
Combined Hierarchical Matching:
the Regular Case
Serdar Erbatur
University of Texas at Dallas, TX, USA

Andrew M. Marshall
University of Mary Washington, Fredericksburg, VA, USA

Christophe Ringeissen
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Abstract
Matching algorithms are often central sub-routines in many areas of automated reasoning. They
are used in areas such as functional programming, rule-based programming, automated theorem
proving, and the symbolic analysis of security protocols. Matching is related to unification but
provides a somewhat simplified problem. Thus, in some cases, we can obtain a matching algorithm
even if the unification problem is undecidable. In this paper we consider a hierarchical approach
to constructing matching algorithms. The hierarchical method has been successful for developing
unification algorithms for theories defined over a constructor sub-theory. We show how the approach
can be extended to matching problems which allows for the development, in a modular way, of
hierarchical matching algorithms. Here we focus on regular theories, where both sides of each
equational axiom have the same set of variables. We show that the combination of two hierarchical
matching algorithms leads to a hierarchical matching algorithm for the union of regular theories
sharing only a common constructor sub-theory.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting; Theory
of computation → Automated reasoning

Keywords and phrases Matching, combination problem, equational theories

Digital Object Identifier 10.4230/LIPIcs.FSCD.2022.6

Acknowledgements We would like to thank the reviewers for their comments that were very helpful
to improve the readability of the paper.

1 Introduction

Matching procedures play a central role in automated reasoning and in various declarative
programming paradigms such as functional programming or (constraint) logic programming.
For example, in rule-based programming [9, 11], matching is needed to apply a rule and thus
to perform computations. In automated theorem proving [1, 7], matching is useful to simplify
existing facts via contraction inferences. For the verification of security protocols, dedicated
provers [8, 20, 25] handle protocols specified in a symbolic way. In these reasoning tools,
the capabilities of an intruder are modeled using equational theories, and the reasoning is
supported by decision procedures and solvers modulo equational theories, including matching
and unification. An equational matching problem is an equational unification problem with
free constants where each equation has a ground side. This particular form of equational
unification with free constants remains undecidable in general. However, the successful
application of equational rewriting in rule-based programming languages [9, 11, 26] has
demonstrated the usefulness of developing matching algorithms for particular equational
theories such as Associativity (A), Commutativity (C) or Associativity-Commutativity (AC).
In many practical applications, the underlying equational theory is defined as a union of
theories, like a union of AC-symbols. In that case, it is quite natural to solve the matching

© Serdar Erbatur, Andrew M. Marshall, and Christophe Ringeissen;
licensed under Creative Commons License CC-BY 4.0

7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022).
Editor: Amy P. Felty; Article No. 6; pp. 6:1–6:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7574-195X
https://orcid.org/0000-0002-0522-8384
https://orcid.org/0000-0002-5937-6059
https://doi.org/10.4230/LIPIcs.FSCD.2022.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Combined Hierarchical Matching

problem for the union of theories in a modular way by combining the matching algorithms
available for the component theories of the union. For unification and matching, there
are terminating and complete combination procedures for the union of signature-disjoint
theories [34, 3]. These combination procedures can be extended to some non-disjoint unions
of theories sharing only constructor symbols, but it is quite difficult to find particular
cases where these procedures terminate [12], although several terminating cases have been
identified [30, 5, 13, 18, 19]. Here, matching being a restricted form of unification can be
helpful since matching can be considered as a simpler problem. For example, A-matching is
finitary, that is, the set of solutions of an A-matching problem is finite, whereas A-unification
is infinitary. Thus for matching, we may be able to show termination even if we cannot in
unification.

In this paper we consider the matching problem in theories F ∪E where E is a constructor
sub-theory for F ∪ E, F being called an E-constructed theory. We show how to apply the
relatively recently developed hierarchical combination approach [14, 13, 18, 19] to build
F ∪ E-matching algorithms. We focus on regular theories for F ∪ E, where both sides of
each equational axiom have the same set of variables. This is a natural assumption since any
matching problem has only ground solutions in regular theories. We adopt a new modular
definition of E-constructed theory [18] and consider the class of regular theories F ∪E where
F is E-constructed. This class is closed by any union of theories F1 ∪ E and F2 ∪ E sharing
only symbols in E. We show that combining hierarchical matching algorithms known for
F1 ∪ E and F2 ∪ E leads to a hierarchical matching algorithm for the union of F1 ∪ E and
F2 ∪ E. In our hierarchical matching approach, we consider a new type of layer-reduced
term mappings that can be constructed in a modular way to reduce the theory layers of any
ground term occurring in a matching problem. In addition, we also show how the hierarchical
approach can be used for solving the F ∪E-equality of terms in layer-reduced form, required
by a hierarchical F ∪E-matching algorithm. The presented hierarchical approach applies to
the important case R ∪ E where (R, E) is any E-convergent term rewrite system (TRS for
short) where all the symbols in E are constructors, called E-constructed TRS. It applies also
to theories F ∪ E where F is E-constructed and F ∪ E is a finite syntactic theory [28, 23].
In that case the underlying hierarchical algorithm can be simply expressed using some
additional mutation rules generalizing the very classical decomposition rule used in syntactic
unification. A form of syntacticness can also be applied to E-constructed TRSs which are
innermost-resolvent, exemplified by distributive theories and exponentiation theories.

Motivating Example from Security Protocols. Modular exponentiation is a common
operation found in many theories modeling security protocols [24]. For example, ex-
ponentiation with a multiplication operator can be modeled with the following axioms
{e(e(x, y), z) = e(x, y ∗ z), e(x ∗ y, z) = e(x, z) ∗ e(y, z)} and the AC theory for ∗. Obtaining
unification algorithms for this exponentiation theory (and related theories) has proven dif-
ficult. In fact, it is undecidable in the case where ∗ is AC [27]. Because of this difficulty,
the theory is often changed to include a new operator ⊛, and a modification of the first
axiom to e(e(x, y), z) = e(x, y ⊛ z). Thus, creating two multiplication operators rather
than one. Even in this case, obtaining a unification algorithm is not always possible with
several undecidability results having been shown depending on the properties of ∗ and ⊛ [22].
However, by using the modular combination result developed in this paper, we can obtain
a hierarchical matching algorithm for the exponentiation theories and more. The modular
aspect to the combination algorithm is also attractive since we can reuse a matching algorithm
for the base theory, AC in this example.

S. Erbatur, A. M. Marshall, and C. Ringeissen 6:3

Outline. After this introduction and the next section on preliminaries, the paper is organized
as follows. Sections 3 and 4 present the different classes of theories F ∪ E considered in the
paper, and some modularity results we can obtain for the problems of F ∪E-equality and
of F ∪ E-matching. The class of E-constructed theories is introduced in Section 3, while
Section 4 focuses on E-constructed theories admitting mutation-based matching algorithms.
In Section 5, we present our notion of hierarchical F ∪E-matching algorithm. Our results
on combining hierarchical F ∪ E-matching algorithms are shown in Section 6. In addition,
Section 7 shows that our methodology can be applied to get hierarchical decision procedures
for the F ∪ E-equality. Related work and concluding remarks are discussed in Section 8.
Appendix A includes omitted proofs.

2 Preliminaries

We use the standard notation of equational unification [4] and term rewriting systems [2].
Given a first-order signature Σ and a (countable) set of variables V , the set of Σ-terms over
variables V is denoted by T (Σ, V). Given a (countable) set of constants C disjoint from V

and Σ, the set of Σ-terms over V ∪ C is denoted in the same way by T (Σ, V ∪ C). In the
following, a Σ-term is assumed to be a term in T (Σ, V ∪ C). The set of variables (resp.,
constants) from V (resp., C) occurring in a term t ∈ T (Σ, V ∪C) is denoted by Var(t) (resp.,
Cst(t)). A term t is ground if Var(t) = ∅. A Σ∪C-rooted term is a term whose root symbol is
in Σ∪C. For any position p in a term t (including the root position ϵ), t(p) is the symbol at
position p, t|p is the subterm of t at position p, and t[u]p is the term t in which t|p is replaced
by u. A substitution is an endomorphism of T (Σ, V ∪ C) with only finitely many variables
not mapped to themselves. A substitution is denoted by σ = {x1 7→ t1, . . . , xm 7→ tm}, where
the domain of σ is Dom(σ) = {x1, . . . , xm} and the range of σ is Ran(σ) = {t1, . . . , tm}.
Application of a substitution σ to t is written tσ. Given a subsignature Σ′ of Σ, a Σ′-alien
subterm of t ∈ T (Σ, V ∪ C) is a Σ\Σ′-rooted subterm of t such that its superterms are
Σ′-rooted. When Σ′ is clear from the context, a Σ′-alien subterm is called an alien subterm.

Equational Theories. Given a set E of Σ-axioms (i.e., pairs of terms in T (Σ, V), denoted by
l = r), the equational theory =E is the congruence closure of E under the law of substitutivity
(by a slight abuse of terminology, E is often called an equational theory). Equivalently, =E

can be defined as the reflexive transitive closure ↔∗
E of an equational step ↔E defined as

follows: s ↔E t if there exist a position p of s, l = r (or r = l) in E, and substitution σ

such that s|p = lσ and t = s[rσ]p. An axiom l = r is regular if Var(l) = Var(r). An axiom
l = r is collapse-free if l and r are non-variable terms. An equational theory is regular (resp.,
collapse-free) if all its axioms are regular (resp., collapse-free). An equational theory E is
finite if for each term t, there are only finitely many terms s such that t =E s. A theory E is
syntactic if it has finite resolvent presentation S, defined as a finite set of axioms S such that
each equality t =E u has an equational proof t↔∗

S u with at most one equational step ↔S

applied at the root position. One can easily check that C = {x ∗ y = y ∗ x} (Commutativity)
and AC = {x ∗ (y ∗ z) = (x ∗ y) ∗ z, x ∗ y = y ∗ x} (Associativity-Commutativity) are regular
and collapse-free. Moreover, C and AC are syntactic [23]. A Σ-equation is a pair of Σ-terms
denoted by s =? t or simply s = t when it is clear from the context that we do not refer to
an axiom. A flat Σ-equation is either an equation between variables or a non-variable flat Σ-
equation of the form x0 = f(x1, . . . , xn) where x0, x1, . . . , xn are variables and f is a function
symbol in Σ. An E-unification problem is a set of Σ-equations, Γ = {s1 =? t1, . . . , sn =? tn},
or equivalently a conjunction of Σ-equations. The set of variables in Γ is denoted by Var(Γ).

FSCD 2022

6:4 Combined Hierarchical Matching

A solution to Γ, called an E-unifier , is a substitution σ such that siσ =E tiσ for all 1 ≤ i ≤ n.
A substitution σ is more general modulo E than θ on a set of variables V , denoted as σ ≤V

E θ,
if there is a substitution τ such that xστ =E xθ for all x ∈ V . σ|V denotes the substitution σ

restricted to the set of variables V . A Complete Set of E-Unifiers of Γ, denoted by CSUE(Γ),
is a set of substitutions such that each σ ∈ CSUE(Γ) is an E-unifier of Γ, and for each
E-unifier θ of Γ, there exists σ ∈ CSUE(Γ) such that σ ≤Var(Γ)

E θ. An E-unification algorithm
is an algorithm that computes a finite CSUE(Γ) for all E-unification problems Γ. An inference
rule Γ ⊢ Γ′ for E-unification is sound if each E-unifier of Γ′ is an E-unifier of Γ; and complete
if for each E-unifier σ of Γ, there exists an E-unifier σ′ of Γ′ such that σ′ ≤Var(Γ)

E σ. A set of
equations Γ = {x1 =? t1, . . . , xn =? tn} is said to be in solved form if each xi is a variable
occurring once in Γ. Given an idempotent substitution σ = {x1 7→ t1, . . . , xn 7→ tn} (such
that σσ = σ), σ̂ denotes the corresponding solved form. An inference system for E-unification
is sound if all its inference rules are sound; and complete if for each E-unification problem Γ
on which an inference applies and each E-unifier σ of Γ, there exist an E-unification problem
Γ′ inferred from Γ and an E-unifier σ′ of Γ′ such that σ′ ≤Var(Γ)

E σ. To simplify the notation
in our inference rules, we apply them modulo the commutativity of =? and we often use
tuples of terms, such as ū = (u1, . . . , un), v̄ = (v1, . . . , vn) to represent the set of equations
ū =? v̄ corresponding to {u1 =? v1, . . . , un =? vn}.

Equational Rewrite Relations. Given a signature Σ, an oriented Σ-axiom is called a rewrite
rule of the form l → r such that l, r ∈ T (Σ, V), l is not a variable and Var(r) ⊆ Var(l).
Let R be a set of rewrite rules and E an equational Σ-theory. For any Σ-terms s and t, s

R, E-rewrites to t, denoted by s →R,E t, if there exist a position p of s, l → r ∈ R, and
substitution σ such that s|p =E lσ and t = s[rσ]p. The term s is said to be R, E-reducible,
s|p is called a redex, and in the particular case where s|p = lσ, s R-rewrites to t, denoted
by s →R t. A term is an innermost redex if none of its proper subterms is a redex. The
symmetric relation ←R ∪ →R ∪ =E is denoted by ←→R∪E . The rewrite relation →R,E is
Church-Rosser modulo E if ←→∗

R∪E is included in →∗
R,E ◦ =E ◦ ←∗

R,E . The rewrite relation
→R is E-terminating if =E ◦ →R ◦ =E is terminating. When →R is E-terminating, →R,E

is Church-Rosser modulo E iff →R,E is both locally E-confluent and locally E-coherent [21].
The rewrite relation →R,E is E-convergent if →R is E-terminating and →R,E is Church-
Rosser modulo E. When→R,E is E-convergent, we have that for any terms t, t′, t←→∗

R∪E t′

iff t↓R,E =E t′↓R,E , where t↓R,E (resp., t′↓R,E) denotes any normal form of t (resp., t′) w.r.t
→R,E . A function symbol that does not occur in {l(ϵ) | l→ r ∈ R} is called a constructor for
R. Let Σ0 be the subsignature of Σ that consists of function symbols occurring in the axioms
of E. An E-convergent rewrite relation →R,E is said to be E-constructed if all the symbols
in Σ0 are constructors for R. When R is a finite set of rules, the pair (R, E) is called an
equational term rewrite system (TRS). We say that a property is satisfied by an equational
TRS (R, E) if this property is satisfied by →R,E . Given a TRS (R, E), R= denotes the set
of equalities {l = r | l→ r ∈ R}, and R= ∪ E is the equational theory of (R, E). For sake of
brevity, we may use R ∪E instead of R= ∪E. The rewrite relation →R,E and all the related
notions introduced above for a set R of rules l→ r such that l, r ∈ T (Σ, V) are extended in
a natural way to any set R of ground rules l→ r such that l, r ∈ T (Σ, C) and for which the
condition Var(r) ⊆ Var(l) is trivially satisfied since Var(l) = Var(r) = ∅.

For any equational Σ-theory F , an F -canonizer stable by renaming is an idempotent
mapping w : T (Σ, V) → T (Σ, V) such that for any s, t ∈ T (Σ, V), s =F t iff w(s) = w(t);
for any t ∈ T (Σ, V), Var(w(t)) ⊆ Var(t) and for any variable renaming ϕ whose domain is
Var(t), w(tϕ) = w(t)ϕ. For any finite theory E (resp., any E-convergent TRS where E is
finite), an E-canonizer (resp. a R ∪ E-canonizer) stable by renaming is computable.

S. Erbatur, A. M. Marshall, and C. Ringeissen 6:5

3 E-Constructed Theories and their Combinations

We introduce a class of E-constructed theories including E-constructed TRSs. In this
paper, an E-constructed theory F is an equational theory F such that F ∪ E admits a
particular normalizing mapping over ground terms to compute a normal form for each
equivalence class modulo =F ∪E . To get an E-constructed theory, the normal forms must
satisfy some particular properties. In previous papers [14, 13, 18, 19], these properties were
expressed using a reduction ordering on ground terms. Here, we adopt the idea of expressing
these properties thanks to a normalizing mapping defined as an idempotent mapping on
ground terms generated by a countable infinite set C of free constants totally ordered by a
well-founded ordering >.

▶ Definition 1 (>-compatible renaming). Assume C is a countable infinite set of constants
and > is a well-founded total ordering on C, meaning that there is no infinite decreasing
sequence c1 > c2 > . . . of elements of C, and for any c1, c2 ∈ C, c1 > c2 or c2 > c1 or
c1 = c2. A renaming of a finite subset Cst of C is an injective mapping ξ from Cst to C,
which is said to be >-compatible if for any c1, c2 ∈ Cst, c1 > c2 iff c1ξ > c2ξ. Given a
signature Σ, a renaming ξ of Cst uniquely extends to an endomorphism of T (Σ, C), also
denoted by ξ.

Through the rest of the paper, we assume that C is a countable infinite set of constants,
> is a well-founded total ordering on C, Σ0 and Σ are two signatures such that Σ0 ⊆ Σ, E is
a regular and collapse-free Σ0-theory and F is a Σ-theory.

Let G be a subset of T (Σ, C) including C. A Σ0-term over a set of terms G is a term uσ

such that u ∈ T (Σ0, V) and σ is a substitution such that Dom(σ) = Var(u) and Ran(σ) ⊆ G.
By a slight abuse of notation, the set of Σ0-terms over G is denoted by T (Σ0, G). A constant
abstraction mapping modulo F ∪ E for G is a mapping π : G\C → D such that D is a set
of constants disjoint from C and for any s, t ∈ G\C, s =F ∪E t iff π(s) = π(t). An inverse
mapping of π is any morphism π−1 : D → G\C such that for any t ∈ G\C, π−1(π(t)) =F ∪E t.
For any t ∈ T (Σ0, G), tπ0 is called the 0-abstraction of t and is inductively defined as follows:

(f(t1, . . . , tm))π0 = f(tπ0
1 , . . . , tπ0

m) if f ∈ Σ0,
tπ0 = π(t) if t ∈ G\C,
cπ0 = c if c ∈ C.

Following [6], G is called a Σ0-base of F ∪ E if for any term t ∈ T (Σ, C) there exists a term
s ∈ T (Σ0, G) such that t =F ∪E s, and for any s, s′ ∈ T (Σ0, G), s =F ∪E s′ iff sπ0 =F ∪E s′π0 .

▶ Definition 2 (E-constructed theory). Let C be a countable infinite set of constants, > a
well-founded total ordering on C, Σ0 and Σ two signatures such that Σ0 ⊆ Σ, E a regular
and collapse-free Σ0-theory and F a Σ-theory. An E-constructed normalizing mapping for
F ∪ E is an idempotent mapping NF : T (Σ, C)→ T (Σ, C) with the following properties:

for any s, t ∈ T (Σ, C), s =F ∪E t iff NF(s) =E NF(t),
for any t ∈ T (Σ, C), Cst(NF(t)) ⊆ Cst(t) ∪ {c0}, where c0 is minimal in C w.r.t >,
for any t ∈ T (Σ, C) and any >-compatible renaming ξ of Cst(t)∪{c0} such that c0ξ = c0,
we have NF(tξ) = NF(t)ξ,
for any f ∈ Σ0, any t1, . . . , tm ∈ T (Σ, C), NF(f(t1, . . . , tm)) =E f(NF(t1), . . . , NF(tm)),
for any c ∈ C, NF(c) = c.
Let G = {t | t ∈ T (Σ, C), t(ϵ) ∈ (Σ\Σ0) ∪ C, and NF(t) = t}. For any t ∈ T (Σ, C),
NF(t) ∈ T (Σ0, G).

FSCD 2022

6:6 Combined Hierarchical Matching

F is said to be E-constructed if there exists an E-constructed normalizing mapping for F ∪E.
G is called the Σ0-base associated to NF. A term t ∈ T (Σ, C) is NF -normalized if NF(t) = t.
A substitution σ is NF -normalized if for each x ∈ Dom(σ), xσ is NF-normalized.

In Definition 2, the Σ0-base associated to NF is actually a Σ0-base of F ∪ E. Therefore,
Σ0 is a set of constructors for F ∪E, following the definition of constructor studied in [6]. By
Definition 2, we have that =F ∪E and =E coincide on Σ0-terms. Thus, for any E-constructed
theory F , Σ0 is a set of constructors for F ∪ E and the Σ0-reduct of F ∪ E is E. Moreover,
note that F ∪ E-equality is decidable if NF is computable and E-equality is decidable.

▶ Proposition 3. For any E-constructed TRS (R, E), R is an E-constructed theory such
that an E-constructed normalizing mapping NF for R ∪ E is defined as follows: for any
t ∈ T (Σ, C), NF(t) = t↓R,E.

▶ Example 4. Through the rest of the paper we will include several examples using the
following axioms: EX = {e(e(x, y), z) = e(x, y ∗ z)} for exponentiation, H = {e(x ∗ y, z) =
e(x, z) ∗ e(y, z)}, for the homomorphism like property of exponentiation, EXH = EX ∪H,
and AC for the AC theory of ∗. For each F = EX , H, EXH , the theory F ∪ AC is finite,
and so the F ∪ AC-matching problem is finitary. However, the unification problem is
undecidable for EXH ∪ AC and H ∪ AC [27]. For each F = EX , H, EXH , orienting the
equalities from left to right in F leads to an AC-constructed TRS denoted by (F →, AC).
Then, the AC-constructed (F →, AC) provides an AC-constructed normalized mapping NF
since normal forms are stable by variable renaming in equational convergent rewrite systems.
Thus, for each F = EX , H, EXH , there exists an AC-constructed normalizing mapping NF
for F ∪AC = F → ∪AC, meaning that F is AC-constructed. For all these AC-constructed
theories, the Σ0-base G associated to NF corresponds to the set of NF -normalized terms
rooted by a symbol not equal to ∗. Notice, if NF(t) is rooted by e then NF(t) ∈ G and so
NF(t) ∈ T (Σ0, G). When t is not in G, NF(t) is not necessarily in G. Consider for instance
F = EX , t = e(e(a, b), c)∗a, and t′ = a∗e(a, c∗b). Then NF(t) = e(a, b∗c)∗a and NF(t′) = t′

are terms in T (Σ0, G)\G. Since t =EX∪AC t′, we have NF(t) =AC NF(t′). Assume a constant
abstraction mapping π modulo EX ∪AC for G such that π(e(a, b ∗ c)) = π(e(a, c ∗ b)) = d

since e(a, b ∗ c) =AC e(a, c ∗ b). One can check that NF(t)π0 = d ∗ a =AC a ∗ d = NF(t′)π0 .

▶ Example 5. Note, Definition 2 does not require that the theory be orientable into an
E-constructed TRS. Theories satisfying a commutative property over an AC-symbol, ∗, such
as PC = {fc(x ∗ y, v ∗w) = fc(v ∗w, x ∗ y)} and PCC = PC ∪{fc(o(x), o(y)) = o(x) ∗ o(y)},
satisfy Definition 2. For F = PC , PCC , one can check that F is AC-constructed and
F ∪AC is a finite syntactic theory. For the AC-constructed theory EX defined in Example 4,
EX ∪ AC is also a finite syntactic theory. Actually, the syntacticness of EX ∪ AC follows
from [23] since EX ∪AC is collapse-free and EX ∪AC-unification is known to be finitary [16].
While F ∪AC is not orientable into an AC-constructed TRS for F = PC , PCC , Example 4
introduces an AC-constructed TRS for EX .

Unsurprisingly, any E-constructed theory corresponds to an E-convergent rewrite relation
on ground terms. In that case, the corresponding set of rules is infinite and so this rewrite
relation cannot be used in practice to compute the normal forms. In an E-constructed TRS,
the rules are built over terms with variables and they are stable by instantiation. In an
E-constructed theory, the corresponding rules are ground and a particular notion of stability
is considered to allow a renaming of constants, provided that the renaming is >-compatible.
By Definition 2, a normal form of a term does not depend on the names used to denote the
constants, but it depends on the ordering of the constants in the term. Since the equational

S. Erbatur, A. M. Marshall, and C. Ringeissen 6:7

theory F ∪ E is not necessarily regular in Definition 2, a normal form of a term t may have
some additional constants not occurring in t. However, a single additional constant suffices,
and by Definition 2, it will be the minimal one w.r.t >.

▶ Lemma 6. Let F be an E-constructed theory, and NF an E-constructed normalizing
mapping for F ∪ E. Let RNF be the set of ground rules t → NF(t) such that t ∈ T (Σ, C),
NF(t) ̸= t, t(ϵ) ∈ Σ\Σ0 and any strict subterm of t is NF-normalized. Then, →RNF ,E is
E-constructed and for any t ∈ T (Σ, C), NF(t) =E t↓RNF ,E.

▶ Example 7. Continuing from Example 4, consider any AC-constructed TRS (F →, AC)
where F = EX , H, EXH . Let NF be the E-constructed normalizing mapping such that for
any t ∈ T (Σ, C), NF(t) = t↓F →,AC . By Lemma 6, the normal forms w.r.t (F →, AC) coincide
with the normal forms w.r.t →RNF ,AC on T (Σ, C).

When NF is an E-constructed normalizing mapping for F ∪E, a normal form t↓RNF ,E

is also simply denoted by t↓NF . In contrast to [14, 13, 18, 19], the class of E-constructed
theories given by Definition 2 is closed by non-disjoint union sharing only symbols in E. In
other words, the class of E-constructed theories is modular:

▶ Theorem 8. Assume F1 and F2 are two E-constructed theories sharing only symbols in E

such that for i = 1, 2, NF i is an E-constructed normalizing mapping for Fi ∪E. Then, NF1
and NF2 can be extended to an E-constructed normalizing mapping NF1,2 for F1 ∪ F2 ∪ E.

▶ Example 9. Continuing from Examples 5 and 7, for each F = EX , H, EXH , PC , PCC
and for each integer i ≥ 1, let Fi be the theory obtained from F by replacing any function
symbol f in F not equal to ∗ by fi. For instance, Fi = EX i = {ei(ei(x, y), z) = ei(x, y ∗ z)}
if F = EX , and Fi = Hi = {ei(x ∗ y, z) = ei(x, z) ∗ ei(y, z)} if F = H. Theorem 8 allows us
to combine any number of theories Fi.

From now on, Fi is assumed to be an E-constructed theory with an E-constructed
normalizing mapping NF i for the Σi-theory Fi ∪ E, where i = 1, 2. Then, F1 ∪ F2 ∪ E is an
E-constructed theory. The E-constructed normalizing mapping NF1,2 derived from NF1 and
NF2 by Theorem 8 is simply denoted by NF , G is the Σ0-base associated to NF corresponding
to the set of ((Σ1∪Σ2)\Σ0)∪C-rooted NF -normalized terms, and π is a constant abstraction
mapping modulo F1 ∪ F2 ∪ E for G. Given any i = 1, 2 and the subsignature Σi of Σ1 ∪ Σ2,
a term with true i-aliens is a term t such that for any Σi-alien subterm u of t, u↓NF is
Σ3−i\Σ0-rooted. Given any term t with true i-aliens, the i-abstraction of t is denoted by tπi

and defined as follows:
for any f ∈ Σi and any terms t1, . . . , tm, (f(t1, . . . , tm))πi = f(tπi

1 , . . . , tπi
m),

for any Σ3−i\Σ0-rooted term t, tπi = π(t↓NF),
for any c ∈ C, cπi = c.

Given a substitution σ such that xσ is a term with true i-aliens for any x ∈ Dom(σ), we
define σπi = {x 7→ (xσ)πi | x ∈ Dom(σ)}.

▶ Lemma 10. For any i = 1, 2 and any term t with true i-aliens, tπi =Fi∪E (t↓NF)πi .

In general, an E-constructed normalizing mapping is not computable. However, we show
that it is possible to get an approximation, called layer-reduced form, which is useful to decide
the equality modulo a union of theories F1 ∪F2 ∪E where both F1 and F2 are E-constructed.

▶ Definition 11 (Layer-reduced form). Let Σ0 and Σ be two signatures such that Σ0 ⊆ Σ, E

a Σ0-theory, and F an E-constructed Σ-theory with an E-constructed normalizing mapping
NF. A layer-reduced form is a term in T (Σ, C) defined inductively as follows:

FSCD 2022

6:8 Combined Hierarchical Matching

f(t1, . . . , tm) is in layer-reduced form if f ∈ Σ0 and for each k ∈ [1, m], tk is in layer-
reduced form,
t is in layer-reduced form if both t and t↓NF are Σ\Σ0-rooted,
c is in layer-reduced form if c ∈ C.

Given any term s ∈ T (Σ, C), a layer-reduced form of s associated to NF modulo F ∪E is a
layer-reduced form t such that s =F ∪E t.

A layer-reduced term mapping returns a layer-reduced form of any input term.

▶ Definition 12 (Layer-reduced term mapping). Let Σ0 and Σ be two signatures such that
Σ0 ⊆ Σ, E a Σ0-theory, F an E-constructed Σ-theory with an E-constructed normalizing
mapping NF, and c0 the minimal constant in C w.r.t >. A layer-reduced term mapping
associated to NF for F ∪ E is an idempotent mapping (_)⇓ : T (Σ, C)→ T (Σ, C) such that:

for any t ∈ T (Σ, C), t⇓ is a layer-reduced form of t associated to NF modulo F ∪E such
that Cst(t⇓) ⊆ Cst(t) ∪ {c0},
for any t ∈ T (Σ, C) and any >-compatible renaming ξ of Cst(t)∪{c0} such that c0ξ = c0,
we have (tξ)⇓ = (t⇓)ξ,
for any f ∈ Σ0 and any terms t1, . . . , tm ∈ T (Σ, C), f(t1, . . . , tm)⇓ = f(t1⇓, . . . , tm⇓),
for any c ∈ C, c⇓ = c.

A ⇓-ordering is an F ∪ E-compatible total ordering >⇓ on T⇓ = {t | t(ϵ) ∈ Σ\Σ0, t⇓ = t}
such that for any t, t′ ∈ T⇓ and any >-compatible renaming ξ of Cst(t) ∪ Cst(t′) ∪ {c0} with
c0ξ = c0, we have t >⇓ t′ iff tξ >⇓ t′ξ.

In order to decide F1 ∪ F2 ∪ E-equality in a modular way, we show that a computable
layer-reduced term mapping ⇓i and a computable ⇓i-ordering for Fi ∪ E, together with a
decidable Fi ∪ E-equality for i = 1, 2 are sufficient.

▶ Theorem 13. Assume F1 and F2 are two E-constructed theories sharing only symbols in E

such that Fi ∪E has an E-constructed normalizing mapping NF i, a computable layer-reduced
term mapping ⇓i associated to NF i, a computable ⇓i-ordering, and Fi∪E-equality is decidable
for any i = 1, 2. Then, ⇓1 and ⇓2 (resp. , the ⇓1-ordering and the ⇓2-ordering) can be
extended to a computable layer-reduced term mapping ⇓1,2 associated to NF1,2 (resp., a
computable ⇓1,2-ordering) such that for any i = 1, 2 and any term t, t⇓1,2 is a term with true
i-aliens, and F1 ∪ F2 ∪ E-equality is decidable.

At first glance, the computability of ⇓ and of its related ⇓-ordering seems difficult to obtain.
Fortunately, there is a large class of theories for which we get for free the computability of
these mappings and related orderings. The following lemmas are very useful to apply our
combination results, e.g., Theorem 13:

▶ Lemma 14. For any E-constructed theory F with a computable F ∪E-canonizer stable by
renaming, any computable layer-reduced term mapping ⇓ has a computable ⇓-ordering.

▶ Lemma 15. For any E-constructed theory F such that F ∪ E is a regular theory with an
F ∪ E-matching algorithm, a layer-reduced term mapping ⇓ is computable.

Proof. Consider the procedure defined as the repeated application of the following inference
with a don’t care non-determinism:

Expand (u, t) ⊢ (uσ, t)
where x ∈ Var(u), f ∈ Σ0, v̄ are fresh variables, σ = {x 7→ f(v̄)}, CSUF ∪E({uσ = t}) ̸= ∅.

S. Erbatur, A. M. Marshall, and C. Ringeissen 6:9

Given any variable x, any term t ∈ T (Σ, C) and the input pair (x, t), the above procedure
is necessarily terminating since F is E-constructed, computing a single pair (u′, t) such that
CSUF ∪E({u′ = t}) ̸= ∅, and for any σ ∈ CSUF ∪E({u′ = t}), u′σ is a layer-reduced form of
t modulo F ∪ E. ◀

▶ Remark 16. The E-constructed theory Fi is said to be E-inner if the normal form by
NF i of any Σi\Σ0-rooted term in T (Σi, C) remains Σi\Σ0-rooted. When Fi is E-inner, the
identity mapping provides a layer-reduced term mapping ⇓i for Fi ∪E. If both ⇓1, ⇓2 are
the identity mapping, then ⇓1,2 remains the identity mapping.

When ⇓i is given by a computable NF i for i = 1, 2, ⇓1,2 corresponds to the computable
NF1,2. Let us also mention the disjoint case (Σ0, E) = (∅, ∅), where ⇓1,2 is obtained without
using an additional computable ⇓i-ordering for i = 1, 2.

▶ Example 17. Continuing from Example 9, we have a computable NF for each theory F∪AC

where F = EX , H, EXH . Notice, each of these NFs satisfies Definition 12 and provides a
layer-reduced term mapping, ⇓. EX and H are regular theories, thus no new constant c0 is
introduced by ⇓ and Cst(t⇓) = Cst(t). According to Remark 16, EX and PC are AC-inner
theories for which a layer-reduced term mapping can be provided by the identity mapping.
Contrary to PC , PCC is not AC-inner but PCC ∪AC is finite and we can rely on Lemma 15
to get a computable layer-reduced term mapping. For H and EXH , the corresponding
computable NF can be used as a layer-reduced term mapping. Thus, we have a computable
⇓ for each F ∪ AC where F = EX , H, EXH , PC , PCC . Applying Theorem 13 we obtain,
in a modular way, a computable layer-reduced term mapping for F1 ∪ · · ·Fn ∪ AC, where
F = EX , H, EXH , PC , PCC . Recall that the construction of the combined layer-reduced
term mapping requires computable ⇓-orderings. For each F = EX , H, EXH , PC , PCC , there
exists a computable ⇓-ordering since Lemma 14 applies. Finally, note that Theorem 13
does not require that the component theories Fi ∪ AC are regular. In the particular case
of a non-regular AC-constructed TRS, the layer-reduced term mapping ⇓ provided by the
corresponding computable NF satisfies Cst(t⇓) ⊆ Cst(t) for any term t, and Lemma 14 still
applies to get a computable ⇓-ordering since AC is a finite theory.

Consider now the problem of building an F1 ∪ F2 ∪ E-matching algorithm where both
F1 and F2 are assumed to be regular (as well as E). In that case, any matching problem
has only ground solutions: given any equation s =?

F1∪F2∪E t with t ∈ T (Σ1 ∪ Σ2, C) and
any substitution σ such that sσ =F1∪F2∪E t, {sσ} ∪Ran(σ) ⊆ T (Σ1 ∪Σ2, C). The following
corollary is a direct consequence of Lemma 10 and paves the way for an F1∪F2∪E-matching
procedure combining an F1 ∪ E-matching algorithm and an F2 ∪ E-matching algorithm:

▶ Corollary 18. For any i = 1, 2, any Σi-term s, any term t ∈ T (Σ1 ∪ Σ2, C) such that
t⇓1,2 = t, and any NF-normalized substitution σ, sσ =F1∪F2∪E t iff s(σπi) =Fi∪E tπi .

By Corollary 18, the terminating procedure [29, 32, 15, 33] combining the matching
algorithms in regular theories remains sound and complete in our extended setting.

▶ Theorem 19. If F1 and F2 are two E-constructed theories sharing only symbols in E such
that Fi∪E is a regular theory with a computable layer-reduced term mapping ⇓i, a computable
⇓i-ordering and an Fi ∪ E-matching algorithm for i = 1, 2, then F1 ∪ F2 is E-constructed
and F1 ∪ F2 ∪ E is a regular theory with a computable layer-reduced term mapping ⇓1,2, a
computable ⇓1,2-ordering and an F1 ∪ F2 ∪ E-matching algorithm.

FSCD 2022

6:10 Combined Hierarchical Matching

Theorem 19 can be applied to finite theories since any finite theory is a particular case of
a regular (and collapse-free) theory with a computable layer-reduced term mapping ⇓ (cf.
Lemma 15), a computable ⇓-ordering (cf. Lemma 14), and a matching algorithm. Indeed,
the matching problem is known to be finitary in any finite theory, thanks to a reduction to
syntactic matching via the enumeration of the finitely terms in a given equivalence class
modulo the theory. This brute-force method should be avoided whenever it is possible.

4 Finite Syntactic Theories and their Combinations

In this section, we focus on the class of finite syntactic theories. In that class, any theory
has a mutation-based matching algorithm. The class of finite syntactic theories is known
to be closed by disjoint union [28]. More precisely, if F1 and F2 are signature-disjoint finite
theories and Fi has a resolvent presentation Si for i = 1, 2, then F1 ∪ F2 is finite and has a
resolvent presentation S1 ∪ S2. In the non-disjoint case where F1 and F2 are E-constructed
theories sharing only symbols in E and Fi ∪ E has a resolvent presentation Si for i = 1, 2, it
is easy to see that S1 ∪ S2 is not necessarily a resolvent presentation of F1 ∪ F2 ∪ E:

▶ Example 20. Consider (Σ0, E) = ({c}, ∅) and (Σi, Fi) = ({fi, c}, {fi(x) = c(x)}) for
i = 1, 2. Fi is a resolvent presentation of Fi ∪ E and Fi is E-constructed for i = 1, 2 but
F1 ∪ F2 cannot be a resolvent presentation of F1 ∪ F2 ∪ E since f1(x) =F1∪F2∪E f2(x).

To get that the resolvent presentation of F1 ∪ F2 ∪ E is the union of the resolvent
presentations of F1 ∪ E and F2 ∪ E, a restricted class of E-constructed theories is needed:

▶ Definition 21 (E-capped theory). Let E be a regular and collapse-free Σ0-theory, F an
E-constructed Σ-theory with an E-constructed normalizing mapping NF for F ∪E, and G

the Σ0-base associated to NF. The E-constructed normalizing mapping NF is said to be
E-capped if for any Σ\Σ0-rooted term t ∈ T (Σ, C), NF(t) is a term uσ ∈ T (Σ0, G) such
that u ∈ T (Σ0, V), Var(u) = Dom(σ) and Ran(σ) ⊆ G\C. An E-constructed theory F with
an E-capped normalizing mapping NF is said to be E-capped.

▶ Example 22. In Definition 21, the term u can be a variable and so any E-inner theory
as defined in Remark 16 is E-capped. Consider the theories defined in Examples 4 and 5.
For F = EX , PC , the theory F is E-capped since F is E-inner. For F = H, EXH , PCC , the
theory F is E-capped without being E-inner.

When F1 and F2 are two E-capped theories sharing only symbols in E, for any Σ1\Σ0-
rooted term t1 and any Σ2\Σ0-rooted term t2, t1 cannot be equal to t2 modulo F1 ∪ F2 ∪ E.
In [19], the following result has been shown: if F1 and F2 are two E-capped theories sharing
only symbols in E and Fi ∪ E is regular collapse-free with a resolvent presentation Si for
i = 1, 2, then F1 ∪ F2 is E-capped and F1 ∪ F2 ∪E is regular collapse-free with a resolvent
presentation S1 ∪ S2.

▶ Example 23. Consider (Σ0, E) = ({c}, ∅) and (Σi, Fi) = ({fi, gi, c}, {fi(x) = c(gi(x))}) for
i = 1, 2. Fi is a resolvent presentation of Fi ∪E and Fi is E-capped and regular collapse-free
for i = 1, 2. By the modularity result in [19] mentioned above, F1 ∪ F2 is E-capped and
F1 ∪ F2 is a resolvent presentation of F1 ∪ F2 ∪ E.

When Fi ∪ E is finite, only finitely many distinct non-normalized terms can have the
same normal form w.r.t NF1,2. Since, for any s, t, s =F1∪F2∪E t iff NF1,2(s) =E NF1,2(t)
where E is necessarily finite, we have that F1 ∪ F2 ∪ E is finite too.

S. Erbatur, A. M. Marshall, and C. Ringeissen 6:11

▶ Theorem 24. If F1 and F2 are two E-capped theories sharing only symbols in E such
that Fi ∪ E is a finite theory with a resolvent presentation Si for i = 1, 2, then F1 ∪ F2 is
E-capped and F1 ∪ F2 ∪ E is a finite theory with a resolvent presentation S1 ∪ S2.

With E-constructed TRSs, another resolvence allows us to get rid of the E-capped assumption.

▶ Definition 25 (Innermost-resolvent E-constructed TRS). An E-constructed TRS (R, E) is
said to be innermost-resolvent if any innermost rewrite derivation s→∗

R,E t includes at most
one rewrite step applied at the root position. An innermost-resolvent TRS (R, E) is finite if
R ∪ E is finite.

▶ Example 26. Continuing from Example 7, consider any AC-constructed TRS (F →, AC)
where F = EX , H, EXH . Applying the rule corresponding to EX more than once at the root
would violate the innermost strategy. The rule corresponding to H moves the constructor
symbol ∗ to the root and thus disallows any further root rewriting. Thus, (F →, AC) is
innermost-resolvent for each F = EX , H, EXH .

Following the terminology in [10], R∪E is 2-syntactic when (R, E) is innermost-resolvent.

▶ Theorem 27. Let (R1, E) and (R2, E) be two finite innermost-resolvent E-constructed
TRSs sharing only symbols in E. If →R1∪R2 is E-terminating, then (R1 ∪R2, E) is a finite
innermost-resolvent E-constructed TRS.

▶ Example 28. Continuing from Examples 20 and 23, consider (Σ0, E) = ({c}, ∅), (Σ1, R1) =
({f1, c}, {f1(x) → c(x)}) and (Σ2, R2) = ({f2, g2, c}, {f2(x) → c(g2(x))}). (R1, E) and
(R2, E) are two finite innermost-resolvent E-constructed TRSs sharing only symbols in E

and →R1∪R2 is E-terminating. By Theorem 27, (R1 ∪R2, E) is a finite innermost-resolvent
E-constructed TRS.

5 Hierarchical Matching

Norm {s = t} ∪ Γ ⊢ {s = t⇓} ∪ Γ
where s is a non-ground term and t is a ground term such that t⇓ ≠ t.

Triv {s = t} ∪ Γ ⊢ Γ
where s, t are ground terms such that s⇓ = s, t⇓ = t, and s =F ∪E t.

Figure 1 NT rules.

We investigate in this section the problem of building an F ∪E-matching algorithm in the
case F is E-constructed, F∪E has a computable layer-reduced term mapping ⇓, a computable
⇓-ordering, and an E-matching algorithm is known. A hierarchical matching algorithm for
F ∪ E is defined as an inference system including the inference rules in NT ∪HME where
NT and HME are respectively given in Figure 1 and in Figure 2. The rules in NT are
clearly sound and complete in F ∪E, by definition of ⇓. The rules in HME\{Solve-M} are
sound and complete in any equational theory. To show that Solve-M is sound and complete
in F ∪ E, we rely on the 0-abstraction of a term in layer-reduced form. The 0-abstraction of
any term t ∈ T (Σ0, G), denoted by tπ0 , has been introduced just before Definition 2 and it
can be extended to a larger set of terms. A term with true 0-aliens is a term t such that for
any Σ0-alien subterm u of t, u↓NF is Σ\Σ0-rooted. Given any term t with true 0-aliens, the
0-abstraction of t is denoted by tπ0 and defined as follows:

FSCD 2022

6:12 Combined Hierarchical Matching

Rep {x = t} ∪ Γ ⊢ {x = t} ∪ (Γ{x 7→ t})
where x is a variable occurring in Γ and t is a ground term.

Flatten-M {f(ū) = t} ∪ Γ ⊢ {f(x̄) = t, ū = x̄} ∪ Γ
where f(ū) is a non-ground Σ\Σ0-rooted term, t is ground, and x̄ are fresh variables.

VA-M {s[u] = t} ∪ Γ ⊢ {s[x] = t, u = x} ∪ Γ
where s is a non-ground Σ0-rooted term, u is a Σ0-alien subterm of s, t is a ground, and x is
a fresh variable.

Solve-M Γ ∪ Γ0 ⊢ Γ ∪ σ̂

where Γ0 = {sk = tk}k∈K , sk ∈ T (Σ0, V ∪C) and tk ∈ T (Σ, C) for each k ∈ K, Γπ0
0 = {sk =

tπ0
k }k∈K , CSUE(Γπ0

0) ̸= ∅, σ0 ∈ CSUE(Γπ0
0), and σ̂ is the solved form of σ = σ0π−1.

Figure 2 HME rules.

for any f ∈ Σ0 and any terms t1, . . . , tm, (f(t1, . . . , tm))π0 = f(tπ0
1 , . . . , tπ0

m),
for any Σ\Σ0-rooted term t, tπ0 = π(t↓NF),
for any c ∈ C, cπ0 = c.

Given a substitution σ such that xσ is a term with true 0-aliens for any x ∈ Dom(σ), we
define σπ0 = {x 7→ (xσ)π0 | x ∈ Dom(σ)}.

▶ Lemma 29. For any term t with true 0-aliens, tπ0 =E (t↓NF)π0 .

▶ Lemma 30. For any ground terms s, t in layer-reduced form, we have:
if s, t are Σ0-rooted or s, t ∈ C, then s =F ∪E t⇔ sπ0 =E tπ0 ,
if s is Σ0-rooted and t is Σ\Σ0-rooted or s ∈ C and t is Σ-rooted, then s ̸=F ∪E t.

▶ Corollary 31. For any ground term t in layer-reduced form, any Σ0-term s and any
NF-normalized substitution σ, sσ =F ∪E t iff s(σπ0) =E tπ0 .

Corollary 31 follows from Lemma 29. It shows that Solve-M is sound and complete in F ∪E.
To solve any F ∪ E-matching problem, we need to complete NT ∪HME by some inference
system, say U , to transform the match-equations that cannot be handled by NT ∪HME .

▶ Definition 32 (Hierarchical matching algorithm). Assume an E-matching algorithm, a
computable layer-reduced term mapping ⇓ for F ∪ E, and an inference system U satisfying
the following assumptions:
(a) no single inference rule in U is sound and complete for an arbitrary equational theory;
(b) U is sound and complete for F ∪E provided that all the inference rules in U are applied

using a don’t know non-determinism;
(c) each equation that can be solved by Solve-M must remain unchanged by U .
A hierarchical matching algorithm for F ∪ E is an inference system denoted by HME(⇓, U)
and defined by the set of rules in NT ∪HME ∪U (cf. Figures 1 and 2) such that the following
properties hold for any input set Γ of equations s = t where s or t is ground:

the repeated application of rules in HME(⇓, U) terminates with the following order of
priority: Norm, Triv, Rep, Flatten-M, VA-M, U , Solve-M;
any normal form of Γ w.r.t HME(⇓, U) obtained by the above strategy is F ∪ E-unifiable
iff it is a matching problem in solved form.

By definition, any hierarchical matching algorithm for F ∪ E is a sound and complete
F ∪ E-matching algorithm. In the following, we give examples of theories with hierarchical
matching algorithms.

S. Erbatur, A. M. Marshall, and C. Ringeissen 6:13

▶ Lemma 33. Let DMR be the inference system given in Figure 3. For any finite innermost-
resolvent E-constructed TRSs (R, E), R ∪E admits a hierarchical matching algorithm of the
form HME(↓R,E , DMR).

In Lemma 33, the soundness and completeness of DMR follows directly from the assump-
tion that (R, E) is innermost-resolvent and the fact that ground terms are normalized before
any rule from DMR applies. Since R ∪ E is finite, HME(↓R,E , DMR) is terminating.

Dec {f(v̄) = f(t̄)} ∪ Γ ⊢ {v̄ = t̄} ∪ Γ where f ∈ Σ\Σ0
MutR {f(v̄) = g(t̄)} ∪ Γ ⊢ {v̄ = l̄, r̄ = t̄} ∪ Γ where f(l̄)→ g(r̄) ∈ R

Figure 3 DMR rules.

▶ Example 34. Continuing from Example 26, for each F = EX , H, EXH , the AC-constructed
TRS (F →, AC) is innermost-resolvent and F → ∪AC has a hierarchical matching algorithm
of the form HMAC(↓F →,AC , DMF →).

▶ Lemma 35. Assume F is E-constructed and F ∪ E is a finite theory with a resolvent
presentation S and a computable layer-reduced term mapping ⇓. Let DMS be the inference
system obtained from the one in Figure 3 by replacing any rule from R by an equality from
S. Then F ∪ E has a hierarchical matching algorithm of the form HME(⇓, DMS).

In Lemma 35, the soundness and completeness of DMS follows directly from the assump-
tion that S is a resolvent presentation of F ∪E. In addition, HME(⇓, DMS) is terminating
since F ∪ E is finite.

▶ Example 36. For F = EX , PC , PCC , we have that F∪AC is a finite theory with a resolvent
presentation S and a computable layer-reduced term mapping ⇓. Thus, HMAC(⇓, DMS) is
a hierarchical matching algorithm for F ∪AC. The resolvent presentation S includes some
Σ0-equalities for Σ0 = {∗}. These Σ0-equalities, corresponding to a resolvent presentation of
AC, are not used in the application of DMS .

6 Hierarchical Matching in Combined E-Constructed Theories

In our hierarchical approach, combining hierarchical matching algorithms parameterized by
U1 and U2 can be viewed as a hierarchical matching algorithm parameterized by U1 ∪ U2.
The following remark details how the inference rules in Ui involving ground Σi-terms are
extended to handle ground Σ1 ∪ Σ2-terms.

▶ Remark 37. Assume an Fi ∪E-matching algorithm of the form HME(⇓i, Ui) for i = 1, 2.
The inference system Ui is defined for matching-equations with ground terms in T (Σi, C).
To handle ground terms in T (Σ1 ∪ Σ2, C), Ui must be extended in the expected manner via
i-abstraction, leading to a signature extension of Ui defined as follows for any problem P

including some function symbol in Σ3−i\Σ0: P ⊢Ui
Qπ−1 if P πi ⊢Ui

Q, where P πi denotes
the Ei-matching problem obtained from P by replacing each ground side t in P by tπi .
This is sound and complete by Corollary 18, and the fact that ground sides in P are in
layer-reduced form since Norm is applied eagerly before Ui. In the same way, Solve-M has
been extended to handle ground sides in T (Σ1 ∪ Σ2, C). In that case, the 0-abstraction is
used to get an E-matching problem.

FSCD 2022

6:14 Combined Hierarchical Matching

▶ Theorem 38. If F1 and F2 are two E-constructed theories sharing only symbols in E such
that Fi∪E is a regular theory with a computable layer-reduced term mapping ⇓i, a computable
⇓i-ordering, and a hierarchical matching algorithm of the form HME(⇓i, Ui) for i = 1, 2.
Then F1 ∪ F2 is an E-constructed and F1 ∪ F2 ∪ E is a regular theory with a computable
layer-reduced term mapping ⇓1,2, a computable ⇓1,2-ordering, and a hierarchical matching
algorithm of the form HME(⇓1,2, U1 ∪ U2).

Proof. The combination algorithm for the matching problem that allows us to obtain
Theorem 19 can be expressed as a hierarchical matching algorithm for F1 ∪ F2 ∪ E of the
form HME(⇓1,2, {Solve-M1, Solve-M2}), where Solve-Mi for i = 1, 2 is defined as follows
in a way similar to Solve-M:

Solve-Mi Γ ∪ Γi ⊢ Γ ∪ σ̂

where Γi = {sk = tk}k∈K , sk ∈ T (Σi\Σ0, V ∪ C), tk ∈ T (Σ1 ∪ Σ2, C) for each k ∈ K,
Γπi

i = {sk = tπi

k }k∈K , CSUFi∪E(Γπi
i) ̸= ∅, σi ∈ CSUFi∪E(Γπi

i), and σ̂ is the solved form of
σ = σiπ

−1.

Assume Fi ∪E has a hierarchical matching algorithm of the form HME(⇓i, Ui) for any
i = 1, 2. Then, Solve-Mi can be replaced by HME(⇓i, Ui). Due to the rule application
strategy used in any hierarchical matching algorithm, Solve-Mi applies only on match-
equations s = t such that s is a flat non-ground Σi\Σ0-term, and t is a ground term in
layer-reduced form w.r.t ⇓1,2. Thus, Ui is sufficient to replace Solve-Mi for i = 1, 2, and so
the combination matching algorithm is actually of the form HME(⇓1,2, U1 ∪ U2). ◀

▶ Example 39. In Examples 34 and 36, we have shown that Fi ∪ AC has a hierarchical
matching algorithm for each F = EX , H, EXH , PC , PCC . By Theorem 38, F1∪· · ·∪Fn∪AC

has a hierarchical matching algorithm.

Notice, Theorem 38 applies to E-constructed regular theories Fi where Fi ∪ E is not
necessarily finite. In the particular case of finite theories, we get the following corollaries.

▶ Corollary 40. Assume (R1, E) and (R2, E) are two finite innermost-resolvent E-constructed
TRSs sharing only symbols in E. If →R1∪R2 is E-terminating, then (R1 ∪R2, E) is a finite
innermost-resolvent E-constructed TRS and R1 ∪ R2 ∪ E admits a hierarchical matching
algorithm of the form HME(↓R1∪R2,E , DMR1 ∪DMR2).

Corollary 40 is a continuation of Theorem 27. Interestingly, the hierarchical matching
algorithm for R1 ∪R2 ∪E can be obtained from Theorem 38 but also as a consequence of
Lemma 33 since HME(↓R1∪R2,E , DMR1∪R2) coincides with HME(↓R1∪R2,E , DMR1∪DMR2).

▶ Example 41. Continuing from Examples 9 and 34, we can combine any number of
exponentiation/homomorphic theories Fi ∪ AC for F = EX , H, EXH sharing only the
AC-symbol ∗ and obtain a hierarchical matching algorithm of the form given by Corollary 40.

▶ Corollary 42. If F1 and F2 are two E-capped theories sharing only symbols in E such that
Fi ∪E is a finite theory with a resolvent presentation Si, a computable layer-reduced term
mapping ⇓i, and a hierarchical matching algorithm of the form HME(⇓i, DMSi

) for i = 1, 2.
Then F1 ∪ F2 is E-capped and F1 ∪ F2 ∪ E is a finite theory with a resolvent presentation
S1∪S2, a computable layer-reduced term mapping ⇓1,2, and a hierarchical matching algorithm
of the form HME(⇓1,2, DMS1 ∪DMS2).

Corollary 42 is a continuation of Theorem 24. Again, the hierarchical matching algorithm
for F1 ∪ F2 ∪E can be obtained from Theorem 38 but also as a consequence of Lemma 35
since HME(⇓1,2, DMS1∪S2) coincides with HME(⇓1,2, DMS1 ∪DMS2).

S. Erbatur, A. M. Marshall, and C. Ringeissen 6:15

▶ Example 43. Continuing from Examples 9 and 36, we can combine any number of
finite syntactic theories Fi ∪AC for F = EX , PC , PCC sharing only the AC-symbol ∗ and
obtain a finite syntactic theory with a hierarchical matching algorithm of the form given by
Corollary 42.

7 Hierarchical Decision Procedures for the Word-Problem

In a hierarchical matching algorithm for F ∪ E, it is mandatory to be able to decide F ∪ E-
equality of terms in layer-reduced form (cf. rules in NT , Figure 1). In a way similar to
hierarchical F ∪E-matching, it is possible to follow a simple hierarchical approach for solving
the particular F ∪ E-unification problem where both sides of each equation are ground
terms in layer-reduced form. In that particular case, we assume a decidable E-equality,
an E-constructed theory F , and a computable layer-reduced term mapping ⇓ for F ∪ E.
Consider the following inference rule:

Solve-W {s = t} ∪ Γ ⊢ Γ where (s(ϵ), t(ϵ) ∈ Σ0 or s, t ∈ C) and sπ0 =E tπ0

together with an inference system U satisfying the same assumptions (a) and (b) as in
Definition 32 and for which each equation that can be solved by Solve-W must remain
unchanged by U . A hierarchical decision procedure for the F ∪E-equality of terms in layer-
reduced form w.r.t ⇓ is an inference system denoted by HWE(U) and defined by the set of
rules in {Solve-W} ∪ U such that, for any input set Γ of equations s = t where s and t are
ground terms in layer-reduced form w.r.t ⇓, the repeated application of rules in HWE(U)
terminates with the order of priority U, Solve-W, and the empty set of equations is the
unique F ∪ E-unifiable normal form w.r.t HWE(U). By definition, HWE(U) is a sound,
complete, and terminating procedure deciding the F ∪ E-equality of terms in layer-reduced
form. There are two major classes of E-constructed theories F with a hierarchical decision
procedure for the F ∪ E-equality of terms in layer-reduced form:

1. If (R, E) is an E-constructed TRS and E is finite, then HWE({Dec}) is a hierarchical
decision procedure for the R∪E-equality of terms in layer-reduced form w.r.t ↓R,E , where
Dec is given in Figure 3. This holds since the Σ\Σ0-symbols do not occur in E.

2. If F is E-constructed and F ∪ E is a finite theory with a resolvent presentation S, then
HWE({Dec, Mut-WS}) is a hierarchical decision procedure for the F ∪ E-equality of
terms in layer-reduced form, where Dec is given in Figure 3 and Mut-WS is as follows:
Mut-WS {f(v̄) = g(t̄)} ∪ Γ ⊢ Γ where f(l̄) = g(r̄) ∈ S, CSUF∪E({l̄ = v̄, r̄ = t̄}) ̸= ∅.

This can be shown using the same proof argument as in Lemma 35.

The class of E-constructed theories F with a hierarchical decision procedure for the
F ∪E-equality of terms in layer-reduced form satisfies a modular property described below.

▶ Theorem 44. Under the same assumptions as in Theorem 13, if HWE(Ui) is a hierarchical
decision procedure for the Fi ∪E-equality of terms in layer-reduced form w.r.t ⇓i, for i = 1, 2,
then, HWE(U1 ∪U2) is a hierarchical decision procedure for the F1 ∪F2 ∪E-equality of terms
in layer-reduced form w.r.t ⇓1,2.

Proof. By Theorem 13, HWE({Solve-W1, Solve-W2}) is a hierarchical decision procedure
for the F1 ∪ F2 ∪ E-equality of terms in layer-reduced form w.r.t ⇓1,2, where for i = 1, 2,
Solve-Wi is as follows:

Solve-Wi {s = t} ∪ Γ ⊢ Γ where s(ϵ), t(ϵ) ∈ Σi\Σ0 and sπi =Fi∪E tπi .

FSCD 2022

6:16 Combined Hierarchical Matching

The use of Ui being extended to ground mixed terms via i-abstraction (cf. Remark 37),
Solve-Wi can be replaced by Ui. ◀

Notice, Theorem 44 applies to E-constructed theories Fi where Fi ∪ E can be non-regular.

8 Related Work and Concluding Remarks

The theories F ∪E we are interested in are conservative extensions of E for which the symbols
in the signature Σ0 of E are constructors, meaning that F ∪E admits a Σ0-basis [6, 35]. In [6],
a modularity result was shown for the computability of normal forms over the Σ0-basis. This
result requires that normal forms are stable by variable renaming. In contrast, we rely on a
stability by constant renaming, provided that the renaming follows an arbitrary total ordering
over the constants. Moreover, we give a modular construction for computable layer-reduced
term mappings which are sufficient approximations of the normalizing mappings used to define
the E-constructed theories. The notion of layer-reduced form is well-known in the context of
disjoint combination [31], but this is the first time a modular construction of layer-reduced
forms is proposed for theories sharing constructors modulo E. The combination problem for
both unification and matching in constructor-sharing theories has been investigated for a
while [12, 5, 32, 14, 15, 33] but we now consider the general case of constructors modulo E

to go beyond the case of absolutely free constructors. We have shown that our hierarchical
approach is a well-suited framework to deal with non-absolutely free constructors. This
hierarchical approach has been initiated to study the unification problem in various classes
of E-constructed theories [18, 19]. As shown here, the restriction to the matching problem
allows us to get hierarchical matching algorithms for larger classes of E-constructed theories,
and this completes the terminating cases that have been recently identified for hierarchical
unification [18, 19]. The modularity results shown here for the matching problem can be
viewed as non-disjoint extensions of the ones known in the disjoint case for the matching
problem both in regular theories [29] and in finite syntactic theories [28].

In the future, we are interested in developing new decision procedures for combined
theories sharing constructors modulo E. More precisely, we target the knowledge problems
considered in protocol analysis, for which some first results have been obtained for combined
theories sharing absolutely free constructors [17]. Again, the hierarchical approach seems very
useful to move from absolutely free constructors to constructors modulo E. More generally,
our project consists in applying the hierarchical approach to constraint solving problems that
occur in protocol analysis, including particular forms of disunification problems.

References
1 Alessandro Armando, Silvio Ranise, and Michaël Rusinowitch. A rewriting approach to

satisfiability procedures. Inf. Comput., 183(2):140–164, 2003.
2 Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press,

1998.
3 Franz Baader and Klaus U. Schulz. Unification in the union of disjoint equational theories:

Combining decision procedures. J. Symb. Comput., 21(2):211–243, 1996.
4 Franz Baader and Wayne Snyder. Unification theory. In John Alan Robinson and Andrei

Voronkov, editors, Handbook of Automated Reasoning (in 2 volumes), pages 445–532. Elsevier
and MIT Press, 2001.

5 Franz Baader and Cesare Tinelli. Combining decision procedures for positive theories sharing
constructors. In Sophie Tison, editor, Rewriting Techniques and Applications, 13th Interna-

S. Erbatur, A. M. Marshall, and C. Ringeissen 6:17

tional Conference, RTA 2002, Copenhagen, Denmark, July 22-24, 2002, Proceedings, volume
2378 of Lecture Notes in Computer Science, pages 352–366. Springer, 2002.

6 Franz Baader and Cesare Tinelli. Deciding the word problem in the union of equational
theories. Inf. Comput., 178(2):346–390, 2002.

7 Leo Bachmair, Harald Ganzinger, Christopher Lynch, and Wayne Snyder. Basic paramodula-
tion. Inf. Comput., 121(2):172–192, 1995.

8 Bruno Blanchet. Modeling and verifying security protocols with the Applied Pi calculus and
ProVerif. Foundations and Trends in Privacy and Security, 1(1-2):1–135, 2016.

9 Peter Borovanský, Claude Kirchner, Hélène Kirchner, and Pierre-Etienne Moreau. ELAN
from a rewriting logic point of view. Theor. Comput. Sci., 285(2):155–185, 2002.

10 Alexandre Boudet and Evelyne Contejean. On n-syntactic equational theories. In Hélène
Kirchner and Giorgio Levi, editors, Algebraic and Logic Programming, Third International
Conference, Volterra, Italy, September 2-4, 1992, Proceedings, volume 632 of Lecture Notes in
Computer Science, pages 446–457. Springer, 1992.

11 Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José
Meseguer, and Carolyn L. Talcott, editors. All About Maude - A High-Performance Logical
Framework, How to Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of
Lecture Notes in Computer Science. Springer, 2007.

12 Eric Domenjoud, Francis Klay, and Christophe Ringeissen. Combination techniques for non-
disjoint equational theories. In Alan Bundy, editor, Automated Deduction - CADE-12, 12th
International Conference on Automated Deduction, Nancy, France, June 26 - July 1, 1994,
Proceedings, volume 814 of Lecture Notes in Computer Science, pages 267–281. Springer, 1994.

13 Ajay Kumar Eeralla, Serdar Erbatur, Andrew M. Marshall, and Christophe Ringeissen.
Rule-based unification in combined theories and the finite variant property. In Carlos Martín-
Vide, Alexander Okhotin, and Dana Shapira, editors, Language and Automata Theory and
Applications - 13th International Conference, LATA 2019, St. Petersburg, Russia, March
26-29, 2019, Proceedings, volume 11417 of Lecture Notes in Computer Science, pages 356–367.
Springer, 2019.

14 Serdar Erbatur, Deepak Kapur, Andrew M. Marshall, Paliath Narendran, and Christophe
Ringeissen. Hierarchical combination. In Maria Paola Bonacina, editor, Automated Deduction
- CADE-24 - 24th International Conference on Automated Deduction, Lake Placid, NY, USA,
June 9-14, 2013. Proceedings, volume 7898 of Lecture Notes in Computer Science, pages
249–266. Springer, 2013.

15 Serdar Erbatur, Deepak Kapur, Andrew M. Marshall, Paliath Narendran, and Christophe
Ringeissen. Unification and matching in hierarchical combinations of syntactic theories. In
Carsten Lutz and Silvio Ranise, editors, Frontiers of Combining Systems - 10th International
Symposium, FroCoS 2015, Wroclaw, Poland, September 21-24, 2015. Proceedings, volume 9322
of Lecture Notes in Computer Science, pages 291–306. Springer, 2015.

16 Serdar Erbatur, Andrew M. Marshall, Deepak Kapur, and Paliath Narendran. Unification
over distributive exponentiation (sub)theories. J. Autom. Lang. Comb., 16(2-4):109–140, 2011.

17 Serdar Erbatur, Andrew M. Marshall, and Christophe Ringeissen. Notions of knowledge in
combinations of theories sharing constructors. In Leonardo de Moura, editor, Automated
Deduction - CADE 26 - 26th International Conference on Automated Deduction, Gothenburg,
Sweden, August 6-11, 2017, Proceedings, volume 10395 of Lecture Notes in Computer Science,
pages 60–76. Springer, 2017.

18 Serdar Erbatur, Andrew M. Marshall, and Christophe Ringeissen. Terminating non-disjoint
combined unification. In Maribel Fernández, editor, Logic-Based Program Synthesis and
Transformation - 30th International Symposium, LOPSTR 2020, Bologna, Italy, September
7-9, 2020, Proceedings, volume 12561 of Lecture Notes in Computer Science, pages 113–130.
Springer, 2020.

19 Serdar Erbatur, Andrew M. Marshall, and Christophe Ringeissen. Non-disjoint combined
unification and closure by equational paramodulation. In Boris Konev and Giles Reger, editors,

FSCD 2022

6:18 Combined Hierarchical Matching

Frontiers of Combining Systems - 13th International Symposium, FroCoS 2021, Birmingham,
UK, September 8-10, 2021, Proceedings, volume 12941 of Lecture Notes in Computer Science,
pages 25–42. Springer, 2021.

20 Santiago Escobar, Catherine A. Meadows, and José Meseguer. Maude-NPA: Cryptographic
protocol analysis modulo equational properties. In Alessandro Aldini, Gilles Barthe, and
Roberto Gorrieri, editors, Foundations of Security Analysis and Design, Tutorial Lectures,
volume 5705 of Lecture Notes in Computer Science, pages 1–50. Springer, 2007.

21 Jean-Pierre Jouannaud and Hélène Kirchner. Completion of a set of rules modulo a set of
equations. SIAM J. Comput., 15(4):1155–1194, 1986.

22 Deepak Kapur, Paliath Narendran, and Lida Wang. An E-unification algorithm for analyzing
protocols that use modular exponentiation. In Robert Nieuwenhuis, editor, Rewriting Tech-
niques and Applications, 14th International Conference, RTA 2003, Valencia, Spain, June
9-11, 2003, Proceedings, volume 2706 of Lecture Notes in Computer Science, pages 165–179.
Springer, 2003.

23 Claude Kirchner and Francis Klay. Syntactic theories and unification. In Proceedings of the
Fifth Annual Symposium on Logic in Computer Science (LICS ’90), Philadelphia, Pennsylvania,
USA, June 4-7, 1990, pages 270–277. IEEE Computer Society, 1990.

24 Catherine Meadows and Paliath Narendran. A unification algorithm for the group Diffie-
Hellman protocol. In Informal Proceedings of the Workshop on Issues in the Theory of Security
(WITS), 2002.

25 Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. The TAMARIN prover for
the symbolic analysis of security protocols. In Natasha Sharygina and Helmut Veith, editors,
Computer Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg,
Russia, July 13-19, 2013. Proceedings, volume 8044 of Lecture Notes in Computer Science,
pages 696–701. Springer, 2013.

26 Pierre-Etienne Moreau, Christophe Ringeissen, and Marian Vittek. A pattern matching
compiler for multiple target languages. In Görel Hedin, editor, Compiler Construction, 12th
International Conference, CC 2003, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings, volume
2622 of Lecture Notes in Computer Science, pages 61–76. Springer, 2003.

27 Paliath Narendran. Solving linear equations over polynomial semirings. In Proceedings, 11th
Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA,
July 27-30, 1996, pages 466–472. IEEE Computer Society, 1996.

28 Tobias Nipkow. Proof transformations for equational theories. In Proceedings of the Fifth
Annual Symposium on Logic in Computer Science (LICS ’90), Philadelphia, Pennsylvania,
USA, June 4-7, 1990, pages 278–288. IEEE Computer Society, 1990.

29 Tobias Nipkow. Combining matching algorithms: The regular case. J. Symb. Comput.,
12(6):633–654, 1991.

30 Christophe Ringeissen. Unification in a combination of equational theories with shared
constants and its application to primal algebras. In Andrei Voronkov, editor, Logic Programming
and Automated Reasoning, International Conference LPAR’92, St. Petersburg, Russia, July
15-20, 1992, Proceedings, volume 624 of Lecture Notes in Computer Science, pages 261–272.
Springer, 1992.

31 Christophe Ringeissen. Combining decision algorithms for matching in the union of disjoint
equational theories. Inf. Comput., 126(2):144–160, 1996.

32 Christophe Ringeissen. Matching in a class of combined non-disjoint theories. In Franz
Baader, editor, Automated Deduction - CADE-19, 19th International Conference on Automated
Deduction Miami Beach, FL, USA, July 28 - August 2, 2003, Proceedings, volume 2741 of
Lecture Notes in Computer Science, pages 212–227. Springer, 2003.

33 Christophe Ringeissen. Building and combining matching algorithms. In Carsten Lutz, Uli
Sattler, Cesare Tinelli, Anni-Yasmin Turhan, and Frank Wolter, editors, Description Logic,
Theory Combination, and All That - Essays Dedicated to Franz Baader on the Occasion of His

S. Erbatur, A. M. Marshall, and C. Ringeissen 6:19

60th Birthday, volume 11560 of Lecture Notes in Computer Science, pages 523–541. Springer,
2019.

34 Manfred Schmidt-Schauß. Unification in a combination of arbitrary disjoint equational theories.
J. Symb. Comput., 8(1/2):51–99, 1989.

35 Cesare Tinelli and Christophe Ringeissen. Unions of non-disjoint theories and combinations of
satisfiability procedures. Theor. Comput. Sci., 290(1):291–353, 2003.

A Technical Appendix

Let us first introduce an ordering on T (Σ, C) that will be useful in our proofs. This ordering
reuses the classical LPO reduction ordering [2] which is defined with respect to a precedence.
Actually, any total ordering on T (Σ, C) would work provided that it is stable by >-compatible
renaming. Assume an arbitrary total ordering >Σ∪C on Σ ∪ C such that the restriction of
>Σ∪C to C is >, and all the symbols in Σ are greater than all the symbols in C w.r.t >Σ∪C .
For any s, t ∈ T (Σ, C), we write s >LP O t if s is greater than t w.r.t the LPO ordering whose
precedence is given by the restriction of >Σ∪C to Σ ∪ Cst(s) ∪ Cst(t).

In a straightforward way, any F -canonizer stable by renaming corresponds to an idem-
potent mapping from T (Σ, C) to T (Σ, C), also denoted by w, such that for any s, t ∈ T (Σ, C),
s =F t iff w(s) = w(t); for any t ∈ T (Σ, C), Cst(w(t)) ⊆ Cst(t) and for any >-compatible
renaming ξ of Cst(t) ∪ {c0} with c0ξ = c0, w(tξ) = w(t)ξ.

▶ Definition 45. Let F be an equational Σ-theory, and w an F -canonizer stable by renaming.
Given any terms t, t′ ∈ T (Σ, C), we define t >w t′ if w(t) >LP O w(t′).

▶ Lemma 46. The ordering >w given in Definition 45 satisfies the following properties:
>w is F -compatible.
For any t, t′ ∈ T (Σ, C), we have that either t =F t′ or t >w t′ or t′ >w t.
For any t, t′ ∈ T (Σ, C) and any >-compatible renaming ξ of Cst(t) ∪ Cst(t′) ∪ {c0} with
c0ξ = c0, we have tξ >w t′ξ iff t >w t′.

Proof. Consider any u, t, t′, u′ ∈ T (Σ, C).
u =F t >w t′ =F u′ implies w(u) = w(t) >LP O w(t′) = w(u′), and so u >w u′.
Since >LP O is total, we have t >w t′ or t′ >w t for any t, t′ such that t ̸=F t′.
For any >-compatible renaming ξ of Cst(t) ∪ Cst(t′) ∪ {c0} with c0ξ = c0, we have
tξ >w t′ξ iff w(tξ) >LP O w(t′ξ) iff w(t)ξ >LP O w(t′)ξ. Due to the chosen precedence for
the LPO ordering, we have w(t)ξ >LP O w(t′)ξ iff w(t) >LP O w(t′). Thus, tξ >w t′ξ iff
t >w t′. ◀

A.1 Theorems
In the next two proofs, we use an additional notion of constant abstraction mapping:

▶ Definition 47. Assume F is an equational Σ-theory, Cst is a finite subset of C, AT

is a finite subset of T (Σ, C)\C such that (
⋃

u∈AT Cst(u)) ⊆ Cst, NC is a finite subset of
C\(Cst ∪ {c0}), and ≫ is an F -compatible ordering which is total on AT . A mapping
Π : AT → NC is said to be a (≫, =F)-ordered constant abstraction mapping with a range
out of Cst if for any u, v ∈ AT , Π(u) > Π(v) iff u≫ v and Π(u) = Π(v) iff u =F v. Under
these assumptions, Π−1 is any arbitrary morphism from NC to AT such that for any u ∈ AT ,
(Π(u))Π−1 =F u. For any term t ∈ T (Σ, C)\C such that Cst(t) ⊆ Cst, tΠ denotes the term
obtained from t by replacing any subterm u of t occurring in AT by Π(u).

For any Σi\Σ0-rooted term t, the set of Σi-alien subterms of t is denoted by Alien(t).

FSCD 2022

6:20 Combined Hierarchical Matching

Proof of Theorem 8. Given two E-constructed normalizing mappings NF1 and NF2 for
F1 ∪ E and F2 ∪ E respectively, we show how to combine them in order to construct an
E-constructed normalizing mappings NF1,2 for F1 ∪ F2 ∪ E in a way NF1,2 coincides with
NF i on T (Σi, C) for any i = 1, 2.

Consider w is any E-canonizer stable by renaming. Since w does not need to be comput-
able, such a mapping always exists. Then, >w is the ordering given in Definition 45.

NF1,2 is inductively defined as follows:
For any c ∈ C, NF1,2(c) = c.
Let t be any Σ0-rooted term of the form f(t1, . . . , tm). Then, we define NF1,2(t) =
f(NF1,2(t1), . . . , NF1,2(tm)).
Let t be any Σi\Σ0-rooted term. If Alien(t) = ∅, then NF1,2(t) = NF i(t). Otherwise,
let t′ be the term obtained from t by replacing each u ∈ Alien(t) by NF1,2(u). If
Alien(t′) = ∅, then NF1,2(t) = NF i(t′). Otherwise, let Π : Alien(t′) → NC be a
(>w, =E)-ordered constant abstraction mapping with a range out of Cst(t′). We define
NF1,2(t) = (NF i(t′Π))Π−1.

One can check that NF1,2 inherits all the properties stating that NF1 and NF2 are E-
constructed normalizing mappings, including the property that NF is stable by >-compatible
renaming (third item of Definition 2) thanks to Lemma 46. ◀

Proof of Theorem 13. Let NF be the E-constructed normalizing mapping obtained from
NF1 and NF2 by applying Theorem 8. Just like any layer-reduced term mapping, it is
sufficient to define ⇓1,2 on (Σ1 ∪ Σ2)\Σ0-rooted terms. Then, ⇓1,2 uniquely extends to
Σ0 ∪ C-rooted terms. The definition of ⇓1,2 bears similarities with the construction of NF
detailed in the proof of Theorem 8.

For any Σi\Σ0-rooted term t, t⇓1,2 is inductively defined as follows:
If Alien(t) = ∅, then t⇓1,2 = t⇓i. Otherwise, let t′ the term obtained from t by

replacing each u ∈ Alien(t) by u⇓1,2. If Alien(t′) = ∅, then t⇓1,2 = t′⇓i. Otherwise, let
Π : Alien(t′)→ NC be a (>⇓1,2 , =F1∪F2∪E)-ordered constant abstraction mapping with a
range out of Cst(t′). We define t⇓1,2 = ((t′Π)⇓i)Π−1 if (t′Π)⇓i ̸= t′Π, otherwise t⇓1,2 = t′.

The >⇓1,2 ordering used above is inductively defined as follows:
Let s, t be any Σi\Σ0-rooted terms such that s⇓1,2 = s and t⇓1,2 = t. If Alien(s) =
Alien(t) = ∅, then s >⇓1,2 t iff s >⇓i

t. Otherwise, let Π : Alien(s) ∪ Alien(t) →
NC be a (>⇓1,2 , =F1∪F2∪E)-ordered constant abstraction mapping with a range out of
Cst(s) ∪ Cst(t). We define s >⇓1,2 t iff sΠ >⇓i

tΠ.
Let s be any Σ2\Σ0-rooted term such that s⇓1,2 = s and t any Σ2\Σ0-rooted term such
that t⇓1,2 = t, we define s >⇓1,2 t (this choice is arbitrary).

According to our assumptions on the stability by renaming of both ⇓i and >⇓i
, it

is important to note that ⇓1,2 and >⇓1,2 are well-defined since we get the same results
independently from the chosen Π. Then, we can prove the following statements:

For any Σi\Σ0-rooted term t ∈ T (Σ1 ∪ Σ2, C) such that t⇓1,2 = t, t is a term with true
i-aliens, t↓NF is Σi\Σ0-rooted, and a renaming of tπi can be effectively built.
For any t ∈ T (Σ1 ∪ Σ2, C), t⇓1,2 is a computable layer-reduced form of t associated to
NF modulo F1 ∪ F2 ∪ E.

These statements are proved by induction using the height of layers of a term t ∈ T (Σ1∪Σ2, C),
denoted by hl(t) and defined as follows:

If t is a Σ0-rooted term f(t1, . . . , tm), then hl(t) = maxk=1,...,m hl(tk).
If t is Σi\Σ0-rooted, then (if Alien(t) ̸= ∅, then hl(t) = 1 + maxu∈Alien(t) hl(u), else
hl(t) = 0).
If t ∈ C, then hl(t) = 0.

S. Erbatur, A. M. Marshall, and C. Ringeissen 6:21

Eventually, the decidability of F1 ∪ F2 ∪E-equality is a direct consequence of Lemma 48 (cf.
Section A.2). ◀

Proof of Theorem 27. First of all, note that an E-convergent TRS (R, E) over the signature
Σ is innermost-resolvent iff for any s ∈ T (Σ, V), any innermost derivation s →∗

R,E s↓R,E

includes at most one rewrite step applied at the root position. This holds because any
innermost derivation s→∗

R,E t can be extended to an innermost derivation s→∗
R,E t→∗

R,E

s↓R,E .
Let us now check that (R1 ∪ R2, E) is E-convergent. First, →R1∪R2 is assumed to be

E-terminating. Second, (R1 ∪ R2, E) is Church-Rosser modulo E since both (R1, E) and
(R2, E) are E-constructed. Consequently, (R1 ∪R2, E) is E-convergent.

Consider an innermost derivation s →∗
R1∪R2,E s↓R1∪R2,E , where s is assumed to be

Σi\Σ0-rooted for any i = 1, 2. This innermost derivation can be divided in two parts.
First, we normalize all the alien subterms of s, leading to a term t whose aliens are now
normalized. Second, we normalize t until s↓R1∪R2,E is reached. Thus, we have an innermost
derivation s →∗

R1∪R2,E t →∗
R1∪R2,E s↓R1∪R2,E . All the rules in the innermost derivation

t →∗
R1∪R2,E s↓R1∪R2,E are necessarily rules from Ri because t is a Σi-rooted term whose

alien subterms are normalized, and so the alien subterms remain in the substitution part
of any rule application. Consequently, t →∗

Ri,E s↓R1∪R2,E . Since (Ri, E) is innermost-
resolvent, t→∗

Ri,E s↓R1∪R2,E includes at most one rewrite step applied at the root position.
Moreover, all the rules in s→∗

R1∪R2,E t are applied below the root position. Consequently,
s→∗

R1∪R2,E t→∗
Ri,E s↓R1∪R2,E includes at most one rewrite step applied at the root position,

and so (R1 ∪R2, E) is innermost-resolvent. ◀

A.2 Lemmas
Proof of Lemma 6. Let →RNF /E be =E ◦ →RNF ◦ =E . By definition of RNF , →RNF /E is
an optimally reducing rewrite relation where the length of any derivation starting from any
t ∈ T (Σ, C) is bounded by the size of t, and so →RNF /E is terminating. For any t ∈ T (Σ, C),
t→∗

RNF /E NF(t). Let us check that =F ∪E coincides with ←→∗
RNF ∪E . For any s, t ∈ T (Σ, C),

s =F ∪E t implies NF(s) =E NF(t) where s →∗
RNF /E NF(s) and t →∗

RNF /E NF(t). Thus,
=F ∪E ⊆ ←→∗

RNF ∪E . Conversely, ←→∗
RNF ∪E ⊆ =F ∪E since for any l→ r ∈ RNF , l =F ∪E r.

For any peak s←RNF ,E t→RNF ,E s′, we have s→∗
RNF /E NF(s) =E NF(s′)←∗

RNF /E s′. Since
Σ0 is a set of constructors for RNF , →RNF ,E is E-coherent, and the proof s→∗

RNF /E ◦ =E

◦ ←∗
RNF /E s′ can be turned into s →∗

RNF ,E ◦ =E ◦ ←∗
RNF ,E s′. Thus, →RNF ,E is locally

E-confluent. Thanks to [21], →RNF ,E is E-convergent, and more precisely E-constructed. ◀

Proof of Lemma 10. If t is Σ3−i\Σ0-rooted, then tπi = π(t↓NF) = π((t↓NF)↓NF) =
(t↓NF)πi .

For any Σi-rooted t, let t′ be the term obtained from t by replacing each Σi-alien subterm
u of t by u↓NF . To prove that (t′)πi =Fi∪E (t↓NF)πi follows from the construction of
NF1,2, consider R = RNF1,2 and Ri = {l → r | l(ϵ) ∈ Σi\Σ0, l → r ∈ R} for i = 1, 2. We
have the following property: if s is a Σi-rooted term such that its Σi-alien subterms are
NF1,2-normalized, then s →R,E s′ implies s →Ri,E s′, s′ is either NF1,2-normalized or a
Σi-rooted term such that its Σi-alien subterms are NF1,2-normalized, and in both cases
sπi =Fi∪E (s′)πi , by definition of Ri. Then, by induction on the length of the derivation
t′ →∗

R,E t↓NF we prove that (t′)πi =Fi∪E (t↓NF)πi . Finally, we get tπi =Fi∪E (t↓NF)πi since
tπi = (t′)πi . ◀

FSCD 2022

6:22 Combined Hierarchical Matching

Proof of Lemma 14. Let w be a computable F ∪ E-canonizer stable by renaming, and >w

the corresponding ordering introduced in Definition 45. Given any terms t, t′ ∈ T⇓, we define
t >⇓ t′ if t >w t′. Thus, >⇓ is computable. By Lemma 46, >⇓ fulfills all the properties of a
⇓-ordering as given in Definition 12. ◀

Proof of Lemma 29. If t is Σ\Σ0-rooted, then tπ0 = π(t↓NF) = π((t↓NF)↓NF) = (t↓NF)π0 .
Assume now t is Σ0-rooted. Let t′ be the term obtained from t by replacing each Σ0-alien
subterm u of t by u↓NF . According to Definition 2, we have (t′)π0 =E (t↓NF)π0 . Since
tπ0 = (t′)π0 , we get tπ0 =E (t↓NF)π0 . ◀

Proof of Lemma 30.
Consider s and t are Σ0-rooted. Then, s↓NF and t↓NF are Σ0-rooted, and we have
the following equivalences. First, s =F ∪E t iff s↓NF =E t↓NF . Second, s↓NF =E t↓NF
iff (s↓NF)π0 =E (t↓NF)π0 by Definition 2. Then, (s↓NF)π0 =E (t↓NF)π0 implies that
sπ0 =F ∪E tπ0 by Lemma 29. Thus, sπ0 =F ∪E tπ0 if s =F ∪E t. Conversely, by definition
of the 0-abstraction, s =F ∪E t if sπ0 =F ∪E tπ0 .
Consider s, t ∈ C. Then, s =F ∪E t iff sπ0 = s =E t = tπ0 .
Consider s is Σ0-rooted and t is Σ\Σ0-rooted. Assume s =F ∪E t. Then, s↓NF =E t↓NF
where s↓NF is Σ0-rooted and t↓NF is Σ\Σ0-rooted. This is impossible since E is regular
collapse-free and the symbols in Σ\Σ0 do not occur in E.
Consider s ∈ C and t is Σ-rooted. Assume s =F ∪E t. Then, s↓NF =E t↓NF where
s↓NF ∈ C and t↓NF is Σ-rooted. This is impossible since E is regular collapse-free and
any constant in C can only be E-equal to itself. ◀

The following lemma is similar to Lemma 30. It is used in the proof of Theorem 13.

▶ Lemma 48. The layer-reduced term mapping ⇓1,2 associated to NF1,2 satisfies the following
properties for any ((Σ1 ∪Σ2)\Σ0)∪C-rooted terms s and t such that s⇓1,2 = s and t⇓1,2 = t:

if s, t are Σi\Σ0-rooted for some i = 1, 2, then s =F1∪F2∪E t⇔ sπi =Fi∪E tπi ,
if s, t ∈ C, then s =F1∪F2∪E t⇔ s = t,
otherwise, s ̸=F1∪F2∪E t.

Proof.
Consider s and t are Σi\Σ0-rooted for some i = 1, 2. Then, s↓NF and t↓NF are Σi\Σ0-
rooted, and we have the following equivalences. First, s =F1∪F2∪E t iff s↓NF =E t↓NF .
Second, s↓NF =E t↓NF iff (s↓NF)πi =E (t↓NF)πi since s↓NF and t↓NF are Σi\Σ0-rooted,
and the symbols in Σi\Σ0 do not occur in E. Then, (s↓NF)πi =E (t↓NF)πi implies
that sπi =Fi∪E tπi by Lemma 10. Thus, sπi =Fi∪E tπi if s =F1∪F2∪E t. Conversely, by
definition of the i-abstraction, s =F1∪F2∪E t if sπi =Fi∪E tπi .
Consider s, t ∈ C. Then, s =F1∪F2∪E t iff s =E t iff s = t.
Consider s is Σ1\Σ0-rooted and t is Σ2\Σ0-rooted. Assume s =F1∪F2∪E t. Then,
s↓NF =E t↓NF where s↓NF is Σ1\Σ0-rooted and t↓NF is Σ2\Σ0-rooted. This is impossible
since E is regular collapse-free and the symbols in (Σ1 ∪ Σ2)\Σ0 do not occur in E.
Consider s ∈ C and t is Σ1 ∪ Σ2-rooted. Assume s =F1∪F2∪E t. Then, s↓NF =E t↓NF
where s↓NF ∈ C and t↓NF is Σ1 ∪ Σ2-rooted. This is impossible since E is regular
collapse-free and any constant in C can only be E-equal to itself. ◀

	1 Introduction
	2 Preliminaries
	3 E-Constructed Theories and their Combinations
	4 Finite Syntactic Theories and their Combinations
	5 Hierarchical Matching
	6 Hierarchical Matching in Combined E-Constructed Theories
	7 Hierarchical Decision Procedures for the Word-Problem
	8 Related Work and Concluding Remarks
	A Technical Appendix
	A.1 Theorems
	A.2 Lemmas

