
Space Characterizations of Complexity Measures
and Size-Space Trade-Offs in Propositional Proof
Systems
Theodoros Papamakarios #

Department of Computer Science, University of Chicago, IL, USA

Alexander Razborov #

University of Chicago, IL, USA
Steklov Mathematical Institute, Moscow, Russia

Abstract
We identify two new big clusters of proof complexity measures equivalent up to polynomial and
log n factors. The first cluster contains, among others, the logarithm of tree-like resolution size,
regularized (that is, multiplied by the logarithm of proof length) clause and monomial space, and
clause space, both ordinary and regularized, in regular and tree-like resolution. As a consequence,
separating clause or monomial space from the (logarithm of) tree-like resolution size is the same
as showing a strong trade-off between clause or monomial space and proof length, and is the same
as showing a super-critical trade-off between clause space and depth. The second cluster contains
width, Σ2 space (a generalization of clause space to depth 2 Frege systems), both ordinary and
regularized, as well as the logarithm of tree-like size in the system R(log). As an application of
some of these simulations, we improve a known size-space trade-off for polynomial calculus with
resolution. In terms of lower bounds, we show a quadratic lower bound on tree-like resolution size for
formulas refutable in clause space 4. We introduce on our way yet another proof complexity measure
intermediate between depth and the logarithm of tree-like size that might be of independent interest.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases Proof Complexity, Resolution, Size-Space Trade-offs

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.100

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://eccc.weizmann.ac.il/report/2021/074/ [33]

1 Introduction

With the rise of computer science, questions like “can we solve a problem?” got a quantitative
counterpart: “how hard is it to solve a problem?”. Proof complexity deals with the quantitative
version of “can we prove a theorem?”, namely, the question “how hard is it to prove a theorem?”.
The systematic study of the latter question for propositional proof systems started with
Cook and Reckhow [13], where its fundamental role in complexity theory was identified.

The most natural, arguably also the most important, measure of the complexity of a
proof is its size, and indeed, much of the research in propositional proof complexity has
concentrated on proof size lower bounds. But given in particular their role in proof systems
of practical significance, several other natural complexity measures have been considered, and
that has led to a considerable line of study about relations between them (simulations), lack
of relations thereof (separations) and the inherent impossibility of optimizing two different
measures at once (trade-offs). To aid further discussion, let us review those measures and
previous results that are most pertinent to this work.

EA
T
C
S

© Theodoros Papamakarios and Alexander Razborov;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 100; pp. 100:1–100:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:papamakarios@uchicago.edu
mailto:razborov@math.uchicago.edu
https://doi.org/10.4230/LIPIcs.ICALP.2022.100
https://eccc.weizmann.ac.il/report/2021/074/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

100:2 Space Characterizations of Complexity Measures and Size-Space Trade-Offs

A measure that directly emerged from the study of proof size lower bounds is width;
the width of a resolution proof is the number of literals in the largest clause occurring in
the proof. Its importance was accentuated by Ben-Sasson and Wigderson [8], who, building
on the earlier works of Clegg et al. [12] and Impagliazzo et al. [23] showing an analogous
result for polynomial calculus, showed that a short resolution proof can be transformed into
a narrow one. Namely, we have

W (F ⊢ ⊥) ≤ log ST (F ⊢ ⊥) + W (F), (1)

W (F ⊢ ⊥) ≤ O
(√

n log SR(F ⊢ ⊥)
)

+ W (F). (2)

Here W (F ⊢ ⊥), ST (F ⊢ ⊥) and SR(F ⊢ ⊥) stand for the minimum width, tree-like size and
DAG-like size respectively of refuting an unsatisfiable CNF F in resolution; similar notation
is employed throughout the paper. W (F) is the maximum width of a clause in F .

Space complexity for propositional proofs was introduced in [16, 1]. Esteban and Torán [16]
showed that a short tree-like resolution proof can be transformed into a resolution proof of
small clause space:

CSpace(F ⊢ ⊥) ≤ log ST (F ⊢ ⊥). (3)

Atserias and Dalmau [2] demonstrated the first instance of the relationship between space
and width, showing that a resolution proof having small clause space can be transformed
into a narrow one:

W (F ⊢ ⊥) ≤ CSpace(F ⊢ ⊥) + W (F). (4)

Constructive versions of their result were given by Filmus et al. [18] and Razborov (unpub-
lished), see also Krajíček [26, Theorem 5.5.5]. It is worth noting that (3) and (4) taken
together provide a refinement of (1) and that, viewed this way, we relate two sequential
measures (tree-like size and width) with a space measure as an intermediate. We will see
more examples of such an interplay in this paper.

More recently, Bonacina [9] showed that for total space in resolution (measured as the
sum of widths of clauses in a configuration) we have

W (F ⊢ ⊥) ≤ O
(√

TSpace(F ⊢ ⊥)
)

+ W (F), (5)

and Galesi et al. [19] showed a weakened version of (4), but for the analogue of clause space
in stronger proof systems operating with polynomials (or in fact even arbitrary Boolean
functions of monomials):

W (F ⊢ ⊥) ≤ O
(

(MSpace(F ⊢ ⊥))2
)

+ W (F). (6)

Regularized1 versions µ∗ of space complexity measures are defined by multiplying the
measure in question µ by the logarithm of the proof length; these were considered e.g. by
Ben-Sasson [4] and Razborov [37]. The latter paper also contains a suggestion that the
“right” level of precision when comparing measures of this kind are up to polynomial and
log n factors;2 we will henceforth call two measures equivalent if they simulate each other

1 The paper [37] used the word “amortized” but Sam Buss pointed out to us that it is somewhat misleading
in this context.

2 Note that the size/length measures appear in this set-up under a logarithm. Hence this corresponds to
quasi-polynomial simulations in the Cook-Reckhow framework.

T. Papamakarios and A. Razborov 100:3

in this sense. The paper [37] identified a big cluster of ordinary and regularized space
complexity measures, including total and variable space, that are all equivalent to proof
depth in resolution. One notable measure that defied this classification was (regularized)
clause space.3

Our contributions
In this paper we identify two other big clusters of equivalent complexity measures not covered
by the results in [37]. The cumulative picture combining both previously known and new
results is summarized in Figure 1. There, arrows are to be interpreted as inequalities, and ≈

log SR

W ≈ log ST,R(log) ≈ Σ2Space ≈ Σ2Space∗

MSpace

CSpace

log ST ≈ TCSpace ≈ RCSpace
≈ CSpace∗ ≈ MSpace∗

DP

D ≈ TSpace ≈ TSpace∗ ≈ VSpace∗

VSpace

Figure 1 Simulations.

as equality, both up to polynomial and log n factors. A solid arrow from µ1 to µ2 indicates
that a separation between µ1 and µ2 is known, that is, it additionally indicates that there
exists a sequence {Fn} of unsatisfiable CNFs such that µ2(Fn ⊢ ⊥) ≥ (µ1(Fn ⊢ ⊥)+log n)ω(1).
To improve readability, we have omitted from Figure 1 the argument F ⊢ ⊥.

Let us briefly explain this picture. The first new cluster is centered around the logarithm
of tree-like resolution size. Given the proof method of the simulation (3) in [16], it can be
obviously strengthened in two directions: by replacing the left-hand side with clause space in
tree-like resolution or by replacing it with regularized clause space. Tree-like clause space in
resolution was shown to be equivalent to the logarithm of tree-like size in the same paper [16,
Corollary 5.1]; in other words, after this replacement in the left-hand side, the bound (3)
becomes tight, within the precision we are tolerating.

3 A technical remark: [37, Theorem 3.2] does not apply to clause space as it is not bounded from below
by the number of variables.

ICALP 2022

100:4 Space Characterizations of Complexity Measures and Size-Space Trade-Offs

We show that the second variant, that is regularized clause space, is also equivalent to
the logarithm of tree-like resolution size, and this result extends to also include regularized
monomial space to the same cluster. Given that [16, Corollary 5.1] also holds for (ordinary)
clause space in regular resolution [16, Corollary 4.2], this means that all these space measures
turn out to be equivalent to each other and to the log of tree-like resolution size. We also
remark (given the results above, this readily follows from definitions) that regularized versions
of the clause space in tree-like or regular resolution are also in this cluster.

The question of whether (ordinary) clause space also belongs here is what we consider to
be a major, and most likely very difficult, open problem. But since it has turned out to be
closely related to several other threads in proof complexity, we prefer to keep the momentum
and defer further discussion to the concluding Section 5.

Our second cluster is presided by resolution width. First, we introduce a natural analogue
of clause space in DNF resolution that we call Σ2 space. This can be seen as an extension
of clause space to depth 2 Frege systems; indeed, the restriction of Σ2 space to depth 1 Frege
is precisely clause space, and its restriction to k-DNF resolution, for constant k, coincides,
up to a constant factor, with the concept of space that has been studied before for such
systems (see e.g. [15, 7]). In our model, configurations are arbitrary sets of DNFs, and
we charge k for every individual k-DNF in the memory. Clearly, Σ2Space ≤ CSpace and
Σ2Space∗ ≤ CSpace∗. Then we strengthen the Atserias-Dalmau bound (4) by replacing
CSpace with Σ2Space and continue to show that both ordinary and regularized versions of
Σ2 space are actually equivalent to resolution width.

Thus, remarkably, the difficult open question on whether we have a strong trade-off
between space and length for clause space gets a relatively easy negative solution for a
stronger proof system. We have also been able to locate in this cluster another interesting
size measure: the size of tree-like proofs in the system R(log), which gives a somewhat
unexpected generalization of (1). We have not been able to retrieve the equivalence of
width and tree-like size in R(log) from the literature in exactly this form but it is implicit in
Lauria [27] and, with a bit of effort, can be traced back as far as Krajíček [24].

It is worth noting that some of the simulations in this cluster work only in the syntactical
setting. This comes in contrast with what happens with the other two clusters: all simulations
involving clause, monomial, variable and total space, also work in a purely semantic setting.
For example, in case of monomial space we can allow arbitrary Boolean functions of monomials
as memory configurations and allow any number of sound inferences to be performed at once
in each step.

We use (some of) these simulations to prove:
1. There are unsatisfiable CNFs F of size O(n) with S(F ⊢ ⊥) ≤ O(n), W (F ⊢ ⊥) ≤ O(1)

and MSpace∗(F ⊢ ⊥) ≥ Ω(n/ log n) (Theorem 4.1).
This is an improvement on the previously known bounds MSpace∗(F ⊢ ⊥) ≥ Ω(n2/11) [3],
MSpace∗(F ⊢ ⊥) ≥ Ω(n1/4) [22] and MSpace∗(F ⊢ ⊥) ≥ n1/2/(log n)O(1) [21]. Unlike
these previous results, our proof is remarkably simple.

2. There are unsatisfiable CNFs F of size O(n) with CSpace(F ⊢ ⊥) = 4 and ST (F ⊢ ⊥) ≥
Ω(n2/ log n) (Theorem 4.7).
This is a first, admittedly modest, step toward separating clause space and, say, tree-like
size; as we already said, we will discuss this question in more details in Section 5. It is for
this proof that we need the last unexplained entry DP on Figure 1: it stands for positive
depth, and it is a one-sided version of depth. We also remark that the space bound in
this result is optimal. More precisely, we make a relatively simple observation (Theorem
4.2) that CSpace(F ⊢ ⊥) ≤ 3 if and only if F is “essentially Horn” in which case it will
possess a linear size tree-like resolution refutation.

T. Papamakarios and A. Razborov 100:5

Finally, let us briefly summarize what is known (to the best of our knowledge) in terms
of separating the measures in Figure 1. Let us start with “true” separations, i.e. separations
that work modulo polynomial overheads and log n factors. From now on, for proof complexity
measures µ1, µ2 we will use the notation µ1 ⪯ µ2 to stand for µ1(F ⊢ ⊥) ≤ (µ2(F ⊢
⊥) log n)O(1) for any CNF F in n variables; µ1 ≈ µ2 is the same as µ1 ⪯ µ2 ∧ µ2 ⪯ µ1.
Clearly ⪯ is transitive, and this implies that ≈ is an equivalence relation and ⪯ imposes a
partial order on its equivalence classes.

Bonet and Galesi [10] proved that W ̸⪯ log SR. More precisely, there are constant width
formulas F of size O(n3) such that SR(F ⊢ ⊥) ≤ O(n3) and W (F ⊢ ⊥) ≥ Ω(n). Ben-
Sasson [4] proved that VSpace ̸⪯ CSpace, and after negating the variables in his formulas,
this works two more levels up on Figure 1. Namely, there are constant-width formulas F

of size O(n) such that VSpace(F ⊢ ⊥) ≥ Ω(n/ log n) while DP (F ⊢ ⊥) ≤ O(1). This also
provides a separation between DP and D that, though, is much easier to prove directly [38,
Theorem 4.6]. Without negating the variables, it is easy to see that Ben-Sasson’s proof
actually gives DP (F ⊢ ⊥) ≥ Ω(n/ log n), thus separating DP from log ST and hence from
the whole middle cluster. Again, it is also easy to see this directly. Ben-Sasson, Håstad and
Nordström [31, 6] separated clause space from width; while it is believed that their formulas
should also have large monomial space complexity, the questions of separating clause space
from monomial space, as well as monomial space from width are widely open.

Separating space complexity measures from their own regularized versions appear to be a
very daunting task in general. As follows from Figure 1, for variable space this is equivalent
to separating it from depth [38]. A quadratic separation between VSpace and VSpace∗ was
proved in [37, Section 6], with a disappointingly elaborate proof. Nothing is known in terms
of separating CSpace from (the cluster of) CSpace∗: Theorem 4.7 makes a progress in that
direction, but it is admittedly rather modest. Nothing seems to be known for CSpace vs.
MSpace, and our structural picture provides a good heuristic explanation of the difficulty
of this question: it would also separate MSpace from MSpace∗. Finally, in [32] a quadratic
separation between width and monomial space has been established using methods very
different from those in [6].

The paper is organized as follows. After giving the necessary definitions in Section 2, in
Section 3 we refine (many simulations do not actually involve a polynomial overhead or extra
log n factors) and prove the relations of Figure 1. In Section 4 we prove items 1 and 2 above.
The paper is concluded with a few remarks and open problems in Section 5.

2 Preliminaries

A literal is a propositional variable x or its negation x. We let x
def= x. A clause is a disjunction

(possibly empty) of literals over distinct variables, and a term is a conjunction (possibly
empty) of such literals. For a clause C = ℓ1 ∨ · · · ∨ ℓw, we define the term C

def= ℓ1 ∧ · · · ∧ ℓw;
similarly for a term t = ℓ1 ∧ · · · ∧ ℓw, t

def= ℓ1 ∨ · · · ∨ ℓw. The width of a clause or a term is
the number of literals it contains. A CNF formula is a conjunction of clauses, and a DNF
formula is a disjunction of terms. The width, W (F), of a CNF or DNF formula F is the
width of the largest clause or term it contains. A CNF or DNF formula of width at most w

is called w-CNF or w-DNF respectively. Clauses may be alternatively viewed as 1-DNFs,
but the latter class is slightly larger as tautological 1-DNFs like x ∨ x are allowed.

A partial (truth) assignment (often called restriction) is a mapping from a subset V of
all propositional variables to {0, 1}; it is naturally extended to the negations of the variables
in V by α(x) def= α(x). The result of applying a partial assignment α to a CNF formula F is

ICALP 2022

100:6 Space Characterizations of Complexity Measures and Size-Space Trade-Offs

another CNF formula F |α, obtained by deleting from F all literals ℓ such that α(ℓ) = 0 and
deleting all clauses containing a literal ℓ such that α(ℓ) = 1. Similarly for DNF formulas. F |α
is called the restriction of F to α. For a formula F , we write α |= F if every total extension
of α satisfies F or, in other words, if F |α is semantically equal to 1. For a set of formulas
S, α |= S means α |=

∧
F ∈S F , and for two sets of formulas S and T , we write S |= T if all

total assignments satisfying every formula in S also satisfy every formula in T . For a clause
C, we denote by αC the minimal partial assignment such that αC |= C.

Resolution is a proof system operating with clauses. Its inference rules are:

C

C ∨ D
,

C ∨ x D ∨ x

C ∨ D
. (7)

The leftmost one is called the weakening rule; the rightmost one is called the resolution
rule. We refer to the variable x in an application of the resolution rule as the variable being
resolved. One of the reasons to include the (redundant) weakening rule is that it makes
resolution proofs closed under restricting by a partial assignment.

The width W (π) of a resolution proof π is defined as the maximum width of a clause in
it, and the width W (F ⊢ ⊥) is usually defined as the minimum width W (π) of a resolution
refutation π of F . This definition, however, is ill-suited for those CNFs that themselves have
large width, like the pigeonhole principle. We have found it way more natural and convenient
to work with its slightly modified version used in [20] that we will denote by W (⊢F ⊥). It is
defined as follows.

Instead of just allowing the clauses C of F as axioms, we allow them to participate in
the form of the following more general F -cut rule:

D ∨ ℓ1 . . . D ∨ ℓr

D
, (8)

where ℓ1 ∨ . . . ∨ ℓr is a clause of F . In case some D ∨ ℓj contains contradictory literals, it is
removed from the premises. In particular, when D = C, the list of premises becomes empty
so the clauses of F are still available as axioms.

It is easy to see that W (⊢F ⊥) ≤ W (F ⊢ ⊥) ≤ W (⊢F ⊥)+W (F)−1, hence the difference
between the standard definition and ours becomes immaterial when W (F) is small, and it
does not have any noticeable impact on the size of a refutation.

One immediate advantage of this definition is that if we replace W (F ⊢ ⊥) with W (⊢F ⊥)
in (1), (2), (4), (5) or (6), we need not keep the annoying terms W (F) any more, they just
disappear. Simulations on Figure 1 will work without any restrictions on the width of the
refuted CNF. More advantages of a similar flavor will become clear later, see Theorems 3.4
and 4.2 in particular.

Let us also remark that resolution with the F -cut rule is nothing else but Gentzen’s sequent
calculus with only atomic cuts, restricted to proving sequents of the form C1, . . . , Cm →,
where C1, . . . , Cm are clauses (see [32]).

DNF resolution, or depth 2 Frege, is the straightforward extension of resolution where we
allow, apart from variables in the resolution rule, also formulas of depth 14 to be resolved.
DNF resolution operates with DNF formulas. Its axioms and inference rules are:

x ∨ x
,

G

G ∨ H
,

G ∨ t1 H ∨ t2

G ∨ H ∨ (t1 ∧ t2)
,

G ∨ t H ∨ t

G ∨ H
,

4 For this reason, some authors use the term “depth 1 Frege” for DNF resolution; we prefer to stick to
the convention under which depth refers to lines in a Hilbert-style proof.

T. Papamakarios and A. Razborov 100:7

where G and H are DNF formulas and t, t1, t2 and t1 ∧ t2 are terms. The leftmost rule is the
weakening rule in this context, and the rightmost rule is called the cut rule. The remaining
rule allows us to deal with ∧ connectives, and is called ∧-introduction.

For a non-decreasing function f : N → N, R(f) is the subsystem of DNF resolution where
each DNF in a proof of size s is required to have width at most f(s). R(k) for k a constant
is usually denoted by Res(k) (thus, resolution is Res(1)). DNF resolution and R(f) were
first introduced in [25].

Next, we would like to consider systems for manipulating terms. The syntactic details of
such systems will not matter for our results, but for concreteness, let us present a prominent
system of algebraic flavor originally introduced in [12]. We will actually use an extension,
proposed in [1], called polynomial calculus with resolution and abbreviated as PCR. PCR
works with a fixed field F. Clauses/terms are represented as monomials. The syntactic
objects PCR operates with are polynomials in F[x1, . . . , xn, x1, . . . , xn], represented as linear
combinations over F of monomials, and a proof line P is to be interpreted as asserting that
P = 0. The axioms and inference rules of the system are:

ℓ2 − ℓ
,

ℓ + ℓ − 1
,

P Q

αP + βQ
,

P

ℓP
,

where ℓ ∈ {x1, . . . , xn, x1, . . . , xn}, P, Q ∈ F[x1, . . . , xn, x1, . . . , xn] and α, β ∈ F.
In each of the above systems, non-logical axioms are given as a set of clauses S, viewed

as a CNF formula F (in PCR, a clause C = ℓ1 ∨ · · · ∨ ℓk ∈ S is represented as the monomial
ℓ1 . . . ℓk). A proof of the unsatisfiability of F , or a refutation of F , is a derivation of a syntactic
contradiction, denoted by ⊥, from the clauses of F . In resolution and DNF resolution ⊥ is
the empty clause; in PCR, it is the polynomial 1.

We can view proofs as DAGs, by drawing edges from premises to conclusions in applications
of the inference rules. If a proof DAG is a tree, that is every formula or polynomial in it
is used as a premise at most once, then we say that the proof is tree-like. The size of a
tree-like proof is the number of its leaves, and its depth is the length of its longest root-to-leaf
path. We will also consider a one-sided version of depth, which we call positive depth. (The
analogue of this notion in the context of computational complexity was recently defined in
[29].) The positive depth of a tree-like resolution proof is the maximum number of negative
literals introduced along a root-to-leaf path. We denote tree-like size, depth and positive
depth by ST , D and DP respectively.

To define space complexity measures, we need to consider a different topology, namely
view a proof as a sequence of memory configurations [16, 1]. A memory configuration will be
a set of clauses in resolution, a set of DNF formulas in DNF resolution, or a set of polynomials
in PCR. In a proof from a CNF F then, to go from a memory configuration to the next we
may do one of the following:
Axiom Download: add a clause of the formula F , or a logical axiom of the system we are

working with;
Erasure: delete a clause/DNF formula/polynomial, or
Inference: add the result of applying an inference rule to formulas in the current configuration.
A proof in configurational form is said to be tree-like if, whenever a formula is used as a
premise in an inference rule, it is immediately erased from the memory.

The clause space of a configuration in resolution is the number of clauses it contains, its
variable space the number of distinct variables it contains, and its total space the total number
of literals, counting repetitions, it contains. For DNF resolution, we will be interested in
what we call Σ2 space of a configuration. The Σ2 space of a configuration M = {G1, . . . , Gs}
is defined as the sum of widths: Σ2Space(M) def= W (G1) + . . . + W (Gs). For PCR, we will
consider the monomial space, which is the number of distinct monomials in a configuration.

ICALP 2022

100:8 Space Characterizations of Complexity Measures and Size-Space Trade-Offs

For a space measure µ on configurations and a proof π = M1, . . . , Mt, we naturally let
µ(π) def= max {µ(Mi) | 1 ≤ i ≤ t}. As in [37], we will also consider regularized versions µ∗

defined as µ∗(π) def= µ(π) · log |π|, where |π| def= t is the length of π. All logarithms in this paper
have base 2.

Finally, for a complexity measure µ on proofs, we write µ(F ⊢ G) for the minimum value
of µ(π), taken over all proofs of G from F ; if such a proof does not exist, we set µ(F ⊢ G)
to be ∞. In most cases, the measure µ clearly suggests what the underlying proof system
should be. For example, W (F ⊢ ⊥) is the minimum width of a resolution refutation of F ,
and MSpace∗(F ⊢ ⊥) is the minimum regularized monomial space of a PCR refutation (in
configurational form) of F . ST (F ⊢ ⊥) shall mean the minimum size of a tree-like resolution
refutation of F . We shall use the notation ST,R(f)(F ⊢ ⊥) to mean the minimum size of a
tree-like R(f)-refutation of F . TCSpace(F ⊢ ⊥) is the minimum clause space taken over all
tree-like configurational refutations of F in resolution. Likewise, RCSpace(F ⊢ ⊥) stands for
the clause space in regular resolution, i.e. the subsystem of resolution where we require that
a variable cannot be resolved more than once on any path in (the DAG resulting from the
expansion of) the configurational proof π.

3 Simulations

3.1 Tree-like resolution size and regularized monomial space

First we show that log ST in resolution, TCSpace, RCSpace, CSpace∗ and MSpace∗, are all
equivalent. Our main new contribution is the following simulation.

▶ Theorem 3.1. For any unsatisfiable CNF formula F over n variables,

log ST (F ⊢ ⊥) ≤ 2MSpace∗(F ⊢ ⊥) log(n + 1),
TCSpace(F ⊢ ⊥) ≤ 2 (MSpace∗(F ⊢ ⊥) + 1) .

Proof. The proof is analogous to the construction in [37] showing that depth is upper bounded
by regularized variable space. Let M1, . . . , Mt be a refutation of F in configurational form,
of monomial space s. We show, by induction on d, that for every interval [i..j] ⊆ [1..t] with
j > i, j − i ≤ 2d, and for every clause D such that αD |= Mi and αD |= ¬Mj , it holds that
ST (F ⊢ D) ≤ (n + 1)ds and, moreover, the assumed tree-like resolution proof can be carried
out in clause space at most ds + 2. The theorem follows by taking [i..j] := [1..t], d := ⌈log t⌉
and D := ⊥.

Suppose that d = 0, so that j = i + 1. The statement is vacuously true except when
the step consists in downloading an axiom C from F , simply because in all other cases we
have Mi |= Mi+1 and hence D with the specified properties does not even exist. Let D

be a clause for which αD |= Mi and αD |= ¬(Mi ∪ {C}). Then we necessarily must have
αD |= ¬C, which is equivalent to saying that D is a weakening of C.

For the inductive step, suppose that d > 0, let [i..j] ⊆ [1..t] be any interval with j − i ≤ 2d,
j > i+1, and let D be a clause such that αD |= Mi and αD |= ¬Mj . Set k := i+ ⌈(j − i)/2⌉,
so that k − i ≤ 2d−1 and j − k ≤ 2d−1. Let the list m1, . . . , ms contain all monomials
occurring in Mk. For a clause A and a monomial m = ℓ1 . . . ℓr, consider the following
derivation of A:

T. Papamakarios and A. Razborov 100:9

A ∨ ℓ1

A ∨ ℓ2

A ∨ ℓr A ∨ ℓ1 ∨ . . . ∨ ℓr

A ∨ ℓ1 ∨ . . . ∨ ℓr−1

...

A ∨ ℓ1 ∨ ℓ2

A ∨ ℓ1
A

Call this derivation tree TA;m. For the required tree-like resolution proof of D, start with
TD;m1 . To every leaf of TD;m1 labelled by a clause D′, append the tree TD′;m2 . Continue this
process for all m1, . . . , ms. If at any point during this construction, a forbidden disjunction
containing a variable and its negation occurs, then we delete that node and contract at its
parent. The resulting tree T has at most (n + 1)s leaves, and each of its leaves is labelled by
a clause E such that αE |= Mk or αE |= ¬Mk. From the induction hypothesis, there are
tree-like resolution proofs of all those clauses from F , of size (n + 1)(d−1)s. Therefore, there
is a tree-like resolution proof of D from F of size (n + 1)ds.

To see that this proof can be carried out in clause space at most ds + 2, notice that the
proof designated by T can be carried out in clause space s + 2. Proceed with this proof,
and whenever a clause at its leaves is downloaded, keep all current clauses in memory (there
are at most s of them – the maximum clause space is hit when the parent of two leaves is
brought to memory), and derive it in clause space at most (d − 1)s + 2. The fact that such a
derivation exists is guaranteed by the induction hypothesis. The resulting proof has clause
space at most s + (d − 1)s + 2 = ds + 2. ◀

For the rest of the relations, we claim that for an unstatisfiable CNF F in n variables,

RCSpace(F ⊢ ⊥) ≤ TCSpace(F ⊢ ⊥) ≤ log ST (F ⊢ ⊥) + 2
≤ 2MSpace∗(F ⊢ ⊥) log(n + 1) + 2 ≤ 2CSpace∗(F ⊢ ⊥) log(n + 1) + 2

≤ 2RCSpace∗(F ⊢ ⊥) log(n + 1) + 2 ≤ 2 (RCSpace(F ⊢ ⊥))2 log(n + 1) log(2n) + 2.

The first inequality follows from the observation that every tree-like refutation can be pruned
to the regular form, and this operation does not increase its space. The second inequality is
[16, Theorem 2.1], and the third is Theorem 3.1. The fourth and the fifth inequalities are
obvious. Finally, the last inequality follows from [16, Corollary 4.2].

As a byproduct, we get that TCSpace ≈ RCSpace. This comes in sharp contrast with
the situation for size, where there is an exponential separation between tree-like and regular
resolution [5].

We also see from [16, Corollary 4.2] that, somewhat surprisingly, instead of regularizing
clause space by multiplying it by the logarithm of size, we could have as well used a much
weaker regularization multiplying by the logarithm (!) of depth, and the resulting measure
would still be in this cluster. This allows us to re-cast the main open problem of whether
CSpace ≈ CSpace∗ in terms of the existence of a super-critical (in the sense of [36]) trade-off
between clause space and depth.

The remaining (non-trivial) simulation on Figure 1 involving this cluster is:

▶ Theorem 3.2. For any unsatisfiable CNF formula F , TCSpace(F ⊢ ⊥) ≤ DP (F ⊢ ⊥) + 2.

Proof. The argument is a refinement of the argument in [16] showing that tree-like clause
space is bounded by depth. We show, by induction on T, that if T is a tree-like resolution
proof of a clause E from F of positive depth d, then there is a tree-like resolution proof, in
configurational form, of E from F of clause space at most d + 2.

ICALP 2022

100:10 Space Characterizations of Complexity Measures and Size-Space Trade-Offs

If T has size at most 2, then d ≤ 1, and TCSpace(F ⊢ ⊥) ≤ 3. Otherwise, let T1 and
T2 be the subproofs of T proving the two clauses E1 and E2 respectively from which E is
derived via an application of the resolution rule and possibly applications of the weakening
rule. One of T1 and T2, say T1, must have positive depth at most d − 1. From the induction
hypothesis, there is a tree-like proof π1 of E1 of clause space at most d + 1, and a tree-like
proof π2 of E2 of clause space at most d + 2. Deriving first E2 using π2, and then, keeping
E2 in memory, deriving E1 using π1, we get a proof of E of clause space at most d + 2. ◀

3.2 Resolution width and Σ2 space
The simulations for our second cluster will depend upon the following “locality” property of
DNF resolution.

▶ Lemma 3.3. Let α be a partial assignment. For each of the inference rules of DNF
resolution, if both premises contain a term satisfied by α, then α satisfies some term in the
conclusion.

The main theorem of this section says that as long as we transition from depth 1 Frege to
depth 2 Frege, then not only width continues to be smaller than space, but in fact it becomes
(almost) equal to it. As a historical remark, an extension of the Atserias-Dalmau bound (4)
for the case of Res(k) is sketched in [18], and, although it is not stated explicitly, it is also
apparent in [15].

▶ Theorem 3.4. For any unsatisfiable CNF formula F ,

1
5Σ2Space(F ⊢ ⊥) ≤ W (⊢F ⊥) ≤ Σ2Space(F ⊢ ⊥).

Proof. Let M1, . . . , Mt be a DNF resolution refutation of F , of Σ2 space s. We will construct
a sequence T1, . . . , Tt of derivations in the system “resolution plus the F -cut rule (8)”. The
property we are going to maintain is that for every clause D labelling a leaf of Ti, either D

is a weakening of a clause C in F (call such a leaf an axiom leaf) or the following hold:
1. for every G ∈ Mi, αD satisfies some term of G;
2. W (D) ≤ Σ2Space(Mi).

T1 has one vertex labelled by the empty clause. Now suppose we have constructed Ti−1
such that 1 and 2 hold for all non-axiom leaves. For every such leaf v labelled by a clause D,
do the following.

Axiom Download: Suppose that Mi = Mi−1 ∪ {C}, where C = ℓ1 ∨ · · · ∨ ℓr is either a
clause of F (viewed as a 1-DNF) or a logical axiom x ∨ x. If C and D contain conflicting
literals, then item 1 is automatically satisfied and we do nothing at this leaf. Next, C ⊆ D

would have implied that C is a clause of F which is impossible since we have assumed
that the leaf is non-axiom. Thus, there exists at least one j ∈ [r] such that ℓj ̸∈ D, and
for any such j we add to v a child labelled by D ∨ ℓj . This will be an application of the
F -cut rule if C is a clause or of the resolution rule if C is x ∨ x.
Erasure: Suppose that Mi ⊆ Mi−1. Add to v a single child labelled by a clause E ⊆ D

such that W (E) ≤ Σ2Space(Mi) and for every G ∈ Mi, αE satisfies some term of G.
The case of an inference is immediately taken care of by Lemma 3.3, D does not change.

Since ⊥ ∈ Mt, Tt may not contain any non-axiom leaves and hence defines a refutation.
Also, it is clear from the construction and property 2 above that any clause D appearing in
it must satisfy W (D) ≤ max1≤i≤t Σ2Space(Mi) = s. Hence W (⊢F ⊥) ≤ s.

T. Papamakarios and A. Razborov 100:11

For the converse inequality, suppose that C1, . . . , Ct is a refutation in the system “resol-
ution plus the F -cut rule”, of width w. For every i ∈ [t], set Gi :=

∨i
j=1 Cj . Each Gi is a

w-DNF. For our small space refutation, we will first derive Gt and Gt−1 ∨ Ct, then cutting
on Ct derive from these formulas Gt−1, then derive Gt−2 ∨ Ct−1, and continue this way
until we get the empty clause. Notice that Gi−1 ∨ Ci is either a tautology with an obvious
derivation in DNF resolution, or Ci is a clause of F . In the latter case, we can immediately
derive Gi−1 ∨ Ci. Otherwise, Ci will be the result of applying either the resolution rule or
the weakening rule or F -cut rule to some clauses among C1, . . . , Ci−1. In either case, it can
be checked that Gi−1 ∨ Ci has a tree-like proof of Σ2 space at most 3w, and therefore the
proof above can be carried in Σ2 space at most 5w. ◀

▶ Remark 3.5. The second part of this proof implies that a posteriori, DNF resolution will
retain its power in terms of space even if we restrict the formula space (the maximum number
of DNFs in a configuration) to a constant. This in turn immediately implies, also a posteriori,
that we can balance our definition of Σ2 space replacing in it W (G1) + . . . + W (Gs) with
s · max(W (G1), . . . , W (Gs)), and the resulting measure will still be equivalent to Σ2 space.
We are not aware of a direct proof of this simulation by-passing width.

We get from Theorem 3.4 that strong length-space trade-offs conjectured for variable,
clause and monomial space, are ruled out for DNF resolution. In particular, we get:

▶ Corollary 3.6. For any unsatisfiable CNF formula F with n variables,

Σ2Space∗(F ⊢ ⊥) ≤ O
(

(Σ2Space(F ⊢ ⊥))2 log n
)

.

Proof. Let s := Σ2Space(F ⊢ ⊥). By the first part of Theorem 3.4, F has a width
O(s) resolution refutation with the additional F -cut rule. We apply to this refutation the
construction from the second part of Theorem 3.4 in which we can clearly assume t ≤ nO(s)

(since all clauses in the sequence can be assumed to be different). By an easy inspection, the
length of the resulting refutation will still be nO(s). Therefore,

Σ2Space∗(F ⊢ ⊥) ≤ O(s2 log n). ◀

▶ Corollary 3.7. If F has a constant Σ2 space refutation, then it has a refutation of constant
Σ2 space and polynomial length.

Proof. The refutation constructed in the proof of Corollary 3.6 will in our case also have
constant Σ2 space. ◀

Let us finally deal with the remaining measure, tree-like proofs in R(log).

▶ Theorem 3.8. Let F be an unsatisfiable CNF formula over n variables. Then

Σ2Space(F ⊢ ⊥)1/2 ≤ log ST,R(log)(F ⊢ ⊥) ≤ O(W (⊢F ⊥) log n).

Proof. For the upper bound, let π be a resolution refutation of F of width w := W (⊢F ⊥).
Apply to it the construction in the second part of the proof of Theorem 3.4 once again. By
inspection (cf. the proof of Corollary 3.6), this refutation is tree-like, has size nO(w) and every
term occurring in it has width at most w. Padding it with dummy formulas if necessary, we
can assume that it has size ≥ 2w which makes it into a tree-like R(log) refutation of the
required size.

ICALP 2022

100:12 Space Characterizations of Complexity Measures and Size-Space Trade-Offs

For the lower bound, the argument is an adaptation of the argument in [16] showing
(3). Namely, by pebbling, a tree-like proof T of size s > 1 can be turned into a proof in
configurational form, where each configuration contains at most log s formulas occurring in
T. If T is a refutation in R(log), then all terms occuring in T have width at most log s, so
the resulting refutation has Σ2 space (log s)2. ◀

▶ Remark 3.9. For the more conventional system Res(log n), the subsystem of DNF resolution
where each DNF in a refutation of F is required to have width O(log n), n the number of
variables of F , the second inequality in Theorem 3.8 is false (see Figure 2). This follows from
an easy adaptation of the proof of [15, Corollary 14].

4 Size-space trade-offs and tree-like size lower bounds

4.1 A lower bound on regularized monomial space

One application of the results of the previous section is that they easily allow us to show
trade-offs5 between regularized clause or monomial space and size.

It is known [22, 21] that there are formulas F of size Θ(n) that have a resolution
refutation of size O(n) (and thus a O(n) refutation in the stronger system PCR), but
MSpace∗(F ⊢ ⊥) ≥ n1/2/(log n)O(1). Theorem 3.1, combined with the lower bounds of [5]
and [17] on log ST and TCSpace immediately gives the following improvement.

▶ Theorem 4.1. For every n ≥ 0, there is a formula F of size Θ(n) that has a resolution
refutation of size O(n), width O(1), and such that MSpace∗(F ⊢ ⊥) ≥ Ω (n/ log n) .

Proof. [5] demonstrates the existence of an O(1)-CNF F that has resolution refutations
of size O(n), width O(1), and such that log ST (F ⊢ ⊥) ≥ Ω(n/ log n). In fact, [5] shows
that Ω(n/ log n) is also the lower bound on the number of points the Delayer can score in
the Prover-Delayer game of [35] played on F . Now, it is proved in [17] that this number of
points is precisely equal to TCSpace(F ⊢ ⊥) and then the result immediately follows from
the second inequality in Theorem 3.1. ◀

4.2 Trade-offs between positive depth and tree-like size for Horn
formulas and tree-like size lower bounds

We would like next to focus on tree-like size lower bounds for resolution attained for formulas
with small clause space. We will show that a tree-like resolution refutation of a Horn formula
actually describes a pebbling strategy, the space and time of the strategy being the positive
depth and size respectively of the proof. This gives a more transparent version of the result
of [5] used in the proof of Theorem 4.1, which moreover has a natural generalization allowing
us to prove some tree-like lower bounds for formulas of small clause space.

5 We would like to stress that, following the (perhaps, unfortunate) convention established in the previous
papers, we mean potential trade-offs. In other words, we prove lower bounds on the regularized space and
we only know that our method fails to extend them to the ordinary monomial space. As we explained
in Section 1 and will further elaborate in Section 5, proving actual trade-offs in this setting is a major
and difficult open problem.

T. Papamakarios and A. Razborov 100:13

4.2.1 Horn formulas – basics
Horn formulas, that include pebbling formulas, have seen a plethora of applications in proof
complexity over the past two decades, including separating resolution size from tree-like
resolution size [5], separating width from variable space and clause space [4, 6, 7], separating
depth from tree-like clause space [38], and giving trade-offs [4, 7, 22, 3], to name a few.

A CNF formula is called Horn if every clause in it has at most one non-negated variable.
Equivalently, a Horn formula is a set of implications involving variables, with at most one
variable at the right hand side of the implication. An implication of the form x1, . . . , xk → y

is asserting that if all the xi’s are true, then y is true; x1, . . . , xk → is asserting that one of
the xi’s is false, → y is asserting that y is true, and → is a contradiction.

The following result states that Horn formulas make up, in a certain sense, the easiest
class of formulas for proof complexity. For its purposes, it is convenient to define a slightly
modified version CSpace(⊢F ⊥) of the clause space, in the same vein we defined W (⊢F ⊥)
above. Namely, we replace the three standard rules with the following
Three-in-one rule: from a configuration M, infer any configuration M∗ ⊆ M ∪ F ∪ {C},

where C is obtained from clauses in M, F via the resolution or weakening rule.

▶ Theorem 4.2. Let F be a CNF formula. The following are equivalent:
1. F contains an unsatisfiable CNF sub-formula resulting from a Horn formula by negating

some of its variables;
2. CSpace(F ⊢ ⊥) ≤ 3;
3. CSpace(⊢F ⊥) ≤ 1;
4. W (⊢F ⊥) ≤ 1.

Proof. For 1 =⇒ 2, we can w.l.o.g. assume that F itself is an unsatisfiable Horn formula.
We show, by induction on the number of variables n, that it can be refuted in clause space
3. The base case is trivial. Now, suppose that n > 0, and let y be a variable such that F

contains the clause → y. Such a clause must exist, for if every clause contained a negated
variable, then we could satisfy F by setting every variable to false. Setting y := 1, we get an
unsatisfiable Horn formula F |y:=1 with n − 1 variables. From the induction hypothesis, there
is a clause space 3 refutation of F |y=1. Weakening every clause in it by y gives us a space 3
proof of y from F . Now we only have to download y and infer ⊥.

For 2 =⇒ 3, let M1, . . . , Mt be a space 3 refutation of the formula F ; we can assume
w.l.o.g. that it does not contain weakening rules. Consider a path in the corresponding
refutation tree of maximum possible length, say Ci ∈ Mti (0 ≤ i ≤ h) are such that
t0 < . . . < th = t, C0 is an axiom, Ch = ⊥ and for i ≥ 1, Ci is obtained by resolving
Ci−1 with some Di−1 ∈ Mti−1. It remains to show that Di−1 is actually an axiom for any
i ≥ 1. For i = 1 this follows from the maximality of the chosen path. For i ≥ 2, we have
Mti−1 = {Ci−2, Di−2, Ci−1}. Therefore Ci−1 is consistent (and hence not resolvable) with
the two other clauses in Mti−1 . All clauses that may have been inferred in Mti−1+1, . . . , Mti

must have Ci−1 as one of their premises and, as a consequence, are also not resolvable with
Ci−1. Hence the only clauses in those configurations that may be resolvable with Ci−1 (in
particular, Di−2) are the axioms.

The implication 3 =⇒ 4 is proven by an argument similar to the first part of the proof
of Theorem 3.4. Namely, a space 1 refutation of minimum length in the three-in-one model
must necessarily be a sequence {C1}, . . . , {Ct}, where Ci+1 is obtained by resolving Ci with
a clause in F . The non-axiom leaves of the tree Ti will simply be all those literals among
ℓi,1, . . . , ℓi,ri

, where Ci = ℓi,1 ∨ . . . ∨ ℓi,ri
, that are not axioms of F . It can routinely be

ICALP 2022

100:14 Space Characterizations of Complexity Measures and Size-Space Trade-Offs

checked that, as in the proof of Theorem 3.4, Ti will be a resolution derivation using only
the F -cut rule (notice that to keep the width 1, the weakening rule has to be incorporated
into the F -cut rule).

Finally, for 4 =⇒ 1, we again proceed by induction on the number of variables n of F .
The base case is trivial. Suppose that n > 0. The fact that there is a width 1 refutation
of F , forces F to have a one literal clause (since the refutation must start somewhere), say
ℓ. Setting ℓ := 1, we get a width 1 refutation of F |ℓ:=1. From the induction hypothesis, a
sub-formula G of F |ℓ:=1 is unsatisfiable Horn up to negating some variables. Let Ĝ be the
corresponding sub-formula of F ; Ĝ is obtained from G by restoring ℓ to some of its clauses.
Then Ĝ ∧ ℓ is an unsatisfiable Horn sub-formula of F . ◀

4.2.2 Tree-like resolution proofs as pebbling strategies
The paper [4] shows that a configurational resolution refutation π of the so-called pebbling
contradiction PebG on a graph G defines a pebbling strategy on G, of time at most |π| and
space equal to the variable space VSpace(π). These are strategies in the so-called black-white
game of [14]. We shall show that a tree-like resolution proof T of any Horn formula H defines
a pebbling strategy of time equal to the size of T and space essentially equal to the positive
depth of T. These are strategies in the more basic black-only pebbling game that in the case
H = PebG corresponds to the black-only pebbling game on G. Urquhart [38] showed how
to relate them to ordinary depth. In a sense, our Proposition 4.3 below can be viewed as a
(far-reaching) refinement of his result.

The rules of the black-only pebbling game, played on a Horn formula H, are as follows.
There is a limited amount of pebbles. Pebbles are placed on the variables of H according to
the rules:
1. A pebble can be placed on a variable y if x1, . . . , xk → y is a clause of H, and all x1, . . . , xk

have pebbles on them. In particular, a pebble can be always placed on any variable y

such that → y is a clause of H.
2. A pebble can be removed from a variable at any time.
A configuration of the pebbling game is a set of the variables of H. A pebbling strategy is a
sequence of configurations, each resulting from the previous one by one of the rules above.
We say that a pebbling strategy refutes H if it ends with a configuration where for some
clause x1, . . . , xk → of H, all variables x1, . . . , xk are pebbled. Note that if H is unsatisfiable,
then such a clause must exist.

▶ Proposition 4.3. Let H be an unsatisfiable Horn formula. A tree-like resolution refutation
T of H of size s and positive depth d can be converted into a pebbling strategy that, starting
with the empty configuration, refutes H in at most s steps and using at most d + 1 pebbles.

Proof. We begin with a slight modification of our refutation. Namely, viewing T as a decision
tree, its nodes naturally correspond to partial assignments, and for the clause C sitting at
the node α, we have α |= ¬C. Let us replace C with the maximal clause satisfying this
property. This will give us a refutation, of the same size and positive depth, in which the
resolution rule (7) is reduced to

C ∨ x C ∨ x

C
(9)

and leaves are labelled by weakenings of axioms in H.
This refutation need not necessarily consist of Horn formulas even if the original one did

so. Nonetheless we will still represent clauses in the sequential form S → T , where S, T are
disjoint sets of variables, like at the beginning of Section 4.2.1. Note that |S| ≤ d for any
clause S → T appearing in T.

T. Papamakarios and A. Razborov 100:15

We shall now show by induction that every subtree of T deriving a clause S → T , leads to
a pebbling strategy that, starting with pebbles on all variables of S and using at most d + 1
pebbles, either refutes H, or ends with a configuration which has pebbles on all variables
of S and on one variable of T . Thus, if T is empty then the former must occur and, in
particular, the strategy corresponding to the empty sequent → will start with no pebbles
on the variables of H and will refute H.

Suppose that S → T is at a leaf. If there are variables x1, . . . , xk in S such that
x1, . . . , xk → is a clause of H, then that leaf describes a strategy that, starting with pebbles
on all variables in S, immediately refutes H. Otherwise, there must be variables x1, . . . , xk

in S and a variable y in T such that x1, . . . , xk → y is a clause of H. Then the strategy of
that leaf is to put a pebble on y. Since |S| ≤ d, the number of pebbles used is at most d + 1,
as required.

If S → T is not at a leaf, then consider its left and right subtrees T1 and T2 proving
S, x → T and S → T, x respectively (cf. (9)). The strategy corresponding to S → T is
defined as follows. First follow T2’s strategy. If that strategy either refutes H or places a
pebble on one of T ’s variables, then we are done. Otherwise, when the strategy of T2 is
concluded, there are pebbles on S and x. Remove all other pebbles and follow the strategy
of T1. The bound d + 1 on the number of pebbles used at any moment follows from the
same bound for T1 and T2.

Clearly, the number of steps of the pebbling strategy corresponding to → is at most the
size of T, and the required bound on the number of pebbles was already noticed. ◀

▶ Remark 4.4. The proof of Proposition 4.3 relies on an intuitionistic interpretation of the
resolution rule. In the intuitionistic tradition, the denotational view of assigning truth values
is, philosophically, nonsense. A proposition is “true” if it is provable, and a proof of e.g. a
formula S → T is a construction that given proofs of all the elements of S produces a proof
of some element in T . What Proposition 4.3 says is that a tree-like resolution derivation of
S → T precisely describes such a construction, assuming that proofs of all the clauses of
H are known. Moreover this construction will be economical in the number of steps and
memory if the size and the positive depth respectively of the proof are small. Let us further
notice, that although Proposition 4.3 is stated for Horn formulas, it really is general; it could
be stated, with minimal modifications, for arbitrary CNFs.

4.2.3 Tree-like size lower bounds
The following theorem turns pebbling time-space trade-offs for a Horn formula H into tree-like
size lower bounds for its substituted version H[∨2]. We formulate it in a somewhat general
form, to account for various kinds of pebbling trade-offs in the literature. The substituted
version F [∨2] of a CNF F (x1, . . . , xn) is defined by replacing xi with yi ∨ zi for mutually
distinct variables {y1, z1, . . . , yn, zn}, followed by converting the result back to the CNF form
in the straightforward way.

▶ Theorem 4.5. Let H be an unsatisfiable Horn formula on n variables. Suppose that every
pebbling strategy that refutes H in s steps and using d pebbles, starting with no pebbles on
its variables, satisfies (d − 1) · f(s) ≥ g(n) for non-decreasing positive functions f, g. Then
f(t) log t ≥ g(n), where t

def= ST (H[∨2] ⊢ 0).

Proof. Create a probability space of partial assignments by choosing independently for every
variable x of H, which was substituted by y ∨ z, one of y and z with probability 1/2 and
setting it to zero. Note that for any α from this space, H[∨2]|α is identical to H up to

ICALP 2022

100:16 Space Characterizations of Complexity Measures and Size-Space Trade-Offs

renaming its variables and hence T|α is a refutation of H, again up to renaming variables.
Let T be an arbitrary tree-like resolution refutation of H[∨2] of size t represented as in the
proof of Proposition 4.3. That is weakenings are omitted from the resolution rule, and appear
at the leaves only. Let D1, . . . , Dk be all clauses of positive depth g(n)/f(t) occurring in T.
We have that

P

[
k∨

i=1
(Di|α ̸= 1)

]
≤

k∑
i=1

P [Di|α ̸= 1] ≤ k2−g(n)/f(t) ≤ t2−g(n)/f(t).

If f(t) log t < g(n), then the above probability is smaller than 1, which means that there is a
point α in our sample space such that T|α is a tree-like resolution refutation of size at most
t and positive depth ≤ g(n)/f(t). This, from Proposition 4.3, gives a pebbling strategy that
refutes H in t steps using d pebbles, where (d − 1) · f(t) < g(n). ◀

Recall that for a DAG G, the pebbling contradiction PebG is defined as the Horn formula
consisting of all clauses S → x, where x ∈ V (G) and S is the set of all its immediate
predecessors, as well as the clauses x → for any sink x. Plugging into Theorem 4.5 various
DAGs from the literature with known bounds on their pebbling complexity and various
functions f , we can get several corollaries. The first is a simplified proof of the separation by
Ben-Sasson et al.

▶ Corollary 4.6 [5]. There are formulas of size O(n) having DAG-like resolution refutations
of size O(n), every tree-like resolution refutation of which requires size exp(Ω(n/ log n)).

Proof. This is by setting f := 1 in Theorem 4.5, and using the graphs of [34] having constant
in-degree and requiring Ω(n/ log n) pebbles to pebble. ◀

The next result was promised in the introduction. It should be compared with Theorem 4.2.

▶ Theorem 4.7. There are formulas of size O(n) having tree-like resolution refutations of
clause space 4, every tree-like resolution refutation of which has size Ω(n2/ log n).

Proof sketch. This is by setting f(t) := t in Theorem 4.5, and using the graphs of [28,
Theorem 2.3.2] having linear size and exhibiting a dt ≥ Ω(n2) trade-off. These graphs can be
pebbled using 3 pebbles, and that immediately gives that CSpace(PebGn

[∨2] ⊢ ⊥) ≤ O(1).
By being more careful, it is possible to bring the space down to the minimum possible value,
namely 4, for which a super-linear lower bound on tree-like resolution size is possible. ◀

By using the construction from [28, Theorem 4.2.6], Theorem 4.7 can be further generalized
to a lower bound (n/ log n)Ω(k) on the tree-like resolution size of refuting formulas with clause
space k. Let us further notice that the fact that the space 4 refutation in Theorem 4.7 is
tree-like might be interesting, as typically tree-like resolution size lower bounds have been
proven in the literature based on the prover-delayer game of [35], which also gives a lower
bound for the clause space of tree-like resolution refutations (cf. Theorem 4.1).

5 Concluding remarks

We showed that log ST , CSpace∗ and MSpace∗ are equivalent up to polynomial and log n

factors, demonstrating a picture perfectly analogous to the picture involving D, VSpace∗

and TSpace∗ in [37]. The most important question remains (widely) open:
▶ Problem 5.1. Is it true that CSpace ≈ log ST or MSpace ≈ log ST ? Recall for comparison
that log ST ≈ CSpace∗ ≈ MSpace∗.

T. Papamakarios and A. Razborov 100:17

Equivalently, do there exist strong trade-offs between clause (or monomial) space and length?
It should be contrasted with trade-offs results in e.g. [7, 3], and it is a perfect analogue of
Urquhart’s question [38] about variable space vs. depth studied in [37, Section 6]. Let us
make a few more remarks about this problem.

Firstly, for very small space essentially this question was already asked in the literature
before. Namely (see e.g. [30, Open Problem 16]), are there formulas having constant clause
space refutations and with the property that any such refutation must necessarily have
super-polynomial length? Suitably adjusting it to our framework:

▶ Problem 5.2 (small space variant). Are there formulas that have (log n)O(1) clause or
monomial space refutations and with the property that any such refutation must be of super-
quasi-polynomial length exp((log n)ω(1))? Equivalently, any tree-like resolution refutation
must have super-quasi-polynomial length.

In terms of the perceived difficulty, we do not discern too much of a difference between
Problems 5.1, 5.2 and Nordström’s question. In fact, we would like to cautiously conjecture
that there are formulas F with CSpace(F ⊢ ⊥) ≤ 5 and CSpace∗(F ⊢ ⊥) ≥ exp

(
nΩ(1)). But

the only result we were able to prove in that direction is the rather weak Theorem 4.7.
Secondly, as suggested by Figure 1, any strong separation between monomial space and

clause space would immediately solve Problem 5.1 for monomial space. As we consider the
latter to be most likely very difficult, we take it as a good heuristic explanation of why we
have not seen any progress on the former problem as well. But let us ask this, and one
obviously relevant question, explicitly anyway:

▶ Problem 5.3. Is it true that CSpace ≈ MSpace? Is it true that MSpace ≈ W?

We note that by the result from [31, 6], at least one of these must be false. A quadratic
separation between width and monomial space has been recently proved by the first author
(manuscript in preparation). For a discussion on related topics, see also [11, Section 7.5.5].

Finally, while all these conjectured trade-offs are very strong, they are still not super-
critical in the sense of [36] (the required lower bound on length never exceeds 2n). However,
as we pointed out in Section 3.1 in all these questions refutation length can be replaced with
depth. Since the depth, as a stand-alone measure, is always bounded by n, these actually are
questions about the existence of a super-critical trade-off between clause space and depth.

We have (somewhat surprisingly) proved that DNF resolution behaves very differently
from resolution with respect to space. Intermediate systems based on Res(k) for a constant
k were studied in a similar context before, and it is very natural to wonder what is the
situation for those systems.

Let us first remark that for Res(k)-refutations, the definition of space from [15, 7] (formula
space) coincides with ours up to a factor of k so we need not distinguish between the two.
Then Theorem 3.1 readily generalizes to this regime and gives log ST,Res(k) ≈ Res(k)Space∗,

extending the bottom half of Figure 1 as shown in Figure 2. The proof of Corollary 3.6,
however, fails for a constant k as badly as it fails for k = 1. Hence we have one more question
to ask:

▶ Problem 5.4 (Res(k)-variant). Is there a constant k > 0 such that log ST,Res(k) ≈ Res(k)Space
or at least log ST,Res(k) ⪯ CSpace?

Let us also mention that as k increases, both hierarchies, log ST,Res(k) (and, hence, also
Res(k)Space∗) and Res(k)Space are proper ([15] and [7] respectively). This excludes the
dual version of Remark 3.5: while the formula space of DNF resolution refutations can be
reduced to constant, this is not true for the widths of individual formulas in the memory.

ICALP 2022

100:18 Space Characterizations of Complexity Measures and Size-Space Trade-Offs

W ≈ log ST,R(log) ≈ Σ2Space ≈ Σ2Space∗

CSpace

log ST ≈ CSpace∗ ≈ MSpace∗ ≈ · · ·

Res(2)Space

Res(3)Space

log ST,Res(2) ≈ Res(2)Space∗

log ST,Res(3) ≈ Res(3)Space∗

...

MSpace

...

log ST,Res(log n) ≈ Res(log n)Space∗

Res(log n)Space

Figure 2 Σ2 space and tree-like size for subsystems of DNF resolution.

The relation between VSpace and CSpace is also unknown in one direction (the opposite
one is taken care of by [4]). Let us re-iterate the problem posed e.g. in [37]:

▶ Problem 5.5. Is it true that CSpace ⪯ VSpace?

Just as with the questions of similar nature discussed above, a negative answer would also
imply a separation between VSpace and VSpace∗, hence we can expect it to be very difficult.

References
1 Michael Alekhnovich, Eli Ben-Sasson, Alexander Razborov, and Avi Wigderson. Space

complexity in propositional calculus. SIAM Journal of Computing, 31:1184–1211, 2002.
2 Albert Atserias and Victor Dalmau. A combinatorial characterization of resolution width.

Journal of Computer and System Sciences, 74:323–334, 2008.
3 Chris Beck, Jakob Nordström, and Bangsheng Tang. Some trade-off results for polynomial

calculus: extended abstract. In Proceedings of the 45th Annual ACM Symposium on Theory
of Computing, pages 813–822, 2013.

4 Eli Ben-Sasson. Size-space tradeoffs for resolution. SIAM Journal of Computing, 38, 2009.
5 Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation of tree-like

and general resolution. Combinatorica, 24:585–603, 2004.
6 Eli Ben-Sasson and Jakob Nordström. Short proofs may be spacious: An optimal separation

of space and length in resolution. In Proceedings of the 49th Annual IEEE Symposium on
Foundations of Computer Science, pages 709–718, 2008.

T. Papamakarios and A. Razborov 100:19

7 Eli Ben-Sasson and Jakob Nordström. Understanding space in proof complexity: Separations
and trade-offs via substitutions. In Proceedings of the 2nd Symposium on Innovations in
Computer Science, pages 401–416, 2011.

8 Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple. Journal
of the ACM, 48:149–169, 2001.

9 Ilario Bonacina. Total space in resolution is at least width squared. In Proceedings of the
43rd International Colloquium on Automata, Languages, and Programming, volume 55, pages
56:1–56:13, 2016.

10 Maria Luisa Bonet and Nicola Galesi. Optimality of size-width tradeoffs for resolution.
Computational Complexity, 10:261–276, 2002.

11 Samuel Buss and Jakob Nordström. Proof complexity and SAT solving. In Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, chapter 7,
pages 233–350. IOS Press, 2nd edition, 2021.

12 Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis algorithm
to find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Symposium on Theory
of Computing, pages 174–183, 1996.

13 Stephen Cook and Robert Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44:36–50, 1979.

14 Stephen Cook and Ravi Sethi. Storage requirements for deterministic polynomial time
recognizable languages. Journal of Computer and System Sciences, 13:25–37, 1976.

15 Juan Luis Esteban, Nicola Galesi, and Jochen Messner. On the complexity of resolution with
bounded conjunctions. Theoretical Computer Science, 321:347–370, 2004.

16 Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information and Compu-
tation, 171:84–97, 2001.

17 Juan Luis Esteban and Jacobo Torán. A combinatorial characterization of treelike resolution
space. Information Processing Letters, 87:295–300, 2003.

18 Yuval Filmus, Massimo Lauria, Mladen Miksa, Jakob Nordström, and Marc Vinyals. From small
space to small width in resolution. ACM Transactions of Computational Logic, 16:28:1–28:15,
2015.

19 Nicola Galesi, Leszek Kołodziejczyk, and Neil Thapen. Polynomial calculus space and resolution
width. In Proceedings of the 60th Annual IEEE Symposium on Foundations of Computer
Science, pages 1325–1337, 2019.

20 Nicola Galesi and Neil Thapen. Resolution and pebbling games. In Proceedings of the 8th
Theory and Applications of Satisfiability Testing Conference, volume 3569, pages 76–90, 2005.

21 Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensitivity.
SIAM Journal of Computing, 47:1778–1806, 2018.

22 Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: amplifying communica-
tion complexity hardness to time-space trade-offs in proof complexity. In Proceedings of the
44th Annual ACM Symposium on Theory of Computing Conference, pages 233–248, 2012.

23 Russell Impagliazzo, Pavel Pudlák, and Jirí Sgall. Lower bounds for the polynomial calculus
and the gröbner basis algorithm. Computational Complexity, 8:127–144, 1999.

24 Jan Krajíček. Lower bounds to the size of constant-depth propositional proofs. Journal of
Symbolic Logic, 59:73–86, 1994.

25 Jan Krajíček. On the weak pigeonhole principle. Fundamenta Mathematicae, 170:123–140,
2001.

26 Jan Krajíček. Proof Complexity. Cambridge University Press, 2019.
27 Massimo Lauria. A note about k-DNF resolution. Information Processing Letters, 137:33–39,

2018.
28 Thomas Lengauer and Robert Tarjan. Asymptotically tight bounds on time-space trade-offs

in a pebble game. Journal of the ACM, 29:1087–1130, 1982.

ICALP 2022

100:20 Space Characterizations of Complexity Measures and Size-Space Trade-Offs

29 Bruno Loff and Sagnik Mukhopadhyay. Lifting theorems for equality. In Proceedings of the
36th International Symposium on Theoretical Aspects of Computer Science, volume 126, pages
50:1–50:19, 2019.

30 Jakob Nordström. Pebble games, proof complexity, and time-space trade-offs. Logical Methods
in Computer Science, 9, 2013.

31 Jakob Nordström and Johan Håstad. Towards an optimal separation of space and length in
resolution. Theory of Computing, 9:471–557, 2013.

32 Theodoros Papamakarios. Space characterizations of complexity measures and size-space
trade-offs in propositional proof systems. Electronic Colloqium on Computational Complexity,
Report No. 176, 2021.

33 Theodoros Papamakarios and Alexander Razborov. Space characterizations of complexity
measures and size-space trade-offs in propositional proof systems. Electronic Colloqium on
Computational Complexity, Report No. 74, 2021.

34 Wolfgang Paul, Robert Tarjan, and James Celoni. Space bounds for a game on graphs.
Mathematical Systems Theory, 10:239–251, 1977.

35 Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL algorithms for k-SAT. In
Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 128–136,
2000.

36 Alexander Razborov. A new kind of tradeoffs in propositional proof complexity. Journal of
the ACM, 63:16:1–16:14, 2016.

37 Alexander Razborov. On space and depth in resolution. Computational Complexity, 27:511–559,
2018.

38 Alasdair Urquhart. The depth of resolution proofs. Studia Logica, 99:349–364, 2011.

	1 Introduction
	2 Preliminaries
	3 Simulations
	3.1 Tree-like resolution size and regularized monomial space
	3.2 Resolution width and Sigma_2 space

	4 Size-space trade-offs and tree-like size lower bounds
	4.1 A lower bound on regularized monomial space
	4.2 Trade-offs between positive depth and tree-like size for Horn formulas and tree-like size lower bounds
	4.2.1 Horn formulas – basics
	4.2.2 Tree-like resolution proofs as pebbling strategies
	4.2.3 Tree-like size lower bounds

	5 Concluding remarks

