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Abstract
A possibly unexpected by-product of the mathematical study of the lengths of proofs, as is done
in the field of propositional proof complexity, is, I claim, that it may lead to new polynomial-time
algorithms. To explain this, I will first recall the origins of proof complexity as a field, and then
explain why some of the recent progress in it could lead to some new algorithms.
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As is well known, the formulation of the P vs. NP problem has its origins in mathematical
logic. Cook’s original interest on the satisfiability problem for logic formulas came from its
applications to automated theorem proving; this is clearly reflected in the title of his 1971
paper “On the Complexity of Theorem Proving Procedures” [4]. By viewing the satisfiability
of a formula and the tautologyhood of its negation as dual concepts, it can be argued that
Cook established the grounds of a general theory of duality for any problem in NP. In this
general framework, satisfying assignments and formal proofs would play the roles of dual
certificates, with the obvious caveat that proofs typically appear to be exponentially longer
than their duals. The question whether this empirical observation about the lengths of proofs
is a true fact called for a theory of proof complexity on which to build what later came to be
known as Cook’s Program [5, 6].

The development of Cook’s Program since its formulation in the early 1970’s led to many
insights on the combinatorial intricacies of formal proofs. The strongest results in the area
typically take the form of exponential lower bounds on the length of proofs for proof systems
of practical use, including Resolution [9], Cutting Planes [13], and a few others [1, 12, 11].
To achieve this, a deep theory that explains what causes a propositional tautology to not
have short proofs was developped. As part of this theory we find certain tight semantic
characterizations of resource-bounded proofs [14, 2, 10] much in the same way that the
completeness theorem of mathematical logic equalizes truth with proof.

In this talk I want to argue that the semantic study of proof complexity for these proof
systems could also lead to new insights of algorithmic nature. Perhaps paradoxically, the
starting point for this is the recent discovery that the problem of automating their proof-
search is NP-hard [3, 8, 7]. In a nutshell, what these NP-hardness reductions show is that
every instance of any problem in NP can be efficiently encoded into a propositional formula
that is either a tautology that has a short proof, or is indistinguishable in a formal sense from
a falsifiable formula. The existence of a short proof clearly comes with a short certificate.
The main point is, however, that the indistinguishability from a falsifiable formula can often,
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but not always, be also certified efficiently, no less than through the tools of the theory that
studies which formulas fail to have short proofs.

As applications, I will discuss how this phenomenon could be used, potentially, to develop
new polynomial-time algorithms for a couple of well-known combinatorial problems not
obviously related to propositional logic.
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