass the analysis, it produces a matrix corresponding to the
input program and a list of valid derivation choices; and for programs that do not have
polynomial bounds, it reports infinity. Our motivation for choosing C as the language of
analysis resulted from its central role and similarity with the original while language. Python
was an ideal choice for the implementation because of its plasticity, collection of libraries, and
because it allowed partial reuse of a previous flow analysis tool [3, 31, 32]. The source code is
available on Github, along with an online demo, and detailed documentation [33] describing
its current supported features and functionality. We now discuss how we tested and assesed
it, and how it compares (or, rather does not compare) to other similar approaches.

5.1 Experimental evaluation

We allocated extensive focus and effort on testing and profiling our implementation, to ensure
the correctness and efficiency of the analysis, and with the terminal objective of obtaining a
usable tool. The test suite includes 42 C programs, carefully designed to exercise different
aspects of the analysis, ranging from basic derivations, to ones producing worst-case behavior
(by yielding e.g., dense matrices or exponential number of derivations), and classical examples
such as computing the greatest common divisor or exponentiation.

We refer to our benchmarks (presented in Appendix C) for measured analysis results for
each program. The most salient aspect is that our analysis is extremely fast (the time is
measured in milliseconds) despite important numbers of function calls (in the 10k range,
excluding builtin Python language calls, for 10-lines programs). Even examples tailored to
stress our implementation cannot make the analysis go over 4 seconds. We cannot compare
our implementation with implementations of the original analysis, since it has never been
implemented, and (according to our attempts) cannot be implemented in any realistic manner.

5.2 Related tools and incompatible metrics

This work was inspired by the series of works of the flow analysis from the “Copenhagen
school” [11, 24]. The overall flow analysis approach is related in spirit to abstract interpreta-
tion [13, 14]; that bounds transitions between states (e.g., commands) instead of states [24].
This approach shaped the implementation of tools detecting loop quasi-invariants [31, 32].
Other communities share a similar goal of inferring resource-usage. Complexity analyzers
such as SPEED [19] for C++, COSTA [1] for Java bytecode, ComplexityParser [21] for Java,
Resource Aware ML for 0Caml [29] or Cerco [2] and Verasco [25] for C generate (certified)
cost or runtime analysis on (subsets of) imperative programming languages. Embracing such
a large diversity is difficult, but our technique is different from existing implementations and
tools: most of them focus on worst-case resource-usage complexity or termination, while we
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are interested in upper-bounds on the final values of program variables, i.e., we focus on

growth instead of actual values. This makes the comparison with our approach difficult, but

highlights at the same time its uniqueness in today’s landscape of static analyzers.
Further, our approach provides other desirable properties:

1. it is compositional, which allows one to “hot-plug” bounds of previously analyzed functions
without additional work,

2. it is modular, as the internal machinery can be altered — as in this paper — without having
to re-develop the theory,

3. it is language-independent, as it reasons abstractly on imperative languages, but can be
applied to real programs, as our implementation illustrates, and should extend to more
complex languages,

4. it is lightweight and programmer-friendly, as it is fast, does not require annotations or to
record value ranges,

5. it studies growth independently from e.g., iteration bounds, thus sidestepping difficult
cases that worst-case analysis has to tackle, and

6. it may enable tight bounds on programs, as it has been done recently [10] for a similar
analysis [11].

In particular compositionality is a highly desirable property — because otherwise the analysis
needs to be re-run on programs or API whenever embedded into different pieces of software
— yet difficult to achieve by most other approaches, as discussed and partially remedied
recently [12]. While we suppose one approach could be used to derive the result obtained by
the other, we do believe the originality of our pioneering ICC-based approach may inspire
new and original directions in static program analysis.

6 Conclusion: limitations, strengths and future work

This work attempts to illustrate the usefulness and applicability of ICC results, but also the
need to refine and adapt them. We showed that the mwp-flow analysis as originally described
cannot scale to programs in a real programming language: while the considered analysis
is definitely powerful and elegant, its mathematical nature let some costly operations go
unchecked. However we have shown that, extended and coupled to optimizations techniques,
its result enable the development of a novel and original static analysis technique on imperative
programs, focused on growth rather than on termination or worst-case bounds.

This work is a proof of concept and it has limitations, both theoretical and practical: the
theory is missing memory uses, pointers, and arrays and the supported feature set of the
implementation could be extended. But instead of focusing on what this analysis cannot
perform, we would like to stress that all the tools are in place to perform similar analysis
on intermediate representations of code in compilers, which will naturally simplify the task
of fitting richer program syntax to our analysis, and brings this technique yet another step
closer to practical use cases.

One of our next steps include certifying the analysis using the Coq proof assistant [34],
and implementing the analysis in certified tools such as the Compcert compiler [28] (or,
more precisely, its static single assignment version [7]) or certified-llvin [36]. The plasticity
of both compilers and of the implemented analysis should facilitate porting our results
and approaches to support further programming languages in addition to C. As complexity
analysis is notably difficult in Coq [20], we believe a push in this direction would be welcome,
and that ICC provides all the needed tools for it.
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Another direction is to explore the possibility for our analysis to focus on the final values
of variables instead of tracking them throughout the whole program. Indeed, recall from
Sect. 3.2 that our semi-ring is such that oo x°° 0 = oo, but another valid choice would have
been to pick co x>0 =0 [4, A.4]. In this case, it seems that if some non-polynomial growth
is caused by a variable that is then “thrown away” (overridden), then a program could still
pass the analysis: whether this lead gives relevant results is yet to determine, but it would
be another nice illustration of the plasticity of this analysis.

Last but not least, working on finer comparison with other static analyzers [18] could be
useful. We have stressed in Sect. 5.2 how such comparison was uneasy, as the finality of our
tool is not directly comparable with any other analyzer we know of. However, some tools
such as AProVE [17] or CoFloCo [16] provide polynomial upper bounds for C programs, and
we could assess e.g., on the Termination Problems Data Base whether pymwp can analyze
as many problems and how often all three analyzers agree. The motivation for the original
mwp-analysis was to develop resource analysis for distinguishing feasible problems and to
work at the boundary of undecidability, but this could actually be one of pymwp’s strength
as a pre-processor to other static analyzers, to save them from running costly analysis on
programs known to be unfeasible. This fast analysis and the compositionality of our tool
could also, on longer term, be useful to construct IDE plug-ins that provide low-latency
feedback to the programmer.

—— References

1  Elvira Albert, Puri Arenas, Samir Genaim, German Puebla, and Damiano Zanardini. COSTA:
design and implementation of a cost and termination analyzer for java bytecode. In Frank S.
de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever, editors, Formal
Methods for Components and Objects, 6th International Symposium, FMCO 2007, Amsterdam,
The Netherlands, October 24-26, 2007, Revised Lectures, volume 5382 of LNCS, pages 113-132.
Springer, 2007. doi:10.1007/978-3-540-92188-2_5.

2  Roberto M. Amadio, Nicholas Ayache, Francois Bobot, Jaap Boender, Brian Campbell,
Ilias Garnier, Antoine Madet, James McKinna, Dominic P. Mulligan, Mauro Piccolo, Randy
Pollack, Yann Régis-Gianas, Claudio Sacerdoti Coen, lan Stark, and Paolo Tranquilli. Certified
complexity (cerco). In Ugo Dal Lago and Ricardo Pefia, editors, Foundational and Practical
Aspects of Resource Analysis - Third International Workshop, FOPARA 2013, Bertinoro, Italy,
August 29-31, 2013, Revised Selected Papers, volume 8552 of LNCS, pages 1-18. Springer,
2013. doi:10.1007/978-3-319-12466-7_1.

3  Clément Aubert, Thomas Rubiano, Neea Rusch, and Thomas Seiller. Lgicm on ¢ toy parser.
URL: https://github.com/statycc/LQICM_On_C_Toy_Parser.

4 Clément Aubert, Thomas Rubiano, Neea Rusch, and Thomas Seiller. mwp-analysis improve-
ment and implementation: Realizing implicit computational complexity. Preliminary technical
report, March 2022. URL: https://hal.archives-ouvertes.fr/hal-03596285.

5 Martin Avanzini and Ugo Dal Lago. Automating sized-type inference for complexity analysis.
Proc. ACM Program. Lang., 1(ICFP):43:1-43:29, 2017. doi:10.1145/3110287.

6  Patrick Baillot and Kazushige Terui. Light types for polynomial time computation in lambda-

calculus. In LICS, pages 266-275. IEEE Computer Society, 2004. doi:10.1109/LICS.2004.

1319621.

7  Gilles Barthe, Delphine Demange, and David Pichardie. Formal verification of an SSA-
based middle-end for compcert. ACM Trans. Program. Lang. Syst., 36(1):4:1-4:35, 2014.
doi:10.1145/2579080.

8  Stephen J. Bellantoni and Stephen Arthur Cook. A new recursion-theoretic characterization of
the polytime functions (extended abstract). In S. Rao Kosaraju, Mike Fellows, Avi Wigderson,
and John A. Ellis, editors, STOC, pages 283-93. ACM, 1992. doi:10.1145/129712.129740.

26:17

FSCD 2022


http://termination-portal.org/wiki/TPDB
https://doi.org/10.1007/978-3-540-92188-2_5
https://doi.org/10.1007/978-3-319-12466-7_1
https://github.com/statycc/LQICM_On_C_Toy_Parser
https://hal.archives-ouvertes.fr/hal-03596285
https://doi.org/10.1145/3110287
https://doi.org/10.1109/LICS.2004.1319621
https://doi.org/10.1109/LICS.2004.1319621
https://doi.org/10.1145/2579080
https://doi.org/10.1145/129712.129740

26:18

mwp-Analysis Improvement and Implementation: Realizing Implicit Complexity

10

11

12

13

14

15

16

17

18

19

20

21

Amir M. Ben-Amram. On decidable growth-rate properties of imperative programs. In Patrick
Baillot, editor, Proceedings International Workshop on Developments in Implicit Computational
complExity, DICE 2010, Paphos, Cyprus, 27-28th March 2010, volume 23 of EPTCS, pages
1-14, 2010. doi:10.4204/EPTCS.23.1.

Amir M. Ben-Amram and Geoff W. Hamilton. Tight polynomial worst-case bounds for loop
programs. Log. Meth. Comput. Sci., 16(2), 2020. doi:10.23638/LMCS-16(2:4)2020.

Amir M. Ben-Amram, Neil D. Jones, and Lars Kristiansen. Linear, polynomial or exponential?
complexity inference in polynomial time. In Arnold Beckmann and Costas Dimitracopoulos
andBenedikt Loéwe, editors, Logic and Theory of Algorithms, Jth Conference on Computability
inEurope, CiE 2008, Athens, Greece, June 15-20, 2008, Proceedings, volume 5028 of LNCS,
pages 67-76. Springer, 2008. doi:10.1007/978-3-540-69407-6_7.

Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. Compositional certified resource
bounds. In David Grove and Stephen M. Blackburn, editors, Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR,
USA, June 15-17, 2015, pages 467-478. ACM, 2015. doi:10.1145/2737924.2737955.
Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Robert M.
Graham, Michael A. Harrison, and Ravi Sethi, editors, Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles, California, USA, January
1977, pages 238-252. ACM, 1977. doi:10.1145/512950.512973.

Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of recursive
procedures. In Erich J. Neuhold, editor, Formal Description of Programming Concepts:
Proceedings of the IFIP Working Conference on Formal Description of Programming Concepts,
St. Andrews, NB, Canada, August 1-5, 1977, pages 237-278. North-Holland, 1977.

Ugo Dal Lago. A short introduction to implicit computational complexity. In Nick Bezhanishvili
and Valentin Goranko, editors, ESSLLI, volume 7388 of LNCS, pages 89-109. Springer, 2011.
doi:10.1007/978-3-642-31485-8_3.

Antonio Flores-Montoya. Upper and lower amortized cost bounds of programs expressed as
cost relations. In John S. Fitzgerald, Constance L. Heitmeyer, Stefania Gnesi, and Anna
Philippou, editors, FM 2016: Formal Methods - 21st International Symposium, Limassol,
Cyprus, November 9-11, 2016, Proceedings, volume 9995 of LNCS, pages 254-273, 2016.
doi:10.1007/978-3-319-48989-6_16.

Jiirgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Jera
Fuhs, Carstenand Hensel, Carsten Otto, Martin Pliicker, Peter Schneider-Kamp, Thomas
Stroder, and René Swiderski, Stephanie andThiemann. Analyzing program termination
and complexity automatically with aprove. J. Autom. Reasoning, 58(1):3-31, 2017. doi:
10.1007/s10817-016-9388-y.

Jurgen Giesl, Albert Rubio, Christian Sternagel, Johannes Waldmann, and Akihisa Yamada.
The termination and complexity competition. In Dirk Beyer, Marieke Huisman, Fabrice Kordon,
and Bernhard Steffen, editors, Tools and Algorithms for the Construction and Analysis of
Systems - 25 Years of TACAS: TOOLympics, Held as Part of ETAPS 2019, Prague, Czech
Republic, April 6-11, 2019, Proceedings, Part III, volume 11429 of LNCS, pages 156—166.
Springer, 2019. doi:10.1007/978-3-030-17502-3_10.

Sumit Gulwani, Krishna K. Mehra, and Trishul Chilimbi. Speed: Precise and efficient
static estimation of program computational complexity. In Proceedings of the 36th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’09,
pages 127-139, New York, NY, USA, 2009. Association for Computing Machinery. doi:
10.1145/1480881.1480898.

Armaél Guéneau. Mechanized Verification of the Correctness and Asymptotic Complexity
of Programs. (Vérification mécanisée de la correction et complexité asymptotique de pro-
grammes). PhD thesis, Inria, Paris, France, 2019. URL: https://tel.archives-ouvertes.
fr/tel-02437532.

Emmanuel Hainry, Emmanuel Jeandel, Romain Péchoux, and Olivier Zeyen. Complexityparser:
An automatic tool for certifying poly-time complexity of Java programs. In Antonio Cerone and


https://doi.org/10.4204/EPTCS.23.1
https://doi.org/10.23638/LMCS-16(2:4)2020
https://doi.org/10.1007/978-3-540-69407-6_7
https://doi.org/10.1145/2737924.2737955
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-642-31485-8_3
https://doi.org/10.1007/978-3-319-48989-6_16
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1145/1480881.1480898
https://doi.org/10.1145/1480881.1480898
https://tel.archives-ouvertes.fr/tel-02437532
https://tel.archives-ouvertes.fr/tel-02437532

C. Aubert, T. Rubiano, N. Rusch, and T. Seiller

22

23

24

25

26

27

28

29

30

31

32

33
34
35

36

Peter Csaba Olveczky, editors, Theoretical Aspects of Computing - ICTAC 2021 - 18th Interna-
tional Colloquium, Virtual FEvent, Nur-Sultan, Kazakhstan, September 8-10, 2021, Proceedings,
volume 12819 of LNCS, pages 357-365. Springer, 2021. doi:10.1007/978-3-030-85315-0_20.
Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Resource aware ML. In P. Madhusudan
and Sanjit A. Seshia, editors, Computer Aided Verification - 24th International Conference,
CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings, volume 7358 of LNCS, pages
781-786. Springer, 2012. doi:10.1007/978-3-642-31424-7_64.

Neil D. Jones and Lars Kristiansen. A flow calculus of mwp-bounds for complexity analysis.
ACM Trans. Comput. Log., 10(4):28:1-28:41, 2009. doi:10.1145/1555746.1555752.

Neil D. Jones and Flemming Nielson. Abstract interpretation: A semantics-based tool for
program analysis. In Samson Abramsky, Dov M. Gabbay, and Thomas Stephen Edward
Maibaum, editors, Semantic Modelling, volume 4 of Handbook of Logic in Computer Science,
pages 527-636. Oxford University Press, 1995.

Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David Pichardie.
A formally-verified C static analyzer. In Sriram K. Rajamani and David Walker, editors,
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium onPrinciples of Pro-
gramming Languages, POPL 2015, Mumbai, India, January 15-17, 2015, pages 247-259. ACM,
2015. doi:10.1145/2676726.2676966.

Yves Lafont. Soft linear logic and polynomial time. Theor. Comput. Sci., 318(1):163-180,
2004. doi:10.1016/j.tcs.2003.10.018.

Daniel Leivant. Stratified functional programs and computational complexity. In Mary S.
Van Deusen and Bernard Lang, editors, Conference Record of the Twentieth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 325—-333.
ACM Press, 1993. doi:10.1145/158511.158659.

Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107-115, 2009.
doi:10.1145/1538788.1538814.

Benjamin Lichtman and Jan Hoffmann. Arrays and references in resource aware ML. In
Dale Miller, editor, 2nd International Conference on Formal Structures for Computation
and Deduction, FSCD 2017, September 3-9, 2017, Ozxford, UK, volume 84 of LIPIcs, pages
26:1-26:20. Schloss Dagstuhl, 2017. doi:10.4230/LIPIcs.FSCD.2017.26.

Jean-Yves Moyen. Implicit Complezity in Theory and Practice. Habilitation thesis, University of
Copenhagen, 2017. URL: https://lipn.univ-parisi3.fr/~moyen/papiers/Habilitation_
JY_Moyen.pdf.

Jean-Yves Moyen, Thomas Rubiano, and Thomas Seiller. Loop quasi-invariant chunk detection.
In Deepak D’Souza and K. Narayan Kumar, editors, ATVA, volume 10482 of LNCS. Springer,
2017. doi:10.1007/978-3-319-68167-2_7.

Jean-Yves Moyen, Thomas Rubiano, and Thomas Seiller. Loop quasi-invariant chunk mo-
tion by peeling with statement composition. In Guillaume Bonfante and Georg Moser,
editors, Proceedings 8th Workshop on Developments in Implicit Computational Complex-
ity and 5th Workshop on Foundational and Practical Aspects of Resource Analysis, DICE-
FOPARA@QETAPS 2017, Uppsala, Sweden, April 22-23, 2017, volume 248 of EPTCS, pages
47-59, 2017. doi:10.4204/EPTCS.248.9.

pymwp’s documentation, 2021. URL: https://statycc.github.io/pymwp/.

Coq Team. Coq documentation, 2022. URL: https://coq.github.io/doc/.

Joris van der Hoeven and Robin Larrieu. Fast Grobner basis computation and polynomial
reduction for generic bivariate ideals. Applicable Algebra in Engineering, Communication and
Computing, 30(6):509-539, December 2019. doi:10.1007/s00200-019-00389-9.

Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Formal
verification of SSA-based optimizations for LLVM. In Hans-Juergen Boehm and Cormac
Flanagan, editors, ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 175-186. ACM, 2013.
doi:10.1145/2491956.2462164.

26:19

FSCD 2022


https://doi.org/10.1007/978-3-030-85315-0_20
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1145/1555746.1555752
https://doi.org/10.1145/2676726.2676966
https://doi.org/10.1016/j.tcs.2003.10.018
https://doi.org/10.1145/158511.158659
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.4230/LIPIcs.FSCD.2017.26
https://lipn.univ-paris13.fr/~moyen/papiers/ Habilitation_JY_Moyen.pdf
https://lipn.univ-paris13.fr/~moyen/papiers/ Habilitation_JY_Moyen.pdf
https://doi.org/10.1007/978-3-319-68167-2_7
https://doi.org/10.4204/EPTCS.248.9
https://statycc.github.io/pymwp/
https://coq.github.io/doc/
https://doi.org/10.1007/s00200-019-00389-9
https://doi.org/10.1145/2491956.2462164

26:20

mwp-Analysis Improvement and Implementation: Realizing Implicit Complexity

A  Technical appendix on semi-rings (abridged)

This is an abridged version of the technical development on semi-ring that is exposed in full
details in our technical report [4, A.1 and A.2].

» Lemma 18 (mwp semi-ring). The tuple ({0, m,w,p},0,m,+, x), with
O<m<w<p,

a_’_ﬁz{a ifa> B

B otherwise

a+p ifa#£0andB#0
axf=
0 otherwise
1S a strong semi-ring.

» Lemma 19 (Matrix semi-ring). Given a strong semi-ring S = (S,0,1,+, x), the tuple
M= (M,0,1,®,®), with

M the set of all n X n matrices over S, for alln € N,

0 defined by M = 0 iff M;; =0 for all i and j,

1 defined by M =1 iff M;; =1 for i = j, M;; = 0 otherwise,

@ defined by C = A® B iff Ci; = Asj + Byj,

® defined by C = A® B iff Cij = >, Air X Byj,

1S a strong semi-Ting.
For simplicity, we will write M as M(S) = (M(5),0,1,®, ®).

» Lemma 20 (Choices semi-ring). Given a strong semi-ring S = (S,0,1,4, X) and a set A,
the tuple F = (F,0,1,H,K), with

F the set of functions from A to S,
=0 foralla€ A,
=1 forallac A,
FB9)(a) = (f(a) + (g(a), for all f, g in F and a € 4,
J®g)(a) =

)(a) = (f(a)) x (g(a)), for all f, g in F and a € A,

0 the constant function 0(a
1 the constant function 1(a

B defined componentwise:

N N N

X defined componentwise:
1S a strong semi-ring.

For simplicity, we will write Fas A - S= (4 — 5,0,1,+, x).

» Lemma 21. For all set A and strong semi-ring S, M((A — S) = A — M(S).

» Lemma 22. Given a strong semi-ring S = (S,0,1,+, x) and an element L ¢ S, St =
(SU{L},0,1,+, x+) with, for all a, b€ SU{L},

a+b ifa,b# L
iy fa,b#
otherwise

n axb ifab# L
ax—b=
1 otherwise

1S a semi-Ting.

Proof. The proof is immediate, but note that S* is not strong, as L x 0 = L. <
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B Omitted Proofs

» Theorem 10 (Determinancy and termination). Given a program P, there exists unique
p € N and M € M({0, 1,2} — MWP>) such that = P : M.

Proof. The proof proceeds by induction on the length of the program P, expressed in number
of commands. We let p be the number of variables in P, but observe that any program P
can be treated as manipulating p’ > p different variables, by simply adding p’ — p additional
rows and columns to the matrix, and leaving them unchanged by the derivation of P. While
a complete proof would need to constantly account for the number of actual and potential
variables used by P, we will simply assume that the reader understands that accounting
for this technicality obfuscate more than it clarifies the proof, and we will freely resize the
matrices to account for additional variables when needed.

If P is of length 1 Then we know P is of the form X = e, and only the rule A can be applied.
But then we need to prove that all expression e can be typed with exactly one vector.
An expression e is either a variable X, or a composed expression X * Y, X - Y, or X + Y.
But then, respectively, only ES, EM or EA (for addition and substraction) can be applied,
and this case is proven.

If P is of length n > 1 Then we proceed by case on the structure of the command:

If P is of the form if b then P1 else P2, then by induction we know for i € {1, 2}
there exists p; and M; of size p; X p; such that - Pi : M;. If p; # ps, then letting Mj
being the smaller matrix, it is easy to rewrite Pj’s derivation to account for |p; — ps|
additional variables, and as @ is uniquely defined, we know that M; & Ms results in a
unique matrix of size max(pi, p2).

If P is of the form while b do P’, this is immediate by induction hypothesis on P’,
considering that only W can be applied, and that this rule produces a unique matrix.
If P is of the form loop X {P’}, this case is similar to the previous one, using L*>°
instead of W,

If P is of the form P1;P2, this case is similar to the if case, with the possible need to
resize one of the matrix obtained by induction, and using that ® is uniquely defined. <«

» Theorem 11 (Adequacy). If P : M, then for all @ € AP, by P : MId] iff co ¢ M|d].

Proof. The proof proceeds by induction on the length of the program P, expressed in number

of commands.

If P is of length 1 Then we know P is of the form X = e, and only the rule A can be applied,
in both systems. Hence, we need to prove that all expression e can be typed the same
way in both systems. A careful comparison of Figures 1 and 2 shows that if e is of the
form Xi, then there is a small mismatch. In the original system, we can use either E2,
and obtain F Xi : {{'}, or E1, and obtain Fy Xi : {{"}, while the only derivation in
the deterministic system is using ES to get b, Xi : {"}. As m < w, we argue that the
deterministic system cannot obtain a derivation that is not useful anyway, and hence that
it can be ignored.

As for the other cases, if e is a composed expression X * Y, X - Y, or X + Y, it is easy
to observe that EA and EM encapsulates all the possible combinations of E2 and of E1
followed by E3 or E4 that can be used.

If P is of length n > 1 Then the result holds by induction, once we observed that L*>° and
W are introducing oo coefficients only if L and W cannot be applied. <
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C Benchmarks

C.1 Descriptions of program groups

Basics — C programs performing operations corresponding to simple derivation trees.
Implementation paper — example programs presented in this paper.

Original paper — examples taken from or inspired by the original analysis [23].
Infinite — programs whose matrices always contain infinite coefficients.

Polynomial — programs whose matrices do not always contain infinite coefficients.
Other — other C programs of interest.

C.2 Results

The benchmarks are categorized and grouped to distinguish the type of system behavior

they exercise. For each program we capture in Table 1

1. program variable count

2. the lines of code in the source program (LOC column)

3. clock time taken by the full analysis (excluding saving result to file, which is otherwise
default behavior),

4. number of function calls excluding builtin Python language calls, and

5. the result of the analysis.

Collectively the LOC, time, and function calls columns provide insight into the behavior
of the analysis as different aspects of the system are being stress-tested. From the results
column we report expected results on each benchmarked program. In the benchmarks
table a passing result is represented with v'and oo otherwise. We do not report manually
computed bounds as comparison, because the analysis is carried out on individual variables,
thus calculating them on multivariate programs is tedious and futile. However, for simple
programs such as while 2.c, it is straightforward through visual inspection to verify the
obtained 2 x 2-matrix is indeed the correct result.

These benchmarks were obtained using Python’s built-in cProfile utility, extended in
pymwp implementation to enable batch profiling. The clock times are slight overestimates
because the utility adds minor runtime overhead. The number of function calls includes
primitive calls, but exclude built-in Python language calls. Full detailed results are viewable
in the source code repository: https://github.com/statycc/pymwp/releases/tag/profile-latest

C.3 Comparison

It is not really meaningful or possible to compare those results with any other static analyzer,
and impossible to compare it with any other implementation of this type of flow analysis.
While we could, in theory, analyze our examples with other static analyzers, their results
would be incomparable, as they would produce guarantees on termination or worst case
resource usage, which are both orthogonal to our polynomial bounds on value growth. To our
knowledge, the only static analyzer using similar metrics [5] was developed only for functional
languages, thus preventing comparison. As for implementations of the original analysis, our
first attempts showed that a naive implementation would likely fail to handle the memory
or time explosions. We did, however, compare the gains resulting from the optimizations
described in Sect. 4.3. In a nutshell, our improved algorithm for adding and multiplying
polynomials resulted in the analysis being roughly five times faster for two programs that
we estimate to be representative.


https://statycc.github.io/pymwp/demo/#basics_while_2.c
https://github.com/statycc/pymwp/releases/tag/profile-latest
https://github.com/statycc/pymwp/pull/18/commits/fc2068cdedf9560879294b71f009ee780cf3ca86
https://statycc.github.io/pymwp/polynomial/#pymwp.polynomial.Polynomial.add
https://statycc.github.io/pymwp/polynomial/#pymwp.polynomial.Polynomial.times
https://github.com/statycc/pymwp/issues/17#issuecomment-854931398
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Table 1 Benchmark results produced by pymwp on C programs.

Program name

assign__expression
assign_ variable

if

if _else

inline variable
while 1

while 2

while if

example7
examplel5_ a
examplel5_b

example3_ 1 a
example3_1_b
example3_1_c¢
example3_1_d
example3_ 2
example3_ 4
exampled_ 1
example7__10
example7_ 11

exponent_ 1
exponent_ 2
infinite_ 2
infinite 3
infinite 4
infinite 5
infinite 6
infinite 7
infinite 8

notinfinite 2
notinfinite 3
notinfinite_ 4
notinfinite_ 5
notinfinite_ 6
notinfinite_ 7
notinfinite_ 8

dense
dense__loop
explosion

ged
simplified__dense

Variables | LOC | Time (ms) | Function calls
2 8 133 81614
2 9 115 81238
2 9 118 82046
2 7 118 82928
2 9 118 81979
2 7 117 82934
2 7 117 83964
3 9 122 91572
3 10 122 86898

242 25 122 88763
4 16 137 122016
3 10 110 85286
3 10 120 87637
3 11 121 89173
2 12 116 80002
3 12 118 83182
5 18 134 108890
2 10 116 81185
3 10 119 86053
4 11 139 119379
4 16 127 99893
4 13 123 92846
2 6 143 128275
3 9 120 89880
5 9 3274 5924420
5 11 369 529231
4 14 1624 2836726
5 15 631 964189
6 23 880 1444782
2 4 119 86174
4 9 131 104826
5 11 169 168242
4 11 174 176179
4 16 195 215765
5 15 1161 1961806
6 22 1893 3172293
3 16 157 151428
3 17 269 353068

18 23 1296 2327071
2 12 114 84914
2 9 118 85098

Bound
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