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Abstract
Polynomial functors are categorical structures used in a variety of applications across theoretical
computer science; for instance, in database theory, denotational semantics, functional programming,
and type theory. A well-known problem is that the bicategory of finitary polynomial functors between
categories of indexed sets is not cartesian closed, despite its success and influence on denotational
models and linear logic.

This paper introduces a formal bridge between the model of finitary polynomial functors and the
combinatorial theory of generalised species of structures. Our approach consists in viewing finitary
polynomial functors as free analytic functors, which correspond to free generalised species. In order
to systematically consider finitary polynomial functors from this combinatorial perspective, we study
a model of groupoids with additional logical structure; this is used to constrain the generalised species
between them. The result is a new cartesian closed bicategory that embeds finitary polynomial
functors.
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1 Introduction

We introduce a formal bridge between two mathematical theories which have been influential
in the context of programming language semantics:
1. The theory of polynomial functors, a popular categorification of the notion of polynomial

function.
2. The theory of generalised species and analytic functors, due to Fiore, Gambino, Hyland,

and Winskel, which provides higher-order notions of combinatorial structures.
The connection gives a new combinatorial perspective on polynomial functors. We exploit
this in the paper to overcome the problem that polynomial functors do not form a cartesian
closed model.
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31:2 A Combinatorial Approach to Higher-Order Structure for Polynomial Functors

Applications of polynomial functors in computer science are surprisingly varied, and
include: models of dependent type theory [21, 48, 5], representation of data types [1, 4],
implicit complexity theory [41], and dynamical systems [43]. As for semantics, polynomial
functors support a well-known model of the lambda calculus, developed by Girard [26], who
explicitly cites it as a catalyst for linear logic [25].

Generalised species [18] were put forward more recently as a general bicategorical frame-
work for the study of substitution for combinatorial structures, generalising Joyal’s prior
work on species of structures [31, 32]. The bicategory of generalised species is cartesian
closed, and thus provides a convenient basis for denotational semantics. It has become a
prime example of a semantic model in which program symmetries are represented explicitly
as 2-cells, and several lines of research are benefitting from this idea [47, 19, 40, 20, 42].

The connection between these two concepts is already understood in simple settings; we
give a brief overview. On one side, we consider finitary polynomial functors Set ÝÑ Set,
which correspond to operations on sets of the form

X ÞÝÑ
ÿ

nPN
An ˆ Xn (1)

where the coefficients An are sets. On the other side, Joyal’s species of structures are
equivalent to analytic functors Set ÝÑ Set, corresponding to operations of the form

X ÞÝÑ
ÿ

nPN
Fn ˆ

Sn

Xn (2)

where the coefficients Fn are sets equipped with an action of the symmetric group Sn on
n elements, and the operator ˆ

Sn
performs a quotient of the product under this action. In

special cases, when the actions on Fn are free actions (§5), the quotient is equivalently a
set of the form An ˆ Xn, and so the analytic functor is also polynomial. Conversely, every
finitary polynomial functor is analytic when its coefficients are regarded as freely generated
actions.

Summary of contributions

We extend the correspondence between finitary polynomial functors and free analytic functors
to a generalised setting: instead of functors between categories of indexed sets, we consider
functors between full subcategories of presheaves over groupoids. Our first contribution
is a logical device for constraining the actions on the coefficients of analytic functors: in
particular one may require all actions to be free. We call this device a kit (§3).

We show that one can systematically consider analytic functors controlled by kits. This
leads us to the construction of a 2-category whose morphisms we called stable functors. In
the basic setting of endofunctors on sets, we recover the simple connection above: stable
functors correspond to finitary polynomial functors.

We then push this further and consider higher-order structure in this bicategory. We
introduce stable species, combinatorial structures constrained by kits, and show that these
correspond to stable functors, just as generalised species correspond to analytic functors.
This gives our second main contribution: we prove that stable species, and therefore the
equivalent stable functors, form a cartesian closed bicategory.

This is significant because the bicategory of finitary polynomial functors between categories
of indexed sets is not cartesian closed; for instance, Girard’s lambda-calculus model cannot
be extended directly to a typed lambda calculus. This situation has attracted a considerable
amount of attention [45, 28, 12]; our approach has the advantage of making the combinatorics
of the problem clear and explicit, via the kit on the function space in our bicategory.
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Outline of the paper

We first (§2) give an introductory account of the connection between analytic and polynomial
endofunctors on sets, including the representation of coefficients as species. Then, the formal
development is organised as follows:

We introduce groupoids with kits, demonstrating their purpose in controlling actions (§3)
and identifying the important class of Boolean kits.
We introduce a 2-category Stable whose objects are groupoids with Boolean kits and
whose morphisms are called stable functors (§4.3). Stable functors are closely related to
finitary polynomial functors, coinciding with them at discrete groupoids.
We introduce a bicategory SEsp of stable species of structures (§6), a refinement of
generalised species of structures, based on groupoids with Boolean kits. We establish
that SEsp is cartesian closed (Theorem 22).
We exhibit a biequivalence between SEsp and Stable (§7), deducing that Stable is a
cartesian closed bicategory (Theorem 17).

Finally (§8) we mention related work in the area. We explain the influence of Taylor’s
creeds [45] on our work, and discuss connections with Berry’s stable domain theory [9] and
with Girard’s linear logic [25].

2 Polynomial functors and analytic endofunctors on sets

At the simplest level, polynomial and analytic functors are defined on the category Set of
sets and functions.

Polynomial functors

A function p : E Ñ B between sets E and B determines an endofunctor on Set defined as

X ÞÝÑ
ÿ

bPB

XEb

where Eb “ p´1tbu is the fibre of p over b P B, and XEb is the set of functions Eb Ñ X. It
is common (although not essential for this paper) to think of B as a set of operators, where
the arity of an operator b P B is specified by (the cardinality of) Eb. In particular, one can
restrict to finitary polynomial functors with finite arities. Every finitary polynomial functor
is then naturally isomorphic to one of the form

X ÞÝÑ
ÿ

nPN
Fn ˆ Xn (3)

where each set Fn corresponds to the set of operators of arity n. The analogy with traditional
polynomials is manifest in this representation. Finitary polynomial functors are determined
by their action on finite input sets, in the same vein as continuous maps between domains in
domain theory.

Analytic functors and Joyal species of structures

An endofunctor on Set is an analytic functor [32] if it is naturally isomorphic to one of the
form

X ÞÝÑ
ÿ

nPN
F pnq ˆ

Sn

Xn, (4)

where:

FSCD 2022



31:4 A Combinatorial Approach to Higher-Order Structure for Polynomial Functors

1. Each F pnq is a set with a left action of the symmetric group Sn on n elements. Concretely,
this means that we have an assignment that to every permutation σ P Sn of the
set rns “ t1, . . . , nu associates a permutation of the set F pnq preserving identity and
composition. We write σ ¨ p for the action of σ P Sn on an element p P F pnq.

2. The set F pnq ˆ
Sn

Xn is obtained by quotienting the product F pnq ˆ Xn under the
equivalence relation „ containing the pairs

pp, pxσ1, . . . , xσnqq „ pσ ¨ p, px1, . . . , xnqq

for all σ P Sn, p P F pnq and px1, . . . , xnq P Xn.
The notation F p´q is justified, because the coefficients F pnq, together with the group actions,
can be bundled into a functor F : B ÝÑ Set where B is the category whose objects are
the natural numbers, and whose morphisms m Ñ n are the bijections rms Ñ rns. The
action of a permutation σ P Sn on the set F pnq is then simply given by the functorial action
F pσq : F pnq Ñ F pnq.

The functor F : B ÝÑ Set is a species of structures (or just a species, with its elements
referred to as structures) corresponding to the analytic functor (4). Every analytic functor
has, up to isomorphism, a unique generating species, which may be recovered using so-called
weak generic elements (§7). This combinatorial theory was developed by Joyal [31, 32],
including the connection to polynomial functors as we explain next.

Polynomial functors are free analytic functors

Finitary polynomial functors correspond to free analytic functors and this gives an equivalence.
The basic idea is as follows. Every set A generates a free action of a group G, given by the
product set A ˆ G with the action

τ ¨ pa, σq
def
“ pa, τ σq (5)

for every τ P G and pa, σq P A ˆ G. We extend this to polynomial functors. Consider the
polynomial functor X ÞÝÑ

ř

nPN An ˆ Xn. Taking the free action generated by An of Sn,
for every n P N, we obtain a species B ÝÑ Set given by

n ÞÝÑ An ˆ Sn

pτ : n Ñ nq ÞÝÑ ppa, σq ÞÑ pa, τ σqq

which, via the construction (4), generates an analytic functor. For this species, when taking
the quotient in (4), we have

pAn ˆ Snq ˆ
Sn

Xn – An ˆ Xn

and therefore recover the polynomial functor. Thus, every finitary polynomial functor is, in
particular, analytic.

One can characterize the analytic functors that are polynomial in terms of the generating
species. To do this, observe the following key property: for the free action defined in (5),
every element has trivial stabilizer. Recall that the stabilizer of an element p P P with
respect to the action of a group G is defined as StabGppq

def
“ tσ P G | σ ¨ p “ pu, a subgroup

of G. Then, if F : B ÝÑ Set is a species such that for every n P N, the action of Sn on F pnq

is free (in the sense that every structure in F pnq has trivial stabilizer) then the associated
analytic endofunctor on Set is polynomial.
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Cartesian natural transformations between polynomial functors

We have described finitary polynomial functors as a subclass of analytic functors. Following
Girard and others [26, 45], the natural transformations to be considered between them are
as follows:

▶ Definition 1. A cartesian natural transformation is a natural transformation for
which every naturality square is a pullback.

There are several justifications for this choice:
With the interpretation of polynomial functors as arising from sets of operators with
arities, a cartesian natural transformation corresponds to a mapping between operator
sets that preserves arities.
Cartesian natural transformations between polynomial functors are in bijection with
(arbitrary) natural transformations between the associated free species.
Cartesian natural transformations are a categorification of Berry’s stable order in domain
theory, a point of view that motivates our approach (see the discussion in §8).

The combinatorial and extensional views

So far, we have given definitions of polynomial and analytic functors in terms of coefficient
species. This is the combinatorial (or intensional) view. A strength of the theory is that
there is an alternative presentation: both kinds of functors may be characterised abstractly
without reference to coefficients. This is the extensional view:

Analytic endofunctors on sets are the finitary ones (i.e. filtered-colimit preserving) that
preserve wide quasi-pullbacks [32].
Polynomial endofunctors on sets are those that preserve wide pullbacks (equivalently,
enjoy a local right adjoint property, see Definition 5) [44, 22].

We will generalise beyond endofunctors on sets and define our stable functors in the extensional
style. But it is the combinatorial view, given by stable species, that explains the higher-order
structure.

3 Groupoids with kits

We introduce kits, a structure for controlling group (and, more generally, groupoid) actions.
As motivation for the general theory, the discussion in this section is only concerned with
endofunctors on sets.

Species and stabilizers

Recall two key observations from the previous section:
every species B ÝÑ Set induces an analytic endofunctor on sets; and
this functor is polynomial if and only if the species is free (in the sense that all its
structures have trivial stabilizer).

One key idea of this paper is to use subgroups to specify the extent to which a species may
be free. Indeed, by specifying, for each n P B, a set Kpnq of subgroups of Bpn, nq that are to
be regarded as permitted stabilizers, we may restrict to species with structures having only
permitted stabilizers (Definition 4) and thereby identify a class of generalised polynomial
functors. Appropriate such families K “ t Kpnq unPB we will call kits (Definition 2).

FSCD 2022



31:6 A Combinatorial Approach to Higher-Order Structure for Polynomial Functors

As extreme special cases, one can take Kpnq to contain all the subgroups of Bpn, nq and
recover the analytic functors; or, instead, take Kpnq to consist only of the trivial subgroup,
forcing the species to be free, and recover polynomial functors.

There is no need that the choice of permitted stabilizers be uniform across all n P B as
in the two examples above. But it is natural to require that permitted stabilizers are closed
under conjugation, since for every structure p P F pnq and permutation σ P Bpn, nq, the
stabilizer subgroups of p and of σ ¨p are conjugate of each other: Stabpσ ¨pq “ σ Stabppq σ´1.

As a step towards the generalised model to come, we introduce kits on arbitrary groupoids.
This brings us close to Taylor’s creeds [45], see also §8.

▶ Definition 2. A kit on a groupoid A is a family A “ t Apaq uaPA where Apaq is a set of
subgroups of Apa, aq closed under conjugation in the following sense:

For all a, a1 P A and α P Apa, a1q, if H P Apaq then α H α´1 P Apa1q.

The proposition below provides important examples of kits.

▶ Proposition 3. For a presheaf F : Aop ÝÑ Set on a groupoid A, the family S “ t Spaq uaPA
with Spaq “ t StabApa,aqppq | p P F paq u is a kit.

At this stage, we are in a position to define a restricted notion of analytic endofunctor on
Set parametrised by a kit on the groupoid B. First we appropriately restrict species:

▶ Definition 4. Let K be a kit on B. A K-species is a functor F : B ÝÑ Set such that
every F -structure has stabilizer in K.

This way, every kit K gives rise to the subclass of analytic endofunctors on Set induced
by K-species. In this paper, we are targeting polynomial functors and, in accordance, our
construction of stable species (Definition 19) induces the kit on B that consists of only the
trivial subgroups.

4 Stable functors between categories of stable presheaves

A kit A on a groupoid A determines a full subcategory SpA, Aq of the presheaf category
PpAq “ rAop, Sets, whose objects we call stable presheaves. We will consider stable functors
between categories of stable presheaves. These generalise finitary polynomial functors beyond
endofunctors on Set. We begin with a brief overview of existing generalisations of polynomial
functors and analytic functors which are relevant to the paper.

4.1 Generalising polynomial and analytic functors
Polynomial functors between categories of indexed sets

There is a rich theory of polynomial functors defined with respect to a locally cartesian closed
category [22, 4]. When that category is Set, one obtains a notion of polynomial functor
SetI

ÝÑ SetJ , where I and J are sets. These can be given representations with coefficients
in the style of (3). As we will later on study these coefficients using generalised species, for
now we give a definition in the extensional style [22, §1.18]. This will form the basis for our
notion of stable functor (Definition 10).
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▶ Definition 5. A functor F : C ÝÑ D is a local right adjoint if for every object C P C ,
the local functor

F {C : C {C ÝÑ D{F pCq

between slice categories, which transports an object A
a

ÝÑ C to its image F pAq
F paq

ÝÝÝÑ F pCq,
has a left adjoint.

For sets I and J , a functor SetI
ÝÑ SetJ is a polynomial functor if it is a local right

adjoint.

Polynomial functors between categories of indexed sets can be organised into a 2-category
with indexing sets as objects, and cartesian natural transformations as 2-cells. This model
has convenient structure: for instance, there is a canonical polynomial functor isomorphism
SetI`J

– SetI
ˆ SetJ that exhibits I ` J as a cartesian product of I and J . Restricting to

finitary polynomial functors, Girard (who called them normal functors) described a model
of the lambda calculus [26]. His idea of representing programs as polynomials triggered a
radical shift in perspective, leading to linear logic [25].

However, the bicategory of polynomial functors is not cartesian closed. One approach to
circumvent this, pioneered by Lamarche [36], is to consider polynomial functions between
domains rather than categories, where coefficients are elements of a suitable semiring. Here
we propose a solution using generalised species of structures, which we present next.

Generalised species of structures and analytic functors

We consider analytic functors between presheaf categories over groupoids. These include
categories of indexed sets SetI , viewing the set I as a discrete groupoid.

Recall the notion of a species B ÝÑ Set for an analytic functor on Set and consider the
following two basic observations. First, the groupoid B is the symmetric strict monoidal
completion !1 of the terminal category 1 with one object and one morphism. Second, Set
is isomorphic to the category of presheaves P1 over 1. The approach of Fiore, Gambino,
Hyland and Winskel [18] extends the basic notion of a species B ÝÑ Set, corresponding to
!1 ÝÑ P1, to a generalised species

!A ÝÑ PB (6)

for A and B groupoids (in fact, they can be arbitrary small categories but we do not use this
generality here). Their main result is that these assemble into a bicategory of groupoids,
generalised species, and natural transformations that is cartesian closed.

A generalised species !A ÝÑ PB induces an analytic functor PA ÝÑ PB between
presheaf categories which we will recall in §7. This generalises Joyal’s notion (4) to analytic
functors between presheaf categories. These analytic functors have also been characterised
extensionally [16].

4.2 Stable presheaves
We move towards the construction of a 2-category (Proposition 16) whose objects are
groupoids with appropriate kits and whose morphisms are functors between full subcategories
of presheaves with permitted stabilizers in kits (or quantitative domains [45]).

▶ Definition 6. Let A be a groupoid equipped with a kit A. A presheaf F : Aop ÝÑ Set is an
A-stable presheaf if every element of F has stabilizer in A. The category of A-stable
presheaves on A, a full subcategory of PpAq, is denoted SpA, Aq.

FSCD 2022
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Observe, in particular, that one may recover the whole presheaf category by permitting
all subgroups: SpA, Aq “ PpAq for the maximal kit A (that is, the one consisting of all
subgroups of endomorphisms).

The category SpA, Aq has a convenient and intuitive characterisation in terms of sums
and quotients, which fits well with our goal of controlling quotients in polynomials. In the
discussion below, we will use the following basic elements from the theory of presheaves:

The representable presheaves on A are those which are naturally isomorphic to ones of
the form Ap´, aq : Aop ÝÑ Set for some object a P A.
There is a functor y : A ÝÑ PpAq : a ÞÑ Ap´, aq, the Yoneda embedding, that is full and
faithful.
Presheaf categories have all small limits and colimits, which are calculated pointwise in
terms of those in Set.
Every presheaf is a canonical colimit of representable presheaves. In fact, the Yoneda
embedding exhibits PA as the small colimit completion of A.
For presheaves on groupoids this last point can be strengthened considerably: every
presheaf on a groupoid is a sum of quotients of representable presheaves by subgroups. In
fact, for a groupoid A, PA is the coproduct completion of the quotients of representable
presheaves by subgroups (Theorem 9).

The above quotients are special colimits as follows: for an object a of a groupoid A, the
quotient of ypaq by a subgroup H of Apa, aq is the colimit q : ypaq Ñ ypaq{H of the diagram
H ãÑ A y

ãÑ PA as depicted below:

ypaq ypaq{H

phPHq

yphq

q (7)

Concretely, the presheaf ypaq{H maps an object x to the quotient of ypaqpxq “ Apx, aq under
the equivalence relation „H given by α1 „H α if and only if α1 α´1 P H. Quotienting under
the trivial subgroup has no effect: ypaq{tidau – ypaq; while quotienting under the full group
of endomorphisms gives the presheaf ypaq{Apa,aq that maps x to a singleton when x – a and
to the empty set otherwise.

Quotients and stabilizers are closely related.

▶ Proposition 7. Let A be a groupoid and let H be a subgroup of Apa, aq for a P A. For all
x P A and α P ypaq{Hpxq, Stabpαq “ H.

In particular, quotients of representable presheaves by subgroups in a kit are stable presheaves:

▶ Corollary 8. Let A be a kit on a groupoid A. For a P A and H P Apaq, ypaq{H P SpA, Aq.

More generally, we have a representation theorem for stable presheaves as follows:

▶ Theorem 9. Let A be a groupoid equipped with a kit A. Then, assuming the axiom of
choice, every presheaf X in SpA, Aq is isomorphic to a sum of quotients of representable
presheaves by subgroups in A; that is,

X –
ÿ

iPI

ypaiq{Hi

for some I-indexed family t pai, Hiq uiPI of objects ai P A and groups Hi P Apaiq. Conversely,
every presheaf of this form is in SpA, Aq.

Therefore, kits provide a concrete way of restricting the coproduct completion of quotients of
representable presheaves by subgroups, yielding the stable presheaves.
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4.3 Stable functors
We will consider stable functors (Definition 10) of type SpA, Aq ÝÑ SpB, Bq, our notion of
finitary polynomial functor generalised to categories of stable presheaves. Our definition is
extensional and abstract enough to be stated generally:

▶ Definition 10. Let C and D be categories. We call a functor F : C ÝÑ D stable if it
satisfies the following conditions:

F is a local right adjoint.
F is finitary (that is, preserves filtered colimits).
F preserves regular epimorphisms.

We comment on the definition. The local right adjoint condition is an extensional presenta-
tion of polynomial functors (recall Definition 5). The restriction to finitary functors is natural
in the context of semantic models of higher-order computation; it is also essential because
our proof of cartesian closure (Theorems 22 and 32) of the bicategory Stable (introduced
in Proposition 16 below) is based on a representation by means of finitary coefficients in
the style of (4) and (6). The preservation of regular epimorphisms crucially ensures the
preservation of quotient maps (7). This condition is not necessary for finitary polynomial
functors of type SetI

ÝÑ SetJ , which always preserve regular epimorphisms (as do arbitrary
such polynomial functors assuming the axiom of choice).

▶ Example 11. In a cartesian closed and extensive category, such as a topos, the finite
product and finite coproduct functors are stable. In connection to this, we discuss the
prototypical non-stable, and hence non-sequential, function from Berry’s stable domain
theory [9]. To this end, let S be the Sierpinski space p0 Ă 1q and, for Bool “ tf , tu, consider
the parallel-or function por : SBool ˆ SBool Ñ SBool defined as the least monotone function
such that: por

`

tfu, tfu
˘

“ tfu and por
`

ttu, t u
˘

“ por
`

t u, ttu
˘

“ ttu.
Parallel-or is not realisable as a stable functor at the categorical level in the strong sense

that there is no stable functor F : SetBool
ˆ SetBool

ÝÑ SetBool such that F
`

0, 0q “ 0 and
F pyptq, 0

˘

“ F p0, yptqq “ F pyptq, yptqq “ yptq. Indeed, such functors do not preserve the
pullback

`

yptq, yptq
˘

`

yptq, 0
˘ `

0, yptq
˘

`

0, 0
˘

and thus induce local functors F {pyptq, yptqq : SetBool
ˆSetBool

{pyptq, yptqq ÝÑ SetBool
{yptq

that fail to be right adjoints.
However, the generalisation from domains to categories allows for an intensional quantit-

ative interpretation of parallel or. Indeed, for K : Set ÝÑ S the collapse functor mapping a
set to 0 if it is empty and to 1 otherwise, we have a stable functor

P pX, Y q “ pXf ˆ Yf , Xt ` Ytq

lifting por as follows:

SetBool
ˆ SetBool SetBool

SBool ˆ SBool SBool

KBool
ˆKBool

P

KBool

por

FSCD 2022
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5 Boolean kits and the 2-category of stable functors

Kits and negation

We have deliberately introduced a general notion of kit to emphasise its fundamental role
in controlling stabilizers and quotients. In practice, however, one need impose conditions
on kits to ensure desirable structure in the induced categories of stable presheaves (see
Proposition 15). This may be done in several ways and we concentrate here on a principled
approach based on a notion of logical negation described next.

▶ Proposition 12. Let A be a kit on a groupoid A. The following definition, for a P A,

AKpaq “
␣

H | H is a subgroup of !Apu, uq satisfying: for all G P Apaq, G X H “ tidau
(

yields a kit AK called the negation (or dual) of A.

▶ Definition 13. A Boolean kit is a kit A such that

AKK “ A. (8)

Boolean kits have useful closure properties:

▶ Lemma 14. Let A be a Boolean kit on a groupoid A. For every a P A, the set Apaq is
closed under subgroups and under directed unions.

From here, one can show that the category of stable presheaves induced by a Boolean kit
has a rich structure inherited from the presheaf category.

▶ Proposition 15. Let A be a kit on a groupoid A. The category SpA, Aq is closed under
isomorphisms and coproducts taken in PpAq. If the kit A is Boolean, then SpA, Aq addition-
ally inherits filtered colimits and all nonempty limits from PpAq. Furthermore, the terminal
presheaf is in SpA, Aq if and only if SpA, Aq “ PpAq.

The 2-category of Boolean kits and stable functors

The conditions defining stable functors (Definition 10) are preserved under composition, and
identity functors are stable. Just like for polynomial endofunctors on sets, we will consider
cartesian natural transformations (Definition 1) between stable functors.

▶ Proposition 16. The following data forms a 2-category, called Stable:
objects pA, Aq: groupoids with Boolean kits.
1-cells pA, Aq Ñ pB, Bq: stable functors SpA, Aq ÝÑ SpB, Bq.
2-cells: cartesian natural transformations.

Compositions and identities in Stable are defined as for functors and natural transformations.

The rest of the paper is devoted to the development and study of a bicategory of stable
species of structures (Proposition 21) that provides an equivalent combinatorial view of
Stable. The ultimate objective is our main theorem:

▶ Theorem 17. Stable is a cartesian closed bicategory.

Note the distinction between 2-categories, in which morphisms compose strictly, and
bicategories, in which there are structural 2-cells in place of associativity and identity laws.
This terminology extends to cartesian closed structure: Stable is cartesian as a 2-category
but cartesian closed as a bicategory, since currying and uncurrying are up to isomorphism.
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6 The cartesian closed bicategory of stable species

As a path to Theorem 17, this section introduces stable species: a combinatorial presentation
of stable functors. Our methodology relies on generalised species [16], which we will enrich
with kits.

The bicategory of generalised species

A generalised species [18] from A to B is a functor Bop ˆ!A ÝÑ Set (or, equivalently, a functor
!A ÝÑ PB) where !A is the symmetric strict monoidal completion of A. The construction of
!A generalises the groupoid B, which arises as !1, and is motivated by the desire of passing
from linear to cartesian higher-order structure.

The objects of !A are finite sequences xa1, . . . , any (n P N) of objects of A and a morphism

α : xa1, . . . , amy xb1, . . . bny

consists of a pair
`

α, pαiqiPrns

˘

where α P Bpm, nq and αi : ai Ñ bαpiq is a morphism in A for
every i P rms. The concatenation of sequences gives a monoidal tensor pu, vq ÞÝÑ u b v for
!A having the empty list as monoidal unit.

It is helpful to understand the bicategory of generalised species in terms of profunctors
(alternatively, bimodules or distributors) [50, 6, 7, 37]. A profunctor from A to B, denoted
A pÝÑ B, is a functor Bop ˆ A ÝÑ Set. Small categories, profunctors, and natural transform-
ations form a symmetric monoidal (compact) closed bicategory Prof with tensor product ˆ

and internal hom A ⊸ B :“ Aop ˆ B.
A generalised species from A to B is then simply a profunctor !A pÝÑ B and, in fact, the

bicategory of species is a coKleisli bicategory for ! as a pseudo-comonad on Prof [18, 13].
The identity species idA : !A pÝÑ A is the functor mapping a pair pa, uq P Aop ˆ !A to the set

!Apxay, uq –

#

Apa, a1q , if u “ xa1y

∅ , otherwise

The composition of species F : !A pÝÑ B and G : !B pÝÑ C is the species G ˝ F : !A pÝÑ C
that maps a pair pc, uq P Cop ˆ !A to the set

ż v“xb1,...,bnyP!B
Gpc, vq ˆ

ż u1,...,unP!A n
ź

i“1
F pbi, uiq ˆ !Apu1 b ¨ ¨ ¨ b un, uq

We call Esp the bicategory of groupoids, generalised species, and natural transformations.
This is the restriction to groupoids of the bicategory of generalised species of structures
defined in [18], whose objects can be arbitrary small categories.

Stable species of structures

We now introduce a new bicategory SEsp (Proposition 21) whose objects are groupoids with
kits and whose morphisms are generalised species with action restricted by the kits; we call
these stable species.

We start by extending the ! construction to kits, so that for every groupoid with kit
pA, Aq we can set !pA, Aq

def
“ p!A, !Aq. To define !Apuq for an object u “ xa1, . . . , any P !A, we

need a preliminary definition. Recall that an endomorphism α on u in !A is a pair consisting
of a permutation α P Sn and a sequence pαi : ai Ñ aαpiqqiPrns of morphisms in A. For every
i P rns, define the endomorphism loopα

i on ai in A as the composite

FSCD 2022
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ai aαpiq aα2piq ¨ ¨ ¨ aαopiq´1piq aαopiqpiq “ ai
αi

ααpiq
α

αopiq´1piq

where opiq is the smallest positive integer such that αopiqpiq “ i. Equivalently, opiq is the
length of the cycle containing i in the disjoint cycle decomposition of the permutation α.

▶ Definition 18. Let pA, Aq be a groupoid with a kit. For u “ xa1, . . . , any P !A, we define

!Apuq
def
“

␣

H | H is a subgroup of !Apu, uq satisfying @ α P H. @ i P rns. loopα
i P

ď

Apaiq
(KK

.

The closure under double dual directly ensures that we obtain a Boolean kit !A “
␣

!Apuq
(

uP!A
on !A.

We now define stable species between groupoids with kits. As for the K-species of
Definition 4, our definition involves stabilizers controlled by kits. Note that, for a generalised
species F : !A pÝÑ B, the stabilizer StabF ppq of an element p P F pb, uq is a subgroup of
Bpb, bq ˆ !Apu, uq.

▶ Definition 19. Let pA, Aq and pB, Bq be groupoids with kits. A stable species from
pA, Aq to pB, Bq is a generalised species F : !A pÝÑ B such that, for every b P B, u P !A and
p P F pb, uq, if pβ, αq P StabF ppq then:

α P
ď

!Apuq ñ β P
ď

Bpbq and β P
ď

BKpbq ñ α P
ď

p!AqKpuq. (9)

In special cases we recover previous concepts:
Stable presheaves. The initial groupoid 0 has a unique, empty, Boolean kit. Moreover, !0

is the terminal groupoid, which also admits a unique Boolean kit. It follows that stable
species from p0,∅q to any pA, Aq correspond to presheaves in SpA, Aq.

Free Joyal species. Let K1 be the unique Boolean kit on the terminal groupoid 1. Unfolding
Definition 18, we get that !K1 is the maximal kit (consisting of all subgroups) on !1 “ B
with dual kit p!K1qK the minimal Boolean kit (consisting of trivial subgroups). Then, the
stable species from p1, K1q to p1, K1q coincide with the free species B ÝÑ Set.

More generally, by considering pairs of endomorphisms of the form pβ, iduq and pidb, αq in
the two implications of (9) above, and observing that Boolean kits always contain identities,
we obtain the following two properties:

▶ Lemma 20. Let F be a stable species from pA, Aq to pB, Bq with A and B Boolean.
(B-stability) The corresponding functor F : !A Ñ PpBq factors through the inclusion

SpB, Bq ãÑ PpBq.
(!A-freeness) For α P !Apu, uq, if Fα P PBpFu, Fuq fixes an element of the presheaf Fu,

then α P p!AqKpuq.

One verifies the following directly:

▶ Proposition 21. The following data forms a bicategory, called SEsp:
objects pA, Aq: groupoids with Boolean kits;
1-cells pA, Aq Ñ pB, Bq: stable species !pA, Aq pÝÑ pB, Bq;
2-cells: natural transformations.

Compositions and identities in SEsp are defined as for generalised species.
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Cartesian closed structure in the bicategory of stable species

The cartesian closed categorical structure of SEsp extends that in Esp without difficulty:
Cartesian products. The bicategory Esp has finite products given by the finite sum of

groupoids. For a finite family of groupoids with kits
␣

pAi, Aiq
(

iPrns
, the sum groupoid

A1 ` ¨ ¨ ¨ ` An has boolean kit A1 ` ¨ ¨ ¨ ` An defined as pA1 ` ¨ ¨ ¨ ` Anqpıipaqq “ Aipaq

where ıi is the coproduct inclusion. This contruction endows SEsp with a finite product
structure.

Higher-order structure. We recall the situation in Esp [18]. For groupoids A and B, the
function space A ñ B is defined as !A ⊸ B. The proof of cartesian closure relies on a
fundamental canonical equivalence

!A ˆ !B » !pA ` Bq

given by the composite

!A ˆ !B
!pı1qˆ!pı2q

// !pA ` Bq ˆ !pA ` Bq
b
// !pA ` Bq

and the symmetric monoidal extension of the functor

A ` B Ñ !A ˆ !B :
#

ı1paq ÞÝÑ
`

xay,∅
˘

, for a P A
ı2pbq ÞÝÑ

`

∅, xby
˘

, for b P B

With this equivalence, we have a chain of equivalences of hom-categories as follows:

EsppC,AñBq“Profp!C, !A⊸Bq – Profp!C ˆ !A,Bq » Profp!pC ` Aq,Bq“EsppC ` A,Bq

This provides the required currying/uncurrying pseudo-natural equivalence, which we
must extend to SEsp. This we achieve by setting pA, Aq ñ pB, Bq “ pA ñ B, A ñ Bq

where
`

A ñ B
˘

pu, bq consists of all the subgroups H of !Apu, uq ˆ Bpb, bq such that (9) is
satisfied for every pα, βq P H.

▶ Theorem 22. The bicategory SEsp is cartesian closed.

▶ Remark. To establish the theorem in full rigour we first develop a theory of profunctors
underlying stable species. This relies on a notion of stabilised profunctor between groupoids
with Boolean kits and on the fact that the ! construction is a linear exponential pseudo-
comonad over an associated ‹-autonomous bicategory SProf . This is a fairly technical
development but along expected lines, given the linear exponential pseudo-comonad structure
of ! on Prof [18, 13] and our construction of Boolean kits based on negation. This will be
developed fully in a companion paper, exploring in depth the connections with linear logic
and linear negation.

7 The biequivalence between stable species and stable functors

We show that stable species and stable functors are alternative presentations of the same
model. Formally, we establish a bicategorical equivalence SEsp » Stable (Theorem 32).
From stable species to stable functors, we study the class of analytic functors induced by
stable species and show that they are stable. In the opposite direction, we show how to recover
the coefficients of a stable species from a stable functor in terms of generic factorisations.

FSCD 2022
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7.1 From stable species to stable functors
The analytic functor induced by a generalised species P : !A pÝÑ B is the functor PpAq ÝÑ

PpBq that maps a presheaf X P PpAq to the presheaf on B defined, for b P B, as

b ÞÝÑ

ż u“xa1,...,anyP!A
P pb, uq ˆ

n
ź

i“1
Xpaiq (10)

This formula, and indeed the earlier one for Joyal species (4), are obtained through the
universal construction of left Kan extension:

▶ Definition 23. For groupoids A,B, and a generalised species P : !A pÝÑ B, the analytic
functor described pointwise above is a left Kan extension of P along the functor sA : !A ÝÑ

PpAq : xa1, . . . , any ÞÝÑ
řn

i“1 ypaiq, as on the left below:

!A PpBq

PpAq

ó

P

LansAPsA

B Set

Set

ó

P

LanjPj

For A “ B “ 1 and P viewed as a species B ÝÑ Set, this corresponds to the diagram on the
right above, where j is the inclusion functor, and induces the formula (4).

Given a stable species from pA, Aq to pB, Bq, one can apply the formula (10) to obtain a
stable functor SpA, Aq ÝÑ SpB, Bq.

▶ Proposition 24. Let P : !pA, Aq pÝÑ pB, Bq in SEsp. The restricted left Kan extension
SpA, Aq ãÑ PpAq

LansAP
ÝÝÝÝÝÑ PpBq factors through the inclusion SpB, Bq ãÑ PpBq. Further-

more, the resulting functor rP : SpA, Aq ÝÑ SpB, Bq is stable.

To extend the mapping Ąp´q to a functor SEsp
`

pA, Aq, pB, Bq
˘

ÝÑ Stable
`

pA, Aq, pB, Bq
˘

,
we verify that natural transformations between stable species are mapped to cartesian natural
transformations between stable functors:

▶ Proposition 25. Let pA, Aq, pB, Bq be groupoids with Boolean kits and let f : P Ñ Q

be a natural transformation between stable species P, Q : !pA, Aq pÝÑ pB, Bq. The natural
transformation rf : rP Ñ rQ : SpA, Aq ÝÑ SpB, Bq, canonically induced by left Kan extension,
is cartesian.

7.2 From stable functors to stable species
We have given the components of a pseudo-functor Ąp´q : SEsp ÝÑ Stable. We proceed to
show that it is part of a biequivalence, and construct a pseudo-inverse Stable ÝÑ SEsp.
We rely on a characterisation of stable functors in terms of generic morphisms:

▶ Definition 26. Let T : C Ñ D be a functor between categories C and D. A morphism
g : d Ñ T pcq in D is called generic if, for every commuting square as on the left below

T pzq

T pcq T pc1q

d

T pfq T pf 1
q

g g1

z

c c1

T pcq T pc1q

d

f

k

f 1

T pkq

g g1
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there exists a unique morphism k : c Ñ c1 in C making the two triangles on the right above
commute. The functor T is said to admit generic factorisations if every morphism
h : d Ñ T pzq has a factorisation h “ T pfq ˝ g for some f : c Ñ z and g : d Ñ T pcq with g

generic.

Generic morphisms (elsewhere known as candidates [45] or strict generic [49], and a
strict version of the generic elements considered in [32, 16]) provide the elements in the
construction of a stable species from a stable functor. They also correspond to the normal
forms studied in [26, 28]. The presence of generic factorisations is closely related to the
existence of local left adjoints, and we have the following:

▶ Proposition 27. Let pA, Aq and pB, Bq be groupoids with Boolean kits. A functor from
SpA, Aq to SpB, Bq is stable if and only if admits generic factorisations, is finitary, and
preserves regular epimorphisms.

We use this to show that the following operation provides a pseudo-inverse to P ÞÝÑ rP :

▶ Definition 28. For pA, Aq and pB, Bq groupoids with Boolean kits, the trace of a functor
T : SpA, Aq ÝÑ SpB, Bq is the generalised species TrpT q : !A pÝÑ B with object mapping

pb, uq ÞÝÑ
␣

g : yBpbq Ñ T psAuq in PpBq | g is generic
(

and functorial action given by composition (which is well-defined because genericity is invariant
under isomorphism).

▶ Proposition 29. For a functor T in Stable
`

pA, Aq, pB, Bq
˘

, the species TrpT q is in
SEsp

`

pA, Aq, pB, Bq
˘

.

Cartesian natural transformations preserve and reflect generic morphisms [49]. Thus, one
can immediately extend the trace operation to 2-cells:

▶ Proposition 30. For a cartesian natural transformation f : S Ñ T in
Stable

`

pA, Aq, pB, Bq
˘

, the mapping

Trpfqpb,uq :
`

g : yBpbq Ñ SpsAuq
˘

ÞÝÑ
`

fsApuq ˝ g : yBpbq Ñ T psAuq
˘

pb P B, u P !Aq

provides the components of a natural transformation Trpfq : TrpSq Ñ TrpT q.

It remains to exhibit local equivalences between the corresponding hom-categories:

▶ Lemma 31.
1. For a stable species F P SEsp

`

pA, Aq, pB, Bq
˘

, Trp rF q – F .

2. For a stable functor S P Stable
`

pA, Aq, pB, Bq
˘

, ČTrpSq – S.

▶ Theorem 32. There is a biequivalence of bicategories SEsp » Stable.

As biequivalences preserve cartesian closed structure, our main Theorem 17 is a corollary
of Theorem 22.

FSCD 2022
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8 Conclusion

We have defined a new cartesian closed bicategorical model that we have presented independ-
ently in combinatorial and extensional forms, respectively as:

stable species of structures between groupoids with Boolean kits, and
stable functors between categories of stable presheaves over groupoids with Boolean kits.

Restricting our extensional model to discrete groupoids, one precisely obtains finitary
polynomial functors SetI

Ñ SetJ between categories of indexed sets, corresponding to
Girard’s normal functors [26]. Polynomial functors of this type (finitary or not) are typically
represented in combinatorial form as polynomials in Set; namely, diagrams pI Ð E Ñ B Ñ Jq

of sets and functions representing operators with sorted (or coloured) arities (§2) [22, 4]. In
the finitary case it is not hard to translate between these and our stable species representation.

However, extending the above to incorporate higher-order structure seems to require
moving on to the general context of groupoids: even when I and J are discrete groupoids,
the function space I ñ J “ !Iop ˆ J is not discrete, and to remain within polynomials one
must make explicit and control the groupoid action.

In recent work, Finster, Lucas, Mimram and Seiller [12] present another groupoid model,
which they describe in the language of homotopy type theory. The relationship with our
model should be considered, also in connection to the work of Kock et al. [33, 23].

Connections with stable domain theory

Our model provides a form of generalised domain theory in which continuous functions
between domains are generalised to finitary functors between domain-like categories (see
e.g. [3]); this fits in the general research programme outlined in [29]. Specifically, we have a
generalised form of stable domain theory in the sense of Berry [9] and Girard [24]; stable
functions are finitary local right adjoints between stable domains and Berry’s stable order
amounts to unique degenerate cartesian natural transformations.

In our endeavour, we follow Lamarche [35] and Taylor [45, 46], who in the 1980s pioneered
the categorification of stable domain theory. Taylor’s work is especially relevant: he introduced
creeds, a combinatorial structure on groupoids used to control actions at higher order, and
even raised the thought of a connection with Joyal’s ideas [45, page 172]. Whilst our Boolean
kits are rather different from creeds, the present work recasts these ideas in a modern
structural combinatorial setting and bicategorical language, suggesting new avenues for
research.

Further work on bicategorical models of linear logic and differentiation

The bicategory SEsp is obtained from a bicategorical model of classical linear logic SProf ,
whose theory we will present in a future paper. A question we are investigating is whether
this model can be obtained through a bicategorical glueing construction by means of an
orthogonality technique [30].

Another promising direction is the study of formal differentiation. In this respect, there are
likely connections with several lines of work, including: differentiation for polynomial functors
in type theory [39, 2, 27, 15]; differentiation for analytic functors in combinatorics [8, 34];
and differential linear logic [11, 14, 17, 10] of which SProf is a bicategorical model.

For combinatorial species, formal differentiation gives rise to formal integration and to the
study of differential equations from that perspective [38]. Free species, which can always be
integrated [34], are most useful in that context; our bicategory SEsp is a promising setting
for extending these notions to a higher-order logical setting.
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