
Stateful Structural Operational Semantics
Sergey Goncharov !

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Stefan Milius !

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Lutz Schröder !

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Stelios Tsampas !

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Henning Urbat !

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Abstract
Compositionality of denotational semantics is an important concern in programming semantics.
Mathematical operational semantics in the sense of Turi and Plotkin guarantees compositionality, but
seen from the point of view of stateful computation it applies only to very fine-grained equivalences
that essentially assume unrestricted interference by the environment between any two statements.
We introduce the more restrictive stateful SOS rule format for stateful languages. We show that
compositionality of two more coarse-grained semantics, respectively given by assuming read-only
interference or no interference between steps, remains an undecidable property even for stateful SOS.
However, further restricting the rule format in a manner inspired by the cool GSOS formats of Bloom
and van Glabbeek, we obtain the streamlined and cool stateful SOS formats, which respectively
guarantee compositionality of the two more abstract equivalences.

2012 ACM Subject Classification Theory of computation → Categorical semantics

Keywords and phrases Structural Operational Semantics, Rule Formats, Distributive Laws

Digital Object Identifier 10.4230/LIPIcs.FSCD.2022.30

Related Version Extended paper with full proofs: https://arxiv.org/abs/2202.10866

Funding Sergey Goncharov: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) – project number 215418801.
Stefan Milius: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) – project number 259234802.
Lutz Schröder : Work supported by Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) as part of the Research and Training Group 2475 (grant number 393541319/GRK2475/1-
2019).
Stelios Tsampas: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) – project number 419850228.
Henning Urbat: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) – project number 419850228.

1 Introduction

A key prerequisite for modular reasoning about process calculi and programming languages
is compositionality: A denotational semantics is compositional if the associated semantic
equivalence forms a congruence, that is, subterms of a given process or program term may be
replaced with equivalent subterms without affecting the overall denotational meaning of the
term. For instance, the classical GSOS format of Bloom et al. [8] provides a unified formal

© Sergey Goncharov, Stefan Milius, Lutz Schröder, Stelios Tsampas, and Henning Urbat;
licensed under Creative Commons License CC-BY 4.0

7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022).
Editor: Amy P. Felty; Article No. 30; pp. 30:1–30:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sergey.goncharov@fau.de
https://orcid.org/0000-0001-6924-8766
mailto:stefan.milius@fau.de
https://orcid.org/0000-0002-2021-1644
mailto:lutz.schroeder@fau.de
https://orcid.org/0000-0002-3146-5906
mailto:stelios.tsampas@fau.de
https://orcid.org/0000-0001-8981-2328
mailto:henning.urbat@fau.de
https://orcid.org/0000-0002-3265-7168
https://doi.org/10.4230/LIPIcs.FSCD.2022.30
https://arxiv.org/abs/2202.10866
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Stateful Structural Operational Semantics

representation of process languages interpreted over non-deterministic labelled transition
systems, and guarantees that bisimilarity is compositional. Similarly, syntactic restrictions
of the GSOS format due to Bloom [7] and van Glabbeek [39] guarantee compositionality for
coarser equivalences.

More abstractly, GSOS is captured in Turi and Plotkin’s bialgebraic framework of
mathematical operational semantics [38], in which sets of operational semantic rules are
represented as distributive laws of a monad over a comonad, a principle that has come to
be used in widely varying semantic settings [5, 21, 12, 23]. In particular, Turi and Plotkin
demonstrated that GSOS rules correspond precisely to natural transformations of type

ϱX : Σ(X × (PωX)L)→ (PωΣ⋆X)L,

where Σ is a polynomial functor on the category of sets (representing the signature of the
process language at hand), L is a set of (transition) labels, Pω is the finite power set functor,
corresponding to finitary non-determinism, and Σ⋆ denotes the free (term) monad on Σ. This
is an instance of an abstract GSOS law, a natural transformation of type Σ(Id× T) =⇒ T Σ⋆,
with T , the behaviour functor, instantiated to the functor PL

ω , which is associated with
image-finite L-labelled transition systems.

There is long-standing interest in SOS style specifications of stateful programming
languages [32]. The natural instantiation of mathematical operational semantics to this
setting would use TX = (S × (X + 1))S as the behaviour functor (for a given set S of
states). This gives rise to an extremely expressive rule format: In abstract GSOS laws
of type Σ(Id × T) =⇒ TΣ⋆, program constructs receive their arguments as full-blown
state transformers, which in particular they can execute or probe on any number of input
states. The semantic domain provided by mathematical operational semantics in this case is
the final coalgebra for T , which consists of possibly infinite S-branching, S-labelled trees,
and thus is an instance of (coalgebraic) resumption semantics [29], originally developed for
concurrent settings [13, 10]. The induced notion of semantic equivalence, for which the format
guarantees compositionality, is very fine-grained: Being a resumption semantics, it assumes
that programs cede complete control to the environment between any two consecutive steps,
and thus makes rather few programs equivalent. Capturing less sceptical semantics, such as
standard sequential end-to-end net execution, in a compositional manner has proved rather
more challenging; generally speaking, compositionality is harder for coarser equivalences
because less information is available about the behaviour of subterms [39].

In the present work, we approach this problem by restricting the rule format to various
degrees. We first note that the operational rules typically associated to imperative lan-
guages resemble GSOS rules with an additional input parameter, the present state. We
correspondingly introduce the stateful SOS format for the specification of stateful languages,
and show that stateful SOS specifications are in an one-to-one correspondence with natural
transformations of type

δX : S × Σ(X × S × (X + 1))→ S × (Σ⋆X + 1).

In a small-step operational semantics given in terms of transitions on pairs consisting of states
in S and program terms (or a termination marker ✓ ∈ 1), δX assigns to a given state (in S)
and a program construct applied to argument variables with given next-step operational
behaviour (i.e. an element of Σ(X × S × (X + 1))) its small-step operational behaviour.
Effectively, this means that, in small-step operational semantics, program constructs can
execute and probe their arguments only on the current state. We give a resumption semantics
(over the final coalgebra for T as above) for stateful SOS, and show that this semantics agrees
with the one obtained by converting δ into a GSOS law, in particular is compositional.

S. Goncharov, S. Milius, L. Schröder, S. Tsampas, and H. Urbat 30:3

Table 1 Separating denotational domains by program equivalences.

(x := 1; y := x) = (x := 1; y := 1) (x := 1; x := 2) = (x := 2)
νγ. (S × (γ + 1))S ✘ ✘

(S+ + Sω)S ✔ ✘

(S + 1)S ✔ ✔

We go on to define two successive coarsenings of resumption semantics: Trace semantics
assumes that the environment can observe but not manipulate states reached in between
successive computation steps, and correspondingly uses the semantic domain (S+ + Sω)S ,
the set of functions expecting an initial state and returning a possibly terminating S-stream.
The, yet coarser, termination semantics additionally abstracts from the intermediate states
of a computation, and thus is defined over the semantic domain (S + 1)S , the set of functions
expecting an initial state and returning either a final state or divergence. Trace semantics
has been used, e.g., in the type-theoretic semantics of program logics [25] and in formalizing
concurrent systems that feature memory isolation mechanisms [27, 28]. Termination semantics
is the semantic domain typically associated with big-step [22, 26] or natural semantics [18],
and is a popular choice in settings where fine architectural details are less relevant [33, 31, 30].
Table 1 presents the three domains in decreasing order of granularity and illustrates their
differences in terms of the programs they distinguish. Here, S is the set of variable stores
assigning to every program variable its current value. First, consider the programs x:=1; x:=2
and x := 2. These are clearly equivalent in termination semantics but not in trace semantics,
as the additional initial step of the first program is visible in trace semantics. Similarly, the
programs x := 1; y := x and x := 1; y := 1 are clearly equivalent under trace semantics but not
under resumption semantics, as the latter assumes that the value of x may be changed by
the environment between the two steps. In fact, we show as our first main result that despite
the restricted expressiveness, it is undecidable whether the coarser program equivalences are
compositional for a given stateful SOS specification. In a subsequent step, we thus introduce
two sets of syntactic restrictions in the spirit of Bloom [7] and van Glabbeek [39], and show
that these guarantee that stateful SOS specifications have compositional trace semantics or
termination semantics, respectively.

Related Work. The above-mentioned cool GSOS rules of Bloom [7] and van Glabbeek [39]
guarantee compositionality w.r.t. various flavours of weak bisimilarity; they motivate the cool
stateful SOS format we introduce here. In a similar vein, Tsampas et al. [36] present abstract
compositionality criteria for weak bisimilarity in the context of mathematical operational
semantics [37]. Weak bisimilarity is still rather finer than the main semantics of interest
for the present work (trace semantics and termination semantics), as it only abstracts away
from steps that do not modify the state, such as skip.

Abou-Saleh and Pattinson [1, 2] consider abstract GSOS specifications for while-languages
and construct semantics in Kleisli categories, working at a somewhat higher level of generality
than we do here, in particular parametrizing over notions of side-effect. Roughly speaking,
the coarsest of their semantics amounts to a steps-until-termination semantics that counts
but does not enumerate intermediate states, and thus is coarser than trace semantics but
finer than termination semantics. They propose an abstract condition on cones [1, Sec. 4.4]
that guarantees compositionality for steps-until-termination semantics. This condition is
hard to verify in concrete instances but ensured by evaluation-in-context rule formats [2] that
correspond roughly to our cool stateful SOS format, for which we show compositionality even

FSCD 2022

30:4 Stateful Structural Operational Semantics

w.r.t. termination semantics (a goal explicitly mentioned by Abou-Saleh and Pattinson [2,
Section 6]). Our streamlined stateful SOS format, which guarantees compositionality of trace
semantics, appears to be more permissive than evaluation-in-context.

Bloom and Vandraager [9] and Mousavi et al. [24] propose further SOS-style formats
for computations with data and prove compositionality results for semantic equivalences
resembling our resumption semantics. We note that these results require fairly tedious proofs;
this again highlights the advantage of the categorical approach where they come entirely for
free (see Theorem 4.6). The Sfisl format [24] is shown to make trace semantics compositional,
but in contrast to our streamlined format it is not expressive enough to cover a fully fledged
while-language. Termination semantics is not considered in either of these works.

2 Preliminaries

We assume that readers are familiar with basic notions from category theory such as functors,
natural transformations, and monads. In the following we briefly recall some terminology
concerning algebras and coalgebras. Throughout, Set denotes the category of sets and
functions. We write 1 = {∗} for the terminal object. For a pair X1, X2 of objects we write
X1 ×X2 for the product with the projections fst : X1 ×X2 → X1 and snd : X1 ×X2 → X2.
For a pair of morphisms fi : Y → Xi, i = 1, 2, we let ⟨f1, f2⟩ : Y → X1 × X2 denote
the unique induced morphism. The canonical strength of an endofunctor F : Set → Set
is the natural transformation with components stX,Y : X × FY → F (X × Y) defined by
stX,Y (x, p) = F (λy. (x, y))(p). We usually drop the subscripts X and Y .

Algebras. Given an endofunctor F on a category C, an F -algebra is a pair (A, α) of an
object A (the carrier of the algebra) and a morphism α : FA → A (its structure). A
homomorphism from an F -algebra (A, α) to an F -algebra (B, β) is a morphism h : A→ B

of C such that h ·α = β ·Fh. Algebras for F and their homomorphims form a category Alg F ,
and an initial F -algebra is simply an initial object in that category. If it exists, we denote
the initial F -algebra by µF and its structure by ι : F (µF)→ µF .

A common example of functor algebras are algebras over a signature. An algebraic
signature consists of a set Σ of operation symbols together with a map ar : Σ→ N associating
to every operation symbol f its arity ar(f). Symbols of arity 0 are called constants. Every
signature Σ induces the polynomial functor

∐
f∈Σ(--)ar(f) on Set, which we denote by the

same letter Σ. An algebra for the functor Σ then is precisely an algebra for the signature Σ,
i.e. a set A equipped with an operation fA : An → A for every n-ary operation symbol f ∈ Σ.
Homomorphisms between Σ-algebras are maps respecting the algebraic structure.

Given a set X of variables, we write Σ⋆X for the Σ-algebra of terms generated by Σ
with variables from X. It is the free Σ-algebra on X, that is, every map f : X → A into
the carrier of a Σ-algebra (A, α) uniquely extends to a homomorphism f̄ : Σ⋆X → A. In
particular, the free algebra on the empty set is the initial algebra µΣ; it is formed by all
closed terms of the signature. As shown by Barr [4], the formation of free algebras extends
to a monad Σ⋆ : Set → Set, the free monad on Σ. For every Σ-algebra (A, α) we obtain
an Eilenberg-Moore algebra α̂ : Σ⋆A → A as the free extension of idA. This is the map
evaluating terms over A in the algebra.

Coalgebras. A coalgebra for an endofunctor F on C is a pair (C, γ) of an object C (the
carrier) and a morphism γ : C → FC (its structure). A homomorphism from an F -coalgebra
(C, γ) to an F -coalgebra (D, δ) is a morphism h : C → D such that Fh · γ = δ ·h. Coalgebras

S. Goncharov, S. Milius, L. Schröder, S. Tsampas, and H. Urbat 30:5

for F and their homomorphisms form a category Coalg F , and a final coalgebra is a final
object in that category. If it exists, we denote the final F -coalgebra by νF and its structure
by τ : νF → F (νF), and we write γ♯ : (C, γ)→ (νF, τ) for the unique homomorphism.

▶ Example 2.1.
1. Fix a set S. The set functor BX = S × (X + 1) has a final coalgebra carried by

νB = S+ + Sω, the set of all non-empty possibly terminating S-streams. Its coalgebra
structure S+ +Sω → S × (S+ + Sω + 1) sends a stream sw (where s ∈ S and w ∈ S∗+Sω)
to (s, w) if w ∈ S+ + Sω and to (s, ∗) if w is empty.

2. Similarly, for the set functor TX = (BX)S = (S × (X + 1))S , the terminal coalgebra is
carried by the set of possibly infinite S-ary trees (i.e. every node is either a leaf or has an
S-indexed set of children) that have more than one node and where every edge is labelled
by an element of S. The coalgebra structure νT → (S × (νT + 1))S sends a tree t to the
map s 7→ (s′, t′) where s′ is the label of the edge from the root to its s-th child, and t′ is
the subtree rooted at that child if it has more than one node, or ∗ otherwise.

3 Stateful SOS Specifications

We start off with an observation on the standard operational semantics for sequential
composition in imperative languages (see e.g. Plotkin [32]), given by the following rules:

seq1
s, p ↓ s′

s, (p; q)→ s′, q
seq2

s, p→ s′, p′

s, (p; q)→ s′, (p′; q)
(3.1)

Rule seq1 asserts that if a program p, on input (state) s, terminates and produces a new
state s′, then the program p; q, on input state s, evolves to program q and produces the
new state s′. The other case is captured by rule seq2, which asserts that if p, on input s,
transitions to p′ and produces s′, then p; q, on input s, transitions to p′; q and produces s′.
Note that for both rules, the input s is the same in the premiss and in the conclusion.
Consequently, to decide how p; q transitions from s in the next step, we need to know only
how p behaves on s, which we can regard as the input of the entire rule. This allows us
to give a concise categorical formulation of the rules seq1 and seq2 in terms of a natural
transformation S × (X × S × (X + 1))2 → (S × Σ⋆X + 1) where Σ is a signature containing
the binary operation symbol ‘;’. The transformation is defined by

(s, (x, s′, ∗), (y, _, _)) 7→ (s′, y) and (s, (x, s′, x′), (y, _, _)) 7→ (s′, (x′; y)).

Compare the above with the interpretation obtained by instantiating the GSOS principle [38]
to stateful computations in the standard manner [37]. The interpretation of ‘;’ is then given
as a natural transformation (X × (S × (X + 1))S)2 → (S × (Σ⋆X + 1))S whose uncurried
form S × (X × (S × (X + 1))S)2 → S × (Σ⋆X + 1) is defined by

(s, (x, f), (y, _)) 7→
{

(s′, y) if f(s) = (s′, ∗),
(s′, (x′; y)) if f(s) = (s′, x′).

In this setting, the semantics of p; q receives the next-step behaviours of p, q as state
transformers, and can in principle probe these state transformers on arbitrary states (of
course, for ‘;’, this does not actually happen). By contrast, our rule format, the stateful
SOS format formally introduced next, embodies the restriction that the behaviour of a
complex term on an input state s is predicated only on the behaviour of its subterms on s.
It is this trade-off in expressiveness that buys our compositionality results for stateful SOS
specifications.

FSCD 2022

30:6 Stateful Structural Operational Semantics

The Stateful SOS Rule Format. We proceed to underpin the intuition given above
with formal definitions. We fix a countably infinite set V = {x1, x2, . . . } ∪ {y1, y2, . . . }
of (meta-)variables and a countable set S of states; in typical applications the elements of S

are variable stores. Moreover, we fix an algebraic signature Σ, equivalently a polynomial
functor also denoted Σ (cf. Section 2). We think of the operations in Σ as program constructs,
and correspondingly, programs are closed Σ-terms, i.e. terms formed using only the operations
in Σ, with constants in Σ forming the base case.

▶ Definition 3.1 (Literals). A progressing Σ-literal is an expression s, p→ s′, q with p, q ∈ Σ⋆V
and s, s′ ∈ S. We say that s is the input, p is the source, s′ is the output and q is the target
of the literal. A terminating Σ-literal is an expression s, p ↓ s′ with s, s′ ∈ S and p ∈ Σ⋆V.
In this case, s is the input, p is the source and s′ is the output of the literal. A Σ-literal
(without further qualification) is either a progressing or a terminating Σ-literal.

Our rule format shares some similarities with stream GSOS [19, Def. 37].

▶ Definition 3.2 (Rules). A stateful SOS rule for an n-ary operator f ∈ Σ is an expression

l1 . . . ln
L

(3.2)

(or, in inline notation, l1 . . . ln/L) where l1, . . . , ln (the premisses of the rule) and L (the
conclusion of the rule) are Σ-literals that have the same input s ∈ S, the input of the rule,
and satisfy the following conditions:
1. The source of the premiss lj is the variable xj , and the target is yj if lj is progressing.
2. The source of the conclusion L is the term f(x1, . . . , xn). Moreover, if L is progressing,

the variables of its target term appear either as the source or the target of some premiss.
The rule is progressing if L is progressing, and otherwise the rule is terminating. The
trigger of the rule is the tuple formed by its input s together with the sequence of pairs−−−→
(s′, c) = (s′1, c1), . . . , (s′n, cn), where s′j is the output of lj and cj ∈ {pr, te} indicates
whether lj is progressing (cj = pr) or terminating (cj = te).

▶ Definition 3.3. A stateful SOS specification is a set of stateful SOS rules such that for
each n-ary operator f, each s ∈ S and each sequence

−−−→
(s′, c) = (s′1, c1), . . . , (s′n, cn) where

s′j ∈ S and cj ∈ {pr, te}, there is exactly one rule for f with trigger (s,
−−−→
(s′, c)).

▶ Notation 3.4. By writing

l1 . . . lj−1 lj+1 . . . ln

L

we mean the set of all stateful SOS rules of the form l1 . . . ln/L (with the missing premiss lj
filled in in any way possible). This captures the situation where the behaviour of the source
f(x1, . . . , xn) of L does not depend on the behaviour of xj , given l1, . . . , lj−1, lj+1, . . . , ln.

▶ Remark 3.5. The use of fixed enumerated variables x1, x2, . . . and y1, y2, . . . simplifies
abstract reasoning about stateful SOS (e.g. Theorem 3.9 below). In examples, we use arbitrary
variable names such as p, q, x, y, and we typically write rules using rule schemes, using
hopefully self-explanatory notation. For instance, rule seq1 in Figure 1 (discussed in detail in
Example 3.6) is to be understood as the set { s, p ↓ s′ / s, (p; q)→ s′, q | s, s′ ∈ S} of stateful
SOS rules, with variables p, q, and rule while1 as the set { /s, while e p ↓ s | s ∈ S, [e]s = 0}
(with premiss omitted as per Notation 3.4). Note the side condition [e]s = 0 (expression e

evaluates to 0 in state s) of while1; the rule schemes and their side conditions need to be

S. Goncharov, S. Milius, L. Schröder, S. Tsampas, and H. Urbat 30:7

skip
s, skip ↓ s

asn
s, (x := e) ↓ s[x←[e]s]

while1
s, while e p ↓ s

[e]s = 0 while2
s, while e p→ s, (p; while e p)

[e]s ̸= 0

seq1
s, p ↓ s′

s, (p; q)→ s′, q
seq2

s, p→ s′, p′

s, (p; q)→ s′, (p′; q)

Figure 1 Operational semantics of While.

set up in such a way that they actually obey the restrictions in Definition 3.3. For example,
in the case of while1 and while2, this is ensured by the respective side conditions ([e]s = 0
and [e]s ̸= 0) being exhaustive and mutually exclusive.

▶ Example 3.6. We will use a prototypical imperative language, While, as a running example.
Fix a countably infinite set A of program variables; then, the set S of stores consists of all
maps s : A → N whose support {x ∈ A | s(x) ̸= 0} is finite. We denote by s[x←v] the result of
changing the value of variable x to v in a store s. Moreover, we assume a set E of expressions
that include the arithmetic operations +,−, ∗, constants n ∈ N and variables x ∈ A. We
write [e]s for the evaluation of expression e under store s (in the literature, evaluation is
often defined stepwise by induction on the structure of the expression [32]; since this process
does not affect the program state, we instead assume a denotational semantics for simplicity).
The syntax of While is given by the grammar

⟨prog⟩ ::= skip | x := e | ⟨prog⟩; ⟨prog⟩ | while e ⟨prog⟩ (x ∈ A, e ∈ E),

which in terms of algebraic operations means that the signature Σ includes constants skip
and x := e for all x ∈ A, e ∈ E, a binary operation ; and a unary operation while e for
each e ∈ E. The corresponding polynomial functor is

ΣX = 1 +A× E + X ×X + E ×X.

The operational semantics of While in the form of a stateful SOS specification is shown in
Figure 1, using rule schemes as per Remark 3.5.

As indicated by the discussion at the beginning of this section, stateful SOS specifications
can be represented as natural transformations:

▶ Definition 3.7. A stateful SOS law is a natural transformation

δX : S × Σ(X × S × (X + 1))→ S × (Σ⋆X + 1) (X ∈ Set).

▶ Remark 3.8.
1. Every stateful SOS specification L yields a stateful SOS law

δX = [δf
X]f∈Σ : S × Σ(X × S × (X + 1))→ S × (Σ⋆X + 1) (X ∈ Set)

by distributing S × (−) over Σ(X × S × (X + 1)) and copairing the maps

δf
X : S × (X × S × (X + 1))ar(f) → S × (Σ⋆X + 1) (f ∈ Σ) (3.3)

FSCD 2022

30:8 Stateful Structural Operational Semantics

defined as follows. Given (s, ((v1, s′1, w1), . . . , (vn, s′n, wn))) ∈ S × (X × S × (X + 1))n

with n = ar(f), let l1 . . . ln/L be the unique rule in L with source f and trigger
(s, ((s′1, c1), . . . , (s′n, cn)) where cj = pr if wj ∈ X and cj = te if wj = ∗. Let s′ be the
output of L. Then δf

X(s, ((v1, s′1, w1), . . . , (vn, s′n, wn))) is (s′, ∗) if the rule is terminating,
and otherwise (s′, t′) where t′ ∈ Σ⋆X is the term obtained from the target t ∈ Σ⋆V of L

by substituting xj by vj and yj by wj (the latter whenever cj = pr).
2. Conversely, every stateful SOS law δ yields a stateful SOS specification L whose rules

are defined as follows. For every n-ary operation symbol f ∈ Σ, s, s′1, . . . , s′n ∈ S and
W ⊆ {1, . . . , n}, let (s′, t) be the value of δf

V on (s, ((x1, s′1, w1), . . . , (xn, s′n, wn))) where
wj = yj if j ∈W and wj = ∗ otherwise. If t ∈ Σ⋆V, then L contains the rule

(s, xj → s′j , yj)j∈W (s, xj ↓ s′j)j∈{1,...,n}∖W

s, f(x1, . . . , xn)→ s′, t
,

and if t = ∗, then L contains the rule

(s, xj → s′j , yj)j∈W (s, xj ↓ s′j)j∈{1,...,n}∖W

s, f(x1, . . . , xn) ↓ s′
.

▶ Theorem 3.9. There is a bijective correspondence between (1) stateful SOS specifications,
(2) stateful SOS laws, and (3) families of maps of the form(

rf,W : S × Sar(f) → S × Σ⋆(ar(f) + W) + S
)

f∈Σ,W⊆ar(f).

Here we identify the natural number ar(f) with the set {1, . . . , ar(f)}.

The correspondence between (1) and (2) is given by the translations of Remark 3.8, and the
correspondence between (2) and (3) is shown using the Yoneda lemma.

4 Categorical Semantics and Compositionality

We proceed to develop a categorical treatment of stateful SOS along the lines of mathematical
operational semantics in the style of Turi and Plotkin [38] and Bartels [5]. Furthermore, we
shall define two semantic domains of interest, both coarser than the one initially obtained
through Turi-Plotkin semantics, and show that the problem of whether a given stateful SOS
specification is compositional is undecidable. We recall that if the denotational semantics of
a programming language is given by a map J−K : µΣ→ D into a semantic domain D, then it
is called compositional if the corresponding behavioural equivalence forms a congruence, that
is, for every n-ary operator f ∈ Σ and programs pi, qi ∈ µΣ (i = 1, . . . , n),

JpiK = JqiK for i = 1, . . . , n implies Jf(p1, . . . , pn)K = Jf(q1, . . . , qn)K.

Compositionality asserts that subprograms of a program p may be replaced with equivalent
subprograms without affecting the semantics of p, and thus allows modular reasoning.

4.1 GSOS Laws
Turi and Plotkin’s mathematical operational semantics [38] identifies sets of rules in structural
operational semantics (SOS) with distributive laws of various types on a cartesian base
category. We will work more specifically with distributive laws of free monads over cofree
copointed functors on the base category Set, where the free monad is associated to a
polynomial functor. Such distributive laws can equivalently be presented as follows.

S. Goncharov, S. Milius, L. Schröder, S. Tsampas, and H. Urbat 30:9

▶ Definition 4.1. Given a polynomial functor Σ and an endofunctor T on Set, a GSOS law
of Σ over T is a natural transformation ϱ : Σ(Id× T) =⇒ TΣ⋆.

We shall see below that stateful SOS laws determine GSOS laws. The interested reader may
find further examples of GSOS laws in the literature [37, 5, 19]. Roughly speaking, the input
of ϱ is a (program) operation applied to pairs each consisting of a meta-variable and its
assumed next-step behaviour (encapsulated in T), and the output is a next-step behaviour
reaching poststates given as programs with meta-variables.

Given a GSOS law ϱ, the initial Σ-algebra can be equipped with a unique T -coalgebra
structure γ : µΣ→ T (µΣ) such that the diagram

Σ(µΣ) µΣ

Σ(µΣ× T (µΣ)) TΣ⋆(µΣ) T (µΣ)

ι

Σ⟨id,γ⟩ γ

ϱµΣ T ι̂

(4.1)

commutes (see Section 2 for the notation). The coalgebra (µΣ, γ) is called the operational
model of ϱ. Dually, assuming the existence of a final coalgebra νT , there is a unique Σ-algebra
structure α : Σ(νT)→ νT such that the following diagram commutes:

Σ(νT) Σ(νT × T (νT)) TΣ⋆(νT)

νT T (νT)

Σ⟨id,τ⟩

α

ϱνT

T α̂

τ

(4.2)

The algebra (νT, α) is the denotational model of ϱ. A fundamental well-behavedness property
of GSOS laws is that the unique Σ-algebra homomorphism (µΣ, ι)→ (νT, α) and the unique
T -coalgebra homomorphism (µΣ, γ)→ (νT, τ) coincide. We denote this morphism by

behϱ : µΣ→ νT, (4.3)

and we think of it as assigning to programs their denotational behaviour. Compositionality
of this semantics is immediate from the fact that behϱ is a Σ-algebra homomorphism.

4.2 Semantic Domains for Stateful SOS
We proceed to introduce three denotational semantics of stateful SOS, in order of increasing
abstraction: resumption semantics, in which the program essentially cedes control to the
environment between any two program steps; trace semantics, where the environment may
observe but not manipulate the state between program steps; and termination semantics, in
which only the effect of executing the program end-to-end is observable.

▶ Notation 4.2. From now on, we instantiate the functor T of Definition 4.1 to

TX = (S × (X + 1))S ,

for a fixed set S of states. Thus T represents state transformers with possible non-termination.

Resumption semantics. Every stateful SOS law δ (see Definition 3.7) canonically induces a
GSOS law

δ̂ : Σ(Id× T) =⇒ TΣ⋆.

FSCD 2022

30:10 Stateful Structural Operational Semantics

This will guarantee compositionality for the most fine-grained of our semantics, which we
shall refer to as resumption semantics, via established methods of mathematical operational
semantics as recalled above. Details are as follows. The component δ̂X is obtained by
currying the composite

S × Σ(X × TX) ⟨fst,st⟩−−−−−−−−−→ S × Σ(S × (X × TX))∼= S × Σ(X × (S × TX))
id×Σ(id×ev)−−−−−−−−−→ S × Σ(X × S × (X + 1)) δX−−−→ S × (Σ⋆X + 1),

(4.4)

where st : S × Σ(X × TX)→ Σ(S × (X × TX)) is the strength (cf. Section 2) and ev : S ×
TX = S × (S × (X + 1))S → S × (X + 1) denotes the evaluation map. Recall from Ex-
ample 2.1 that the final coalgebra for T is carried by the set of possibly infinite S-branching
trees, with edges labelled in S. Using (4.1) we obtain the operational model γ : µΣ→ T (µΣ)
associated to δ̂. In terms of stateful SOS specifications, it can be described as follows.

▶ Definition 4.3. Given a stateful SOS specification L, its transition function is the map

γ0 : S × µΣ→ S × (µΣ + 1)

inductively defined by

γ0(s, f(t1, . . . , tn)) = m(δf
µΣ(s, (d1, . . . , dn)))

where

dj = (tj , γ0(s, tj)) and m =
(
S × (Σ⋆(µΣ) + 1) id×(ι̂+id)−−−−−−−→ S × (µΣ + 1)

)
,

using the term evaluation map ι̂ : Σ⋆(µΣ)→ µΣ, and δf
µΣ as in (3.3). Thus, γ0(s, p) performs

the first computation step of program p on input s according to the specification L. We write

s, p→ s′, p′ and s, p ↓ s′

if γ0(s, p) = (s′, p′) and γ0(s, p) = (s′, ∗), respectively.

▶ Proposition 4.4. Let L be a stateful SOS specification with its associated transition
function γ0 and operational model γ. Then

γ = curry(γ0) : µΣ→ (S × (µΣ + 1))S .

The proof makes use of an induction principle that combines primitive recursion (see e.g. [16,
Prop. 2.4.7]) and induction with parameters (see e.g. [16, Exercise 2.5.5]).

▶ Definition 4.5. The resumption semantics of a stateful SOS specification L is given by

[−]L = behδ̂ : µΣ→ νT,

where δ is the stateful SOS law associated to L, δ̂ is as per (4.4), and beh is defined in (4.3).
Let ∼L denote the corresponding behavioural equivalence, that is, p ∼L q iff [p]L = [q]L for
a given pair p, q ∈ µΣ. We drop subscripts if L is clear from the context.

Note that since T preserves weak pullbacks, ∼L coincides with T -bisimilarity in the operational
model γ : µΣ→ T (µΣ) [34]. From the discussion in Section 4.1 we immediately get

▶ Theorem 4.6. The resumption semantics of stateful SOS specifications is compositional.

S. Goncharov, S. Milius, L. Schröder, S. Tsampas, and H. Urbat 30:11

Resumption semantics is very fine-grained, essentially because it does not pass the output
state of a computation step on as the input state of the next step; that is, resumption
semantics assumes that the environment takes complete control in between steps. For
instance, consider the While programs

t1 =
(
x := 1; x := x + 1

)
and t2 =

(
x := 1; x := x ∗ 2

)
.

The resumption semantics of these programs in each case consists in an S-branching tree
of depth 2, in which the edge from the root to its s-th child is labelled s[x ← 1] and the
edges at the next level are correspondingly labelled according to the effect of the assignments
x := x + 1 and x := x ∗ 2, respectively. In particular, the semantics of the two programs differ –
as intuitively expected under a resumption semantics, since the environment may manipulate
the value of x in between the two assignments. To obtain a more coarse-grained notion of
process equivalence, we have to quotient the semantic domain νT further.

Trace Semantics. Consider the set functor B given by

BX = S × (X + 1);

thus TX = (BX)S . Recall from Example 2.1 that the final coalgebra νB is carried by the
set S+ + Sω of possibly terminating S-streams. The set (νB)S serves as the semantic domain
for trace semantics for imperative programs [25, 27, 28], which associates to a program the
possibly terminating sequence of states it computes from a given initial state. In order to
formally introduce trace semantics in our setting, we proceed to construct a quotient map
νT ↠ (νB)S by coinduction. To this end, we define the functor (--) : Coalg T → Coalg B,
which maps a T -coalgebra (C, ζ) to the B-coalgebra

ζ̄ = S × C
id×ζ−−−→ S × (BC)S ev−−→ BC = S × (C + 1) ⟨fst,st⟩−−−−−→ S × (S × C + 1) = B(S × C),

where st : S × (C + 1)→ S × C+1 is the strength of the functor (--)+1, given by (s, c) 7→ (s, c)
and (s, ∗) 7→ ∗. Intuitively, while ζ♯ : C → νT (see Section 2 for the notation) maps a coalgebra
state of C to its tree of state transformers, ζ

♯(s, x) ∈ νB executes all these state transformers
without interruption, beginning at s and feeding the output state of each previous step to
the next step, and outputs the intermediate states reached in each step. Applying (--) to
the final coalgebra (νT, τ), we obtain a B-coalgebra (S × νT , τ), and currying the unique
coalgebra homomorphism τ ♯ : S × νT → νB yields the desired quotient map

trc = curry(τ ♯) : νT ↠ (νB)S . (4.5)

▶ Proposition 4.7. The map trc is surjective.

▶ Definition 4.8. The trace semantics of a stateful SOS specification L is given by

J−KL = (µΣ [−]L−−−−→ νT
trc−−−→ (νB)S).

Let ≃L denote the corresponding behavioural equivalence, that is, p ≃L q iff JpKL = JqKL,
for p, q ∈ µΣ. We drop subscripts if L is clear from the context.

▶ Remark 4.9. Equivalently, J−KL is the curried form of the unique B-coalgebra homo-
morphism from (S × µΣ, γ̄) to νB (recall that (µΣ, γ) is the operational model of L). Since

γ̄ =
(
S × µΣ γ0−−−→ S × (µΣ + 1) ⟨fst,st⟩−−−−−→ S × (S × µΣ + 1) = B(S × µΣ)

)

FSCD 2022

30:12 Stateful Structural Operational Semantics

by definition of γ̄ and Proposition 4.4, we see that for every p ∈ µΣ and s ∈ S, the possibly
infinite stream JpKL(s) = s1s2s3 · · · is the sequence of states computed by the program p on
input state s, cf. Definition 4.3:

s, p→ s1, p1 → s2, p2 → s3, p3 → · · · .

Hence trace equivalence p ≃ q holds iff for each input state s, programs p and q produce the
same sequence of states.

The following example demonstrates that trace semantics is generally not compositional:

▶ Example 4.10. We extend While by adding a unary operator ⌊·⌋ with

s, p→ s′, p′

s, ⌊p⌋ → ∅, ⌊p′⌋
s, p ↓ s′

s, ⌊p⌋ ↓ s′

where ∅ denotes the store with all variables set to 0. For t1 =
(
x := 1; x := x + 1

)
and

t2 =
(
x := 1; x := x ∗ 2

)
, we have that t1 ≃ t2 but ⌊t1⌋ ̸≃ ⌊t2⌋ (since in ⌊t1⌋ and ⌊t2⌋, the

store is erased after the first assignment).

Termination Semantics. As the coarsest of our semantic domains, we shall use the set
(S + {⊥})S ∼= (S + 1)S of state transformers on S with possible non-termination featuring
pervasively in the denotational semantics of imperative programming (e.g. [33, 31, 30]). In
comparison to (νB)S , this domain abstracts from the intermediate steps of the computation.
The essence of this abstraction is captured by the map

fn : νB → S + 1 defined by fn(x) =
{

s if x is finite, with last state s,

⊥ otherwise.

▶ Definition 4.11. The termination semantics of a stateful SOS specification L is given by

JJ−KKL = (µΣ J−KL−−−−→ (νB)S fnS

−−−→ (S + 1)S).

Let ≈L denote the corresponding behavioural equivalence, that is, p ≈L q iff JJpKKL = JJqKKL
for p, q ∈ µΣ. We drop subscripts if L is clear from the context.

Thus p ≈ q iff for each initial state s, if p eventually terminates with final state s′ then q

eventually terminates with final state s′ and vice-versa. Termination semantics is generally
not compositional: the programs t1 and t2 of Example 4.10 satisfy t1 ≈ t2 but ⌊t1⌋ ̸≈ ⌊t2⌋.

The maps introduced in this section are summarized in the following commutative diagram:

µΣ

νT (νB)S (S + 1)S

[−]L J−KL

JJ−KKL

trc fnS

(4.6)

4.3 Compositionality is Undecidable
We have seen that in contrast to resumption semantics, both trace and termination semantics
generally fail to be compositional. As it turns out, reasoning about compositionality in these
two cases is a very complex, viz. undecidable, task.

S. Goncharov, S. Milius, L. Schröder, S. Tsampas, and H. Urbat 30:13

To make the ensuing decision problems precise, we fix suitable encodings of states and
terms as finite strings and regard a stateful SOS specification L as a total function that
assigns to a given operation symbol, input state and list of premisses the target of the
conclusion and output state of the respective rule. From a computational point of view,
a minimum requirement on every reasonable specification L is that it admits some finite
representation. Hence, for simplicity, we assume in the following theorem that specifications
are primitive recursive functions. For instance, this is clearly the case for the While language.

▶ Theorem 4.12. It is undecidable whether the trace semantics (or termination semantics,
respectively) induced by a primitive recursive stateful SOS specification is compositional.

Proof sketch. The halting problem reduces to the compositionality problem. The idea is to
take programs akin to t1 and t2 in Example 4.10 and precompose them with the simulation of
a given Turing machine. This can be specified in stateful SOS. The failure of compositionality
described in Example 4.10 then occurs if, and only if, the simulated machine halts. ◀

In view of the fact that there is no sound and complete decision procedure for compositionality
w.r.t. ≃ and ≈, we instead move on to identify easily checked sound syntactic criteria that,
although necessarily incomplete, are sufficiently broad.

5 Cooling the Stateful SOS Format

We now introduce two sets of restrictions on the stateful SOS rule format, called stream-
lined stateful SOS and cool stateful SOS, that guarantee trace and termination semantics,
respectively, to be compositional. Our approach is inspired by the work of Bloom [7] and van
Glabbeek [39] on the cool congruence formats for weak bisimilarity for GSOS specifications.
The following definition will help describe the restricted formats. We make pervasive use
of the abbreviations from Notation 3.4, and we will additionally employ s, p→ s′, ∗ as an
alternative notation for a terminating literal s, p ↓ s′.

▶ Definition 5.1. Let L be a stateful SOS specification.
1. An n-ary operator f is passive if all rules for f are of the form

s, f(x1, . . . , xn)→ s′, t
where t ∈ Σ⋆({x1, . . . , xn}) or t = ∗.

In other words, the one-step behaviour of f(x1, . . . , xn) does not depend on the one-step
behaviour of any of its subterms. In particular, every constant is passive. An active
operator is one which is not passive.

2. A progressing rule for an n-ary operator f is receiving at position j ∈ {1, . . . , n} if its j-th
premiss s, xj → s′, yj is progressing and the variable yj appears in the target of the
conclusion. We say that the rule is receiving if it is receiving at some position j.

5.1 Streamlined Stateful SOS
As indicated above, the streamlined Stateful SOS format, introduced next, will guarantee
compositionality of trace semantics.

▶ Definition 5.2. A stateful SOS specification is streamlined if for every active operator f of
arity n there exists j ∈ {1, . . . , n} (the receiving position of f) such that the following holds:

FSCD 2022

30:14 Stateful Structural Operational Semantics

1. All receiving rules for f are of the form

s, xj → s′, yj

s, f(x1, . . . , xn)→ s′, t
where t = f(x1, . . . , xn)[yj/xj] or t = yj ;

here, [u/x] denotes substitution of the variable x by the term u.
2. All non-receiving rules for f are of the form

l1 l2 · · · ln
s, f(x1, . . . , xn)→ s′, t

where t ∈ Σ⋆({x1, . . . , xn}∖ {xj}) or t = ∗.

Note that in a stateful SOS specification, receiving rules for an active operator f are receiving
only in the receiving position of f. What Definition 5.2 boils down to is that an active
operator can only progress its subterm at the receiving position j, leaving everything else
unchanged and making sure that the output state in the j-th premiss is correctly propagated,
and discards the j-th subterm once it terminates.

▶ Example 5.3. The While language (cf. Figure 1) is streamlined. The only active operator
is sequential composition p; q. Its progressing rules are receiving in the left position, and
upon termination the left subterm is discarded.

Further examples are discussed after Corollary 5.5.

▶ Theorem 5.4. Trace semantics is compositional for streamlined stateful SOS specifications.

Proof sketch. For p, q ∈ µΣ and k ∈ N we put p ≃k q if the programs p and q are k-step
trace equivalent, that is, for every s ∈ S the streams JpK(s) and JqK(s) have the same prefix
of length at most k. By induction on k one proves ≃k to be a congruence, using a judicious
strengthening of the inductive claim for receiving positions of active operators. This implies
that ≃ is a congruence, whence trace semantics is compositional. ◀

From Theorem 5.4 we can deduce a slightly stronger statement. In what follows, the kernel
of a map e : X → Y is the equivalence relation on X relating x, x′ iff e(x) = e(x′).

▶ Corollary 5.5. For every streamlined stateful SOS specification, the kernel of the map
trc : νT ↠ (νB)S is a congruence w.r.t. the canonical Σ-algebra structure on νT as per (4.2).

We next look at examples of streamlined specifications but also at a few pathological cases
where compositionality breaks.

▶ Example 5.6. Streamlined specifications allow for complex control flow over programs,
including signal or interrupt handling. For instance, we can extend While by a distinguished
variable i serving as an interrupt flag and modify the rules of sequential composition to

s, p ↓ s′

s, (p; q)→ s′, q

s, p→ s′, p′

s, (p; q)→ s′, (p′; q)
[i]s = 0

s, p→ s′, p′

s, (p; q)→ s′, q
[i]s ̸= 0 ∧ P (s′) s, p→ s′, p′

s, (p; q)→ s′, (p′; q)
[i]s ̸= 0 ∧ ¬P (s′)

where P ⊆ S. If flag i is enabled and predicate P is true for the output s′ of p, then p

is terminated prematurely. This type of rules can also be used to implement listeners or
observers in high-level programming languages [17].

S. Goncharov, S. Milius, L. Schröder, S. Tsampas, and H. Urbat 30:15

▶ Example 5.7.
1. Recall the operator ⌊·⌋ from Example 4.10, which breaks compositionality for trace

semantics. The operator is active, and its progressing rule is receiving but does not
propagate the output state of its premiss, so the stateful SOS specification of While
with ⌊·⌋ fails to be streamlined (as it must, by Theorem 5.4).

2. Consider the extension of While with a binary left-first interleaving operator ◁ specified
by the rules

s, p→ s′, p′

s, p ◁ q → s′, q ◁ p′
s, p ↓ s′

s, p ◁ q → s′, q

Again, ≃ is not a congruence: For t1 = (x := 2; x := x + 2) and t2 = (x := 2; x := x ∗ 2), we
have t1 ≃ t2 but t1 ◁ (x := 0) ̸≃ t2 ◁ (x := 0). Indeed the left of the above rules is receiving
but the target of its conclusion does not have one of the allowed forms.

3. Extend While with a step-by-step branching operator ▽ specified by

s, p→ s1, p′ s, q → s2, q′

s, p ▽ q → s1, p′ ▽ q
P (s) s, p→ s1, p′ s, q → s2, q′

s, p ▽ q → s2, p ▽ q′
¬P (s)

and termination in all other cases. If the predicate P ⊆ S is, for example, x = 0, then
the same t1, t2 as in item 2 witness that ≃ is not a congruence: We have t1 ≃ t2 but
t1 ▽ (x := 0) ̸≃ t2 ▽ (x := 0). In this case, the condition that is violated is the requirement
that all rules for ▽ must be receiving in the same position.

4. Consider the operator ⌈·⌉ specified by

s, p→ s′, p′

s, ⌈p⌉ → s′, ⌈p′⌉
s, p ↓ s′

s, ⌈p⌉ → s′, p

Again, t1, t2 as in item 2 witness failure of congruence: t1 ≃ t2 but ⌈t1⌉ ̸≃ ⌈t2⌉. Indeed,
the second rule violates Definition 5.2 as p terminates but is not discarded.

5.2 Cool stateful SOS
We now further restrict the streamlined format as follows:

▶ Definition 5.8. A stateful SOS specification is cool if for every active operator f there
exists j ∈ {1, . . . , n} (again called the receiving position of f) such that the following holds:
1. All rules for f whose j-th premiss is progressing are of the form

s, xj → s′, yj

s, f(x1, . . . , xn)→ s′, f(x1, . . . , xn)[yj/xj]

2. All rules for f whose j-th premiss is terminating are of the form

s, xj ↓ s′

s, f(x1, . . . , xn)→ s′′, t
where t ∈ Σ⋆({x1, . . . , xn}∖ {xj}) or t = ∗,

and moreover s′′ and t depend only on s′ but not on s.
A stateful SOS specification is uncool if it is not cool.

The cool format asserts that an active operator f runs its j-th subterm until termination and
then discards it, proceeding to a state derivable from the terminating state of the subterm.
In GSOS, rules of type 1 (without states) are known as patience rules [39].

FSCD 2022

30:16 Stateful Structural Operational Semantics

▶ Example 5.9. The rules of the While language, which we have already observed to be
streamlined (Example 5.3), are also cool.

Cool stateful SOS specifications are streamlined, and all of the negative examples from
Section 5.1 apply here as well. Here is an example that separates the two concepts:

▶ Example 5.10. The sequential composition semantics with interrupts from Example 5.6 is
uncool, as the third rule has a progressing premiss but is not of the form in Definition 5.8.1.
Indeed, ≈ is not a congruence: For the predicate x = 42 and the programs t1 = (x:=42; x:=2)
and t2 = (x := 2), we have t1 ≈ t2 but t1; skip ̸≈ t2; skip.

As indicated above, coolness guarantees congruence for termination semantics:

▶ Theorem 5.11. Termination semantics is compositional for cool stateful SOS specifications.

Proof sketch. Suppose that f ∈ Σ is an n-ary operator and pm, qm ∈ µΣ are programs with
pm ≈ qm for m = 1, . . . , n. By symmetry, it suffices to show the following for all s, s ∈ S:

If s, f(p1, . . . , pm) terminates in state s, then s, f(q1, . . . , qm) terminates in state s.

The proof proceeds by an outer induction on the number of steps until termination of
s, f(p1, . . . , pm) and an inner induction on the structure of the programs. ◀

By Corollary 5.5 we know that for every cool (whence streamlined) specification the kernel of
trc : νT ↠ (νB)S forms a congruence. Since trc is surjective, this means precisely that there
is a (unique) Σ-algebra structure on (νB)S for which trc is a Σ-algebra homomorphism.

▶ Corollary 5.12. For every cool stateful SOS specification, the kernel of fnS : (νB)S ↠
(S + 1)S is a congruence w.r.t. the induced Σ-algebra structure on (νB)S.

6 Conclusions and Future Work

We have introduced the stateful SOS rule format for the operational semantics of stateful
languages, and equipped it with three semantics: resumption semantics, trace semantics,
and termination semantics, in decreasing order of granularity. Our main interest has been in
compositionality of these semantics. While resumption semantics is always compositional,
it is in general undecidable whether the coarser semantics are compositional. However,
compositionality is ensured by restricting to streamlined stateful SOS specifications for
trace semantics, and to cool stateful SOS specifications for termination semantics. The
compositionality result for the cool format improves on previous results for the similar
evaluation-in-context formats [2] by abstracting from steps until termination. The streamlined
format is more permissive, as we illustrate on a signal handling construct.

Our results currently work with deterministic state transformers, captured by the functor
TX = (BX)S where BX = S × (X + 1). We believe that our results generalize to functors B

equipped with a natural transformation cX : BX → S. As a first step, this generalization
requires an abstract characterization of our streamlined and cool rule formats in terms of
their corresponding natural transformations, along with categorical proofs of the respective
congruence theorems. We leave this as an important point for future work.

A further direction of possible generalization is to cover effects, such as non-determinism,
in a similar style as in work on evaluation-in-context [2]. Our work embeds the standard
semantics of sequential imperative programming (in particular termination semantics) into
the paradigm of operational semantics via distributive laws, and we expect to relate our

S. Goncharov, S. Milius, L. Schröder, S. Tsampas, and H. Urbat 30:17

results to work on morphisms of distributive laws [40, 20], which, for instance, have recently
been shown to have applications to secure compilation [35]. Extending the overall paradigm
to support higher-order languages is a well-known and, so far, elusive problem. Like in
the current work, tackling this problem may require a slight deviation from the standard
form of GSOS laws. It is worth noting that rule formats for higher-order languages have
been proposed in the past by Howe [15], Bernstein [6] and more recently Hirschowitz and
Lafont [14].

Our treatment of resumption and trace semantics and their relationship is generic, and
presumably can be transferred to other settings, in particular to constructive and type-
theoretic frameworks. Indeed we expect that it can be implemented relatively directly in
foundational proof assistants such as Agda, without additional postulates (such as the axiom
of choice or the law of excluded middle). In contrast, the domain (S + 1)S of termination
semantics is inherently classical, as it postulates that every computation will either terminate
or diverge. This can be remedied by replacing the maybe-monad (−) + 1 with a suitable
partiality monad [3, 11]. We will explore to what extent our results regarding termination
semantics can be rebased on this more general perspective.

References
1 Faris Abou-Saleh and Dirk Pattinson. Towards effects in mathematical operational semantics.

In Michael W. Mislove and Joël Ouaknine, editors, Mathematical Foundations of Programming
Semantics, MFPS 2011, volume 276 of Electron. Notes Theor. Comput. Sci., pages 81–104.
Elsevier, 2011. doi:10.1016/j.entcs.2011.09.016.

2 Faris Abou-Saleh and Dirk Pattinson. Comodels and effects in mathematical operational
semantics. In Frank Pfenning, editor, Foundations of Software Science and Computation
Structures - 16th International Conference, FOSSACS 2013, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings, volume 7794 of Lecture Notes in Computer Science, pages 129–144.
Springer, 2013. doi:10.1007/978-3-642-37075-5_9.

3 Thorsten Altenkirch, Nils Danielsson, and Nicolai Kraus. Partiality, revisited - the partiality
monad as a quotient inductive-inductive type. In Javier Esparza and Andrzej Murawski,
editors, Foundations of Software Science and Computation Structures, FOSSACS 2017, volume
10203 of Lecture Notes Comput. Sci., pages 534–549, 2017.

4 Michael Barr. Coequalizers and free triples. Math. Z., 116:307–322, 1970.
5 Falk Bartels. On generalised coinduction and probabilistic specification formats: Distributive

laws in coalgebraic modelling. PhD thesis, Vrije Universiteit Amsterdam, 2004.
6 Karen L. Bernstein. A congruence theorem for structured operational semantics of higher-

order languages. In Thirteenth Annual IEEE Symposium on Logic in Computer Science,
Indianapolis, Indiana, USA, June 21-24, 1998, pages 153–164. IEEE Computer Society, 1998.
doi:10.1109/LICS.1998.705652.

7 Bard Bloom. Structural operational semantics for weak bisimulations. Theor. Comput. Sci.,
146(1&2):25–68, 1995. doi:10.1016/0304-3975(94)00152-9.

8 Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be traced. J. ACM,
42(1):232–268, 1995. doi:10.1145/200836.200876.

9 Bard Bloom and Frits Vandraager. Sos rule formats for parameterized and state-bearing
processes, 1994. URL: http://www.sws.cs.ru.nl/publications/papers/fvaan/bardfrits.
ps.

10 Stephen D. Brookes. Full abstraction for a shared variable parallel language. In Proceedings of
the Eighth Annual Symposium on Logic in Computer Science (LICS ’93), Montreal, Canada,
June 19-23, 1993, pages 98–109. IEEE Computer Society, 1993. doi:10.1109/LICS.1993.
287596.

FSCD 2022

https://doi.org/10.1016/j.entcs.2011.09.016
https://doi.org/10.1007/978-3-642-37075-5_9
https://doi.org/10.1109/LICS.1998.705652
https://doi.org/10.1016/0304-3975(94)00152-9
https://doi.org/10.1145/200836.200876
http://www.sws.cs.ru.nl/publications/papers/fvaan/bardfrits.ps
http://www.sws.cs.ru.nl/publications/papers/fvaan/bardfrits.ps
https://doi.org/10.1109/LICS.1993.287596
https://doi.org/10.1109/LICS.1993.287596

30:18 Stateful Structural Operational Semantics

11 James Chapman, Tarmo Uustalu, and Niccolò Veltri. Quotienting the delay monad by weak
bisimilarity. Mathematical Structures in Computer Science, 29(1):67–92, 2019.

12 Marcelo P. Fiore and Sam Staton. A congruence rule format for name-passing process calculi
from mathematical structural operational semantics. In 21th IEEE Symposium on Logic in
Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceedings, pages
49–58. IEEE Computer Society, 2006. doi:10.1109/LICS.2006.7.

13 Matthew Hennessy and Gordon D. Plotkin. Full abstraction for a simple parallel programming
language. In Jirí Becvár, editor, Mathematical Foundations of Computer Science 1979, Pro-
ceedings, 8th Symposium, Olomouc, Czechoslovakia, September 3-7, 1979, volume 74 of Lecture
Notes in Computer Science, pages 108–120. Springer, 1979. doi:10.1007/3-540-09526-8_8.

14 Tom Hirschowitz and Ambroise Lafont. A categorical framework for congruence of applicative
bisimilarity in higher-order languages. CoRR, abs/2103.16833, 2021. arXiv:2103.16833.

15 Douglas J. Howe. Proving congruence of bisimulation in functional programming languages.
Inf. Comput., 124(2):103–112, 1996. doi:10.1006/inco.1996.0008.

16 Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation,
volume 59 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2016. doi:10.1017/CBO9781316823187.

17 Alan Jeffrey and Julian Rathke. Java Jr: Fully abstract trace semantics for a core Java
language. In Shmuel Sagiv, editor, 14th European Symposium on Programming, volume
3444 of Lecture Notes in Computer Science, pages 423–438. Springer, 2005. doi:10.1007/
978-3-540-31987-0_29.

18 Gilles Kahn. Natural semantics. In Franz-Josef Brandenburg, Guy Vidal-Naquet, and Martin
Wirsing, editors, STACS 87, 4th Annual Symposium on Theoretical Aspects of Computer
Science, Passau, Germany, February 19-21, 1987, Proceedings, volume 247 of Lecture Notes
in Computer Science, pages 22–39. Springer, 1987. doi:10.1007/BFb0039592.

19 Bartek Klin. Bialgebras for structural operational semantics: An introduction. Theor. Comput.
Sci., 412(38):5043–5069, 2011. doi:10.1016/j.tcs.2011.03.023.

20 Bartek Klin and Beata Nachyla. Presenting morphisms of distributive laws. In 6th Conference
on Algebra and Coalgebra in Computer Science, CALCO 2015, June 24-26, 2015, Nijmegen,
The Netherlands, pages 190–204, 2015. doi:10.4230/LIPIcs.CALCO.2015.190.

21 Bartek Klin and Vladimiro Sassone. Structural operational semantics for stochastic process
calculi. In Roberto M. Amadio, editor, Foundations of Software Science and Computational
Structures, 11th International Conference, FOSSACS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March
29 - April 6, 2008. Proceedings, volume 4962 of Lecture Notes in Computer Science, pages
428–442. Springer, 2008. doi:10.1007/978-3-540-78499-9_30.

22 Xavier Leroy and Hervé Grall. Coinductive big-step operational semantics. CoRR,
abs/0808.0586, 2008. arXiv:0808.0586.

23 Marino Miculan and Marco Peressotti. Structural operational semantics for non-deterministic
processes with quantitative aspects. Theor. Comput. Sci., 655:135–154, 2016. doi:10.1016/j.
tcs.2016.01.012.

24 Mohammad Reza Mousavi, Michel Reniers, and Jan Friso Groote. Congruence for sos with
data. In LICS, pages 302–313. IEEE Computer Society Press, 2004.

25 Keiko Nakata and Tarmo Uustalu. Trace-based coinductive operational semantics for while.
In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, Theorem
Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009, Munich,
Germany, August 17-20, 2009. Proceedings, volume 5674 of Lecture Notes in Computer Science,
pages 375–390. Springer, 2009. doi:10.1007/978-3-642-03359-9_26.

26 Scott Owens, Magnus O. Myreen, Ramana Kumar, and Yong Kiam Tan. Functional big-step
semantics. In Peter Thiemann, editor, Programming Languages and Systems - 25th European
Symposium on Programming, ESOP 2016, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016,

https://doi.org/10.1109/LICS.2006.7
https://doi.org/10.1007/3-540-09526-8_8
http://arxiv.org/abs/2103.16833
https://doi.org/10.1006/inco.1996.0008
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1007/978-3-540-31987-0_29
https://doi.org/10.1007/978-3-540-31987-0_29
https://doi.org/10.1007/BFb0039592
https://doi.org/10.1016/j.tcs.2011.03.023
https://doi.org/10.4230/LIPIcs.CALCO.2015.190
https://doi.org/10.1007/978-3-540-78499-9_30
http://arxiv.org/abs/0808.0586
https://doi.org/10.1016/j.tcs.2016.01.012
https://doi.org/10.1016/j.tcs.2016.01.012
https://doi.org/10.1007/978-3-642-03359-9_26

S. Goncharov, S. Milius, L. Schröder, S. Tsampas, and H. Urbat 30:19

Proceedings, volume 9632 of Lecture Notes in Computer Science, pages 589–615. Springer,
2016. doi:10.1007/978-3-662-49498-1_23.

27 Marco Patrignani and Dave Clarke. Fully abstract trace semantics for protected module
architectures. Comput. Lang. Syst. Struct., 42:22–45, 2015. doi:10.1016/j.cl.2015.03.002.

28 Marco Patrignani, Dominique Devriese, and Frank Piessens. On modular and fully-abstract
compilation. In IEEE 29th Computer Security Foundations Symposium, CSF 2016, Lisbon,
Portugal, June 27 - July 1, 2016, pages 17–30. IEEE Computer Society, 2016. doi:10.1109/
CSF.2016.9.

29 Maciej Piróg and Jeremy Gibbons. Monads for behaviour. In Mathematical Foundations of
Programming Semantics, MFPS 2013, volume 298 of Electron. Notes Theor. Comput. Sci.,
pages 309–324, 2015.

30 Andrew M. Pitts. Operational semantics and program equivalence. In Gilles Barthe, Peter
Dybjer, Luís Pinto, and João Saraiva, editors, Applied Semantics, International Summer
School, APPSEM 2000, Caminha, Portugal, September 9-15, 2000, Advanced Lectures, volume
2395 of Lecture Notes in Computer Science, pages 378–412. Springer, 2000. doi:10.1007/
3-540-45699-6_8.

31 Andrew M. Pitts and Ian D. B. Stark. Operational reasoning for functions with local state. In
Andrew D. Gordon and Andrew M. Pitts, editors, Higher Order Operational Techniques in
Semantics, pages 227–274. Cambridge University Press, New York, NY, USA, 1998.

32 Gordon D. Plotkin. A structural approach to operational semantics. J. Log. Algebr. Program.,
60-61:17–139, 2004.

33 Jan J. M. M. Rutten. A note on coinduction and weak bisimilarity for while programs. ITA,
33(4/5):393–400, 1999. doi:10.1051/ita:1999125.

34 Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,
249(1):3–80, 2000.

35 Stelios Tsampas, Andreas Nuyts, Dominique Devriese, and Frank Piessens. A categor-
ical approach to secure compilation. In Daniela Petrisan and Jurriaan Rot, editors,
Coalgebraic Methods in Computer Science - 15th IFIP WG 1.3 International Workshop,
CMCS 2020, Colocated with ETAPS 2020, Dublin, Ireland, April 25-26, 2020, Proceed-
ings, volume 12094 of Lecture Notes in Computer Science, pages 155–179. Springer, 2020.
doi:10.1007/978-3-030-57201-3_9.

36 Stelios Tsampas, Christian Williams, Andreas Nuyts, Dominique Devriese, and Frank Piessens.
Abstract congruence criteria for weak bisimilarity. In Filippo Bonchi and Simon J. Puglisi,
editors, 46th International Symposium on Mathematical Foundations of Computer Science,
MFCS 2021, August 23-27, 2021, Tallinn, Estonia, volume 202 of LIPIcs, pages 88:1–88:23.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.MFCS.2021.88.

37 Daniele Turi. Categorical modelling of structural operational rules: Case studies. In Category
Theory and Computer Science, 7th International Conference, CTCS ’97, Santa Margherita Lig-
ure, Italy, September 4-6, 1997, Proceedings, pages 127–146, 1997. doi:10.1007/BFb0026985.

38 Daniele Turi and Gordon D. Plotkin. Towards a mathematical operational semantics. In
Proceedings, 12th Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland,
June 29 - July 2, 1997, pages 280–291, 1997. doi:10.1109/LICS.1997.614955.

39 Rob J. van Glabbeek. On cool congruence formats for weak bisimulations. Theor. Comput.
Sci., 412(28):3283–3302, 2011. doi:10.1016/j.tcs.2011.02.036.

40 Hiroshi Watanabe. Well-behaved translations between structural operational semantics. Electr.
Notes Theor. Comput. Sci., 65(1):337–357, 2002. doi:10.1016/S1571-0661(04)80372-4.

FSCD 2022

https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1016/j.cl.2015.03.002
https://doi.org/10.1109/CSF.2016.9
https://doi.org/10.1109/CSF.2016.9
https://doi.org/10.1007/3-540-45699-6_8
https://doi.org/10.1007/3-540-45699-6_8
https://doi.org/10.1051/ita:1999125
https://doi.org/10.1007/978-3-030-57201-3_9
https://doi.org/10.4230/LIPIcs.MFCS.2021.88
https://doi.org/10.1007/BFb0026985
https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1016/j.tcs.2011.02.036
https://doi.org/10.1016/S1571-0661(04)80372-4

	1 Introduction
	2 Preliminaries
	3 Stateful SOS Specifications
	4 Categorical Semantics and Compositionality
	4.1 GSOS Laws
	4.2 Semantic Domains for Stateful SOS
	4.3 Compositionality is Undecidable

	5 Cooling the Stateful SOS Format
	5.1 Streamlined Stateful SOS
	5.2 Cool stateful SOS

	6 Conclusions and Future Work

