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Abstract
We connect learning algorithms and algorithms automating proof search in propositional proof
systems: for every sufficiently strong, well-behaved propositional proof system P , we prove that the
following statements are equivalent,

Provable learning. P proves efficiently that p-size circuits are learnable by subexponential-size
circuits over the uniform distribution with membership queries.
Provable automatability. P proves efficiently that P is automatable by non-uniform circuits
on propositional formulas expressing p-size circuit lower bounds.

Here, P is sufficiently strong and well-behaved if I.-III. holds: I. P p-simulates Jeřábek’s system
WF (which strengthens the Extended Frege system EF by a surjective weak pigeonhole principle);
II. P satisfies some basic properties of standard proof systems which p-simulate WF; III. P proves
efficiently for some Boolean function h that h is hard on average for circuits of subexponential size.
For example, if III. holds for P = WF, then Items 1 and 2 are equivalent for P = WF. The notion of
automatability in Item 2 is slightly modified so that the automating algorithm outputs a proof of a
given formula (expressing a p-size circuit lower bound) in p-time in the length of the shortest proof
of a closely related but different formula (expressing an average-case subexponential-size circuit
lower bound).

If there is a function h ∈ NE ∩ coNE which is hard on average for circuits of size 2n/4, for each
sufficiently big n, then there is an explicit propositional proof system P satisfying properties I.-III.,
i.e. the equivalence of Items 1 and 2 holds for P .
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1 Introduction

Learning algorithms and automatability algorithms searching for proofs in propositional
proof systems are central concepts in complexity theory, but a priori they appear rather
unrelated.
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Learning algorithms. In the PAC model of learning introduced by Valiant [34], a circuit
class C is learnable by a randomized algorithm L over the uniform distribution, up to error
ϵ, with confidence δ and membership queries, if for every Boolean function f computable
by a circuit from C, when given oracle access to f , L outputs with probability ≥ δ over
the uniform distribution a circuit computing f on ≥ (1 − ϵ) inputs. An important task
of learning theory is to find out if standard circuit classes such as P/poly are learnable by
efficient circuits. A way to approach the question is to connect the existence of efficient
learning algorithms to other standard conjectures in complexity theory. For example, we can
try to prove that efficient learning of P/poly is equivalent to P = NP or to the non-existence
of strong pseudorandom generators. In both cases one implication is known: P = NP implies
efficient learning of P/poly (with small error and high confidence) which in turn breaks
pseudorandom generators. However, while some progress on the opposite implications has
been made, they remain open, cf. [2, 33].

Automatability. The notion of automatability was introduced in the work of Bonet, Pitassi
and Raz [6]. A propositional proof system P is automatable if there is an algorithm A

such that for every tautology ϕ, A finds a P -proof of ϕ in p-time in the size of the shortest
P -proof of ϕ. That is, even if P does not prove all tautologies efficiently, it can still be
automatable. Establishing (non-)automatability results for concrete proof systems is one
of the main tasks of proof complexity. This led to many attempts to link the notion of
automatability to other standard complexity-theoretic conjectures. For example, recently
Atserias and Müller [3] proved that automating Resolution is NP-hard and their work has
been extended to other weak proof systems, e.g. [12, 13, 14]. For stronger systems, it is
known that automating Extended Frege system EF, Frege or even constant-depth Frege
would break specific cryptographic assumptions such as the security of RSA or Diffie-Hellman
scheme, cf. [23, 6, 5]. It remains, however, open to obtain non-automatability of strong
systems like Frege under a generic assumption such as the existence of strong pseudorandom
generators, let alone to prove the equivalence between such notions.

In the present paper we derive a conditional equivalence between learning algorithms
for p-size circuits and automatability of proof systems on tautologies encoding circuit lower
bounds.

1.1 Our result
An ideal connection between learning and automatability would say that for standard proof
systems P ,

“P is automatable if and only if P/poly is learnable efficiently”.

We establish this modulo some provability conditions and a change of parameters. Ad-
ditionally, we need to consider automatability only w.r.t. formulas encoding circuit lower
bounds. More precisely, denote by tt(f, s) a propositional formula which expresses that
boolean function f represented by its truth-table is not computable by a boolean circuit of
size s represented by free variables, see Section 3. So tt(f, s) is a tautology if and only if f is
hard for circuits of size s. Note that f is represented by 2n bits, if n is the number of inputs
of f , so the size of tt(f, s) is 2O(n). Similarly, let tt(f, s, t) be a formula expressing that
circuits of size s fail to compute f on ≥ t-fraction of inputs. In our main result (Theorem 1)
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we use a slightly modified notion of automatability where the automating algorithm for
a proof system P is non-uniform and outputs a P -proof of a given formula tt(f, nO(1)) in
p-time in the size of the shortest P -proof of tt(f, 2no(1)

, 1/2 − 1/2no(1)), see Section 3.1

▶ Theorem 1 (Informal, cf. Theorem 18). Let P be any propositional proof system which
APC1-provably p-simulates WF and satisfies some basic properties, e.g. P = WF. Moreover,
assume that P proves efficiently tt(h, 2n/4, 1/2 − 1/2n/4) for some boolean function h. Then,
the following statements are equivalent:
1. Provable learning. P proves efficiently that p-size circuits are learnable by 2no(1)-size

circuits, over the uniform distribution, up to error 1/2−1/2no(1) , with membership queries
and confidence 1/2no(1) .

2. Provable automatability. P proves efficiently that P is automatable by non-uniform
circuits on formulas tt(f, nO(1)).

WF is an elegant strengthening of EF introduced by Jeřábek [15], which corresponds to
the theory of approximate counting APC1, a theory formalizing probabilistic p-time reasoning,
see Section 2.2. Concrete proof systems which APC1-provably p-simulate WF and satisfy the
basic properties from Theorem 1 include WF itself or even much stronger systems such as set
theory ZFC (if we interpret ZFC as a suitable system for proving tautologies, see Section 5).
We emphasize that the conditional equivalence from Theorem 1 holds for any sufficiently
strong proof system satisfying some basic properties. The error and confidence of learning
algorithms can be amplified “for free”, see Section 2.1, but we did not make the attempts to
prove that the amplification is efficiently provable already in WF.

Perhaps the most unusual aspect of Theorem 1 is its usage of metamathematics: we
do not prove the equivalence between automatability and learning but between provable
automatability and provable learning. We believe that the usage of metamathematics is not
a substantial deviation. It would be very surprising if, e.g., an efficient learning algorithm
existed but not provably (in some natural proof system).

Plausibility of the assumption. The main assumption in Theorem 1 is the provability of
a circuit lower bound tt(h, 2n/4, 1/2 − 1/2n/4). This assumption has an interesting status.
Razborov’s conjecture about hardness of Nisan-Wigderson generators implies a conditional
hardness of formulas tt(h, nO(1)) for Frege (for every h), cf. [31], and it is possible to consider
extensions of the conjecture to all standard proof systems, even set theory ZFC. On the other
hand, all major circuit lower bounds for weak circuit classes and explicit boolean functions
are known to be effciently provable in EF 2, cf. [29, 25]. If we believe that explicit circuit
lower bounds such as tt(h, 2n/4, 1/2 − 1/2n/4), for some h ∈ EXP, are true, it is also perfectly
plausible that they are efficiently provable in a standard proof system such as ZFC 3 or EF.
Notably, if EF proves efficiently tt(h, 2n/4) for some boolean function h, then EF simulates
WF, cf. [22, Lemma 19.5.4]. If there is a p-time algorithm which given a string of length 2n

(specifying the size of tt(h, 2n/4)) generates an EF-proof of tt(h, 2n/4), then EF is p-equivalent
to WF. To see that, combine Lemma 12 with the fact (proved in [15]) that APC1 proves the
reflection principle for WF.

1 We believe that the gap between tt(f, nO(1)) and tt(f, 2no(1)
, 1/2 − 1/2no(1)

) can be almost closed, if
one uses learning of subexponential-size circuits instead of p-size circuits in Item 1 of Theorem 1 and
tt-formulas expressing subexponential-size circuit lower bounds in Item 2.

2 This has not been verified for lower bounds obtained via the algorithmic method of Williams [35].
3 Efficient provability of tt(h, 2n/4, 1/2 − 1/2n/4) in ZFC, for some h ∈ EXP, would follow from the

standard provability of this lower bound in ZFC.
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As a corollary of Theorem 1 we show that, under a standard hardness assumption, there
is an explicit proof system P for which the equivalence holds. This, follows, essentially, by
“hard-wiring” tautologies tt(h, 2n/4, 1/2 − 1/2n/4) to WF.

▶ Corollary 2 (cf. Corollary 22). Assume there is a NE ∩ coNE-function hn : {0, 1}n 7→ {0, 1}
such that for each sufficiently big n, hn is not (1/2 + 1/2n/4)-approximable by 2n/4-size
circuits.4 Then there is a proof system P (which can be described explicitly given the
definition of hn) such that Items 1 and 2 from Theorem 1 are equivalent.

The proof of Theorem 1 reveals also a proof complexity collapse which we discuss in the
arXiv version of the paper.

1.2 Outline of the proof
Our starting point for the derivation of Theorem 1 is a relation between natural proofs and
automatability which goes back to a work of Razborov and Krajíček. Razborov [30, 28]
proved that certain theories of bounded arithmetic cannot prove explicit circuit lower bounds
assuming strong pseudorandom generators exist. Krajíček [19, 21] developed the concept
of feasible interpolation (a weaker version of automatability, cf. [22]) and reformulated
Razborov’s unprovability result in this language, see [22, Section 17.9] for more historical
remarks.

▶ Theorem 3 (Razborov-Krajíček [30, 28, 19] - informal version). Let P be a proof system
which simulates EF and satisfies some basic properties. If P is automatable and P proves
efficiently tt(h, nO(1)) for some function h, then there are P/poly-natural proofs useful against
P/poly.

The second crucial ingredient we will use is a result of Carmosino, Impagliazzo, Kabanets
and Kolokolova, who showed that natural proofs can be turned into learning algorithms [8].
This allows us to conclude the following.

▶ Theorem 4 (Informal). Let P be a proof system simulating EF and satisfying some basic
properties. If P proves efficiently tt(h, nO(1)) for some function h, then automatability of P
implies the existence of subexponential-size circuits learning p-size circuits over the uniform
distribution, with membership queries.

Theorem 4 directly implies that if strong pseudorandom generators exist and EF proves ef-
ficiently tt(h, nO(1)) for some h, then EF is automatable if and only if there are subexponential-
size circuits learning p-size circuits over the uniform distribution, with membership queries.
The disadvantage of this observation is that, unlike in Theorem 1, its assumptions are known
to imply that both sides of the desired equivalence are false.

We note that the proof of Theorem 4 can be used to show also that optimal and
automatable proof systems imply learning algorithms. In fact, it is possible to prove,
unconditionally, that there is some propositional proof system P such that automatability
of P is equivalent to the existence of subexponential-size circuits infnitely often learning
P/poly over the uniform distribution. The proof is, however, non-constructive so (unlike in
Corollary 2) we do not know which system P satisfies the equivalence. We discuss these
results in more detail in the arXiv version of the paper.

4 A circuit C with n inputs γ-approximates function f : {0, 1}n 7→ {0, 1} if Prx∈{0,1}n [C(x) = f(x)] ≥ γ.
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The entrance of metamathematics. Unfortunately, it is unclear how to derive the opposite
implication in Theorem 4. We do not know how to automate, say, EF assuming just the
existence of efficient learning algorithms. In order to get the reverse, we need to assume that
an efficient learning algorithm is provably correct in a proof system P , which p-simulates WF.
For simplicity, let P = WF. If we assume that WF proves efficiently for some small circuits
that they can learn p-size circuits, we can show that there are small circuits such that WF
proves efficiently that these circuits automate WF on formulas tt(f, nO(1)). In more detail,
we first formalize in APC1 the implication that WF-provable learning yields automatability of
WF on tt(f, nO(1)) - if a learning circuit A does not find a small circuit for a given function
f , the automating circuit uses WF-proof of the correctness of A to produce a short WF-proof
of tt(f, nO(1)). Then, we translate the APC1-proof to WF and conclude that WF proves that
WF-provable learning implies automatability of WF. This allows us to show that if we have
WF-provable learning, then WF is WF-provably automatable on tt(f, nO(1)).

It is important that assuming WF-provable learning, we are able to derive WF-provable
automatability of WF, and not just automatability of WF. This makes it possible to obtain
the opposite direction and establish the desired equivalence: If we know that WF proves
that WF is automatable, we can formalize the proof of Theorem 4 in WF and conclude the
existence of WF-provable learning algorithms.

Benefits of bounded arithmetic. The proof of Theorem 1 relies heavily on formalizations.
Among other things we need to formalize the result of Carmosino, Impagliazzo, Kabanets
and Kolokolova in APC1

5, and use an elaborated way of expressing complex statements about
metacomplexity by propositional formulas: existential quantifiers often need to be witnessed
before translating them to propositional setting. The framework of bounded arithmetic
allows us to deal with these complications in an elegant way: we often reason in bounded
arithmetic, possibly using statements of higher quantifier complexity, and only subsequently
translate the outcomes to propositional logic, if the resulting (proved) statement has coNP
form. Notably, already propositional formulas expressing probabilities in the definition of
learning algorithms require more advanced tools - the probabilities are encoded using suitable
Nisan-Wigderson generators which come out of the notion of approximate counting in APC1,
cf. Section 3.2.

1.3 Related results

Learning algorithms and automatability have been linked already in the work of Alekhnovich,
Braverman, Feldman, Klivans and Pitassi [1], who showed an informal connection between
learning of weak circuit classes and automatability of some weak systems such as tree-like
Resolution. As already mentioned, Atserias and Müller [3] proved that automating Resolution
is NP-hard and their work has been extended to other weak proof systems, see e.g. [12, 13, 14].
A direct consequence of these results is that efficient algorithms automating the respective
proof systems can be used to learn efficiently classes like P/poly. A major difference between
these results and ours is that for our results to apply, the proof system needs to be sufficiently
strong, while for the other results, the proof system needs to be weak (in the sense that lower
bounds for the system are already known).

5 We will actually formalize “CIKK” just conditionally, in order to avoid the formalization of Bertrand’s
postulate.

ICALP 2022
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1.4 Open problems
Unconditional equivalence between learning and automatability. Is it possible to avoid
the assumption on the provability of a circuit lower bound in Theorem 1 and establish an
unconditional equivalence between learning and automatability?

Complexity theory from the perspective of metamathematics. Our results demonstrate
that in the context of metamathematics it is possible to establish some complexity-theoretic
connections which we are not able to establish otherwise. We exploit the metamathematical
nature of the notion of automatability: efficient P -provability of the correctness of an
algorithm implies efficient P -provability of automatability of P . Is it possible to take
advantage of metamathematics in other contexts and resolve other important open problems
in this setting? For example, could we get a version of the desired equivalence between the
existence of efficient learning algorithms and the non-existence of cryptographic pseudorandom
generators, cf. [26, 33, 27]? The question of basing cryptography on a worst-case assumption
such as P ̸= NP could be addressed in this setting by showing that if a sufficiently strong
proof system P proves efficiently that there is no strong pseudorandom generator6, then P is
p-bounded.

Circuit lower bound tautologies. How essential are circuit lower bound tautologies in
our results? Consider fundamental questions of proof complexity (p-boundness, optimality,
automatability) w.r.t. formulas tt(f, s). Do they coincide with the original ones? Are
formulas tt(f, s) the hardest ones, do they admit optimal proof systems, or can we turn
automatability on formulas tt(f, s) into automatability on all formulas?

2 Preliminaries

2.1 Natural proofs and learning algorithms
[n] denotes {1, . . . , n}. Circuit[s] denotes fan-in two Boolean circuits of size at most s. The
size of a circuit is the number of gates.

▶ Definition 5 (Natural property [32]). Let m = 2n and s, d : N 7→ N. A sequence of circuits
{C2n}∞

n=1 is a Circuit[s(m)]-natural property useful against Circuit[d(n)] if
1. Constructivity. Cm has m inputs and size s(m),
2. Largeness. Prx[Cm(x) = 1] ≥ 1/mO(1),
3. Usefulness. For each sufficiently big m, Cm(x) = 1 implies that x is a truth-table of a

function on n inputs which is not computable by circuits of size d(n).

▶ Definition 6 (PAC learning). A circuit class C is learnable over the uniform distribution
by a circuit class D up to error ϵ with confidence δ, if there are randomized oracle circuits
Lf from D such that for every Boolean function f : {0, 1}n 7→ {0, 1} computable by a circuit
from C, when given oracle access to f , input 1n and the internal randomness w ∈ {0, 1}∗,
Lf outputs the description of a circuit satisfying

Pr
w

[Lf (1n, w) (1 − ϵ)-approximates f ] ≥ δ.

6 The formalization of this statement would assume the existence of a p-size circuit which for any p-size
circuit defining a potential pseudorandom generator outputs its distinguisher.
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Lf uses non-adaptive membership queries if the set of queries which Lf makes to the oracle
does not depend on the answers to previous queries. Lf uses random examples if the set of
queries which Lf makes to the oracle is chosen uniformly at random.

In this paper, PAC learning always refers to learning over the uniform distribution. While,
a priori, learning over the uniform distribution might not reflect real-world scenarios very well
(and on the opposite end, learning over all distributions is perhaps overly restrictive), as far
as we can tell it is possible that PAC learning of p-size circuits over the uniform distribution
implies PAC learning of p-size circuits over all p-samplable distributions. Binnendyk,
Carmosino, Kolokolova, Ramyaa and Sabin [4] proved the implication, if the learning
algorithm in the conclusion is allowed to depend on the p-samplable distribution.

Boosting confidence and reducing error. The confidence of the learner and its error can
be improved generically, see the arXiv version of the paper. We can thus often ignore the
optimisation of these parameters.

Natural proofs vs learning algorithms. Natural proofs are actually equivalent to efficient
learning algorithms with suitable parameters. In this paper we need just one implication.

▶ Theorem 7 (Carmosino-Impagliazzo-Kabanets-Kolokolova [8]). Let R be a P/poly-natural
property useful against Circuit[nk] for k ≥ 1. Then, for each γ ∈ (0, 1), Circuit[nkγ/a] is
learnable by Circuit[2O(nγ )] over the uniform distribution with non-adaptive membership
queries, confidence 1, up to error 1/nkγ/a, where a is an absolute constant.

2.2 Bounded arithmetic and propositional logic
Theories of bounded arithmetic capture various levels of feasible reasoning and present a
uniform counterpart to propositional proof systems.

The first theory of bounded arithmetic formalizing p-time reasoning was introduced by
Cook [10] as an equational theory PV. We work with its first-order conservative extension
PV1 from [24]. The language of PV1, denoted PV as well, consists of symbols for all p-time
algorithms given by Cobham’s characterization of p-time functions, cf. [9]. A PV-formula
is a first-order formula in the language PV. Σb

0 (=Πb
0) denotes PV-formulas with only

sharply bounded quantifiers ∃x, x ≤ |t|, ∀x, x ≤ |t|, where |t| is “the length of the binary
representation of t”. Inductively, Σb

i+1 resp. Πb
i+1 is the closure of Πb

i resp. Σb
i under positive

Boolean combinations, sharply bounded quantifiers, and bounded quantifiers ∃x, x ≤ t resp.
∀x, x ≤ t. Predicates definable by Σb

i resp. Πb
i formulas are in the Σp

i resp. Πp
i level of the

polynomial hierarchy, and vice versa. PV1 is known to prove Σb
0(PV)-induction:

A(0) ∧ ∀x (A(x) → A(x+ 1)) → ∀xA(x),

for Σb
0-formulas A, cf. Krajíček [18].

Buss [7] introduced the theory S1
2 extending PV1 with the Σb

1-length induction:

A(0) ∧ ∀x < |a|, (A(x) → A(x+ 1)) → A(|a|),

for A ∈ Σb
1. S1

2 proves the sharply bounded collection scheme BB(Σb
1):

∀i < |a| ∃x < a,A(i, x) → ∃w ∀i < |a|, A(i, [w]i),

ICALP 2022
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for A ∈ Σb
1 ([w]i is the ith element of the sequence coded by w), which is unprovable in PV1

under a cryptographic assumption, cf. [11]. On the other hand, S1
2 is ∀Σb

1-conservative over
PV1. This is a consequence of Buss’s witnessing theorem stating that S1

2 ⊢ ∃y,A(x, y) for
A ∈ Σb

1 implies PV1 ⊢ A(x, f(x)) for some PV-function f .
Following a work by Krajíček [20], Jeřábek [15, 16, 17] systematically developed a theory

APC1 capturing probabilistic p-time reasoning by means of approximate counting.7 The
theory APC1 is defined as PV1 + dWPHP (PV) where dWPHP (PV) stands for the dual
(surjective) pigeonhole principle for PV-functions, i.e. for the set of all formulas

x > 0 → ∃v < x(|y| + 1)∀u < x|y|, f(u) ̸= v,

where f is a PV-function which might involve other parameters not explicitly shown. We
devote Section 2.3 to a more detailed description of the machinery of approximate counting
in APC1.

Any Πb
1-formula ϕ provable in PV1 can be expressed as a sequence of tautologies ||ϕ||n

with proofs in the Extended Frege system EF which are constructible in p-time (given a string
of the length n), cf. [10]. Similarly, Πb

1-formulas provable in APC1 translate to tautologies
with p-time constructible proofs in WF, an extension of EF introduced by Jeřábek [15]. We
describe the translation and system WF in more detail below.

As it is often easier to present a proof in a theory of bounded arithmetic than in the
corresponding propositional system, bounded arithmetic functions, so to speak, as a uniform
language for propositional logic.

We refer to Krajíček [22] for basic notions in proof complexity.

▶ Definition 8 (WF (WPHP Frege), cf. Jeřábek [15]). Let L be a finite and complete language
for propositional logic, i.e. L consists of finitely many boolean connectives of constant arity
such that each boolean function of every arity can be expressed by an L-formula, and let R
be a finite, sound and implicationally complete set of Frege rules (in the langauge L). A
WF-proof of a (L-)circuit A is a sequence of circuits A0, . . . , Ak such that Ak = A, and each
Ai is derived from some Aj1 , . . . , Ajℓ

, j1, . . . , jℓ < i by a Frege rule from R, or it is similar
to some Aj, j < i, or it is the dWPHP axiom,

m∨
ℓ=1

(rℓ ̸= Ci,ℓ(Di,1, . . . , Di,n)),

where n < m and rℓ are pairwise distinct variables which do not occur in circuits A, Ci,ℓ′ , or
Aj for j < i, but may occur in circuits Di,1, . . . , Di,n.

The similarity rule in Definition 8 is verified by a specific p-time algorithm which checks
that circuits Ai and Aj can be “unfolded” to the same (possible huge) formula, cf. [15,
Lemma 2.2.]. Intuitively, the NLOG (⊆ P) algorithm recognizes if two circuits are not similar
by guessing a partial path through them, going from the output to the inputs, where on at
least one instruction the circuits disagree. As defined WF depends on the choice of Frege rules
and language L, but for each choice the resulting systems are p-equivalent, so we can identify
them. The dWPHP axiom refers to “dual weak pigeonhole principle” postulating the existence
of an element r1, . . . , rm outside the range of a p-size map Ci,1, . . . , Ci,m : {0, 1}n 7→ {0, 1}m.

7 Krajíček [20] introduced a theory BT defined as S1
2 + dWPHP (PV) and proposed it as a theory for

probabilistic p-time reasoning.
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The dWPHP axiom comes with a specification of circuits Ci,1, . . . , Ci,m, Di,1, . . . , Di,n so that
we can recognize the axiom efficiently. The role of circuits Di,1, . . . , Di,n in the dWPHP axiom
is to allow WF to postulate not only that r1, . . . , rm is not the output of Ci,1, . . . , Ci,m on a
specific input x1, . . . xn but to postulate that r1, . . . , rm is not the output of Ci,1, . . . , Ci,m

on other inputs (which could depend on r1, . . . , rm) either.
The translation of a Πb

1 formula ϕ into a sequence of propositional formulas ||ϕ||n works as
follows. For each PV-function f(x1, . . . , xk) and numbers n1, . . . , nk we have a p-size circuit
Cf computing the restriction f : 2n1 ×· · ·×2nk 7→ 2b(n1,...,nk), where b is a suitable “bounding”
polynomial for f . The formula ||f ||n(p, q, r) expresses that Cf outputs r on input p, with q

being the auxiliary variables corresponding to the nodes of Cf . The formula ||ϕ(x)||n(p, q)
is defined as ||ϕ′(x)||n(p, q), where ϕ′ is the negation normal form of ϕ, i.e. negations in ϕ′

are only in front of atomic formulas. The formula ||ϕ′(x)||n(p, q) is defined inductively in a
straightforward way so that || . . . || commutes with ∨,∧. The atoms p correspond to variables
x, atoms q correspond to the universally quantified variables of ϕ and to the outputs and
auxiliary variables of circuits Cf for functions f appearing in ϕ. Sharply bounded quantifiers
are replaced by polynomially big conjuctions resp. disjunctions. For the atomic formulas we
have,

||f(x) = g(x)||n :=||f(x)||n(p, q, r) ∧ ||g(x)||n(p, q′, r′) →
∧

i

ri = r′
i,

||¬f(x) = g(x)||n :=||f(x)||n(p, q, r) ∧ ||g(x)||n(p, q′, r′) → ¬
∧

i

ri = r′
i,

||f(x) ≤ g(x)||n :=||f(x)||n(p, q, r) ∧ ||g(x)||n(p, q′, r′) →
∧

i

(ri ∧
∧
j>i

(rj = r′
j) → r′

i),

||¬f(x) ≤ g(x)||n :=||f(x)||n(p, q, r) ∧ ||g(x)||n(p, q′, r′) → ¬
∧

i

(ri ∧
∧
j>i

(rj = r′
j) → r′

i).

2.3 Approximate counting
In order to prove our results we will need to use Jeřábek’s theory of approximate counting.
This section recalls the properties of APC1 we will need.

By a definable set we mean a collection of numbers satisfying some formula, possibly
with parameters. When a number a is used in a context which asks for a set it is assumed
to represent the integer interval [0, a), e.g. X ⊆ a means that all elements of set X are
less than a. If X ⊆ a, Y ⊆ b, then X × Y := {bx + y | x ∈ X, y ∈ Y } ⊆ ab and
X∪̇Y := X ∪ {y + a | y ∈ Y } ⊆ a + b. Rational numbers are assumed to be represented
by pairs of integers in the natural way. We use the notation x ∈ Log ↔ ∃y, x = |y| and
x ∈ LogLog ↔ ∃y, x = ||y||.

Let C : 2n → 2m be a circuit and X ⊆ 2n, Y ⊆ 2m definable sets. We write C : X ↠ Y

if ∀y ∈ Y ∃x ∈ X, C(x) = y. Jeřábek [17] gives the following definitions in APC1 (but they
can be considered in weaker theories as well).

▶ Definition 9. Let X,Y ⊆ 2n be definable sets, and ϵ ≤ 1. The size of X is approximately
less than the size of Y with error ϵ, written as X ⪯ϵ Y , if there exists a circuit C, and v ̸= 0
such that

C : v × (Y ∪̇ϵ2n) ↠ v ×X.

X ≈ϵ Y stands for X ⪯ϵ Y and Y ⪯ϵ X.
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Since a number s is identified with the interval [0, s), X ⪯ϵ s means that the size of X is
at most s with error ϵ.

The definition of X ⪯ϵ Y is an unbounded ∃Πb
2-formula even if X,Y are defined by

circuits so it cannot be used freely in bounded induction. Jeřábek [17] solved this problem
by working in HARDA, a conservative extension of APC1, defined as a relativized theory
PV1(α) + dWPHP (PV(α)) extended with axioms postulating that α(x) is a truth-table of
a function on ||x|| variables hard on average for circuits of size 2||x||/4, see Section 3.2. In
HARDA there is a PV1(α) function Size approximating the size of any set X ⊆ 2n defined by
a circuit C so that X ≈ϵ Size(C, 2n, 2ϵ−1) for ϵ−1 ∈ Log, cf. [17, Lemma 2.14]. If X ∩ t ⊆ 2|t|

is defined by a circuit C and ϵ−1 ∈ Log, we can define

Pr
x<t

[x ∈ X]ϵ := 1
t
Size(C, 2|t|, 2ϵ−1

).

The presented definitions of approximate counting are well-behaved:

▶ Proposition 10 (Jeřábek [17]). (in PV1) Let X,X ′, Y, Y ′, Z ⊆ 2n and W,W ′ ⊆ 2m be
definable sets, and ϵ, δ < 1. Then

i) X ⊆ Y ⇒ X ⪯0 Y ,
ii) X ⪯ϵ Y ∧ Y ⪯δ Z ⇒ X ⪯ϵ+δ Z,
iii) X ⪯ϵ X

′ ∧W ⪯δ W
′ ⇒ X ×W ⪯ϵ+δ+ϵδ X

′ ×W ′.
iv) X ⪯ϵ X

′ ∧ Y ⪯δ Y
′ and X ′, Y ′ are separable by a circuit, then X ∪ Y ⪯ϵ+δ X

′ ∪ Y ′.

▶ Proposition 11 (Jeřábek [17]). (in APC1)
1. Let X,Y ⊆ 2n be definable by circuits, s, t, u ≤ 2n, ϵ, δ, θ, γ < 1, γ−1 ∈ Log. Then

(i) X ⪯γ Y or Y ⪯γ X,
(ii) s ⪯ϵ X ⪯δ t ⇒ s < t+ (ϵ+ δ + γ)2n,
(iii) X ⪯ϵ Y ⇒ 2n\Y ⪯ϵ+γ 2n\X,
(iv) X ≈ϵ s ∧ Y ≈δ t ∧X ∩ Y ≈θ u ⇒ X ∪ Y ≈ϵ+δ+θ+γ s+ t− u.

2. (Disjoint union) Let Xi ⊆ 2n, i < m be defined by a sequence of circuits and ϵ, δ ≤ 1,
δ−1 ∈ Log. If Xi ⪯ϵ si for every i < m, then

⋃
i<m(Xi × {i}) ⪯ϵ+δ

∑
i<m si.

3. (Averaging) Let X ⊆ 2n × 2m and Y ⊆ 2m be definable by circuits, Y ⪯ϵ t and Xy ⪯δ s

for every y ∈ Y , where Xy := {x| ⟨x, y⟩ ∈ X}. Then for any γ−1 ∈ Log,

X ∩ (2n × Y ) ⪯ϵ+δ+ϵδ+γ st.

When proving Σb
1 statements in APC1 we can afford to work in S1

2+dWPHP (PV)+BB(Σb
2)

and, in fact, assuming the existence of a single hard function in PV1 gives us the full power
of APC1. Here, BB(Σb

2) is defined as BB(Σb
1) but with A ∈ Σb

2.

▶ Lemma 12 ([25]). Suppose S1
2 + dWPHP (PV) +BB(Σb

2) ⊢ ∃yA(x, y) for A ∈ Σb
1. Then,

for every ϵ < 1, there is k and PV-functions g, h such that PV1 proves

|f | ≥ |x|k ∧ ∃y, |y| = ||f ||, Ch(y) ̸= f(y) → A(x, g(x, f))

where f(y) is the yth bit of f , f(y) = 0 for y > |f |, and Ch is a circuit of size ≤ 2ϵ||f ||

generated by h on f, x. Moreover, APC1 ⊢ ∃yA(x, y).
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3 Formalizing complexity-theoretic statements

3.1 Circuit lower bounds
An “almost everywhere” formulation of a circuit lower bound for circuits of size s and a
function f says that for every sufficiently big n, for each circuit C with n inputs and size s,
there exists an input y on which the circuit C fails to compute f(y).

If f : {0, 1}n → {0, 1} is an NP function and s = nk for a constant k, this can be written
down as a ∀Σb

2 formula LB(f, nk),

∀n, n > n0 ∀ circuit C of size ≤ nk ∃y, |y| = n, C(y) ̸= f(y),

where n0 is a constant and C(y) ̸= f(y) is a Σb
2 formula stating that a circuit C on input y

outputs the opposite value of f(y).
If we want to express s(n)-size lower bounds for s(n) as big as 2O(n), we add an extra

assumption on n stating that ∃x, n = ||x||. That is, the resulting formula LBtt(f, s(n))
has form “∀x, n;n = ||x|| → . . . ”. Treating x, n as free variables, LBtt(f, s(n)) is Πb

1 if f
is, for instance, SAT because n = ||x|| implies that the quantifiers bounded by 2O(n) are
sharply bounded. Moreover, allowing f ∈ NE lifts the complexity of LBtt(f, s(n)) just to ∀Σb

1.
The function s(n) in LBtt(f, s(n)) is assumed to be a PV-function with input x (satisfying
||x|| = n).

In terms of the Log-notation, LB(f, nk) implicitly assumes n ∈ Log while LBtt(f, nk)
assumes n ∈ LogLog. By chosing the scale of n we are determining how big objects are going
to be “feasible” for theories reasoning about the statement. In the case n ∈ LogLog, the
truth-table of f (and everything polynomial in it) is feasible. Assuming just n ∈ Log means
that only the objects of polynomial-size in the size of the circuit are feasible. Likewise, the
theory reasoning about the circuit lower bound is less powerful when working with LB(f, nk)
than with LBtt(f, nk). (The scaling in LBtt(f, s) corresponds to the choice of parameters in
natural proofs and in the formalizations by Razborov [29].)

We can analogously define formulas LBtt(f, s(n), t(n)) expressing an average-case lower
bound for f , where f is a free variable (with f(y) being the yth bit of f and f(y) = 0 for
y > |f |). More precisely, LBtt(f, s(n), t(n)) generalizes LBtt(f, s(n)) by saying that each
circuit of size s(n) fails to compute f on at least t(n) inputs, for PV-functions s(n), t(n).
Since n ∈ LogLog, LBtt(f, s(n), t(n)) is Πb

1.

Propositional version. An s(n)-size circuit lower bound for a function f : {0, 1}n → {0, 1}
can be expressed by a 2O(n)-size propositional formula tt(f, s),∨

y∈{0,1}n

f(y) ̸= C(y)

where the formula f(y) ̸= C(y) says that an s(n)-size circuit C represented by poly(s)
variables does not output f(y) on input y. The values f(y) are fixed bits. That is, the whole
truth-table of f is hard-wired in tt(f, s).

The details of the encoding of the formula tt(f, s) are not important for us as long as the
encoding is natural because systems like EF considered in this paper can reason efficiently
about them. We will assume that tt(f, s) is the formula resulting from the translation of Πb

1
formula LBtt(h, s), where n0 = 0, n, x are substituted after the translation by fixed constants
so that x = 22n , and h is a free variable (with h(y) being the yth bit of h and h(y) = 0 for
y > |h|) which is substituted after the translation by constants defining f .
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Analogously, we can express average-case lower bounds by propositional formulas
tt(f, s(n), t(n)) obtained by translating LBtt(h, s(n), t(n)2n), with n0 = 0, fixed x = 22n and
h substituted after the translation by f .

3.2 Learning algorithms
A circuit class C is defined by a PV-formula if there is a PV-formula defining the predicate
C ∈ C. Definition 6 can be formulated in the language of HARDA: A circuit class C (defined
by a PV-formula) is learnable over the uniform disribution by a circuit class D (defined by a
PV-formula) up to error ϵ with confidence δ, if there are randomized oracle circuits Lf from
D such that for every Boolean function f : {0, 1}n 7→ {0, 1} (represented by its truth-table)
computable by a circuit from C, for each γ−1 ∈ Log, when given oracle access to f , input 1n

and the internal randomness w ∈ {0, 1}∗, Lf outputs the description of a circuit satisfying

Pr
w

[Lf (1n, w) (1 − ϵ)-approximates f ]γ ≥ δ.

The inner probability of approximability of f by Lf (1n, w) is counted exactly. This is possible
because f is represented by its truth-table, which implies that 2n ∈ Log.8

Propositional version. In order, to translate the definition of learning algorithms to pro-
positional formulas we need to look more closely at the definition of HARDA.

PV1 can be relativized to PV1(α). The new function symbol α is then allowed in the
inductive clauses for introduction of new function symbols. This means that the language of
PV1(α), denoted also PV(α), contains symbols for all p-time oracle algorithms.

▶ Proposition 13 (Jeřábek [15]). For every constant ϵ < 1/3 there exists a constant n0 such
that APC1 proves: for every n ∈ LogLog such that n > n0, there exist a function f : 2n → 2
such that no circuit of size 2ϵn computes f on ≥ (1/2 + 1/2ϵn)2n inputs.

▶ Definition 14 (Jeřábek [15]). The theory HARDA is an extension of the theory PV1(α) +
dWPHP (PV(α)) by the axioms
1. α(x) is a truth-table of a Boolean function in ||x|| variables,
2. LBtt(α(x), 2||x||/4, 2||x||(1/2 − 1/2||x||/4)), for constant n0 from Proposition 13,
3. ||x|| = ||y|| → α(x) = α(y).

By inspecting the proof of Lemma 2.14 in [17], we can observe that on each input
C, 2n, 2ϵ−1 the PV1(α)-function Size calls α just once (to get the truth-table of a hard
function which is then used as the base function of the Nisan-Wgiderson generator). In fact,
Size calls α on input x which depends only on |C|, the number of inputs of C and w.l.o.g.
also just on |ϵ−1| (since decreasing ϵ leads only to a better approximation). In combination
with the fact that the approximation Size(C, 2n, 2ϵ−1) ≈ϵ X, for X ⊆ 2n defined by C, is
not affected by a particular choice of the hard boolean function generated by α, we get that
APC1 proves

LBtt(y, 2||y||/4, 2||y||(1/2 − 1/2||y||/4)) ∧ ||y|| = S(C, 2n, 2ϵ−1
) → Sz(C, 2n, 2ϵ−1

, y) ≈ϵ X,

where Sz is defined as Size with the only difference that the call to α(x) on C, 2n, 2ϵ−1 is
replaced by y and S(C, 2n, 2ϵ−1) = ||x|| for a PV-function S.

8 It could be interesting to develop systematically a standard theory of learning algorithms in APC1 and
WF, but it is not our goal here. Note, for example, that when we are learning small circuits it is not clear
how to boost the confidence to 1 in APC1, because we don’t have counting with exponential precision.
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This allows us to express Prx<t[x ∈ X]ϵ = a, where ϵ−1 ∈ Log and X ∩ t ⊆ 2|t| is defined
by a circuit C, without a PV1(α) function, by formula

∀y (LBtt(y, 2||y||/4, 2||y||(1/2−1/2||y||/4))∧||y|| = S(C, 2|t|, 2ϵ−1
) → Sz(C, 2|t|, 2ϵ−1

, y)/t = a).

We denote the resulting formula by Pry
x<t[x ∈ X]ϵ = a. We will use the notation Pry

x<t[x ∈
X]ϵ in equations with the intended meaning that the equation holds for the value Sz(·, ·, ·, ·)/t
under corresponding assumptions. For example, t · Pry

x<t[x ∈ X]ϵ ⪯δ a stands for “∀y,∃v,∃
circuit Ĉ (defining a surjection) which witnesses that LBtt(y, 2||y||/4, 2||y||(1/2 − 1/2||y||/4)) ∧
||y|| = S(C, 2|t|, 2ϵ−1) implies Sz(C, 2|t|, 2ϵ−1

, y) ⪯δ a”.
The definition of learning can be now expressed without a PV1(α) function: If circuit

class C is defined by a PV-function, the statement that a given oracle algorithm L (given
by a PV-function with oracle queries) learns a circuit class C over the uniform distribution
up to error ϵ with confidence δ can be expressed as before with the only difference that we
replace Prw[Lf (1n, w) (1 − ϵ)-approximates f ]γ ≥ δ by

y

Pr
w

[Lf (1n, w) (1 − ϵ)-approximates f ]γ ≥ δ.

Since the resulting formula A defining learning is not Πb
1 (because of the assumption LBtt)

we cannot translate it to propositional logic. We will sidestep the issue by translating only the
formula B obtained from A by deleting subformula LBtt (but leaving ||y|| = S(·, ·, ·) intact)
and replacing the variables y by fixed bits representing a hard boolean function. In more detail,
Πb

1 formula B can be translated into a sequence of propositional formulas leary
γ(L, C, ϵ, δ)

expressing that “if C ∈ C is a circuit computing f , then L querying f generates a circuit
D such that Pr[D(x) = f(x)] ≥ 1 − ϵ with probability ≥ δ, which is counted approximately
with precision γ”. Note that C, f are represented by free variables and that there are also free
variables for error γ from approximate counting and for boolean functions y. As in the case
of tt-formulas, we fix |f | = 2n, so n is not a free variable. Importantly, leary

γ(L, C, ϵ, δ) does
not postulate that y is a truth-table of a hard boolean function. Nevertheless, for any fixed
(possibly non-uniform) bits representing a sequence of boolean functions h = {hm}m>n0

such that hm is not (1/2 + 1/2m/4)-approximable by any circuit of size 2m/4, we can obtain
formulas learh

γ(L, C, ϵ, δ) by substituting bits h for y.
Using a single function h in learh

γ(L, C, ϵ, δ) does not ruin the fact that (the translation of
function) Sz approximates the respective probability with accuracy γ because Sz queries a
boolean function y which depends just on the number of atoms representing γ−1 and on the
size of the circuit D defining the predicate we count together with the number of inputs of
D. The size of D and the number of its inputs are w.l.o.g. determined by the number of
inputs of f .

If we are working with formulas learh
γ(L, C, ϵ, δ), where h is a sequence of bits representing

a hard boolean function, in a proof system which cannot prove efficiently that h is hard,
our proof system might not be able to show that the definition is well-behaved - it might
not be able to derive some standard properties of the function Sz used inside the formula.
Nevertheless, in our theorems this will never be the case: our proof systems will always know
that h is hard.

In formulas leary
γ(L, C, ϵ, δ) we can allow L to be a sequence of nonuniform circuits, with

a different advice string for each input length. One way to see that is to use additional input
to L in Πb

1 formula B, then translate the formula to propositional logic and substitute the
right bits of advice for the additional input. Again, the precise encoding of the formula
leary

γ(L, C, ϵ, δ) does not matter very much to us but in order to simplify proofs we will
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assume that leary
γ(L,Circuit[nk], ϵ, δ) has the from ¬tt(f, nk) → R, where n, k are fixed, f is

represented by free variables and R is the remaining part of the formula expressing that L
generates a suitable circuit with high probability.

3.3 Automatability
Let Φ be a class of propositional formulas. We say that a proof system P is automatable
w.r.t. Φ up to proofs of size s, where s : Φ 7→ N is a function, if there is a PV-function A

such that for each ϕ ∈ Φ and each t-size P -proof of ϕ with t ≤ s, A(ϕ, 1t) is a P -proof of ϕ.
In our main theorem we will need a slightly modified notion of automatability where the

automating algorithm outputs a proof of a given tautology ϕ which is not much longer than
a proof of an associated tautology ψ. (Formula ψ will be closely related to ϕ: while ϕ will
express a worst-case lower bound, ψ will express an average-case lower bound for the same
function.)

Let Φ be a class of pairs of propositional formulas. We say that a proof system P is
automatable w.r.t. Φ up to proofs of size s if there is a PV-function A such that for each
pair ⟨ψ, ϕ⟩ ∈ Φ and each t-size P -proof of ψ with t ≤ s, A(ϕ, 1t) is a P -proof of ϕ.

Propositional version. If Φ is defined by a PV-function and s ∈ Log is a PV-function, the
statement that an algorithm A (given by a PV-function) automates system P w.r.t. Φ up
to proofs of size s is Πb

1. Therefore, it can be translated into a sequence of propositional
formulas autP (A,Φ, s). Again, in formulas autP (A,Φ, s) we can allow A to be a sequence of
nonuniform circuits and s to be arbitrary possibly nonuniform parameter.

4 Learning algorithms from natural proofs in APC1

The formalization of the transformation of natural proofs into learning algorithms follows
from a straightforward inspection of the original proof. The proof can be found in the arXiv
version of the paper.

▶ Theorem 15. There is a PV-function L such that APC1 proves: For k ≥ 1, d ≥ 2,
2nd

, ndk, δ−1 ∈ Log, δ < 1/N3 and a prime nd ≤ p ≤ 2nd, let RN be a circuit with N = 2n

inputs such that for sufficiently big N ,
1. RN (x) = 1 implies that x is a truth-table of a boolean function with n inputs hard for

Circuit[n10dk],
2. {x | RN (x) = 1} ⪰δ 2N/N .

Then, circuits with nd inputs and size ndk are learnable by circuit L(RN , p) over the uniform
distribution with membership queries, confidence 1/N4, up to error 1/2 − 1/N3. Here, the
confidence is counted approximately with error δ using PV-function Sz and the corresponding
assumptions LBtt expressing hardness of a boolean function y, i.e. using formulas Pry[·]δ.

5 Main theorem

Our main theorem holds for any “decent” proof system p-simulating WF, which is well-behaved
in the sense that it APC1-provably satisfies some basic properties.

▶ Definition 16 (APC1-decent proof system). A propositional proof system P is APC1-decent
if the language L of P is finite and complete, i.e. L consists of connectives of constant arity
such that each boolean function of every arity can be expressed by an L-formula, P proves
efficiently its own reflection principle, i.e. formulas stating that if π is a P -proof of ϕ then ϕ

holds, cf. [22], and there is a PV-function F such that APC1 proves:
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1. P p-simulates WF, i.e. F maps each WF-proof of ϕ to a P -proof of ϕ.
2. P admits substitution property: F maps each triple ⟨ϕ, ρ, π⟩ to a P -proof of ϕ|ρ, where π

is a P -proof of ϕ and ϕ|ρ is formula ϕ after applying substitution ρ which replaces atoms
of ϕ by formulas.

3. F maps each pair ⟨π, π′⟩, where π is a P -proof of ϕ and π′ is a P -proof of ϕ → ψ, to a
P -proof of ψ.

In Definition 16, WF refers to some fixed system from the set of all WF systems. It follows
from the proof of Lemma 17 that if APC1 proves that P p-simulates a WF-system Q, then
for every WF-system R, APC1 proves that P p-simulates R, so the particular choice of the
WF-system does not matter. When we use connectives ∧,∨,¬,→ in an APC1-decent system
P , we assume that these are expressed in the language of P .

▶ Lemma 17. Each WF system is APC1-decent. Moreover, for each APC1-decent proof
system P the following holds.
1. For every Frege rule which derives ϕ from ϕ1, . . . , ϕk, there is a PV-function F such that

APC1 proves that F maps each (k + 1)-tuple ⟨π1, . . . , πk, ρ⟩ to a P -proof of ϕ|ρ, where πi

is a P -proof of ϕi|ρ for a substitution ρ replacing each atom of ϕ, ϕ1, . . . , ϕk by a formula.
2. There is a PV-function F such that APC1 proves that F maps each pair ⟨ϕ, b⟩, for

assignment b satisfying formula ϕ, to a P -proof of ϕ(b).
3. Let π be a P -proof of E → ϕ, where E defines a computation of a circuit which is

allowed to use atoms from ϕ as inputs but other atoms of E do not appear in ϕ, i.e. E
is the conjunction of extension axioms of EF built on atoms from ϕ. Then, there is a
poly(|π|)-size P -proof of ϕ.

Proof. WF is known to prove efficiently its own reflection principle, cf. [15]. In order to show
that it is APC1-decent, it thus suffices to prove that it satisfies Items 1-3 from Definition 16.

Item 2 is established already in PV1 by Σb
1-induction on the length of the proof π (which

can be used because of ∀Σb
1-conservativity of S1

2 over PV1): F replaces each circuit C from π

by C|ρ and preserves all WF-derivation rules.
Item 1 holds trivially if the given WF-system P is the WF-system P ′ from Definition 16.

Otherwise, we use implicational completeness of P and the completeness of the language of
P to simulate all O(1) Frege rules of P ′ by O(1) steps in P . (This does not require that the
implicational completeness of P is provable in APC1 because we need to simulate only O(1)
Frege rules of finite size). Similarly, by Σb

1-induction and the completeness of the language of
P , we simulate each circuit in the language of P ′ by a circuit in the language of P and show
that this simulation preserves the similarity rule. Then, given an s-size P ′-proof of ϕ, we
obtain a poly(s)-size P -proof of ϕ using the simulation of Frege rules of P ′, the similarity
rule and dWPHP axiom, together with substituting the right circuits in Frege rules. This is
done again in PV1 by Σb

1-induction on the length of the P ′-proof.
Item 3 follows by simulating modus ponens as in the proof of Item 1.

For the “moreover” part, see the arXiv version of the paper. ◀

APC1-decent proof systems can be much stronger than WF. For example, consider ZFC
as a propositional proof system: a ZFC-proof of propositional formula ϕ is a ZFC-proof of
the statement encoding that ϕ is a tautology. We can add the reflection of ZFC to WF,
i.e. we will allow WF to derive (substitutional instances of) formulas stating that “If π is a
ZFC-proof of ϕ, then ϕ holds.” The new system is as strong as ZFC w.r.t. tautologies and it
is easy to see that it is APC1-decent. (The reflection of the system can be proved in APC1
extended with an axiom postulating the reflection for ZFC.)
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▶ Theorem 18 (Learning versus automatability). Let P be an APC1-decent proof system and
assume there is a sequence of boolean functions h = {hn}n>n1 , for a constant n1, such that P
proves efficiently tt(hn, 2n/4, 1/2 − 1/2n/4). Then, for each constant K and constant γ < 1,
the following statements are equivalent.
1. Provable learning. For each k ≥ 1 and ℓ ≥ K + 1, there are 2Knγ -size circuits A such

that for each sufficiently big n, P proves efficiently

learh
1/2ℓnγ (A,Circuit[nk], 1/2 − 1/2Knγ

, 1/2Knγ

).

2. Provable automatability. For each k ≥ 1, for each function s(n) ≥ 2n, there is a
constant K ′ and sK′-size circuits B such that P proves efficiently

autP (B,Φ, s),

where Φ is the set of pairs ⟨tt(f, 2Knγ

, 1/2 − 1/2Knγ ), tt(f, nk)⟩ for all boolean functions
f with n inputs.

Proof. (1. → 2.) We first prove the following statement in APC1.

▷ Claim 19 (in APC1). Assume that π is a P -proof of leary
1/2ℓnγ (A,Circuit[nk], 1/2−1/2Knγ

, δ)
for a circuit A and a boolean function y represented by fixed bits in formula leary

1/2ℓnγ (·, ·, ·, ·).
Further, assume that the probability that A on queries to f outputs a circuit D such
that Pr[D(x) = f(x)] ≥ 1/2 + 1/2Knγ is < δ, where the outermost probability is counted
approximately with error 1/2ℓnγ using PV-function Sz and the corresponding assumptions
LBtt expressing hardness of y, i.e. using formulas Pry[·]1/2ℓnγ for the same y as above - we
treat y as a free variable here. Then there is a poly(|π|)-size P -proof of tt(f, nk) or y does
not satisfy the assumptions of Pry[·]1/2ℓnγ .

To see that the claim holds, we reason in APC1 as follows. Assume π is a P -
proof of leary

1/2ℓnγ (A,Circuit[nk], 1/2 − 1/2Knγ

, δ) but A on queries to f outputs a circuit
(1/2 + 1/2Knγ )-approximating f with probability < δ. Then, either y does not satisfy the
assumptions of Pry[·]1/2ℓnγ or there is a trivial 2O(n)-size P -proof of ¬tt(f, nk) → ¬R(b), for
predicate R from the definition of leary

1/2ℓnγ (A,Circuit[nk], 1/2 − 1/2Knγ

, δ) and a complete
assignment b. The P -proof is obtained by evaluating function Sz which counts the confidence
of A - note that functions f, y and algorithm A are represented inside P by fixed bits so
the P -proof just evaluates a 2O(n)-size circuit on some input, which is possible by Lemma
17, Item 2. (We use here also the fact that APC1 knows that the probability statement
expressed by function Sz translates to ¬R in the negation normal form.) The formula
¬tt(f, nk) → ¬R(b) is obtained from ¬R(b) by an instantiation of a single Frege rule, which
is available by Lemma 17, Item 1. Applying again Lemma 17, Item 1, from a P -proof of
leary

1/2ℓnγ (A,Circuit[nk], 1/2 − 1/2Knγ

, δ) and a P -proof of ¬tt(f, nk) → ¬R(b), we construct
a poly(|π|)-size P -proof of tt(f, nk). This proves the claim.

Next, observe that APC1 proves that “If for a sufficiently big n and ℓ ≥ K + 1 the
probability that a circuit A on queries to f outputs a circuit (1/2 + 1/2Knγ )-approximating
f is ≥ 1/2Knγ , where the probability is counted approximately with error 1/2ℓnγ using
PV-function Sz and the corresponding assumptions LBtt, then there is a circuit of size |A|
(1/2 + 1/2Knγ )-approximating f or y does not satisfy the assumptions of Pry[·]1/2ℓnγ .” This
is because, if such a circuit did not exist, a trivial surjection would witness that 2m times the
probability that A outputs a circuit (1/2 + 1/2Knγ )-approximating f , counted approximately
with error 1/2ℓnγ using function Sz, is ⪯1/2ℓnγ 0. Here, 2m is the domain of the surjection.
By Proposition 11 1.ii), this would imply 2m/2Knγ

< 2m+1/2ℓnγ , which is a contradiction
for ℓ ≥ K + 1 and sufficiently big n.
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Therefore, Claim 19 implies that APC1 proves that “For sufficiently big n and ℓ ≥ K + 1,
if π is a P -proof of leary

1/2ℓnγ (A,Circuit[nk], 1/2 − 1/2Knγ

, 1/2Knγ ) for circuits A of size
2Knγ , then there is a P -proof of tt(f, nk) or there is a 2Knγ -size circuit (1/2 + 1/2Knγ )-
approximating f or there is a 2||y||/4-size circuit (1/2+1/2||y||/4)-approximating y or ||y|| ≤ n0

or ||y|| ≠ S(·, 2m, 22ℓnγ

);” for n0 from Definition 14. Since this is a Σb
1-statement, by Lemma

12, PV1 proves the same statement with the existential quantifiers witnessed by PV-functions
assuming they are given a boolean function h′ which is hard for circuits of size 2||h′||/4, for
sufficiently big |h′|.

The last statement provable in PV1 is Πb
1 so we can translate it to EF. This gives us

poly(|π|, 2n)-size circuits B0 such that for sufficiently big n, EF proves efficiently

“If ℓ ≥ K + 1,
h′ is not computable by a particular circuit of size 2||h′||/4, |h′| is sufficiently big,
y is not (1/2 + 1/2||y||/4)-approximable by a particular circuit of size 2||y||/4, ||y|| > n0,
||y|| = S(·, 2m, 22ℓnγ

)
and π is a P -proof of leary

1/2ℓnγ (A,Circuit[nk], 1/2 − 1/2Knγ

, 1/2Knγ ) for 2Knγ -size A,
then B0 (given π, h′ and formula tt(f, nk)) outputs a P -proof of tt(f, nk)

or B0 outputs a 2Knγ -size circuit (1/2 + 1/2Knγ )-approximating f .”.9

If we now assume that P proves efficiently tt(hn, 2n/4, 1/2 − 1/2n/4) and that Item 1 holds,
then by Definition 16, Items 1-3, for each k, there are p-size circuits B1 such that for each
sufficiently big n, P proves efficiently “B1 (given just formula tt(f, nk)) outputs a P -proof of
tt(f, nk) or B1 outputs a 2Knγ -size circuit (1/2 + 1/2Knγ )-approximating f .” (We use here
also the fact that PV1 knows that S(·, 2m, 22ℓnγ

) depends just on n.) Consequently, since P
proves efficiently its own reflection, for each sufficiently big n, P proves efficiently that “if π
is a P -proof of tt(f, 2Knγ

, 1/2 − 1/2Knγ ) then B1 outputs a P -proof of tt(f, nk)”.10 Finally,
we make the P -proofs work for all n by increasing the size of B1 by a constant. This finishes
the proof of case (1. → 2.).

(2. → 1.) The opposite implication can be obtained from Lemma 20 and 21 which formalize
Theorem 4.

▶ Lemma 20. For each d ≥ 2, each k ≥ 10d and each sufficiently big c, there is a PV-function
L such that for each PV-function B the theory APC1 proves: Assume the reflection principle
for P holds, π is a P -proof of

tt(hn ⊕ g, 2Knγ

, 1/2 − 1/2Knγ

) ∨ tt(g, 2Knγ

), (1)

where g is represented by free variables, and that B automates P on Φ up to size |π|c. Then,
for prime nd ≤ p ≤ 2nd, where 2nd ∈ Log, for δ−1 ∈ Log such that δ < 1/N3 = 23n,
L(B, π, p) is a poly(2n, |π|)-size circuit learning circuits with m = nd inputs and size mk/10d,

9 Formally, the statement “If a particular assignment a satisfies formula ϕ, then formula ψ holds” means
that “If a is the output of a computation of a specific circuit W (where W is allowed to use as
inputs atoms from ψ, but other atoms of W do not appear in ψ), and a satisfies ϕ, then ψ”. By
Lemma 17, Item 3, if we assume that the statement is efficiently provable in P and that P proves
efficiently ϕ, then P proves efficiently ψ. Note also that for A,B ∈ Σb

0, the translation ||A → B||
is ¬||¬A|| → ||B||, which might not be the same formula as ||A|| → ||B||. Nevertheless, EF proves
efficiently that E → (||A|| ↔ ¬||¬A||), where E postulates that auxiliary variables of ||A|| encode the
computation of a suitable circuit. Therefore, in systems like EF or P , if we have a proof of ||A|| and
||A → B||, we can remove the assumption E after proving E → ||B||, assuming “non-input” variables of
E do not occur in ||B||, and ignore the difference between ||A|| and ¬||¬A||.

10 It is assumed that the encoding of the statement coincides with the encoding of autP .
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with confidence 1/N4, up to error 1/2 − 1/N3, where the confidence is counted approximately
with error δ using PV-function Sz and the corresponding assumptions LBtt expressing hardness
of a boolean function y, i.e. using formulas Pry[·]δ.

▶ Lemma 21 (“XOR trick”). PV1 proves that for all boolean functions g, h′′ with n inputs, for
sufficiently big n, LBtt

′(h′′, 3 · 2Knγ

, 2n(1/2 − 1/2Knγ )) implies LBtt
′(h′′ ⊕ g, 2Knγ

, 2n(1/2 −
1/2Knγ )) ∨ LBtt

′(g, 2Knγ ), where LBtt
′ is obtained from LBtt by setting n0 = 0 and skipping

the universal quantifier on n, i.e. all formulas LBtt
′ refer to the same n.

The proof of Lemma 21 is almost immediate: By Σb
1-induction, a 2Knγ -size circuit C1

computing g and a 2Knγ -size circuit C2 (1/2+1/2Knγ )-approximating h′′ ⊕g can be combined
into a circuit C1 ⊕ C2 of size 3 · 2Knγ which (1/2 + 1/2Knγ )-approximates h′′.

The implication (2. → 1.) can be derived from Lemma 20 and 21 as follows. Since the
APC1-provable statement from Lemma 20 is Σb

1, similarly as above, we can witness it and
translate to EF at the expense of introducing an additional assumption about the hardness of
a boolean function h′. That is, for each p-size circuit B there are poly(|π|, 2nd)-size circuits
A and poly(|π|, 2nd)-size EF-proofs of

“If the reflection principle for P is satisfied by a particular assignment,
π is a P -proof of (1),
h′ is not computable by a particular circuit of size 2||h′||/4, |h′| is sufficiently big,
y is not (1/2 + 1/2||y||/4)-approximable by a particular circuit of size 2||y||/4, ||y|| > n0,
||y|| = S(·, ·, 2|δ−1|)
and nd ≤ p ≤ 2nd is a prime,

then, for δ < 1/N3, leary
δ (L(B, π, p),Circuit(mk/10d), 1/2 − 1/N3, 1/N4)

or A(B, π, h′) outputs a falsifying assignment of autP (B,Φ, |π|c).”.

Analogously, PV1-proof from Lemma 21 yields p-size EF-proofs of the implication “tt(hn, 3·
2Knγ

, 1/2 − 1/2Knγ ) is falsified by a particular assignment or (1) holds”. By the assumption
of the theorem, there are p-size P -proofs of tt(hn, 3 · 2Knγ

, 1/2 − 1/2Knγ ) for sufficiently big
n. Hence, by Definition 16, Items 1-3, there are p-size P -proofs of (1) for sufficiently big n.
As P proves efficiently also its own reflection, this yields poly(2nd)-size P -proofs of

“If h′ is not computable by a particular circuit of size 2||h′||/4, |h′| is sufficiently big,
y is not (1/2 + 1/2||y||/4)-approximable by a particular circuit of size 2||y||/4, ||y|| > n0,
||y|| = S(·, ·, 2|δ−1|)
and nd ≤ p ≤ 2nd is a prime,

then, for δ < 1/N3, leary
δ (L(B, π, p),Circuit(mk/10d), 1/2 − 1/N3, 1/N4)

or A(B, π, h′) outputs a falsifying assignment of autP (B,Φ, |π|c).”.

By Bertrand’s postulate there is a prime nd ≤ p ≤ 2nd, so EF proves that p is a prime by
a trivial 2O(nd)-size proof which verifies all possible divisors. Therefore, choosing d > 1/γ,
Item 2 and p-size P -proofs of tt(hn, 2n/4, 1/2 − 1/2n/4) imply Item 1.

It remains to prove Lemma 20.
Suppose π is a P -proof of (1). Assuming that B automates P on Φ, we want to

obtain a P/poly-natural property useful against Circuit[nk]. To do so, observe (first, without
formalizing it in APC1) that for each g, B can be used to find a proof of tt(hn ⊕ g, nk)
or to recognize that tt(g, 2Knγ ) holds - if tt(g, 2Knγ ) was falsifiable, there would exist a
poly(|π|)-size P -proof of tt(hn ⊕g, 2Knγ

, 1/2−1/2Knγ ) obtained by substituting the falsifying
assignment to the proof of (1) and thus B would find a short proof of tt(hn ⊕ g, nk), for
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sufficiently big c. Since for random g, both hn ⊕ g and g are random functions, we know
that with probability ≥ 1/2 B finds a proof of tt(hn ⊕ g, nk) or with probability ≥ 1/2 it
recognizes that tt(g, 2Knγ ) holds. In both cases, B yields a P/poly-natural property useful
against Circuit[nk].

Let us formalize reasoning from the previous paragraph in APC1. Let N = 2n and B′

be the algorithm which uses B to search for P -proofs of tt(hn ⊕ g, nk) or to recognize that
tt(g, 2Knγ ) holds. B′ uses π to know how long it needs to run B. Assume for the sake of
contradiction that

G0 := {g ⊕ hn | B′(g) outputs a P -proof of tt(hn ⊕ g, nk)} ⪯0 2N/3

G1 := {g | B′(g) recognizes that tt(g, 2Knγ

) holds} ⪯0 2N/3.

It is easy to construct a surjection S witnessing that 2N ⪯0 G0 ∪G1: S maps g ∈ G1 to g
and g ∈ G0 to g ⊕ hn. Following the argument above we conclude that S is a surjection: for
each g, either g ∈ G1 (and S(g) = g) or g ⊕ hn ∈ G0 (and S(g ⊕ hn) = g). Here, we use
the assumption that APC1 knows that P admits the substitution property and simulates
Frege rules. Thus, by Proposition 10 iv), 2N ⪯0 2 · 2N/3, which yields a contradiction by
Proposition 11 1.ii). Consequently, by Proposition 11 1.i), G0 ⪰δ 2N/3 or G1 ⪰δ 2N/3 for
δ−1 ∈ Log. Since g ∈ G0 and g ∈ G1 are decidable by p-size circuits and we assume the
reflection principle for P (which implies that G0 is useful), this means that either G0 or G1
defines a P/poly-natural property useful against Circuit[nk].

Finally, by the APC1-formalization of [8], Theorem 15, we obtain poly(2n, |π|)-size circuit
L(B, π, p) learning circuits with m = nd inputs and size nk/10, over the uniform distribution,
with membership queries, confidence 1/N4, up to error 1/2 − 1/N3. ◀

▶ Corollary 22. Assume there is a NE ∩ coNE-function hn : {0, 1}n 7→ {0, 1} such that for
each sufficiently big n, hn is not (1/2 + 1/2n/4)-approximable by 2n/4-size circuits. Then
there is a proof system P (which can be described explicitly11 given the definition of hn)
such that for each constant K and γ < 1, Items 1 and 2 from Theorem 18 are equivalent.
Moreover, the equivalence holds for each APC1-decent system simulating P .

Proof. See the arXiv version of the paper. ◀
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